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Some restriction coefficients for the trivial
and sign representations

Sridhar Narayanan, Digjoy Paul, Amritanshu Prasad
& Shraddha Srivastava

Abstract We use character polynomials to obtain a positive combinatorial interpretation of
the multiplicity of the sign representation in irreducible polynomial representations of GLn(C)
indexed by two-column and hook partitions. Our method also yields a positive combinatorial
interpretation for the multiplicity of the trivial representation of Sn in an irreducible polynomial
representation indexed by a hook partition.

1. Introduction
The representation theory of symmetric groups and general linear groups lies at the
heart of algebraic combinatorics. The irreducible polynomial representations of the
general linear group GLn(C) are given by Weyl modules Wλ(Cn), for partitions λ
with at most n parts, while the irreducible representations of the symmetric group
Sn are given by Specht modules Vµ, for partitions µ of n.

Decomposing into irreducibles the restriction of Wλ(Cn) to the subgroup of per-
mutation matrices, which is isomorphic to Sn, we have

ResGLn(C)
Sn

Wλ(Cn) =
⊕
µ

V
⊕rλµ

µ ,

where the multiplicities rλµ are called the restriction coefficients. A combinatorial
description of these coefficients is a natural and, as yet, unresolved question, which
we will henceforth call the restriction problem.

Littlewood [8] proved that (see also [18, Exercise 7.74])

sµ[1 + h1 + h2 + · · · ] =
∑

λ

rλµsλ,(1)

where sµ[1+h1 +h2 + · · · ] is the plethystic substitution of the sum of the complete ho-
mogeneous symmetric functions hi into the Schur function sµ(x1, x2, . . . ). Concretely,
it is the substitution of the monomials occurring in 1+h1 +h2 + · · · into the variables
x1, x2, . . . of sµ. The reader is referred to [9, 10, 18] for a complete treatment of sym-
metric functions and plethysm. In [12], we interpreted Littlewood’s identity in terms
of an induction functor from representations of Sn to polynomial representations of
GLn(C).
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In recent years, many new approaches to the restriction problem have been devel-
oped. Assaf–Speyer [2] and Orellana–Zabrocki [15] independently defined the unique
basis for the ring of symmetric functions such that the restriction coefficients ap-
pear in the linear expansion of Schur functions with respect to this basis. In [13],
Orellana–Zabrocki–Saliola–Schilling related the restriction problem to the subalgebra
of uniform block permutations within the partition algebra.

The spaces Symk(Cn)⊗
∧l(Cn) can be thought of as spaces of symmetric functions

in superspace (see also, [1, 3, 4, 7]). These spaces were studied by Solomon [17] in a
more general setting to prove a formula of Shephard and Todd. Orellana–Zabrocki
[14] gave a combinatorial interpretation for the multiplicity of any Specht module in
the restiction of Sym(Cn) ⊗

∧
(Cn) to Sn.

The elements of Symk(Cn)⊗
∧l(Cn) can be thought of as differential l-forms on Cn

whose coefficients are polynomials of degree k. The hook Weyl module W(k,1l)(Cn) is
the cokernel of the exterior derivative applied to Symk(Cn) ⊗

∧l(Cn) (see [19, Ch. 2,
Ex. 2]).

Heaton–Sriwongsa–Willenbring [6] proved that every irreducible representation of
Sn occurs in at least one of a certain specified family of Weyl modules parameterized
by two-row partitions.

Character polynomials encode the character values of certain families of Sn repre-
sentations across n (see Section 2). The application of character polynomials to the
restriction problem was suggested by Garsia and Goupil in [5]. In [11], we computed
character polynomials for the family (Wλ(Cn)) as Sn-representations across all n. Us-
ing these character polynomials, we interpreted restriction coefficients for the trivial
and sign representations as signed sums of vector-partitions. This allowed us to derive
necessary and sufficient conditions for the occurrence of the trivial representation of
Sn in Wλ(Cn) when λ is a partition with two rows, or two columns, or is hook-shaped.

In this paper, we introduce the notion of signed moment of a character polynomial
at each nonnegative integer n (see Definition 2.2). In Theorems 3.2, 3.8, 3.17 we find
the generating functions from which we deduce the following main results of this
paper. An expository account of some of these ideas can be found in [16].

