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Shifted combinatorial Hopf algebras from
K-theory

Eric Marberg

Abstract In prior joint work with Lewis, we developed a theory of enriched set-valued P -
partitions to construct a K-theoretic generalization of the Hopf algebra of peak quasisym-
metric functions. Here, we situate this object in a diagram of six Hopf algebras, providing a
shifted version of the diagram of K-theoretic combinatorial Hopf algebras studied by Lam and
Pylyavskyy. This allows us to describe new K-theoretic analogues of the classical peak algebra.
We also study the Hopf algebras generated by Ikeda and Naruse’s K-theoretic Schur P - and
Q-functions, as well as their duals. Along the way, we derive several product, coproduct, and
antipode formulas and outline a number of open problems and conjectures.

1. Introduction
There is a classical diagram of Hopf algebras

(1.1)
Sym NSym MR

Sym QSym MR

in which the vertical lines are dualities, the ↪→ arrows are inclusions, and the ↠
arrows are their adjoints. The self-dual object Sym on the left is the familiar Hopf
algebra of bounded degree symmetric functions [16, §2], which has an orthonormal
basis given by the Schur functions sλ. The self-dual object MR on the right is the
Malvenuto-Reutenauer Hopf algebra of permutations from [4, 29]. In the middle, we
have the dual pair of quasisymmetric functions QSym and noncommutative symmetric
functions NSym, as described in [16, §5].

In [24], Lam and Pylyavskyy study a “K-theoretic” generalization of (1.1) given
by

(1.2)
MSym MNSym MMR

mSym mQSym mMR

.
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The objects here are modules over Z[β] rather than Z, where β is a formal parameter.
Setting β = 0 turns (1.2) into (1.1). The objects mSym and mQSym consist of the
symmetric and quasisymmetric functions over Z[β] of unbounded degree. Their duals
MSym and MNSym are isomorphic to Sym and NSym but with scalars extended to
Z[β]. The objects mMR and MMR, finally, are two different generalizations of the
Malvenuto-Reutenauer Hopf algebra MR.

Besides the Schur functions {sλ}, the Hopf algebras mSym and MSym have an-
other pair of dual bases provided by the stable Grothendieck polynomials G(β)

λ and
the dual stable Grothendieck polynomials g(β)

λ . These power series are relevant to K-
theory since the G(β)

λ functions are symmetric limits of connective K-theory classes
of structure sheaves of Schubert varieties; see [9, 15].

The goal of this article is to investigate two shifted analogues of (1.2). To motivate
this, let us first discuss the shifted versions of (1.1). On one hand, we have a diagram

(1.3)
SymP PeakP MR

SymQ ΠSym MR

in which the vertical lines are again dualities, the ↪→ arrows are inclusions, and the ↠
arrows are their adjoints. Here SymP and SymQ are the subalgebras of Sym spanned
by the Schur P -functions Pλ and Schur Q-functions Qλ, which are indexed by all
strict integer partitions λ. These subalgebras are dual Hopf algebras relative to the
bilinear form with [Pλ, Qµ] = δλµ, which is different from the usual Hall inner product
on Sym; see [42, Appendix A]. In the middle column, ΠSym is the Hopf algebra of
peak quasisymmetric functions ΠSym from [42] while PeakP is the peak algebra from
[37, 41].

There is another version of (1.3) in which the roles of SymP and SymQ are inter-
changed:

(1.4)
SymQ PeakQ MR

SymP Π̄Sym MR

.

Here Π̄Sym is a slightly larger version of ΠSym (namely, the intersection of ΠSymQ :=
Q ⊗Z ΠSym with QSym [42, §3]) while its dual PeakQ is a Hopf subalgebra of PeakP .
The diagrams (1.3) and (1.4) coincide if we work over Q rather than Z.

Work of Ikeda and Naruse [21] identifies K-theoretic versions GP (β)
λ and GQ

(β)
λ

of the classical Schur P - and Q-functions. Whereas Pλ and Qλ are generating func-
tions for (semistandard) shifted tableaux, GP (β)

λ and GQ
(β)
λ are generating functions

for (semistandard) shifted set-valued tableaux [21, Thm. 9.1]. These symmetric func-
tions represent the structure sheaves of Schubert varieties in the connective K-theory
ring of the maximal isotropic Grassmannians of orthogonal and symplectic types [21,
Cor. 8.1].

Later results of Nakagawa and Naruse [35] construct two additional families of
“dual” K-theoretic Schur P - and Q-functions gp(β)

λ and gq
(β)
λ . As we will explain in

Section 4, these power series are Z[β]-bases for two Hopf subalgebras MSymP and
MSymQ of MSym, whose respective duals mSymQ and mSymP are the completions
of the algebras Z[β]-span{GQ(β)

λ } and Z[β]-span{GP (β)
λ }. These four objects fit into
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the pair of diagrams

(1.5)

MSymP MPeakP MMR

mSymQ mΠSym mMR

MSymQ MPeakQ MMR

mSymP mΠ̄Sym mMR

which specialize to (1.3) and (1.4) when β = 0, and which coincide if the scalar ring
Z[β] is extended to Q[β]. These diagrams are the primary subject of this article. Our
main results, building off related work in [12, 24, 26, 8], will provide distinguished
bases for all of the objects shown here, explicitly identify the pairings that give the
dualities indicated by the vertical lines, and describe the remaining inclusions and
their adjoint surjections.

We can summarize our new theorems and outline the rest of this paper as follows.
One way to motivate (1.2) is through the perspective of combinatorial Hopf algebras as
defined in [2]. However, some care must be taken to make this rigorous as the objects
in the bottom row of (1.2) are certain completions of Hopf algebras rather than actual
Hopf algebras. Section 2 provides a brief survey of the technical background needed
to address these issues.

Section 3 reviews the construction of the objects and morphisms in (1.2). What we
present is a very mild generalization of what is studied by Lam and Pylyavskyy, and
involves a parameter β that is implicitly set to β = 1 in [24].

