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Torus orbit closures and
1-strip-less-tableaux

Carl Lian

Abstract We compare two formulas for the class of a generic torus orbit closure in a Grass-
mannian, due to Klyachko and Berget-Fink. The naturally emerging combinatorial objects are
semi-standard fillings we call 1-strip-less tableaux.

1. Introduction
Let Gr(r, n) be the Grassmannian of r-planes in Cn, on which an n-dimensional torus
T acts in the standard way. Let x ∈ Gr(r, n) be a general point, let X := T · x be the
closure of the orbit of x, and let [X] ∈ H2(r−1)(n−r−1)(Gr(r, n)) be the corresponding
cohomology class. Such classes have received considerable attention in the literature
[3, 8, 1, 5, 7]; the author’s own interest in them stems from their relationship to
fixed-domain curve counts in the projective space Pr−1 [6].

We have the following two formulas for [X] originally due to Klyachko and Berget-
Fink, respectively, obtained via different methods.

Theorem 1.1 ([3, Theorem 6]). Write

[X] =
∑

µ

Γµ
r,nσµ

in terms of the basis of Schubert cycles σµ. Then, we have

Γµ
r,n =

m(µ)∑
j=0

(−1)j

(
n

j

)
| SSYTr−j(µj)|,

where:
• m(µ) denotes the number of parts of µ equal to n − r (the largest possible),
• µj denotes the partition of length r−j obtained from µ by removing j ⩽ m(µ)

parts of size n − r, and
• | SSYTr′(µ′)| denotes the number of semi-standard Young tableaux (SSYTs)

of shape µ′ filled with entries 1, 2, . . . , r′.

See §2 for a detailed discussion of notational conventions for Schubert calculus and
related combinatorics.
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Theorem 1.2 ([1, Theorem 5.1]). We have

[X] =
∑

λ⊂(n−r−1)r−1

σλσ
λ̃
,

where, for any partition λ ⊂ (n − r − 1)r−1, λ̃ denotes its complement inside the
rectangle (n − r − 1)r−1.

Therefore, for abstract reasons, the following holds.

Theorem 1.3. We have ∑
λ⊂(n−r−1)r−1

σλσ
λ̃

=
∑

µ

Γµ
r,nσµ,

where the Γµ
r,n are as in Theorem 1.1.

The purpose of this paper is to give a direct combinatorial proof of Theorem 1.3.
Our main calculation applies Coskun’s geometric Littlewood-Richardson rule [2] to
the left-hand side in such a way that the coefficients Γµ

r,n emerge naturally. In fact,
we arrive at the following combinatorial interpretation for the coefficients Γµ

r,n:

Theorem 1.4. Γµ
r,n is equal to the number of 1-strip-less SSYTs (see §2.1) of shape

µ, filled with entries 1, 2, . . . , r.

In particular, in the alternating sum of Theorem 1.1, the first term dominates, and
we get a non-negative interpretation of the integers Γµ

r,n. In fact, the following version
of Theorem 1.4 was known to Klyachko [4, Theorem 3.3]: the number Γµ

r,n was shown
to count the number of standard Young tableaux of shape λ, the complement of λ
inside the rectangle (n − r)r, with exactly (r − 1) descents. Such objects are naturally
in bijection with 1-strip-less SSYTs; we describe this bijection (explained to us by
Philippe Nadeau) in the appendix.

In our calculation, the 1-strip-less SSYTs are the naturally occurring objects. As
we will see in §3, the geometric Littlewood-Richardson rule allows us to express the
products σλσ

λ̃
in terms of simple Schubert classes, see Corollary 3.4. From here, the

Pieri rule allows us on the one hand to interpret the coefficients in the Schubert basis
as counts of 1-strip-less tableaux in §4, and on the other hand to recover Klyachko’s
formula in §5.

2. Preliminaries
2.1. Young tableaux. Let λ = (λ1, . . . , λr) be a partition. Our convention through-
out is that the parts of λ are non-increasing (λ1 ⩾ · · · ⩾ λr ⩾ 0), and furthermore that
λ is defined implicitly with respect to an integer n for which λ1 ⩽ n − r (equivalently,
λ ⊂ (n − r)r). The Young diagram of λ is taken to be left- and upward-justified, with
larger parts depicted on top.

The complement of λ, denoted λ, is the partition (n − r − λr, . . . , n − r − λ1).
Pictorially, the complement λ is obtained as the (rotated) complement of λ inside
the rectangle (n − r)r. Note that we distinguish the notation λ and the notation λ̃
appearing in Theorem 1.2.

Below, the Young diagram of the partition λ = (10, 9, 4, 2), defined with respect to
n = 14 is shown. Its complement (before rotation) λ = (8, 6, 1, 0) is shaded in gray.
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A strip S of λ is a subset of n − r boxes in the Young diagram of λ satisfying the
following two properties:

• No two boxes of S lie in the same column.
• Given any distinct boxes b1, b2 of S, if b1 lies in a column to the left of b2,

then b1 does not also lie in a row above b2.
An example of a strip in the partition λ = (10, 9, 4, 2), where we take n = 14, is shaded
below. However, the same set of boxes is not a strip if λ is defined with respect to
n > 14.

A semi-standard Young tableau (SSYT) of shape λ is a filling of the boxes of λ with
the entries 1, 2, . . . , r so that entries increase weakly across rows and strictly down
columns. We will often abuse notation, using the letter λ to denote either a partition
or a SSYT of that shape. The number of SSYTs of shape λ is denoted | SSYTr(λ)|,
and is given by the formula

| SSYTr(λ)| = sλ(1r) =
∏
u∈λ

r + c(u)
h(u) ,

see [9, Corollary 7.21.4]. Here, sλ(1r) denotes the Schur function associated to λ,
specialized so that the first r variables are equal to 1 and all others are equal to zero.
In the last formula, the product is over all boxes u, and if u is in the i-th row and
j-th column of λ, then by definition, c(u) = j − i and h(u) is the total number of
boxes either to the right (and in the same row) of, below (and in the same column),
or equal to u.

The k-weight wk(λ) of a SSYT λ is the number of appearances of the entry k. The
type of λ is the tuple (w1(λ), w2(λ), . . . , wr(λ)).

For i = 1, 2, . . . , r, an (i)-strip of a SSYT is a strip, all of whose boxes are filled
with the entry i. A 0-strip (written without parentheses) is, by definition, an (i)-strip
for some i. A SSYT is 0-strip-less if it contains no 0-strips. Below, the SSYT of shape
λ = (10, 9, 4, 2) (with n = 14) has a (3)-strip and no other 0-strips. If we take instead
n > 14, then the same SYT is 0-strip-less.

1 1 1 1 1 2 3 3 3 3
2 2 2 2 3 3 4 4 4
3 3 3 3
4 4

Let | SSYT0
r(λ)| denote the number of 0-strip-less SSYTs of shape λ (with entries

1, 2, . . . , r).
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Lemma 2.1. Given a partition λ ⊂ (n − r)r, adopt the notation m(λ) and λj, for
j = 0, 1, . . . , m(λ), of the statement of Theorem 1.1. Then, we have

| SSYT0
r(λ)| =

m(λ)∑
j=0

(−1)j

(
r

j

)
| SSYTr−j(λj)|.