Theorem (A). For n ⩾ 2, let (k, ℓ)′ be the conjugate of the partition (k, ℓ), where
0 < ℓ ⩽ k ⩽ n. Then the sign representation of Sn occurs in W(k,ℓ)′(Cn) if and only if
(k, ℓ) ∈ {(n−1, 0), (n, 0), (n−1, 1), (n, 1)}. In all these cases it occurs with multiplicity
one.

Theorem (B). For all a, b ⩾ 0 with b + 1 ⩽ n, the multiplicity of the sign represen-
tation of Sn in W(a+1,1b)(Cn) is the number of superpartitions (λ, µ) (see Definition
3.9) such that

(1) λ = (λ1 ⩾ · · · ⩾ λb ⩾ 0) and µ = (µ1 > · · · > µn−b ⩾ 0),
(2) λ1 + · · · + λb + µ1 + · · · + µn−b = a + 1, and µ1 > λ1.

Theorem (C). For all a, b ⩾ 0 with b+1 ⩽ n, the multiplicity of trivial representation
of Sn in W(a+1,1b)(Cn) is the number of superpartitions (λ, µ) of partitions such that

(1) λ = (λ1 ⩾ · · · ⩾ λn−b ⩾ 0) and µ = (µ1 > · · · > µb ⩾ 0),
(2) λ1 + · · · + λn−b + µ1 + · · · + µb = a + 1 and µ1 < λ1 − 1.

Owing to Littlewood’s formula (1), each of these results reveals a term in the
expansion of sν [1 + h1 + h2 + · · · ] in the basis of Schur functions, where ν is either of
the partitions (1n) or (n) (Corollaries 3.7, 3.16, and 3.20).
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2. Character polynomials and their moments
For i ⩾ 1, define the class function Xi on Sn as

Xi(σ) = number of cycles of length i in σ.

A polynomial in the ring C[X1, X2, · · · ] is called a character polynomial. For each
n ⩾ 1, let Vn be a representation of Sn. The sequence (Vn) is eventually polynomial if
there exists a polynomial p ∈ C[X1, X2, . . . ] and an integer N ⩾ 0 such that, for each
n ⩾ N and each σ ∈ Sn

p(X1(σ), X2(σ), . . . ) = χVn
(σ),

where χVn
is the character of the representation Vn.

The polynomial p is unique since if f(X1(σ), X2(σ), . . . ) = 0 for a polynomial f and
for all permutations σ, then it is zero for all sequences of nonnegative integer values,
and must thus be identically zero. The polynomial p is the character polynomial
associated to the sequence (Vn).

Example 2.1. Let Vn = Sym2(Cn). Sym2(Cn) has a basis indexed by multisets (col-
lections of possibly repeated elements) of size 2 drawn from [n] = {1, . . . , n}. We
calculate the character polynomial of (Vn) by counting the number of fixed points of
the action of an arbitrary permutation σ ∈ Sn on this basis.

A permutation σ acts on a multiset {i, j} as
σ · {i, j} = {σ(i), σ(j)}.

A multiset is fixed by σ if {i, j} = {σ(i), σ(j)}. Thus either i = σ(i) and j = σ(j),
or i = σ(j) and j = σ(i). There are X1(σ)+

(
X1(σ)

2
)

ways of picking i, j from the X1(σ)
fixed points of σ for the former case and X2(σ) ways of picking i, j to be elements of
a 2-cycle of σ for the latter. Thus

p = X1 +
(

X1

2

)
+ X2.

Definition 2.2. Given a polynomial p ∈ C[X1, X2, . . . ], the moment of p is defined
to be

⟨p⟩n = 1
n!

∑
σ∈Sn

p(X1(σ), X2(σ), . . .).

The signed moment of p is defined to be

{p}n = 1
n!

∑
σ∈Sn

sgn(σ)p(X1(σ), X2(σ), . . .),

where sgn(σ) is the value of the sign character on σ.

Remark 2.3. Let p be the character polynomial of the eventually polynomial sequence
of representations (Vn). Clearly ⟨p⟩n and {p}n are respectively the multiplicities of
the trivial and sign representation of Sn in Vn. Moments were introduced and their
generating functions were studied in [11]. Here we extend that theory to signed mo-
ments.

Given a partition λ = (λ1 ⩾ λ2 ⩾ · · · ⩾ λℓ > 0), the length of the partition l(λ) = ℓ
is the number of nonzero parts of the partition. Let ai be the number of parts of λ of
size i. Then λ is expressed in the exponential notation as

λ = 1a12a2 · · · .