The algebras mΠ̄Sym ⊃ mΠSym are spanned by K-theoretic generalizations of
peak quasisymmetric functions studied previously in [8]. In Section 4.1 we review the
definition of these algebras, and prove that mΠSym arises of the image of a canonical
morphism of combinatorial Hopf algebras mMR → mQSym; see Theorem 4.2.

In Section 4.2 we construct the duals of mΠ̄Sym and mΠSym as explicit Hopf
subalgebras MPeakQ ⊂ MNSym and MPeakP ⊂ MNSym. This gives two K-theoretic
generalizations of the classical peak algebra. Neither appears to have been considered
in previous literature. We also derive (co)product formulas for the distinguished bases
of MPeakQ and MPeakP , and we identify the adjoint maps mMR → mΠSym and
mMR → mΠ̄Sym in (1.5).

Sections 4.3 and 4.4 discuss the Hopf algebras mSymP ⊃ mSymQ and their duals
MSymQ ⊂ MSymP . We prove an identity relating the pairings MSymQ × mSymP →
Z[β] and MSymP × mSymQ → Z[β] to a surjective morphism Θ(β) : mQSym →
mΠSym; see Theorem 4.26. We also identify the adjoint maps MPeakP → MSymP

and MPeakQ → MSymQ in (1.5); see Theorem 4.27. These results rely on conjectures
from [8, 35] proved in [12, 26].

Section 4.5 discusses antipode formulas for the objects in (1.5). Building off recent
work in [26], we show that the respective (finite) Z[β]-linear spans of all GP (β)- and
GQ(β)-functions are sub-bialgebras of mSym that are not Hopf algebras; see Proposi-
tion 4.33.

Finally, Section 4.6 provides a survey of related open problems and positivity con-
jectures. Computer calculations indicate that the coefficients appearing in many dif-
ferent expansions of the distinguished bases for the objects in (1.5) are always positive.

Algebraic Combinatorics, Vol. 7 #4 (2024) 1125



E. Marberg

In several special cases, it is an open problem to find combinatorial interpretations of
these numbers.

2. Preliminaries
Throughout, we write Z for the set of integers and let [n] := {i ∈ Z : 0 < i ⩽ n}
for 0 ⩽ n ∈ Z. This section presents some basic information about Hopf algebras,
their completions, and quasisymmetric functions. For more background on each, see
[16, 28, 31].

2.1. Hopf algebras. Fix an integral domain R and write ⊗ = ⊗R for the tensor
product over this ring. An R-algebra is an R-module A with R-linear product ∇ :
A⊗A → A and unit ι : R → A maps. Dually, an R-coalgebra is an R-module A with
R-linear coproduct ∆ : A → A⊗A and counit ϵ : A → R maps. The (co)product and
(co)unit maps must satisfy several associativity axioms; see [16, §1] for the complete
definitions.

An R-module A that is both an R-algebra and an R-coalgebra is an R-bialgebra
if the coproduct and counit maps are algebra morphisms (equivalently, the product
and unit are coalgebra morphisms).

Suppose A is an R-bialgebra with structure maps ∇, ι, ∆, and ϵ. Let End(A)
denote the set of R-linear maps A → A. This set is an R-algebra for the product
f ∗ g := ∇ ◦ (f ⊗ g) ◦ ∆. The unit of this convolution algebra is the composition ι ◦ ϵ
of the unit and counit of A. The bialgebra A is a Hopf algebra if id : A → A has a
(necessarily unique) two-sided inverse S : A → A in the convolution algebra End(A).
When it exists, we call S the antipode of A.

2.2. Completions. Many of the objects in the diagrams (1.2) and (1.5) are rings
of formal power series of unbounded degree that are “too large” to belong to the
category of free modules. To formally define algebraic structures on these objects, we
need to work in the following setting.

Let A and B be R-modules with an R-bilinear form ⟨·, ·⟩ : A × B → R. Assume
that A is free and the form is nondegenerate in the sense that b 7→ ⟨·, b⟩ is a bijection
B → HomR(A,R). Fix a basis {ai}i∈I for A. For each i ∈ I, there exists a unique
element bi ∈ B with ⟨aj , bi⟩ = δij for all j ∈ I, and we can identify an arbitrary
element b ∈ B with the formal linear combination

∑
i∈I⟨ai, b⟩bi. We refer to {bi}i∈I

as a pseudobasis for B.
We give R the discrete topology. Then the linearly compact topology [14, §I.2] on

B is the coarsest topology in which the maps ⟨ai, ·⟩ : B → R are all continuous. This
topology depends on ⟨·, ·⟩ but not on the choice of basis for A, and is discrete if A has
finite rank.

Definition 2.1. A linearly compact R-module is an R-module B equipped with a
nondegenerate bilinear form A×B → R for some free R-module A, given the linearly
compact topology; in this case B is the dual of A. Morphisms between such modules
are continuous R-linear maps.

We will often abbreviate by writing “LC-” in place of “linearly compact.” Suppose
A is a free R-module with basis S. We refer to the R-module B of arbitrary R-linear
combinations of S, equipped with the nondegenerate bilinear form A×B → R making
S orthonormal, as the completion of A with respect to S. This linearly compact R-
module has S as a pseudobasis.

Let B and B′ be linearly compact R-modules dual to free R-modules A and A′.
We reuse ⟨·, ·⟩ for both of the associated nondegenerate forms. Every linear map
ϕ : A′ → A has a unique adjoint ψ : B → B′ such that ⟨ϕ(a), b⟩ = ⟨a, ψ(b)⟩ for all
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a ∈ A′ and b ∈ B. A linear map B → B′ is continuous if and only if it arises as the
adjoint of some linear map A′ → A.

Definition 2.2. The completed tensor product of B and B′ is the R-module
B ⊗̂B′ := HomR(A⊗A′, R),

given the LC-topology from the tautological pairing (A⊗A′)×HomR(A⊗A′, R) → R.