Proof. Given any j-element subset of S ⊂ {1, 2, . . . , r}, the number | SSYTr−j(µj)|
counts SSYTs of shape µ with an (s)-strip for any s ∈ S. Indeed, deleting all boxes
containing an entry s ∈ S in such a SSYT yields (after appropriate re-shifting) an
SSYT of shape µj filled with entries lying in {1, 2, . . . , r} − S; this is easily seen to
be a bijection. The factor

(
r
j

)
enumerates subsets S of size j. The lemma now follows

from Inclusion-Exclusion. □

Similarly, for i = 1, 2, . . . , r − 1, an (i, i + 1)-strip of a SSYT is a strip, all of whose
boxes are filled with the entry i or i + 1, and for which all instances of i all appear
to the left of all instances of i + 1. By convention, an (i)-strip is both an (i, i + 1)-
and an (i − 1, i)-strip. A 1-strip (written without parentheses) is, by definition, an
(i, i+1)-strip for some i. A SSYT is 1-strip-less if it contains no 1-strips (and therefore
no 0-strips). Note that an SSYT of shape λ with λ1 < n − r is automatically 1-strip-
less. Below, the SSYT of shape λ = (10, 9, 4, 2) has a unique (2, 3)-strip and no other
1-strips.

1 1 1 1 2 2 3 3 3 3
2 2 2 2 3 4 4 4 4
3 3 3 4
4 4

2.2. Schubert calculus. Let W be a vector space of dimension n, assumed over
C for concreteness. Then, Gr(r, W ) ∼= Gr(r, n) is the Grassmannian of r-dimensional
subspaces of W .

Fix a complete flag F of subspaces

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = W.

Let λ = (λ1, . . . , λr) be a partition, with λ1 ⩽ n − r. Then, the Schubert variety
ΣF

λ ⊂ Gr(r, W ) is by definition the closed subvariety of (complex) codimension |λ|
consisting of subspaces V ⊂ W of dimension r for which

dim(V ∩ Fn−r+i−λi
) ⩾ i

for i = 1, . . . , r. The class of ΣF
λ in H2|λ|(Gr(r, W )) is denoted σλ.

3. Application of the Littlewood-Richardson rule
In this section, we express the products σλσ

λ̃
appearing on the left hand side of

Theorem 1.3 in terms of simple Schubert classes. The main result is Corollary 3.4.
We apply Coskun’s Littlewood-Richardson rule [2]; we will only need some aspects of
the algorithm, which we review as we need them. Other versions of the Littlewood-
Richardson rule can presumably prove the same formula; our presentation is largely
idiosyncratic.

We first carry out [2, Algorithm 3.19] to express the class σλσ
λ̃

in terms of a
Mondrian tableau. Geometrically, this will interpret σλσ

λ̃
as the class of a subvariety

of Gr(r, n) defined generically by the condition that V ⊂ Cn contain a basis of vectors
v1, . . . , vr, where each vj is constrained to lie in a particular subspace of Cn.
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Figure 1. The Mondrian tableau associated to the class σλσ
λ̃

when
r = 4.

1
. . .

a1

. . .

a2

. . .

a3

. . .
n

Write λ = (λ1, . . . , λr−1, 0), so that λ̃ = (n − r − 1 − λr−1, . . . , n − r − 1 − λ1, 0).
We also write λr = 0 and λ0 = n − r − 1. Fix a basis e1, . . . , en of Cn. Then, σλ is the
class of the Schubert variety of V ∈ Gr(r, n) satisfying

dim(V ∩ ⟨e1, . . . , en−r−λj+j⟩) ⩾ j

for j = 1, . . . , r, and σ
λ̃

is the class of the Schubert variety of V ∈ Gr(r, n) satisfying

dim(V ∩ ⟨en−r−λj−1+j−1, . . . , en⟩) ⩾ r + 1 − j

for j = 1, . . . , r.
Because these two Schubert varieties are defined with respect to the transverse

flags
0 ⊂ ⟨e1⟩ ⊂ ⟨e1, e2⟩ ⊂ · · · ⊂ Cn,

0 ⊂ ⟨en⟩ ⊂ ⟨en−1, en⟩ ⊂ · · · ⊂ Cn,

the product σλσ
λ̃

is represented by the generically transverse intersection of these two
Schubert varieties. Combining the two conditions above for each j, we obtain the r
conditions

dim(V ∩ ⟨en−r−λj−1+j−1, . . . , en−r−λj+j⟩) ⩾ 1.

for j = 1, . . . , r, as subspaces of V of dimensions j, r+1−j must intersect non-trivially.
By [2, Theorem 3.21] and its proof, these conditions suffice to understand the class
σλσ

λ̃
. More precisely:

Proposition 3.1. Let Z be the closure on Gr(r, n) of the locus of subspaces V ⊂ Cn

containing a basis v1, . . . , vr with
vj ∈ ⟨eaj−1 , . . . , eaj ⟩,

j = 1, 2, . . . , r. Here, we write aj = n − r − λj + j for j = 1, 2, . . . , r, in addition to
a0 = 1.

Then, the class of Z in H2(r−1)(n−r−1)(Gr(r, n)) is equal to σλσ
λ̃
.

The subvariety Z is represented by the Mondrian tableau M depicted in Figure 1
in the case r = 4. The basis elements e1, . . . , en (represented just by the subscripts
for brevity) are recorded along on the diagonal, and the r subspaces ⟨eaj−1 , . . . , eaj

⟩
are represented by squares Mj containing the corresponding indices. Note that the
Mj are pairwise disjoint except for the intersections Mj ∩ Mj+1 = {aj}.

To compute the class associated to M in H2(r−1)(n−r−1)(Gr(r, n)), we will (implic-
itly) compare it to that of a Mondrian tableau M ′ with disjoint squares M ′

j of the
same sizes as the Mj . The disjointness implies that the r squares impose independent
conditions on V , and the class associated to M ′ will be given simply by the Pieri rule.
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Figure 2. Comparison of the Mondrian tableaux M, M ′ when r = 4.
Here, r − 1 = 3 basis elements have been added in the southwest
corner.

−2
−1

0
1

. . .

a1

. . .

a2

. . .

a3

. . .
n

M

−2

a1 − 2

a2 − 1

a3

n

. . .

. . .

. . .

. . .

M ′

However, for such an M ′ to exist, one needs to enlarge the ambient vector space in
which the subspaces live.