Define
zλ = |λ|!∏

i iaiai!
,

Algebraic Combinatorics, Vol. 7 #4 (2024) 1185
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the cardinality of the centralizer of a permutation of cycle-type λ. Here |λ| =
∑

i iai

is the size of the partition λ. Let Par denote the set of all partitions and let Parn

denote the subset of partitions of n for any nonnegative integer n.
Definition 2.4. For a partition α = 1a12a2 · · · , define the following elements in
C[X1, X2, · · · ]: (

X

α

)
=

∏
i

(
Xi

ai

)
and ((

X

α

))
=

∏
i

((
Xi

ai

))
,

where
((

Xi

ai

))
:=

(
Xi+ai−1

ai

)
.

The sets {
(

X
α

)
| α ∈ Par} and {

((
X
α

))
| α ∈ Par} are bases of C[X1, X2, . . . ]. The

former is called the binomial basis of C[X1, X2, . . . ].
Theorem 2.5. For a partition α we have{(

X

α

)}
n

=
{

sgn(α)
zα

if n ∈ {|α|, |α| + 1},

0 otherwise,

where sgn(α) is the value of the sign representation on a permutation of type α.

Proof. The signed moment {
(

X
α

)
} = 1

n!
∑

w∈Sn
sgn(w)

(
β(w)

α

)
, where β(w) is the cycle-

type of the permutation w. Gathering together permutations in each conjugacy class
we have ∑

n⩾0

{(
X

α

)}
n

vn =
∑
n⩾0

∑
β⊢n=1b1 2b2 ...

1
zβ

(−1)b2+b4+···
(

β

α

)
vn

=
∑

bi⩾ai

∏
i

(−1)(i−1)bi

ibibi!
b1!

ai!(bi − ai)!
vibi

=
∏

i

(−1)(i−1)aiviai

iaiai!
∑
ci⩾0

(−1)(i−1)civici

icici!

= sgn(α)v|α|

zα

∑
n⩾0

vn

n!
∑

w∈Sn

sgn(w)

= sgn(α)v|α|

zα
(1 + v),

where the final equality is due to the signed sum of permutations being nonzero
precisely when n = 0, 1.

The coefficient of vn is thus sgn(α)
zα

if n = |α| or n = |α| + 1, and is 0 otherwise. □

Theorem 2.5 allows us thus to make general conclusions about the presence of the
sign representation.
Corollary 2.6. Let (Vn) be an eventually polynomial sequence of representations of
Sn. Then the sign representation does not occur in Vn for sufficiently large n. In
particular, the sign representation does not occur in the restriction of Wλ(Cn) to Sn

for any n > |λ| + 1.
Proof. The first statement is a straightforward consequence of Theorem 2.5. From [11,
Section 2.3], we know that the the expansion of the character polynomial of Wλ(Cn)
in the binomial basis involves partitions at most as large as |λ|. □
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3. Combinatorial interpretations for some restriction
coefficients

This section contains the main results of this paper. Here we give combinatorial
interpretations for the multiplicity of the sign representation of Sn in Wλ(Cn) when
λ is a two-column or hook partition. The proof of the latter result is easily modified
to yield the multiplicity of the trivial representation of Sn when λ is a hook partition.
We recall the following character polynomials from [11].

Theorem 3.1. Let Symk(Cn) and
∧ℓ(Cn) be the k-th symmetric and ℓ-th exterior

powers of Cn respectively. Then
(1) The sequence of representations (Symk(Cn)) is eventually polynomial, and the

character polynomial is

Hk =
∑
α⊢k

((
X

α

))
.

(2) The sequence of representations (
∧ℓ(Cn)) is eventually polynomial, and the

character polynomial is

Eℓ =
∑
α⊢k

(−1)|α|−l(α)
(

X

α

)
.

3.1. Multiplicity of sign representation when λ has two columns. Let
(k, ℓ)′ be the conjugate of the partition (k, ℓ), where 0 < ℓ ⩽ k ⩽ n. The character
polynomial associated to (W(k,ℓ)′(Cn)) is defined using the dual Jacobi-Trudi identity
(see [18, Corollary 7.16.2])

S(k,ℓ)′ = EkEℓ − Ek+1Eℓ−1.

The signed moment of S(k,ℓ)′ is thus the difference of signed moments, for which
we have the following generating functions.