If {bi}i∈I and {b′
j}j∈J are pseudobases for B and B′, then we can realize B ⊗̂ B′

concretely as the linearly compact R-module with the set of tensors {bi ⊗ b′
j}(i,j)∈I×J

as a pseudobasis.

Example 2.3. Let A = R[x] and B = RJxK. Define ⟨·, ·⟩ : A × B → R to be the
nondegenerate R-bilinear form〈∑

n⩾0
anx

n,
∑
n⩾0

bnx
n

〉
:=
∑
n⩾0

anbn.

Then the set {xn}n⩾0 is a basis for A and a pseudobasis for B, and we have
RJxK ⊗RJyK ̸= RJxK ⊗̂RJyK ∼= RJx, yK.

Definition 2.4. Suppose ∇ : B ⊗̂ B → B and ι : B → R are continuous linear
maps which are the adjoints of linear maps ϵ : R → A and ∆ : A → A ⊗ A. We say
that (B,∇, ι) is an LC-algebra if (A,∆, ϵ) is an R-coalgebra. Similarly, we say that
∆ : B → B ⊗̂ B and ϵ : B → R make B into an LC-coalgebra if ∆ and ϵ are the
adjoints of the product and unit maps of an R-algebra on A.

We define LC-bialgebras and LC-Hopf algebras analogously. If B is an LC-Hopf
algebra then its antipode is the adjoint of the antipode of the Hopf algebra A. In each
case we say that the (co, bi, Hopf) algebra structures on A and B are duals of each
other.

More generally, a Hopf algebra H is dual to an LC-Hopf algebra Ĥ via some
nondegenerate bilinear form ⟨·, ·⟩ : H × Ĥ → R that is continuous in the second
coordinate if one always has ⟨ι(a), b⟩ = a · ϵ(b), ⟨a, ι(b)⟩ = ϵ(a) · b, ⟨∇(a ⊗ b), c⟩ =
⟨a⊗ b,∆(c)⟩, and ⟨a,∇(b⊗ c)⟩ = ⟨∆(a), b⊗ c⟩.

Example 2.5. Again let A = R[x] and B = RJxK. Write ∇ : B ⊗̂B → B for the usual
product map, define ι : R → B to be the natural inclusion, and let ϵ : B → R be the
ring homomorphism that sets x = 0. For each β ∈ R, there is a continuous algebra
homomorphism ∆β : B → B ⊗̂B with ∆β(x) = x⊗ 1 + 1 ⊗ x+ βx⊗ x, and B is an
LC-bialgebra relative to ∇, ι, ∆β , and ϵ.

There is a unique bialgebra structure on A that is dual to the one on B via the form
in Example 2.3. This structure has unit, counit, and coproduct given by appropriate
restrictions of ι, ϵ, and ∆0 := ∆β |β=0, while its product has a more complicated
formula; see [8, Ex. 2.4]. One can show that the dual bialgebras A and B are dual
Hopf algebras: the antipode of A is the linear map with SA(xn) = (−1)nx(x+ β)n−1,
and the antipode of B is the continuous linear map with SB(xn) =

(
−x

1+βx

)n

. Notice
that we can restrict ∇ and ∆β to define a second bialgebra structure on A, but this
will not be a Hopf algebra unless β = 0 as R is an integral domain.

One can reformulate the above definitions using commutative diagrams; see [31].
Linearly compact (co, bi, Hopf) algebras form a category in which morphisms are
continuous linear maps commuting with (co)products and (co)units. The completed
tensor product of two linearly compact (co, bi, Hopf) algebras is itself a linearly
compact (co, bi, Hopf) algebra.

Algebraic Combinatorics, Vol. 7 #4 (2024) 1127
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2.3. Quasisymmetric functions. Let β, x1, x2, . . . be commuting indeterminates.
From this point on, most of our modules will be defined over the ring R = Z[β],
and we write ⊗ and ⊗̂ for the corresponding tensor products. A power series f ∈
Z[β]Jx1, x2, . . .K is quasisymmetric if for any choice of a1, a2, . . . , ak ∈ Z>0, the coeffi-
cients of xa1

1 xa2
2 · · ·xak

k and xa1
i1
xa2

i2
· · ·xak

ik
in f are equal for all i1 < i2 < · · · < ik.

Definition 2.6. Let mQSym be the Z[β]-module of quasisymmetric power series in
Z[β]Jx1, x2, . . .K. Let QSym denote the submodule of power series in mQSym of bounded
degree.

A composition α is a finite sequence of positive integers. If the parts of α have sum
N ⩾ 0, then we write α ⊨ N or |α| = N . The sequence α is a partition if it is weakly
decreasing, which we indicate by writing α ⊢ N instead of α ⊨ N .

The set QSym is a graded ring that is free as a Z[β]-module. One basis is provided
by the monomial quasisymmetric functions, which are defined for each composition
α = (α1, α2, . . . , αk) as the sums

Mα :=
∑

i1<i2<···<ik

xα1
i1
xα2

i2
· · ·xαk

ik
∈ QSym

with M∅ := 1 when α = ∅ is the empty composition. We identify mQSym with the
completion of QSym relative to this basis.

Write ∆ : QSym → QSym ⊗ QSym for the Z[β]-linear map with

∆(Mα) =
∑

α=α′α′′

Mα′ ⊗Mα′′

for each composition α, where α′α′′ denotes the concatenation of α′ and α′′. Let
ϵ : QSym → Z[β] be the linear map with M∅ 7→ 1 and Mα 7→ 0 for all nonempty
compositions α. This coproduct and counit make the algebra QSym into a (graded,
connected) Hopf algebra [16, §5.1]. These maps extend to continuous linear maps
mQSym ⊗̂ mQSym → mQSym and mQSym → mQSym ⊗̂ mQSym which make mQSym
into an LC-Hopf algebra. For a description of its antipode, see Section 4.5.