We therefore pass from Cn = ⟨e1, . . . , en⟩ to Cn+r−1 = ⟨e−(r−2), . . . , en⟩. Abusing
notation, we let M denote the Mondrian tableau consisting of the already-defined
squares Mj , but now with the extra r − 1 basis elements added in the southwest, and
Z denote the closure of the locus on Gr(r, n + r − 1) of subspaces V = ⟨v1, . . . , vr⟩
subject to the same conditions vj ∈ ⟨eaj−1 , . . . , eaj

⟩ as before.
The Mondrian tableaux M, M ′, now defining classes on Gr(r, n+r−1), are depicted

in Figure 2.
Definition 3.2. Define the class M(a1, . . . , ar−1; n) ∈ H2(r−1)(n−1)(Gr(r, n + r − 1))
to be the class associated to the Mondrian tableau M , where we have added the basis
elements e−(r−2), . . . , e0.

Equivalently, the class M(a1, . . . , ar−1; n) is equal to the pushforward of σλσ
λ̃

from
Gr(r, n) to Gr(r, n+r−1) under the natural inclusion ⟨e1, . . . , en⟩ → ⟨e−(r−2), . . . , en⟩.

As the pushforward from Gr(r, n) to Gr(r, n + r − 1) is injective, the classes
M(a1, . . . , ar−1; n) determine the classes σλσ

λ̃
, simply by replacing the terms σµ ap-

pearing in the expansion of M(a1, . . . , ar−1; n) in terms of the Schubert basis with
σµ−(r−1)r .

As we will see, we will not need to deal explicitly with M ′, but rather, we will
understand M inductively, shifting the square M1 to the southwest so that it becomes
disjoint from the union of the remaining squares. The squares M2, . . . , Mr themselves
form a Mondrian tableau of the same form as M , but with one fewer square in total,
therefore corresponding to conditions on a (r − 1)-dimensional subspace. The key
relation is the following:
Proposition 3.3. Fix integers a1, . . . , ar−1 with 1 < a1 < · · · < ar−1 < n. Then, we
have the following equality on H2(r−1)(n−1)(Gr(r, n + r − 1)):

σn−a1 · [σ(a1−1)r−1 · M(a2 − a1 + 1, . . . , ar−1 − a1 + 1; n − a1 + 1)]
= M(a1, . . . , ar−1; n) + σn−1 · M(a2, . . . , ar−1; n).

We explain how the terms in the equality are to be interpreted. Write
θ : H∗(Gr(r − 1, n − r − 2)) → H∗(Gr(r, n − r − 1))

Algebraic Combinatorics, Vol. 7 #4 (2024) 1108
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Figure 3. The Mondrian tableaux M◦, M+ when r = 4. After one
first step of the geometric Littlewood-Richardson rule is applied, to
M◦, one obtains M+ and M (Figure 2)

−2
−1

0

. . .

a1

. . .

a2

. . .

a3

. . .
n

M◦

−2
−1

0

. . .

a1

. . .

a2

. . .

a3

. . .
n

M+

for the homomorphism map of abelian groups defined by θ(σµ) = σ(µ,0), where we
have simply appended a part of size 0 to the end of µ.

• The class M(a2 − a1 + 1, . . . , ar−1 − a1 + 1; n − a1 + 1) is naturally a class of
degree 2(r−2)(n−a1) on Gr(r−1, n+r−1−a1), therefore a linear combination
of Schubert cycles σµ with µ ⊂ (n − a1)r−1 and |µ| = (r − 2)(n − a1). The
operation “σ(a1−1)r−1 · −” pushes this class forward to Gr(r − 1, n + r − 2)
by adding (a1 − 1) to each part of µ. This class is then mapped to Gr(r, n +
r − 1) via the homomorphism θ (which we have suppressed in the formula of
Proposition 3.3). Finally, the resulting class on Gr(r, n + r − 1) is multiplied
by σn−a1 .

• The class M(a2, . . . , ar−1; n) is naturally a class of degree 2(r − 2)(n − 1) on
Gr(r − 1, n + r − 2). This class is mapped to a class on Gr(r, n + r − 1) under
θ, and then multiplied with the class σn−1. Alternatively, one can combine
these two steps simply by replacing each term σµ appearing in the expansion
of M(a2, . . . , ar−1; n) with the partition σ(n−1,µ), obtained by appending a
part of maximal length n − 1 to µ.

Proof. Let M◦ be the Mondrian tableau obtained from M by shifting the square M1 to
the southwest by one unit. Geometrically, the condition that V contain a basis element
v1 in ⟨e1, . . . , ea1⟩ is replaced by the condition that v1 ∈ ⟨e0, . . . , ea1−1⟩; the conditions
on the other r − 1 basis elements remain the same. Let Z◦ ⊂ Gr(r, n + r − 1) be the
corresponding closed subvariety, that is, the closure of the locus of V = ⟨v1, . . . , vr⟩
with v1 ∈ ⟨e0, . . . , ea1−1⟩ and vj ∈ ⟨eaj

, . . . , eaj+1⟩ for j ⩾ 2.
Let M+ be the Mondrian tableau obtained from M by replacing the square M1 with

the square of width 1 containing ea1 , and M2 with the square containing e0, . . . , ea2 .
In particular, M1 is contained in M2. Geometrically, the condition that V contain
two distinct basis elements v1 ∈ ⟨e1, . . . , ea1⟩ and v2 ∈ ⟨ea1+1, . . . , ea2⟩ is replaced by
the condition that v1 be a non-zero multiple of ea1 , and v2 ∈ ⟨e0, . . . , ea2⟩. (The other
r − 2 conditions stay the same.) Let Z+ ⊂ Gr(r, n + r − 1)) be the closed subvariety
defined by these new conditions.

The Mondrian tableaux M◦, M+ are depicted in Figure 3. Their combinatorial sig-
nificance is the following: if one starts with M◦, the geometric Littlewood-Richardson

Algebraic Combinatorics, Vol. 7 #4 (2024) 1109
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Rule [2, Algorithm 3.12, step GA2] proceeds by shifting M1 (the “active square”)
one unit to the northeast, to obtain the Mondrian tableau M . However, one also
records the data of the Mondrian tableau M+ which is obtained by replacing M1 and
its neighbor square M2 with their new intersection and old union. We obtain as a
consequence [2, Theorem 3.32] that

(1) [Z◦] = [Z] + [Z+] = M(a1, . . . , ar−1; n) + [Z+],

where we use square brackets [−] to denote the cohomology classes corresponding to
subvarieties. The geometric content of (1) is explained in Remark 3.5 at the end of
this section.

It now suffices to identify the classes [Z◦] and [Z+]. First, consider [Z◦]. The con-
ditions corresponding to M1 and M2, . . . , Mr are defined with respect to pairwise
disjoint basis elements, so are generically transverse on Gr(r, n+r −1). The condition
corresponding to M1 is that V intersect a fixed subspace of codimension (n+r−1)−a1;
the corresponding Schubert variety has class σn−a1 .