Theorem 3.2. For integers k, ℓ ⩾ 0, the signed moment of EkEℓ is∑
k,ℓ,n

{EkEℓ}nukvℓzn = (1 + z)(1 + uvz)
(1 − uz)(1 − vz) .

Proof. By Theorem 3.1, the signed moment {EkEℓ}n is

{EkEℓ}n =
∑
α⊢n

1
zα

(−1)|α|−l(α)
∑

β⊢k,γ⊢ℓ

(−1)|β|−l(β)(−1)|γ|−l(γ)
(

α

β

)(
α

γ

)
.

Which is the coefficient of [ukvℓzn] in∏
i⩾1

∑
ai,bi,ci⩾0

1
iaiai!

(−1)(i−1)ai+(i−1)bi+(i−1)ci

(
ai

bi

)(
ai

ci

)
uibiviciziai .

The inner sum is exp( −(−z)i(1−(−u)i)(1−(−v)i)
i ). Thus

{EkEℓ}n = [ukvℓzn]
∏
i⩾1

exp(−(−z)i(1 − (−u)i)(1 − (−v)i)
i

)

= [ukvℓzn]exp(
∑
i⩾1

(uz)i + (vz)i

i
)exp(

∑
i⩾1

−(−z)i − (−uvz)i

i
)

= [ukvℓzn] (1 + z)(1 + uvz)
(1 − uz)(1 − vz) ,

as required. □

Algebraic Combinatorics, Vol. 7 #4 (2024) 1187
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The following corollary of Theorem 3.2 expresses the signed moment of S(k,ℓ)′ as
the difference of the cardinality of two sets.

Definition 3.3. Fix a vector v = (a1, . . . , an) with nonnegative integer coordinates. A
vector-partition of v is a set {v1, · · · , vl} of non-zero vectors with nonnegative integer
coordinates such that

∑l
i=1 vi = v.

Corollary 3.4. Let q∗
n(k, ℓ) denote the number of vector-partitions of (k, ℓ) into n

parts, where each part is in {(0, 0), (1, 0), (0, 1), (1, 1)}, and where (0, 0) and (1, 1)
occur at most once, while (1, 0) and (0, 1) may occur multiple times. Then the signed
moment of S(k,ℓ)′ for k ⩾ ℓ is given by{

S(k,ℓ)′
}

n
=

{
q∗

n(k, ℓ) − q∗
n(k + 1, ℓ − 1) if ℓ > 0,

q∗
n(k, ℓ) otherwise.

Lemma 3.5. For integers k ⩾ ℓ we have

q∗
n(k, ℓ) =


1 if ℓ > 0 and k + ℓ ∈ {n − 1, n + 1},

2 if ℓ > 0 and k + ℓ = n,

1 if ℓ = 0 and k ∈ {n − 1, n},

0 otherwise.

Proof. If ℓ > 0, and k + ℓ = n − 1, then the only vector-partition is
(k, ℓ) = (0, 0) + k(1, 0) + ℓ(0, 1)

If ℓ > 0 and k + ℓ = n, then there are two vector-partitions
(k, ℓ) = (0, 0) + (1, 1) + (k − 1)(1, 0) + (ℓ − 1)(0, 1)

= k(1, 0) + ℓ(0, 1).
If ℓ > 0 and k + ℓ = n + 1, then the only vector-partition is

(k, ℓ) = (1, 1) + (k − 1)(1, 0) + (ℓ − 1)(0, 1).
If ℓ = 0, and k = n − 1 then the only vector-partition is

(k, 0) = (0, 0) + k(1, 0).
If ℓ = 0 and k = n, then the only vector-partition is

(k, 0) = k(1, 0),
completing the proof. □

Theorem 3.6. For each n ⩾ 2, the sign representation of Sn occurs in W(k,ℓ)′(Cn)
if and only if (k, ℓ) ∈ {(n − 1, 0), (n, 0), (n − 1, 1), (n, 1)}. In all these cases it occurs
with multiplicity one.

Proof. From Corollary 3.4, the multiplicity of the sign representation in W(k,ℓ)′(Cn)
is q∗

n(k, ℓ) − q∗
n(k + 1, ℓ − 1).