Suppose H is an LC-bialgebra, defined over Z[β], with product ∇, coproduct ∆,
unit ι, and counit ϵ. Let X(H) be the set of continuous algebra morphisms ζ : H →
Z[β]JtK with ζ(·)|t=0 = ϵ.

Definition 2.7. If H is an LC-bialgebra (respectively, LC-Hopf algebra) and ζ ∈
X(H), then (H, ζ) is a combinatorial LC-bialgebra (respectively, combinatorial LC-
Hopf algebra). Such pairs form a category in which morphisms (H, ζ) → (H ′, ζ ′) are
morphisms ϕ : H → H ′ with ζ = ζ ′ ◦ ϕ.

We view mQSym as a combinatorial LC-Hopf algebra with respect to the canonical
zeta function ζQ : mQSym → Z[β]JtK given by ζQ(f) = f(t, 0, 0, . . . ). On monomial
quasisymmetric functions, we have ζQ(Mα) = t|α| for α ∈ {∅, (1), (2), (3), . . . } and
ζQ(Mα) = 0 for all other compositions α.

For each integer k ⩾ 1 define ∆(k) := (1 ⊗ ∆(k−1)) ◦ ∆ = (∆(k−1) ⊗ 1) ◦ ∆ where
∆(1) := ∆. Given a map ζ ∈ X(H) and a nonempty composition α = (α1, α2, . . . , αk),
write ζα : H → Z[β] for the map sending h ∈ H to the coefficient of tα1 ⊗tα2 ⊗· · ·⊗tαk

in ζ⊗k ◦∆(k−1)(h) ∈ Z[β]JtK⊗̂k. When α = ∅ is the empty composition, define ζ∅ := ϵ.

Theorem 2.8 ([8, Thm. 2.8]). Suppose (H, ζ) is a combinatorial LC-bialgebra. Then
the map with the formula Φ(h) =

∑
α ζα(h)Mα for h ∈ H, where the sum is over all

compositions α, is the unique morphism of combinatorial LC-bialgebras Φ : (H, ζ) →
(mQSym, ζQ).
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3. K-theoretic Hopf algebras
We are now prepared to review the construction of the diagram (1.2) from [24]. As
noted in the introduction, we will work with slightly modified versions of the objects
discussed in [24], involving a formal parameter β. Setting β = 1 recovers Lam and
Pylyavskyy’s original definitions, but one can also go in the reverse direction by
making appropriate variable substitutions.

3.1. Small multipermutations. We start with the object mMR in the lower right
corner of (1.2), called the small multi-Malvenuto-Reutenauer Hopf algebra in [24].

A word is a finite sequence of positive integers. Let v = v1v2 · · · vm and w =
w1w2 · · ·wn be words. When

S = {s1 < · · · < sm} ⊂ [m+ n] and T = {t1 < · · · < tn} = [m+ n] ∖ S,

define �S,T (v, w) := u1u2 · · ·um+n where usi
:= vi and uti

:= wi. The shuffle product
of v and w is v�w :=

∑
�S,T (v, w) where the sum is over all pairs (S, T ) of disjoint

sets with S ⊔ T = [m + n] where |S| = m and |T | = n. For example, we have
21� 11 = 3 · 2111 + 2 · 1211 + 1121.

For k ∈ Z⩾0, let w ↑ k = (w1 + k)(w2 + k) · · · (wn + k). If w has m distinct
letters, then its standardization is the word st(w) = ϕ(w1)ϕ(w2) · · ·ϕ(wn), where ϕ is
the unique order-preserving bijection {w1, w2, . . . , wn} → [m]. A word w is packed if
st(w) = w.

Definition 3.1. Let PackedWords denote the set of packed words and define mWQSym
to be the linearly compact Z[β]-module with PackedWords as a pseudobasis.

Define ∇ : mWQSym ⊗̂ mWQSym → mWQSym and ∆ : mWQSym → mWQSym ⊗̂
mWQSym to be the continuous linear maps with

(3.1)

∇(v ⊗ w) := v� (w ↑ max(v)),

∆(w) :=
n∑

i=0
st(w1 · · ·wi) ⊗ st(wi+1 · · ·wn),

for v ∈ PackedWords and w = w1w2 · · ·wn ∈ PackedWords. Write ι : Z[β] → mWQSym
and ϵ : mWQSym → Z[β] for the linear maps with ι(1) = ∅ and ϵ(w) = δw∅ for w ∈
PackedWords. These maps make mWQSym into an LC-Hopf algebra [31, Prop. 3.11],
called the Hopf algebra of word quasisymmetric functions.

A small multipermutation is a packed word with no equal adjacent letters. Let
Sm

n denote the set of such words w with max(w) = n and define Sm
∞ :=

⊔
n∈Z⩾0

Sm
n .

Write <m for the partial order on PackedWords whose cover relations are of the form
w1 · · ·wi · · ·wn <m w1 · · ·wiwi · · ·wn. Each lower set under <m contains a unique
minimal element, which belongs to Sm

∞.

Definition 3.2. Given v ∈ Sm
∞, let [v](β)

m :=
∑

v⩽mw β
ℓ(w)−ℓ(v)w ∈ mWQSym where

the sum is over packed words w ∈ PackedWords. Define mMR to be the linearly compact
Z[β]-submodule of mWQSym with

{
[v](β)

m : v ∈ Sm
∞

}
as a pseudobasis.

As mMR is an LC sub-bialgebra of mWQSym, which is graded and connected,
Takeuchi’s formula [16, Prop. 1.4.22] implies that its antipode preserves mMR. This ob-
servation lets us recover the following statement, which is equivalent to [24, Thms. 4.2
and 7.12].

Theorem 3.3 ([24]). The submodule mMR is an LC-Hopf subalgebra of mWQSym.