On the other hand, the condition corresponding to the remaining (r − 1) squares
is that V contain a hyperplane V ′ satisfying the same conditions as in the definition
of the class M(a2 − a1 + 1, . . . , ar−1 − a1 + 1; n − a1 + 1), except that there are a1
extra basis vectors e0, . . . , ea1−1, and the indices of the basis vectors ea1 , . . . , en are
shifted by a1 − 1. The class of the subvariety Z ′ ⊂ Gr(r − 1, n + r − 1) consisting
generically of V ′ = ⟨v2, . . . , vr⟩ with vj ∈ ⟨eaj−1 , . . . , aaj

⟩ is therefore equal to σ(a1)r−1 ·
M(a2 − a1 + 1, . . . , ar−1 − a1 + 1; n − a1 + 1). Explicitly, if we we write the class
M(a2 − a1 + 1, . . . , ar−1 − a1 + 1; n − a1 + 1) as∑

µ⊂(n−a1)r−1

|µ|=(r−2)(n−a1)

bµσµ ∈ H2(r−2)(n−a1)(Gr(r − 1, n + r − 1 − a1)),

then

[Z ′] =
∑

µ⊂(n−a1)r−1

|µ|=(r−2)(n−a1)

bµσµ+ar−1
1

∈ H2[(r−2)(n−a1)+a1(r−1)](Gr(r − 1, n + r − 1)),

where the partition µ+ar−1
1 is obtained from µ by adding a1 full columns, say, to the

left.
The resulting locus on Gr(r, n + r + 1) may be understood as follows. Let Fl(r −

1, r, n + r − 1) be the partial flag variety parametrizing nested pairs of subspaces
V ′ ⊂ V ⊂ Cn+r−1 of dimensions r − 1, r, respectively. We have a pair of maps

Fl(r − 1, r, n + r − 1)
prV ′

tt

prV

))
Gr(r − 1, n + r − 1) Gr(r, n + r − 1)

.

remembering the two subspaces individually. Then, the subvariety of Gr(r, n + r −
1) cut out by the conditions imposed by M2, . . . , Mr is precisely prV (pr−1

V ′ Z ′). An
elementary calculation (for example, using the definition given in §2.2) shows that,
on the level of cohomology, the correspondence (prV )∗ pr∗

V ′ sends the Schubert class
σµ to θ(σµ−1r−1), which is interpreted to be zero when 1r−1 ̸⊂ µ. Here, we recall that
θ is the homomorphism of abelian groups defined immediately after the statement of
the proposition, given by θ(σµ) = σ(µ,0).
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Therefore, we have

(prV )∗ pr∗
V ′([Z ′]) =

∑
µ⊂(n−a1)r−1

|µ|=(r−2)(n−a1)

bµθ(σµ+(a1−1)r−1)

= θ(σ(a1−1)r−1 · M(a2 − a1 + 1, . . . , ar−1 − a1 + 1; n − a1 + 1))

in H2[(r−1)(n−1)−(n−a1)](Gr(r, n + r − 1)). Therefore, we conclude that

[Z◦] = σn−a1 · [σ(a1−1)r−1 · M(a2 − a1 + 1, . . . , ar−1 − a1 + 1; n − a1 + 1)],

where, as in the statement of the proposition, we suppress the map θ inside the square
brackets.

Similarly, we claim that

[Z+] = σn−1 · M(a2, . . . , ar−1; n).

Deleting the basis element ea1 and the corresponding 1 × 1 box M1 from M+ yields
a Mondrian tableau which describes a subvariety Z ′′ ⊂ Gr(r − 1,Cn+r−1/⟨ea1⟩) =
Gr(r−1, n+r−2) of class M(a2, . . . , ar−1; n). Then, taking the condition imposed by
M1 back into account, the subvariety Z+ ⊂ Gr(r,Cn+r−1) is the image of Z ′′ under
the map

Gr(r − 1,Cn+r−1/⟨ea1⟩) → Gr(r,Cn+r−1)
which sends V ′′ ⊂ Cn+r−1/⟨ea1⟩ to ⟨V ′′, ea1⟩ ⊂ Cn+r−1. The induced push-forward
map on cohomology sends the class σµ to σ(n−1,µ), as seen by comparing the Schubert
conditions imposed by the flag

0 = F ′′
0 ⊂ F ′′

1 ⊂ · · · ⊂ F ′′
n+r−2 = Cn+r−1/⟨ea1⟩

to those imposed by the flag

0 ⊂ ⟨F ′′
0 , ea1⟩ ⊂ ⟨F ′′

1 , ea1⟩ ⊂ · · · ⊂ ⟨F ′′
n+r−2, ea1⟩ = Cn+r−1,

as in the definition in §2.2. We conclude the claimed formula for [Z+], and combining
with our formula for [Z◦] completes the proof. □

Note that the basis vectors e−(r−2), . . . , e−1 have not yet an played important
role. However, we will apply Proposition 3.3 inductively, (r − 1) times. On the j-th
step, implicitly, the squares M1, . . . , Mj are shifted one unit to the southwest, which
requires one additional basis vector e1−j . (As we have already alluded to, we will
not need to perform this combinatorial operation explicitly; Proposition 3.3 will be
enough to capture this operation formally.) Therefore, Gr(r, n + r − 1) is the most
natural place to state the following formula.

Corollary 3.4. Fix integers a1, . . . , ar−1 with 1 < a1 < · · · < ar−1 < n as before.
Write also a0 = 1 and ar = n. Then, we have

M(a1, . . . , ar−1; n) =
∑

0=s0<s1<···<sℓ=r

(−1)r−ℓ
ℓ∏

j=1
σ(n−1)sj −sj−1−1,n−1−(asj

−asj−1 )

on Gr(r, n + r − 1). Here, the sum is over all (ordered) subsets {s1, . . . , sℓ−1} ⊂
{1, 2, . . . , r − 1} of any size.

Note that the right hand side may also be written as∑
0=s0<s1<···<sℓ=r

(−σn−1)r−ℓ
ℓ∏

j=1
σn−1−(asj

−asj−1 ).
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Proof. We proceed by induction on r. When r = 1, we obtain simply the statement
M(−; n) = 1, which amounts to the fact that the condition that a single vector lie in
all of Cn is trivial.

For the inductive step, we verify that the claimed formula satisfies Proposition
3.3. Applying the inductive hypothesis, the term σn−a1 · [σ(a1−1)r−1 · M(a2 − a1 +
1, . . . , ar−1 − a1 + 1; n − a1 + 1)] contains all of the terms in the claimed formula for
M(a1, . . . , ar−1; n) where s1 = 1. Here, the term (−1)r−ℓ does not change, because
r, ℓ both change by 1. On the other hand, the term σn−1 · M(a2, . . . , ar−1; n) contains
all of the remaining terms, where s1 > 1, but with opposite signs (r differs by 1, but
ℓ does not change). Indeed, the extra factor of σn−1 is absorbed into the j = 1 factor
in each summand. This completes the proof. □

Remark 3.5. We explain the geometric content of the formula (1). The claim amounts
to studying the degeneration of the subvariety Z◦ ⊂ Gr(r, n + r − 1) under the de-
generation of the basis e−(r−2), . . . , en that replaces e0 with et

0 = te0 + (1 − t)ea1 at
time t. When t ̸= 0, one has a closed subvariety Zt

◦ ⊂ Gr(r, n + r − 1) defined in the
same way as Z◦, now with respect to the basis e−(r−2), . . . , et

0, . . . , en. When t = 0,
these vectors are no longer linearly independent, but we may still study the limit
Z lim

◦ := limt→0 Zt
◦.