If ℓ = 0, he second term is 0. The first term, q∗
n(k, 0) is 1 if k ∈ {n − 1, n} and 0

otherwise, since (0, 0) may occur at most once, and the other parts must all be (1, 0).
For ℓ ⩾ 2, each vector-partition of (k + 1, ℓ − 1) that contributes to q∗

n(k + 1, ℓ − 1)
must contain at least one (1, 0) part. The map replacing one (1, 0) by (0, 1) is a
bijection from vector-partitions of (k + 1, ℓ − 1) and (k, ℓ). Thus in this case the
multiplicity is zero.

When l = 1, both q∗
n(k, ℓ) and q∗

n(k + 1, ℓ − 1) are zero unless either k = n or
k = n − 1. When k = n − 1, we have q∗

n(k, ℓ) = 2 and q∗
n(k + 1, ℓ − 1) = 1 from

Lemma 3.5. When k = n, Lemma 3.5 again verifies that the multiplicity of the sign
representation is 1. □
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By Littlewood’s formula (Equation (1)) we have the following corollary.

Corollary 3.7. For a partition λ = (k, ℓ)′, the coefficient of sλ in the expansion of
the plethysm s(1n)[1 + h1 + h2 + · · · ] is

rλµ =
{

1 (k, ℓ) ∈ {(n − 1, 0), (n, 0), (n − 1, 1), (n, 1)},

0 otherwise.

3.2. Multiplicity of the sign representation in the restriction of hooks.
For all a, b ⩾ 0, let λ = (a|b) denote the hook partition (a+1, 1b). We now consider the
multiplicity of the sign representation of Sn in Wλ(Cn) for n ⩾ b+1. The Pieri identity
(see [18, Theorem 7.15.7]) expresses the Schur function s(a|b) as the alternating sum

s(a|b) =
b∑

j=0
(−1)jha+1+jeb−j .

This relation also holds for the corresponding character polynomials, so that

S(a|b) =
b∑

j=0
(−1)jHa+1+jEb−j .(2)

Thus the signed moment of S(a|b) is an alternating sum of signed moments, for which
we have the following generating function.

Theorem 3.8. For k, ℓ ⩾ 0, the signed moment of HkEℓ is

(3)
∑
k,ℓ,n

{HkEℓ}nukvℓzn =
∏

j⩾0(1 + ujz)∏
j⩾0(1 − ujvz) .

Proof. From Theorem 3.1 and the definition of the signed moment,

{HkEℓ}n =
∑
α⊢n

1
zα

(−1)|α|−l(α)
∑

β⊢k,γ⊢ℓ

(−1)|γ|−l(γ)
((

α

β

)) (
α

γ

)
.

This is the coefficient of ukvℓzn in
∏

i⩾1 exp
(

−(−z)i(1−(−v)i

1−ui

)
. Recalling that logx =∑

i⩾1
xi

i gives us the desired expression. □

A combinatorial interpretation of the signed moment {Ha+1+jEb−j}n is given in
terms of superpartitions.

Definition 3.9. A superpartition is a pair (λ, µ) where λ is a nonincreasing sequence
of nonnegative integers and µ is a nonincreasing sequence of distinct nonnegative
integers. We define |λ| and |µ| to be the sum of the parts of λ and µ respectively.

Remark 3.10. Superpartitions play a role in the theory of symmetric functions in
superspace. See [1, 3, 4, 7].

Proposition 3.11. For all a, b ⩾ 0 and j ⩽ b, {Ha+1+jEb−j}n is the number of
superpartitions (λ, µ) such that

(1) λ = (λ1, . . . , λb−j), where λ1 ⩾ · · · ⩾ λb−j ⩾ 0,
(2) µ = (µ1, . . . , µn−b+j), with µ1 > · · · > µn−b+j ⩾ 0,
(3) | λ | + | µ |= a + 1 + j.

Proof. The terms in the denominator of the right hand side of (3) contribute to the
sequence λ. There are b−j of these terms (since terms with v in them come only from
the denominator and there must be b − j such terms). The terms from the numerator
contribute to the sequence µ. Each of these terms contain a distinct power of u, and
there are n − b + j of them. □

Algebraic Combinatorics, Vol. 7 #4 (2024) 1189
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0

1

2

3

4

Figure 1. The sequence λ = (3, 3, 0) and µ = (3, 1).

We will think of each sequence (λ, µ) marked on a single axis, with the parts of λ
marked in blue and the parts of µ marked in red, as in Figure 1. We define a sign-
reversing involution on the alternating sum in (2) to obtain a positive combinatorial
formula for the multiplicity of the sign representation in W(a|b)(Cn).