Algebraic Combinatorics, Vol. 7 #4 (2024) 1129
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[24, Thm. 4.2] constructs an LC-Hopf algebra over Z with Sm
∞ as a pseudobasis;

this object is isomorphic to the Z-submodule of mMR with
{
βℓ(v)[v](β)

m : v ∈ Sm
∞

}
as

a pseudobasis.

3.2. Big multipermutations. Next, we review the construction of the big multi-
Malvenuto-Reutenauer Hopf algebra from [24], which gives the dual object MMR in
the top right corner of (1.2).

A set composition is a sequence of pairwise disjoint nonempty sets B = B1B2 · · ·Bm

with
⊔

i∈[m] Bi = [n] for some n ∈ Z⩾0; in this case we define ℓ(B) := m and |B| := n.

Definition 3.4. Let SetComp be the set of all set compositions and define
SetCompn = {B ∈ SetComp : |B| = n}

for n ∈ Z⩾0. Let WQSym be the free Z[β]-module with SetComp as a basis.

There is a Hopf algebra structure on WQSym. Given B = B1B2 · · ·Bm ∈ SetComp
and k ∈ Z⩾0, let k + B be the sequence of sets (k + B1)(k + B2) · · · (k + Bm). For
S ⊂ Z>0, define B∩S by removing any empty sets from (B1 ∩S)(B2 ∩S) · · · (Bm ∩S).
The product ∇ : WQSym ⊗ WQSym → WQSym is the linear map with

∇(A⊗B) =
∑

C∈A•B

C

where
A •B :=

{
C ∈ SetCompm+n : C ∩ [m] = A and C ∩ (m+ [n]) = m+B

}
for all A ∈ SetCompm and B ∈ SetCompn. For example, the elements of {1}{2}•{1, 2}
are {1}{2}{3, 4}, {1}{2, 3, 4}, {1}{3, 4}{2}, {1, 3, 4}{2}, and {3, 4}{1}{2}.

If B = B1B2 · · ·Bm is a sequence of subsets of some totally ordered alphabet
and n = |

⋃
i Bi|, then we let st(B) := ϕ(B1)ϕ(B2) · · ·ϕ(Bm) where ϕ is the order-

preserving bijection B1∪B2∪· · ·∪Bm → [n]. The coproduct ∆ : WQSym → WQSym⊗
WQSym is the linear map with

∆(A) =
m∑

i=0
st(A1 · · ·Ai) ⊗ st(Ai+1 · · ·Am) for all A = A1A2 · · ·Am ∈ SetComp.

Write ι : Z[β] → WQSym and ϵ : WQSym → Z[β] for the linear maps with ι(1) = ∅
and ϵ(A) = δA∅ for A ∈ SetComp. These maps make WQSym into a graded, connected
Hopf algebra [36, §2.1].

Consider the following operations interchanging packed words and set composi-
tions. First, given w = w1w2 · · ·wn ∈ PackedWords with max(w) = m, define w∗ to
be the set composition A1A2 · · ·Am ∈ SetCompn with Ai = {j ∈ [n] : wj = i}. Next,
for A = A1A2 · · ·Am ∈ SetCompn, define A∗ to be the packed word w1w2 · · ·wn with
wj = i if j ∈ Ai. Finally define ⟨·, ·⟩ : WQSym × mWQSym → Z[β] to be the unique
bilinear form, continuous in the second coordinate, with
(3.2) ⟨A,w⟩ = δA,w∗ for all A ∈ SetComp and w ∈ PackedWords.
This form is nondegenerate since w 7→ w∗ and A 7→ A∗ are inverse bijections
PackedWords ↔ SetComp. One can also check directly that the relevant products
and coproducts are compatible in the sense of Section 2.2. Therefore WQSym and
mWQSym are duals with respect to (3.2).

A big multipermutation is a set composition whose blocks never contain consecutive
integers. Let SM

n be the set of big multipermutations A with |A| = n, and define
SM

∞ :=
⊔

n⩾0 S
M
n . The operations w 7→ w∗ and A 7→ A∗ restrict to inverse bijections

Sm
n ↔ SM

n .
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Write <M for the partial order on set compositions whose cover relations have the
form A<MB where B has a block containing i and i+ 1 and A = st(B∩ {1, . . . , i, i+
2, . . . , n}). Each lower set under <M contains a unique minimal element, which is a
big multipermutation.

Definition 3.5. Let

IM := Z[β]-span
{
β|B|−|A|A−B : A,B ∈ SetComp with A<M B

}
.

Denote the quotient module by MMR := WQSym/IM and set

[A](β)
M := A+ IM ∈ MMR

for A ∈ SetComp.

The Z[β]-module MMR is free with basis
{

[A](β)
M : A ∈ SM

∞

}
. One can check that

IM is the orthogonal complement of mMR, which implies the following results from
[24, §7.2 and §7.4]:

Theorem 3.6 ([24]). The submodule IM is a Hopf ideal of WQSym, so MMR is
a quotient Hopf algebra. This Hopf algebra is dual to mMR via the bilinear form
⟨·, ·⟩ : MMR × mMR → Z[β], continuous in the second coordinate, with

⟨[A](β)
M , [w](β)

m ⟩ = δA,w∗

for A ∈ SM
∞ and w ∈ Sm

∞.

The Hopf algebra MMR is a very minor generalization of the Hopf algebra con-
structed in [24, Thm. 7.5], which can be realized inside MMR as the Z-submodule
spanned by β|A|A for A ∈ SM

∞ .

3.3. Multifundamental quasisymmetric functions. Here we review the con-
struction of an alternate pseudobasis for mQSym, which arises from viewing mMR as
a combinatorial LC-Hopf algebra. The ideas in this section originate in [24, §5], but
we follow the slightly different notational conventions from [8, §3].

For a composition α = (α1, α2, . . . , αk) ⊨ N let

I(α) := {α1, α1 + α2, . . . , α1 + α2 + · · · + αk−1}.