In the limit, the analysis in the proof of [2, Theorem 3.32] shows that one of two
things may happen generically. The first possibility is that the limits of the vectors
v1, . . . , vr remain linearly independent, and we simply have the new condition that v1
lie in the new subspace ⟨e1, . . . , ea1⟩, equal to the limit of the subspace ⟨e0, . . . , ea1−1⟩
as t → 0. In this way, Z appears as a component of the limit of Z lim

◦ . Second, it
may happen that the vectors v1 and v2 become linearly dependent, necessarily both
constant multiples of the basis vector ea1 , which spans the intersection ⟨e1, . . . , ea1⟩ ∩
⟨ea1 , . . . , ea2⟩. If this is the case, then the limit of the span ⟨v1, v2⟩ must also continue
to lie in ⟨e0, . . . , ea2⟩, as this holds for every t ̸= 0. This exhibits Z+ as the other
component of the limit of Z lim

◦ . Both components are shown in [2] to appear with
multiplicity 1, and one concludes that [Z◦] = [Z lim

◦ ] = [Z] + [Z+].

4. 1-strip-less tableaux
We now consider the individual terms appearing on the right hand side of Corollary
3.4.

Proposition 4.1. Consider the expansion of
ℓ∏

j=1
σ(n−1)sj −sj−1−1,n−1−(asj

−asj−1 )

in H∗(Gr(r, n+r−1)) as a linear combination of Schubert cycles σµ, with µ ⊂ (n−1)r

and |µ| = (n − 1)(r − 1).
Then, the coefficient of σµ is equal to the number of SSYTs of shape µ with the

properties that:
• the i-weight wi(µ) (that is, the number of boxes of µ filled with the entry i) is

equal to n − 1 − (ai − ai−1), for i = 1, 2, . . . , r, and
• µ contains an (i, i + 1)-strip, for all i ∈ {1, 2, . . . , r − 1} − {s1, . . . , sℓ−1}.

Before giving the proof, we first give an illustrative example. Take n = 18,
r = 6, and (a0, a1, a2, a3, a4, a5, a6) = (1, 3, 7, 8, 10, 14, 18). Take also ℓ = 3 and
(s0, s1, s2, s3) = (0, 2, 5, 6). Then, the class in question is

σ17,11 · σ17,17,10 · σ13 ∈ H2·5·17(Gr(6, 23)),
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which we re-write as

σ17 · σ11 · σ17 · σ17 · σ10 · σ13.

By the Pieri rule, the coefficient of σµ in the expansion of this class is equal to
the number of SSYTs of shape µ and type (17, 11, 17, 17, 10, 13). One such, for µ =
(17, 17, 17, 16, 13, 5), is shown below:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 6
5 5 5 5 5 5 6 6 6 6 6 6 6
6 6 6 6 6

Let µi denote the partition obtained by restricting to the boxes filled with entries that
are most i. Note that, if wi(µ) = n − 1 = 17, then the partition µi−1 determines the
17 boxes filled with the entry i. Thus, the sequence of partitions µ2 ⊂ µ5 ⊂ µ6 = µ
completely determines the filling of µ with type (17, 11, 17, 17, 10, 13).

We now describe a re-filling of the above shape in such a way that wi(µ) = n − 1 −
(ai − ai−1) for i = 1, . . . , 6, that is, µ instead has type (15, 13, 16, 15, 13, 13), in such
a way that preserves the partitions µ2 ⊂ µ5 ⊂ µ6 = µ.

First, note that the shape µ2 = (17, 11) consists of n−1− (as1 −as0) = 11 columns
with s1 − s0 = 2 boxes and the remaining six columns have one box. The 11 columns
with two boxes must be filled downward with the entries 1, 2. Of the remaining six
columns, four must contain the entry 1 (or equivalently, be missing the entry 2) and
two must contain the entry 2 (be missing the entry 1). We fill these six columns from
left to right, first the four missing the entry 2, then the remaining two missing the
entry 1. The resulting filling of µ2 is

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2
2 2 2 2 2 2 2 2 2 2 2

We next fill the skew shape µ5/µ2 = (17, 17, 17, 15, 6)/(17, 11). It consists of n −
1 − (as2 − as1) = 10 columns with s2 − s0 = 3 boxes and seven remaining columns
have two boxes each. Those with three boxes must be filled downward with the entries
3, 4, 5. Of the remaining seven columns, four must be missing the entry 5, two must
be missing the entry 4, and one must be missing the entry 3. We place these columns
this order from left to right, and fill each in the unique possible way, that is, with
entries increasing down columns. The resulting filling of µ5 (when combined with that
of µ2 is:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2
2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 4
3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 5 5
4 4 4 4 4 4 4 4 4 4 5 5 5 5 5
5 5 5 5 5 5

The entries of the columns of µ5/µ2 containing only two entries are shown in bold.
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Finally, the skew shape µ6/µ5 is filled in the only way possible, with the entry 6
appearing in all 13 boxes:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2
2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 4
3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 5 5
4 4 4 4 4 4 4 4 4 4 5 5 5 5 5
5 5 5 5 5 5 6 6 6 6 6 6 6
6 6 6 6 6

We observe in addition that this new SSYT µ has an (i, i + 1)-strip for i = 1, 3, 4.
The (1, 2)-strip is clearly visible in the top row; we describe how to find (3, 4)- and
(4, 5)-strips, necessarily inside µ5/µ2. Note that there are two contiguous blocks of
columns of µ5/µ2 of size 3. Consider first the leftmost six columns, which are bordered
on the right by a column of µ5/µ2 missing the entry 5. Then, we make bold the entries
other than 5 in the leftmost six columns. Similarly, in columns 12 through 15, which
are bordered on both sides by columns of µ5/µ2 missing the entry 4, we make bold
the entries other than 4. We obtain now

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2
2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 4
3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 5 5
4 4 4 4 4 4 4 4 4 4 5 5 5 5 5
5 5 5 5 5 5 6 6 6 6 6 6 6
6 6 6 6 6

Now, each column of µ5/µ2 has exactly two entries in bold. The upper bold entries
in each column form a (3, 4)-strip, and the lower bold entries in each column form a
(4, 5)-strip.

The proof below describes an analogous algorithm in general, producing for each
term of the product

ℓ∏
j=1

σ(n−1)sj −sj−1−1,n−1−(asj
−asj−1 )

a SSYT of shape µ with the desired type and strips. We will show in addition that
this algorithm gives a bijection between the terms in the product at hand and the
needed SSYTs.