Theorem 3.12. For all a, b ⩾ 0, then
{

S(a|b)
}

n
is the number of superpartitions (λ, µ)

such that
(1) λ = (λ1, . . . , λb), where λ1 ⩾ · · · ⩾ λb ⩾ 0,
(2) µ = (µ1, . . . , µn−b), with µ1 > · · · > µn−b ⩾ 0,
(3) |λ| + |µ| = a + 1,
(4) µ1 > λ1.

Equivalently, {
S(a|b)

}
n

=
∑

ρ∈P (a,n)

(
rρ

n − b − 1

)
,

where P (a, n) denotes the set of partitions of a + n with n parts, and for a partition
ρ ∈ P (a, n), rρ is the number of removable cells of ρ (i.e. cells whose removal from
the Young diagram of ρ leaves behind a valid partition) that are not in its first row.

Proof. Let Cn(a, b) denote the set of superpartitions (λ, µ), where
(1) λ = (λ1, . . . , λb), where λ1 ⩾ · · · ⩾ λb ⩾ 0,
(2) µ = (µ1, . . . , µn−b), where µ1 > · · · > µn−b ⩾ 0,
(3) |λ| + |µ| = a.

Then evidently, |Cn(a, b)| is the coefficient of uavbzn in
∏

j⩾0
(1+ujz)∏

j⩾0
(1−ujvz)

, and hence, by

Theorem 3.12 {HaEb}n. Note that

(4)
{

S(a|b)
}

n
=

b∑
i=0

(−1)i {Ha+1+iEb−i}n =
b∑

i=0
(−1)i|Cn(a + 1 + i, b − i)|.

Partition Cn(a, b) into two parts: Bn(a, b), which consists of superpartitions (λ, µ) ∈
Cn(a, b) such that the largest among the parts of λ and µ occurs in λ, and Rn(a, b),
which consists of superpartitions (λ, µ) ∈ Cn(a, b) such that the largest among the
parts of λ and µ occurs only in µ. Observe that

Cn(a, b) = Bn(a, b) ⊔ Rn(a, b).
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Figure 2. A demonstration of the involution between
the monomials (u1z)(u3z)(u0vz)(u3vz)2 on the left and
(u1z)(u3z)(u4z)(u0vz)(u3vz) on the right

Define a bijection
ω : Bn(a, b) → Rn(a + 1, b − 1)

by setting ω(λ, µ) to be the superpartition obtained by moving a largest part of λ to
a µ after increasing it by 1. Then ω−1(λ, µ) is the superpartition obtained by moving
the largest part of µ to λ after reducing it by 1 (see Figure 2). We may rewrite (4) as{

S(a|b)
}

n
= + |Bn(a + 1, b)| + |Rn(a + 1, b)|

− |Bn(a + 2, b − 1)| − |Rn(a + 2, b − 1)|
+ |Bn(a + 3, b − 1)| − |Rn(a + 3, b − 1)|
...

(−1)b|Bn(a + b + 1, 0)| + (−1)b|Rn(a + b + 1, 0)|.

By virtue of the bijection ω, we can cancel out the blue term in each row of
the above expression with the red term in the row below it. Noting further, that
Bn(a + b + 1, 0) = 0, we have{

S(a|b)
}

n
= |Rn(a + 1, b)|,

which is precisely the number claimed in the first part of the theorem.
Given (λ, µ) ∈ Rn(a + 1, b), form a partition ρ by subtracting one from the largest

part of the partition λ∪µ formed by arranging the parts of λ and µ together in weakly
decreasing order. Also, the parts of µ, excepting the first, form a set of n−b−1 distinct
parts of ρ, including a possible 0-part. Thus they correspond to a choice of n − b − 1
removable cells of ρ that do not lie in its first row, except when ρ has a part equal
to 0, in which case we can also choose a zero part of µ, giving the expression in the
second part of the statement of the theorem. □

Example 3.13. To compute
{

S(4,1,1)
}

5 we take a = 3, b = 2, and n = 5. According
to Theorem 3.12, we must enumerate integers

λ1 ⩾ λ2 ⩾ 0, µ1 > µ2 > µ3 ⩾ 0, µ1 > λ1

such that
λ1 + λ2 + µ1 + µ2 + µ3 = 4.
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The only possibilities for (λ, µ) are ((1, 0), (2, 1, 0)) and ((0, 0), (3, 1, 0)). Therefore{
S(4,1,1)

}
5 = 2.