Define Set(Z>0) to be the set of nonempty, finite subsets of Z>0 = {1, 2, 3, . . . }. Given
S, T ∈ Set(Z>0), we write S ⪯ T if max(S) ⩽ min(T ) and S ≺ T if max(S) < min(T ).

Definition 3.7. The multifundamental quasisymmetric function of α ⊨ N is

L(β)
α :=

∑
S

β|S|−NxS ∈ mQSym

where the sum is over N -tuples S = (S1 ⪯ S2 ⪯ · · · ⪯ SN ) with Si ∈ Set(Z>0) and
Si ≺ Si+1 if i ∈ I(α), and where |S| :=

∑N
i=1 |Si| and xS :=

∏N
i=1
∏

j∈Si
xj.

The quasisymmetric functions L(β)
α are another pseudobasis for mQSym [8, §3.3].

Remark 3.8. Setting β = 0 transforms L(β)
α to the fundamental quasisymmetric func-

tions Lα := L
(0)
α [28, Def. 3.3.4]. Setting β = 1 turns L(β)

α into the quasisymmet-
ric functions denoted L̃α in [24, §5.3]. One recovers L(β)

α from L̃α via the identity
L

(β)
α = β−|α|L̃α(βx1, βx2, . . . ), which lets one rewrite many formulas in [24] in terms

of L(β)
α . For example, one can obtain explicit expressions for the product L(β)

α′ L
(β)
α′′ and

coproduct ∆(L(β)
α ) in this way from [24, Props. 5.9 and 5.10].

Algebraic Combinatorics, Vol. 7 #4 (2024) 1131



E. Marberg

Write ζ< for the continuous linear map mWQSym → Z[β]JtK sending strictly in-
creasing packed words w to tℓ(w) and all other packed words to zero. Then ζ< is an
algebra morphism with ζ<([w](β)

m ) = ζ<(w) for all w ∈ Sm
∞. The descent set of a word

w = w1w2 · · ·wn is given by Des(w) := {i ∈ [n−1] : wi > wi+1}. We write αdes(w) for
the composition of ℓ(w) with I(αdes(w)) = Des(w). The as yet unmotivated definition
of L(β)

α is algebraically natural in view of the following:

Theorem 3.9. The continuous linear map with [w](β)
m 7→ L

(β)
αdes(w) for all w ∈ Sm

∞ is
the unique morphism of combinatorial LC-Hopf algebras (mMR, ζ<) → (mQSym, ζQ).

Proof. The claim that this map is a morphism of LC-bialgebras (and therefore also
of LC-Hopf algebras) is equivalent to [24, Thm. 5.11]. Choose w ∈ Sm

∞ and set α :=
αdes(w) and N := |α| = ℓ(w). In view of Theorem 2.8, we just need to check that
ζ<([w](β)

m ) = ζQ(L(β)
α ). As ζQ sends x1 7→ t and xi 7→ 0 for i > 0, we either have

ζQ(L(β)
α ) = tN if the N -tuple S = ({1} ⪯ {1} ⪯ · · · ⪯ {1}) satisfies the conditions in

Definition 3.7, or else ζQ(L(β)
α ) = 0. This means that ζQ(L(β)

α ) = tN = ζ<([w](β)
m ) if

I(α) = Des(w) is empty and otherwise ζQ(L(β)
α ) = 0 = ζ<([w](β)

m ) as needed. □

3.4. Noncommutative symmetric functions. We now review the construction
from [24] of the multi-noncommutative symmetric functions MNSym in the top row
of (1.2). The descent set of a set composition A = A1A2 · · ·Am ∈ SetCompn is

Des(A) := {i ∈ [n− 1] : i+ 1 ∈ Aj and i ∈ Ak for any indices j < k}.

One has Des(A) = Des(A∗).

Definition 3.10. For a composition α ⊨ n, define

R(β)
α :=

∑
Des(A)=I(α)

[A](β)
M ∈ MMR

where the sum is over big multipermutations A ∈ SM
n . These sums are linearly

independent, and we define MNSym to be the free Z[β]-submodule of MMR with{
R

(β)
α : α is a composition

}
as a basis.

Recall that we have a form ⟨·, ·⟩ : MMR×mMR → Z[β] from Theorem 3.6. Evidently
if α is a composition and w ∈ Sm

∞ has γ = αdes(w) then ⟨R(β)
α , [w](β)

m ⟩ = δαγ . We
reuse the symbol ⟨·, ·⟩ to denote the bilinear form ⟨·, ·⟩ : MNSym × mQSym → Z[β],
continuous in the second coordinate, with ⟨R(β)

α , L
(β)
γ ⟩ = δαγ for all α and γ. The

following is equivalent to [24, Thm. 8.4]:

Theorem 3.11 ([24]). The module MNSym is a Hopf subalgebra of MMR. This sub-
algebra is the Hopf algebra dual to mQSym via ⟨·, ·⟩, and the map mMR → mQSym
with [w](β)

m 7→ L
(β)
αdes(w) for all w ∈ Sm

∞ from Theorem 3.9 is the morphism adjoint to
the inclusion MNSym ↪→ MMR.

The elements R(β)
n := R

(β)
(n) for n ∈ Z>0 freely generate MNSym as an algebra

[24, Prop. 8.3], and one can view MNSym as a graded connected Hopf algebra in
which R(β)

n has degree n. In fact, MNSym is isomorphic to the usual noncommutative
symmetric functions NSym, just defined with scalar ring Z[β], by [24, Prop. 8.5].

3.5. Symmetric functions. A symmetric function in Z[β]Jx1, x2, . . .K is a power
series that is invariant under permutations of the xi variables. The first column of
(1.2) contains these familiar power series:
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Definition 3.12. Define MSym to be the Hopf subalgebra of symmetric functions
of bounded degree in QSym. Let mSym be the LC-Hopf subalgebra of all symmetric
functions in mQSym.