Proof of Proposition 4.1. The Pieri rule implies that the terms σµ in the expansion
of

ℓ∏
j=1

σ(n−1)sj −sj−1−1,n−1−(asj
−asj−1 )

are in bijection with SSYTs of shape µ with wsj
(µ) = n − 1 − (asj

− asj−1) for
j = 1, . . . , ℓ and wi(µ) = n − 1 for all other values of i ∈ {1, . . . , r}.

Such an SSYT µ is determined by the data of the sequence of subpartitions
µs1 ⊂ µs2 · · · ⊂ µsℓ = µ,

where µi is, as before, the collection of boxes of µ with entry at most i. Furthermore,
the skew shape µsj /µsj−1 has the property that asj

− asj−1 of its columns have size
sj − sj−1 − 1, while the remaining n − 1 − (asj

− asj−1) have size sj − sj−1. We will
refer to the former columns as short and the latter as tall.
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We now describe a filling of the same shape µ, by re-filling each skew-shape
µsj /µsj−1 with the entries sj−1 + 1, . . . , sj . The tall columns are filled in the only
semi-standard way possible, with the entries sj−1 + 1, . . . , sj from top to bottom.
The short columns are filled such that the unique missing entries of each column are
non-increasing from left to right, and the entries increase going down each column.
The short columns may furthermore be filled in a unique way such that the weight of
i is equal to n − 1 − (ai − ai−1) for all i ∈ [sj−1 + 1, sj ], because the total number of
squares of µ is

sj∑
i=sj−1+1

[n − 1 − (ai − ai−1)] = (n − 1)(sj − sj−1 − 1) + [(n − 1) − (asj − asj−1)].

We claim that the new filling is a SSYT; it suffices to restrict our attention to
the individual skew-shapes µsj /µsj−1 . The entries are increasing down columns by
construction. Between consecutive columns of the same height (tall or short), the
entries are weakly increasing across rows if the two columns are flush with each other,
and this remains true if the column on the right is shifted upward. If a tall column
lies immediately to the left of a short column, the entries are weakly increasing across
rows because the highest box of the short column cannot lie below that of the tall
column. Similarly, if a short column lies immediately to the left of a tall column, we
get the same conclusion because the lowest box of the short column cannot lie above
that of the short column.

We next show that the new filling contains the needed 1-strips, by making some of
the entries of µsj /µsj−1 bold. First, all entries in each short column are made bold.
Then, for each contiguous block of tall columns (not necessarily all flush with each
other), suppose that the short columns to the immediate left and right are missing
the entries p ⩾ q, respectively. We take p = sj if our block of tall columns includes
the leftmost column of µ, and q = sj−1 if it includes the rightmost column of µ. Now,
pick any integer s ∈ [q, p], and make all entries of the block of the tall columns bold
except s. In this way, each column of µsj /µsj−1 contains exactly sj − sj−1 − 1 bold
entries.

We claim that, for t = 1, 2, . . . , sj − sj−1 − 1, taking the t-th bold entry in each
column of µsj /µsj−1 gives a (sj−1 +t, sj−1 +t+1)-strip. By construction, these entries
must each be equal to one of sj−1 + t, sj−1 + t + 1. More precisely, if the missing (in
a short column) or unique non-bold (in a tall column) entry is strictly greater than
sj−1 + t, then the t-th bold entry is equal to sj−1 + t, and the t-th bold entry is
otherwise equal to sj−1 + t + 1. Because the missing and non-bold entries do not
increase from left to right, this sequence of bold entries is given by some number of
instances of sj−1 + t, followed by the remaining number of instances of sj−1 + t + 1.
(Note that both numbers must be non-zero, because wi(µ) = n−1−(ai−ai−1) < n−1
for all i.) Furthermore, we find that these bold entries do not to move downward upon
reading from left to right, by analyzing the possible relative positions of short and
tall columns as in the proof that our new filling is a SSYT.

We have therefore produced, from each term σµ appearing in
ℓ∏

j=1
σ(n−1)sj −sj−1−1,n−1−(asj

−asj−1 ),

a SSYT µ satisfying the needed type and 1-strip properties.
We may also reverse the algorithm. Given a SSYT µ as in the statement of the

proposition, we claim that the sequence of partitions

µs1 ⊂ µs2 · · · ⊂ µsℓ = µ,
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has the property that every column of µsj /µsj−1 has either sj − sj−1 or sj − sj−1 − 1
columns. Because only sj −sj−1 distinct entries are allowed in the filling of µsj /µsj−1 ,
each column can have no more than this number of boxes. On the other hand, for
t = 2, . . . , sj −sj−1 −1, a (sj−1 +t−1, sj−1 +t)-strip and a (sj−1 +t, sj−1 +t+1)-strip
must be disjoint. If this were not the case, then given any box b in their intersection,
necessarily filled with the entry sj−1 + t, the entry sj−1 + t would appear in every
column to the right of b (as part of the (sj−1 + t−1, sj−1 + t)-strip) and every column
to the left of b (as part of the (sj−1 + t, sj−1 + t + 1)-strip). However, by assumption,
we cannot have wsj−1+t(µ) = n − 1, a contradiction. Thus, each column of µsj /µsj−1

must contain at least sj − sj−1 − 1 boxes, coming from the same number of pairwise
disjoint strips.

We conclude that the skew-shape µsj /µsj−1 may be re-filled in a unique semi-
standard way with n − 1 instances each of the entries sj−1 + 1, . . . , sj − 1, and n −
1 − (asj

− asj−1) instances of the entry sj . Combining these fillings yields a SSYT of
shape µ corresponding to a term of

ℓ∏
j=1

σ(n−1)sj −sj−1−1,n−1−(asj
−asj−1 ).

The associations we have constructed are easily seen to be inverse bijections, com-
pleting the proof. □

Corollary 4.2. In the expansion of M(a1, . . . , ar−1; n) in terms of the basis of Schu-
bert cycles, the coefficient of σµ (with µ ⊂ (n−1)r and |µ| = (n−1)(r−1) as before) is
equal to the number of 1-strip-less SSYTs of shape µ with i-weight n − 1 − (ai − ai−1).

Proof. As we have already seen, SSYTs with the prescribed number of entries are
automatically 0-strip-less, because n − 1 − (ai − ai−1) < n − 1. Now, the claim is
immediate from Corollary 3.4, Proposition 4.1, and Inclusion-Exclusion. □

Remark 4.3. Recall that M(a1, . . . , ar−1; n) is defined as the pushforward of σλσ
λ̃

from Gr(r, n) to Gr(r, n + r − 1). Thus, all Schubert classes σµ appearing in the
expansion of M(a1, . . . , ar−1; n) have µr ⩾ r − 1, whereas the same is not true of
the individual terms studied in Proposition 4.1. In particular, any SSYT of shape
µ surviving in the sum of the right hand side of Corollary 3.4 contains the entries
1, 2, . . . , r exactly once in each of the first r−1 columns. Thus, the Schubert coefficients
of M(a1, . . . , ar−1; n) may be regarded just as well as the number of 1-strip-less SSYTs
of shape µ − (r − 1)r with i-weight n − r − (ai − ai−1).