In the second formulation, the sum is over partitions ρ of 3 with 5 non-negative
parts. For ρ = (3, 0, 0, 0, 0), rρ = 1; for ρ = (2, 1, 0, 0, 0), rρ = 2, and for ρ =
(1, 1, 1, 0, 0, 0), rρ = 2. On the other hand n − b − 1 = 2. Thus we get{

S(4,1,1)
}

5 =
(

1
2

)
+

(
2
2

)
+

(
2
2

)
= 2.

Example 3.14. To compute
{

S(3,1)
}

3, take a = 2, b = 1, and n = 3. We must count
the number of possibilities for

λ1 ⩾ 0, µ1 > µ2 ⩾ 0, µ1 > λ1, λ1 + µ1 + µ2 = 3.

The possibilities for (λ, µ) are ((0), (2, 1)), ((0), (3, 0)), ((1), (2, 0)), so that
{

S(3,1)
}

3 =
3.

In the second formulation, P (2, 3) = (2, 0, 0), (1, 1, 0). We have r(2,0,0) = 1, while
r(1,1,0) = 2, and n − b − 1 = 1, so

{S(3,1)}3 =
(

1
1

)
+

(
2
1

)
= 3.

Corollary 3.15. For all a, b ⩾ 0,{
S(a|b)

}
n

> 0 if and only if b < n and
(

n − b

2

)
⩽ a + 1.

Proof. Suppose b < n,
(

n−b
2

)
⩽ a + 1, take λi = 0 for all i = 1, . . . , b, and take

µ1 = a+1−
(

n−b−1
2

)
, and µi = n− b− i for 1 < i ⩽ n− b. This satisfies the conditions

(1) through (4) of Theorem 3.12, so that
{

S(a|b)
}

n
> 0.

Conversely, if λ1, . . . , λb, µ1, . . . , µn−b exist satisfying the conditions (1) to (4),
then surely b < n, and also µ1 + · · · + µn−b ⩽ a + 1. Since µ1 > · · · > µn−b ⩾ 0,
µ1 + · · · + µn−b ⩾

(
n−b

2
)
. It follows that

(
n−b

2
)
⩽ a + 1. □

By Littlewood’s formula (Equation (1)) we have the following corollary.

Corollary 3.16. For all a, b ⩾ 0 with b + 1 ⩽ n, the coefficient of s(a|b) in the
expansion of the plethysm s(1n)[1 + h1 + h2 + · · · ] is the number of superpartitions of
partitions (λ, µ) that satisfy the conditions of Theorem 3.12.

3.3. Multiplicity of the trivial representation in the restriction of
hooks. By the Pieri formula (2) the moment of S(a|b) is an alternating sum of the
moments of the form HrEs. The moment of HrEs is a special case of Corollary 4.2
of [11], which we reproduce here.

Theorem 3.17. For integers k, ℓ ⩾ 0, the moment of HkEℓ is∑
kℓ,n

⟨HkEℓ⟩n ukvℓzn =
∏

j⩾0(1 + ujvz)∏
j⩾0(1 − ujz) .

Proof. The moment ⟨HkEℓ⟩n is the coefficient of ukvℓzn in∏
i⩾1 exp

(
zi(1−(−v)i

1−ui

)
. We obtain the generating function from simplifying this

exponent as in the proof of Theorem 3.8. □

Theorem 3.18. For all a, b ⩾ 0, then
〈
S(a|b)

〉
n

is the number of superpartitions (λ, µ)
of partitions such that

(1) λ = (λ1, . . . , λn−b), where λ1 ⩾ · · · ⩾ λn−b ⩾ 0,
(2) µ = (µ1, . . . , µb), with µ1 > · · · > µb ⩾ 0,
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Figure 3. A demonstration of the involution between
the monomials (v1z)(v3z)(uv0z)(uv3z)2 on the left and
(v1z)(uv0z)(uv3z)(v3z)(v4z) on the right.

(3) |λ| + |µ| = a + 1,
(4) µ1 < λ1 − 1.

Equivalently, 〈
S(a|b)

〉
n

=
∑

ρ∈P (a+1,n)

(
rρ

b

)
,

where P (a + 1, n) denotes the set of partitions of a + 1 + n with n non-negative parts,
and for a partition ρ ∈ P (a + 1, n), rρ is the number of removable cells of ρ that are
in a row ρi with ρ1 − ρi ⩾ 2.