Let {sλ} denote the basis of Schur functions for MSym, indexed by partitions λ.
It is well-known that MSym and mSym are dual Hopf algebras with respect to the
nondegenerate bilinear form ⟨·, ·⟩ : MSym × mSym → Z[β], continuous in the second
coordinate, that has ⟨sλ, sµ⟩ = δλµ.

Lam and Pylyavskyy [24, Thm. 9.15] show that mSym and MSym have another
pair of dual bases given respectively by the stable Grothendieck polynomials {G(β)

λ }
and the dual stable Grothendieck polynomials {g(β)

λ }, which satisfy ⟨g(β)
λ , G

(β)
µ ⟩ = δλµ.

These “polynomials” are symmetric generating functions for semistandard set-valued
tableaux and reverse plane partitions of shape λ, respectively.

Since in this article we will never need to work with G(β)
λ and g(β)

λ directly, we omit
their definitions. If one does require precise definitions that follow our notational
conventions, one should adopt the formulas in [44, Thm. 4.6] with β replaced by −β.

Theorem 3.13. The map MNSym → MSym adjoint to the inclusion mSym ↪→
mQSym relative to the forms ⟨·, ·⟩ is the algebra morphism with R

(β)
n 7→ g

(β)
n := g

(β)
(n)

for all n ∈ Z>0.

Proof. The elements R(β)
n freely generate MNSym [24, Prop. 8.3], so there is a unique

algebra morphism MNSym → MSym with R
(β)
n 7→ g

(β)
n for n ∈ Z>0. To show that

this is the adjoint to mSym ↪→ mQSym, it suffices to check that ⟨R(β)
n , G

(β)
λ ⟩ = δ(n),λ

for all partitions λ, as we already know this is the value of ⟨g(β)
n , G

(β)
λ ⟩. As we have

⟨R(β)
α , L

(β)
γ ⟩ = δαγ , the desired identity can be deduced from [8, Eq. (3.10)], which

gives the expansion of G(β)
λ into L(β)

γ ’s. □

[24, Thm. 9.13] computes the image of R(β)
α under the adjoint map MNSym →

MSym; this turns out to be a dual stable Grothendieck polynomial indexed by a
specific skew ribbon shape.

4. Shifted K-theoretic Hopf algebras
We now turn to the shifted analogues of the diagram (1.2) provided in (1.5). We
start by describing two shifted analogues of mQSym in Section 4.1. In Section 4.2 we
investigate the duals of these LC-Hopf algebras, which provide K-theoretic analogues
of the peak algebra studied in [37, 41]. Sections 4.3 and 4.4 give an overview of the
four (LC-)Hopf algebras of symmetric functions on the left sides of the two diagrams
in.(1.5). In Sections 4.5 we derive several antipode formulas, and then in Section 4.6
we conclude with a survey of open problems.

4.1. Multipeak quasisymmetric functions. Our first task is to define the shifted
analogues of mQSym, which are displayed as mΠSym and mΠ̄Sym in (1.5). This ma-
terial is partly review from [8].

For i ∈ Z let i′ := i − 1
2 so that 1

2Z = {· · · < 0′ < 0 < 1′ < 1 < . . . }. Define
Set( 1

2Z>0) to be the set of finite, nonempty subsets of {1′ < 1 < 2′ < 2 < . . . }.
We again write S ≺ T if max(S) < min(T ) and S ⪯ T if max(S) ⩽ min(T ) for
S, T ∈ Set( 1

2Z>0). Let xS :=
∏N

i=1
∏

j∈Si
x⌈j⌉ and |S| :=

∑N
i=1 |Si| for any sequence

S = (S1, S2, . . . , SN ) with Si ∈ Set( 1
2Z>0). A peak composition is a composition α

with αi ⩾ 2 for 1 ⩽ i < ℓ(α). Recall that I(α) = {α1, α1 + α2, . . . } ∖ {|α|}.

Algebraic Combinatorics, Vol. 7 #4 (2024) 1133



E. Marberg

Definition 4.1. Suppose α ⊨ N is a peak composition. Define

K(β)
α :=

∑
S

β|S|−NxS

where the sum is over N -tuples S = (S1 ⪯ · · · ⪯ SN ) of sets Si ∈ Set( 1
2Z>0) with

(4.1)
Si ∩ Si+1 ⊂ {1′, 2′, 3′, . . . } if i ∈ I(α) and
Si ∩ Si+1 ⊂ {1, 2, 3, . . . } if i /∈ I(α).

Define

K̄(β)
α :=

∑
S

β|S|−NxS

where the sum is over the subset of such N -tuples S also satisfying

(4.2) Si+1 ⊂ {1, 2, 3, . . . } if i ∈ {0} ⊔ I(α).

Let mΠSym and mΠ̄Sym, respectively, be the LC-Z[β]-modules with {K(β)
α } and

{K̄(β)
α } (where α ranges over all peak compositions) as respective pseudobases.

The power series K(β)
α and K̄

(β)
α were introduced in [8] in the context of an “en-

riched” theory of set-valued P -partitions. Setting β = 0 transforms K(β)
α and K̄(β)

α to
the peak quasisymmetric functions defined in [42, §3], and this implies that {K(β)

α }
and {K̄(β)

α } are linearly independent. However, K(β)
α and K̄

(β)
α are typically not lin-

ear combinations (even using rational coefficients and infinitely many terms) of the
functions Kα := K

(0)
α and K̄α := K̄

(0)
α from [42, §3].

Both mΠSym and mΠ̄Sym are LC-Hopf subalgebras of mQSym, and if mΠSymQ[β]

is the LC-Hopf algebra defined over Q[β] with {K(β)
α } as a pseudobasis, then we have

mΠ̄Sym = mΠSymQ[β] ∩ mQSym ⊋ mΠSym [8, Thm. 4.19]. More concretely, one has

(4.3) K(β)
α =

∑
δ∈{0,1}ℓ

2ℓ−|δ|β|δ|K̄
(β)
α+δ and K̄(β)

α =
∑

δ∈(Z⩾0)ℓ

2−ℓ−|δ|(−β)|δ|K
(β)
α+δ

for any peak composition α with ℓ = ℓ(α) parts, where |δ| :=
∑ℓ

i=1 δi [8, Cor. 4.17].
When β = 0, the Hopf algebras mΠSym and mΠ̄Sym reduce to (the completions of)
the ones denoted Π and Π̄ in [6, 42], which have been further studied in a number of
places (see e.g. [7, 19, 20, 27, 40]).