Corollary 4.4. In the expansion of∑
λ⊂(n−r−1)r−1

σλσ
λ̃

∈ H2(r−1)(n−r−1)(Gr(r, n))

in terms of the basis of Schubert cycles, the coefficient of σµ (now with µ ⊂ (n − r)r

and |µ| = (n − r − 1)(r − 1)) is equal to the number of 1-strip-less SSYTs of shape µ.

Let us again give an illustrative example of the proof. We take r = 3 and n = 7, so
we sum over partitions λ ⊂ 32. In the below table, the partitions λ, λ̃ are shown, along
with the corresponding pairs (a1, a2) for which 1 = a0 < a1 < a2 < a3 = 7, and the
required type (w1, w2, w3) = (5 − a1, 4 − (a2 − a1), a2 − 3), as prescribed by Corollary
4.2 and Remark 4.3, of a 1-strip-less SSYT counted in the expansion of σλσ

λ̃
.
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λ λ̃ (a1, a2) (w1, w2, w3)
∅ (3, 3) (5, 6) (0, 3, 3)
(1) (3, 2) (4, 6) (1, 2, 3)
(2) (3, 1) (3, 6) (2, 1, 3)
(3) (3) (2, 6) (3, 0, 3)

(1, 1) (2, 2) (4, 5) (1, 3, 2)
(2, 1) (2, 1) (3, 5) (2, 2, 2)
(3, 1) (2) (2, 5) (3, 1, 2)
(2, 2) (1, 1) (3, 4) (2, 3, 1)
(3, 2) (1) (2, 4) (3, 2, 1)
(3, 3) ∅ (2, 3) (3, 3, 0)

In the right-most column, we see all possible types of a 1-strip-less SSYT of size 6
inside the partition (4)3, as no entry can appear n − r = 4 times without forming a
0-strip. Thus, it follows from Corollary 4.2 that summing over all σλσ

λ̃
yields precisely

a sum of Schubert cycles corresponding to 1-strip-less SSYTs.

Proof of Corollary 4.4. Summing over λ ⊂ (n − r − 1)r−1 amounts to summing over
integers ai with 1 < a1 < · · · < ar−1 < n, and the coefficients appearing in the class
in question are the sums of the coefficients appearing in Corollary 4.2, where the
partitions µ are according to Remark 4.3. Varying over all possible ai has the effect
of varying over all distributions of the entries 1, 2, . . . , r in a SSYT of shape µ, except
that n−r − (ai −ai−1) may not be equal to n−r. However, the presence of n−r (the
largest possible) instances of a given entry i amounts to the existence of a (i)-strip,
and is therefore already excluded. The conclusion follows. □

5. Comparison to Klyachko’s formula
Proposition 5.1. The coefficient of σµ in∑

1<a1<···<ar−1<n

M(a1, . . . , ar−1; n) ∈ H2(r−1)(n−1)(Gr(r, n + r − 1))

is equal to
m(µ)∑
j=0

(−1)j

(
n − r + j − 1

j

)
| SSYT0

r−j(µj)|,

where we recall that | SSYT0
r−j(µ′)| is the number of 0-strip-less SSYTs of shape µ′.

We also adopt here the notation of Theorem 1.2 for the integers m(µ) and partitions
µj, which are now defined in reference to parts of the maximal length n − 1, rather
than n − r.

Proof. For a given µ, fix ℓ ⩽ m(µ). It suffices to identify
(

n−ℓ−1
r−ℓ

)
| SSYT0

ℓ(µr−ℓ)| as
the coefficient of σµ in the sum

∑
0=s0<s1<···<sℓ=r

ℓ∏
j=1

σ(n−1)sj −sj−1−1,n−1−(asj
−asj−1 )

appearing in Corollary 3.4, where the value of ℓ is fixed (and equal to the given ℓ).
Consider the set of fillings counted by | SSYT0

ℓ(µr−ℓ)|, that is, 0-strip-less SSYTs of
shape µr−ℓ with entries 1, 2, . . . , ℓ. For a given such filling, let αj denote the number
of instances of the entry j; the 0-strip-lessness amounts to the fact that αj ⩽ n − 2.
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On the other hand, the coefficient of σµ in the product
ℓ∏

j=1
σ(n−1)sj −sj−1−1,n−1−(asj

−asj−1 ) = (σn−1)r−ℓ
ℓ∏

j=1
σn−1−(asj

−asj−1 )

counts, when written in terms of the Schubert basis, (necessarily 0-strip-less) SSYTs
of shape µr−ℓ with αj = n − 1 − (asj

− asj−1).
Therefore, given a 0-strip-less SSYT of shape µr−ℓ, write

asj = jn − (α1 + · · · + αj) − (j − 1).

for j = 0, 1, 2, . . . , ℓ, so that as0 = a1 = 1 and asℓ
= ar = n. Because αj ⩽ n − 2,

the asj
are strictly increasing, and in particular, pairwise distinct. Of the remaining

n − ℓ − 1 integers among 1, . . . , n, a choice of r − ℓ of them corresponds to a choice
of a set of integers {a0, a1, . . . , ar−1, ar} ⊂ {1, 2, . . . , n} containing the values asj

already fixed, and furthermore, this choice determines the indices sj , as we require
1 < a1 < · · · < ar−1 < n. With the values of sj now determined, the SSYT we started
with now corresponds naturally to a term of (σn−1)r−ℓ

∏ℓ
j=1 σn−1−(asj

−asj−1 ).
We have therefore described a map from a set of cardinality

(
n−ℓ−1

r−ℓ

)
| SSYT0

ℓ(µr−ℓ)|
to the set of terms σµ appearing in the sum

∑
0=s0<s1<···<sℓ=r

ℓ∏
j=1

σ(n−1)sj −sj−1−1,n−1−(asj
−asj−1 )

after expanding; it is routine to check that this map is a bijection. This completes the
proof. □

We are now ready to complete the proofs of the main theorems.

Proof of Theorem 1.3. Combining Proposition 5.1 with Lemma 2.1, the coefficient of
σµ in ∑

1<a1<···<ar−1<n

M(a1, . . . , ar−1; n) ∈ H2(r−1)(n−1)(Gr(r, n + r − 1))

is
m(µ)∑
j=0

(−1)j

(
n − r + j − 1

j

) m(µ)−j∑
k=0

(−1)k

(
r − j

k

)
| SSYTr−j−k(µj+k)|


=

m(µ)∑
ℓ=0

(−1)ℓ

(
n

ℓ

)
| SSYTr−ℓ(µℓ)|,

where we have used the identity
ℓ∑

j=0

(
n − r + j − 1

j

)(
r − j

ℓ − j

)
=

(
n

ℓ

)
.