Proof. Let Bn(a, b) denote the set of superpartitions (λ, µ), where
(1) λ = (λ1, . . . , λn−b), where λ1 ⩾ · · · ⩾ λn−b ⩾ 0,
(2) µ = (µ1, . . . , µb), where µ1 > · · · > µb ⩾ 0,
(3) |λ| + |µ| = a.

Then evidently, |Bn(a, b)| is the coefficient of uavbzn in
∏

j⩾0
(1+ujvz)∏

j⩾0
(1−ujz)

, and hence, by

Theorem 3.12, equals ⟨HaEb⟩n. Note that

(5)
〈
S(a|b)

〉
n

=
b∑

i=0
(−1)i ⟨Ha+1+iEb−i⟩n =

b∑
i=0

(−1)i|Bn(a + 1 + i, b − i)|.

The proof proceeds along the lines of that to Theorem 3.12. Observe that the roles of
λ and µ are reversed in this case. Recall that the earlier involution proceeded as in
Figure 2 by either increasing a largest blue part (i.e. a part in λ) by one and changing
its colour to red (i.e. appending this part to µ) or reducing a largest red part (i.e. a
part in µ) and changing its colour to blue (i.e. appending it to λ). In this case, the
involution attempts to do the reverse, as illustrated in Figure 3.

This presents an obstacle however, when the largest red part (i.e. a part in µ)
is one less than the largest blue part (i.e. a part in λ). In this case, the involution
attempts to push down a blue part and change its colour to red, but the resulting
superpartition is not a valid one since the parts of µ must be distinct. Thus in this
case, we prescribe that the involution ignore the largest part of the superpartition
and proceed to the next largest part, as demonstrated in Figure 4.
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Figure 4. The involution when the largest blue part cannot be
pushed down, since a red part already occupies the level below it.
Instead, the largest red part is raised up to a blue part.

Partition Bn(a, b) into two parts: Ln(a, b), which consists of superpartitions (λ, µ) ∈
Bn(a, b) such that the largest among the parts of λ and µ occurs in λ and the largest
part in µ is at least 2 less than the largest part in λ and Un(a, b), which consists of
all other superpartitions (λ, µ) ∈ Bn(a, b). Observe that

Bn(a, b) = Ln(a, b) ⊔ Un(a, b).

Then the multiplicity of the trivial representation of Sn in S(a|b) is given by〈
S(a|b)

〉
n

= + |Ln(a + 1, b)| + |Un(a + 1, b)|
− |Ln(a + 2, b − 1)| − |Un(a + 2, b − 1)|
+ |Ln(a + 3, b − 1)| − |Un(a + 3, b − 1)|
...

(−1)b|Ln(a + b + 1, 0)| + (−1)b|Un(a + b + 1, 0)|.

By virtue of the involution, we can cancel out the blue term in each row of the
above expression with the red term in the row above it. Noting further, that
Un(a + b + 1, 0) = 0, we have 〈

S(a|b)
〉

n
= |Ln(a + 1, b)|,

which is precisely the number claimed in the first part of the theorem.
The cardinality of Ln(a + 1, b) is the same as that of Un(a, b + 1). Given (λ, µ) ∈

Un(a, b + 1), form a partition ρ by arranging the parts of λ and µ together in weakly
decreasing order. Also, the parts of µ, form a set of b + 1 distinct parts of ρ, including
a possible 0-part. Thus they correspond to a choice of b + 1 removable cells of ρ,
including either the first largest part of ρ, or excluding it but including then the
second largest part of ρ (in this case though the largest part is blue, it cannot be
pushed down due to a red part already occupying the lower position). □

This interpretation allows us to easily recover Theorem 4.8.3 of [6]

Corollary 3.19. For all a, b ⩾ 0 with b + 1 ⩽ n,〈
S(a|b)

〉
n

> 0 if and only if b < n and
(

b + 1
2

)
⩽ a.
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Corollary 3.20. For all a, b ⩾ 0 with b + 1 ⩽ n, the coefficient of s(a|b) in the
expansion of the plethysm s(n)[1 + h1 + h2 + · · · ] is the number of superpartitions
(λ, µ) that satisfy the conditions of Theorem 3.18.
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