The Theorem now follows from the fact that this coefficient is also equal to the
coefficient of σµ−(r−1)r in

∑
λ⊂(n−r−1)r−1 σλσ

λ̃
. □

Proof of Theorem 1.4. We have seen in the previous proof that Γµ
r,n, as defined in

Theorem 1.1, is equal to the coefficient of σµ in the sum of the M(a1, . . . , ar−1; n).
By Corollary 4.4, this coefficient is also equal to the number of 1-strip-less SSYTs of
shape µ. □
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Appendix A. 1-strip-less tableau and SYT with r − 1 descents
Recall that a standard Young tableau (SYT) of shape λ is a filling of the boxes of λ
with the entries 1, 2, . . . , |λ|, each entry appearing exactly once, so that entries increase
strictly across rows and down columns. The entry i is a descent of the filling if the
entry i + 1 appears in a strictly lower row. Below, the SYT of shape λ = (10, 9, 4, 2)
has 3 descents: 4, 13, and 22.

1 2 3 4 8 9 10 11 12 13
5 6 7 17 18 19 20 21 22
14 15 16 25
23 24

Klyachko showed in [4] that the coefficients Γµ
r,n count SYTs of shape µ with exactly

r − 1 descents. Having shown that Γµ
r,n also count 1-strip-less SSYTs of shape µ, we

have:

Proposition A.1. Fix r, n as in the main body of the paper. Then, the number of
SYTs of shape µ with exactly r − 1 descents is equal to the number of 1-strip-less
SSYTs of shape µ.

We describe a bijection between these two sets of objects, thereby giving a self-
contained proof of Proposition A.1. We thank Philippe Nadeau for explaining this
bijection in private communication.

As in the main body of the paper, we fix integers r < n. Consider a SYT of shape µ
with descents i1 < · · · < ir−1. Then, we construct a new filling of the Young diagram
of µ in the following way: replace the entries 1, . . . , i1 with the entry 1, the entries
i1 + 1, . . . , i2 with the entry 2, and so on, until the entries greater than ir−1 are
replaced with the entry r. We refer to this new filling of the same shape as µ′ to avoid
confusion. If µ is the filling of the partition λ = (10, 9, 4, 2) at the beginning of this
section, then µ′ is the filling

1 1 1 1 2 2 2 2 2 2
2 2 2 3 3 3 3 3 3
3 3 3 4
4 4

We claim that the new filling µ′ is an SSYT. Indeed, if the boxes of µ′ are filled
in order according to our construction, then the fact that µ is an SYT implies that,
at each step, the box being filled is the leftmost in its row and highest in its column
that has not yet been filled. Thus, the entries of µ′ increase weakly both across rows
and down columns. Furthermore, in the sequence of boxes filled with a given entry j
in µ′, each subsequent box must lie strictly to the right of the previous one, because
µ has no descents between ij−1 + 1 and ij . Thus, the entries of µ′ in fact decrease
strictly down columns.

Note further that µ′ contains each of the entries 1, 2, . . . , r at least once. Also,
for j = 1, 2, . . . , r − 1, the rightmost appearance of the entry j in µ′, say in box
bj (corresponding to the last in the sequence of boxes filled with j), cannot appear
strictly to the left of the leftmost appearance of the entry j + 1, say in box bj+1
(corresponding to the first in the sequence of boxes filled with j + 1). Indeed, if this
were the case, then box bj+1 must also appear strictly below box bj , corresponding
to a descent in µ. On the other hand, the unique box b in the same column as bj
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and the same row as bj+1 could only be filled with the entry j + 1, contradicting the
assumption that the leftmost appearance of the entry j + 1 appears in box bj+1.

Next, take the unique filling of shape µ = µ′ with the property that, when µ, µ′ are
drawn complementary to each other inside a r × (n − r)-rectangle R, with µ top- and
left-justified, and µ′ (now rotated 180 degrees) is filled as above, each column contains
each of the entries 1, 2, . . . , r exactly once, and the entries of µ decrease down rows.
In the example above, this procedure gives the filling of the full r × (n − r) rectangle

1 1 1 1 1 1 2 4 4 4
3 4 4 4 4 4 4 3 3 3
4 3 3 3 3 3 3 2 2 2
2 2 2 2 2 2 1 1 1 1

and the resulting filling µ is

1 1 1 1 1 1 2 4
3 4 4 4 4 4
4

We claim that the filling µ is also a SSYT. It is strictly decreasing down rows
by construction. To show that it is weakly increasing across rows, consider a pair of
columns c1 and c2 of R, with c1 lying to the left. If we fill these two columns of R,
at the s-th step adding the entry s to each column according to where it appears in
either µ or µ′, then the fact that the filling of µ′ is semi-standard implies that, at
every step, there are at least as many filled boxes of c2 in µ′ as there are filled boxes
of c1 in µ′. Thus, there are at least as many filled boxes of c1 in µ as there are filled
boxes of c2 in µ. This, in turn, implies that, in each row, the entry of µ in c1 is at
most that in c2, as needed.

We claim further that the filling of µ is 1-strip-less. Note first that µ cannot contain
a 0-strip, because µ′ contains each entry 1, 2, . . . , r at least once. If µ had a (j, j + 1)-
strip, in which the entry j appears in the first m columns of µ and the entry j + 1
appears in the last n − r − m columns of µ, then µ′ (in the standard orientation)
would contain no instances of the entry j in its last m columns, and no instances of
the entry j + 1 in its first n − r − m columns. This would mean that the rightmost
instance of the entry j appears strictly to the left of the leftmost instance of the entry
j + 1, which contradicts our observation above.

We have therefore produced, from a SYT of shape µ, a 1-strip-less SSYT of shape
µ. We may now reverse the procedure.

Given a 1-strip-less SSYT of shape µ, we obtain a complementary SSYT µ′ by
the same method as above, filling the rectangle R. That µ is 1-strip-less implies that
µ′ contains each entry 1, 2, . . . , r at least once, and, for j = 1, 2, . . . , r − 1, that
the rightmost instance of the entry j in µ′ does not appear strictly to the left of the
leftmost instance of the entry j+1 in µ′. This in turn implies, in µ′, that the rightmost
instance of the entry j appears strictly above the leftmost instance of the entry j + 1.

We then rotate µ′ into its standard orientation. Ordering the boxes containing the
entry 1 from left to right, then the boxes containing the entry 2 from left to right, and
so on, we form a filling µ of the same shape by filling the j-th box with the entry j.
This filling µ is a SYT. Indeed, the fact that the entries of µ′ strictly decrease down
columns immediately implies the same of µ, and the fact that the entries of µ′ weakly
increase across rows and that we order boxes containing the same entry from left to
right implies that the entries of µ increase across rows.
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By construction, descents of µ can only occur when passing from a box containing
the entry j in µ′ to one containing the entry j + 1, because, when moving from left to
right through the boxes of µ′ containing the same entry j, one can only move upward.
On the other hand, the rightmost instance of the entry j in µ′ appears strictly to
the left of the leftmost instance of the entry j + 1 in µ′, so passing between the
corresponding two boxes of µ yields a descent for each j = 1, 2, . . . , r − 1. Thus, the
SYT µ has exactly r − 1 descents.

Finally, it is straightforward to see that the two associations we have described are
inverse bijections between the objects in question.
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