Recall the definition of ζ< : mWQSym → Z[β]JtK and write ζ> : mWQSym →
Z[β]JtK for the continuous linear map whose value at w = w1 · · ·wn ∈ PackedWords is

(4.4) ζ>(w1w2 · · ·wn) := ζ<(wn · · ·w2w1) =
{
tn if w1 > w2 > · · · > wm

0 otherwise.

This is an algebra morphism with ζ>([w](β)
m ) = ζ>(w) for w ∈ Sm

∞. By Theo-
rem 2.8 there is a unique morphism of combinatorial LC-Hopf algebras (mMR, ζ>) →
(mQSym, ζQ). Although this map is different from the one in Theorem 3.9, it also sends
{[w](β)

m : w ∈ Sm
∞} to the pseudobasis of multifundamental quasisymmetric functions

{L(β)
α }; see the proof of [8, Prop. 6.3].
To construct something new, we consider the convolution of the maps ζ> and ζ<

defined by the formula ζ>|< := ∇Z[β] ◦ (ζ> ⊗̂ ζ<) ◦ ∆ : mWQSym → ZJtK. This is a
continuous algebra morphism mWQSym → ZJtK. If w = w1w2 · · ·wn ∈ PackedWords
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then

(4.5) ζ>|<(w) =


2tn if w1 > · · · > wi < · · · < wn for some i ∈ [n]
tn if w1 > · · · > wi = wi+1 < · · · < wn for some i ∈ [n− 1]
1 if n = 0
0 otherwise.

It follows that if w = w1w2 · · ·wn ∈ Sm
∞ then

(4.6) ζ>|<([w](β)
m ) =


tn(2 + βt) if w1 > · · · > wi < · · · < wn for some i ∈ [n]
1 if n = 0
0 otherwise.

For any composition α ⊨ n, let Λ(α) be the unique peak composition of n satisfying
I(Λ(α)) = {i ∈ I(α) : 0 < i− 1 /∈ I(α)}. For example, one has

Λ((1, 2, 1, 1, 1, 3, 1)) = (3, 6, 1).
Then define Θ(β) : mQSym → mΠSym to be the continuous linear map with

(4.7) Θ(β)(L(β)
α ) = K

(β)
Λ(α) for all compositions α.

By [8, Cor. 4.22], this map is a surjective morphism of LC-Hopf algebras.
The peak set of a word w = w1w2 · · ·wn is

Peak(w) := {1 < i < n : wi−1 < wi > wi+1}.
Let αpeak(w) be the unique peak composition α ⊨ ℓ(w) with I(α) = Peak(w). If
w ∈ Sm

∞ then
(4.8) Peak(w) = {i ∈ Des(w) : 0 < i− 1 /∈ Des(w)} so Λ(αdes(w)) = αpeak(w),

and we have ζ>|<([w](β)
m ) ̸= 0 if and only if Peak(w) = ∅, in which case ℓ(αpeak(w)) ⩽

1. The multipeak quasisymmetric functions are motivated algebraically by this ana-
logue of Theorem 3.9:

Theorem 4.2. The continuous linear map with [w](β)
m 7→ K

(β)
αpeak(w) for w ∈ Sm

∞ is the
unique morphism of combinatorial LC-Hopf algebras (mMR, ζ>|<) → (mQSym, ζQ).
Proof. If w ∈ Sm

∞ then αpeak(w) = Λ(αdes(w)) since
I(Λ(αdes(w))) = {i ∈ I(αdes(w)) : 0 < i− 1 /∈ I(αdes(w))}

= {i ∈ Des(w) : 0 < i− 1 /∈ Des(w)} = Peak(w).
Our map Ψ : mMR → mQSym is thus the composition of Φ : (mMR, ζ<) →
(mQSym, ζQ) from Theorem 3.9 and Θ(β) : mQSym → mΠSym, so Ψ is at least a
morphism of LC-Hopf algebras.

It remains to check that ζ>|< = ζQ ◦ Ψ. For this, it suffices to show that if α ⊨ N

is a peak composition then ζQ(K(β)
α ) = t|α|(2 + βt) if I(α) = ∅ and ζQ(K(β)

α ) = 0
otherwise. Recall that ζQ corresponds to setting x1 = t and xi = 0 for i > 1. Thus
ζQ(K(β)

α ) =
∑

S β
|S|−N t|S| where the sum is over all weakly increasing N -tuples of

sets S = (S1 ⪯ S2 ⪯ · · · ⪯ SN ) with ∅ ̸= Si ⊆ {1′ < 1}, Si ∩Si+1 ⊆ {1′} for i ∈ I(α),
and Si ∩ Si+1 ⊆ {1} for i /∈ I(α).

If I(α) ̸= ∅, then α1 ⩾ 2 since α is a peak composition, so there are no such
tuples S since we must have Si−1 ∩ Si ⊂ {1} and Si ∩ Si+1 ⊂ {1′} for i ∈ I(α).
Thus ζQ(K(β)

α ) = 0 if I(α) ̸= ∅ as claimed. On the other hand, if I(α) = ∅, then
we have Si ∩ Si+1 ⊆ {1} for all i ∈ [N − 1], so there are only three possibilities for
S, given by ({1}, {1}, . . . , {1}), ({1′}, {1}, . . . , {1}), and ({1′, 1}, {1}, . . . , {1}), so we
have ζQ(K(β)

α ) = t|α|(2 + βt) as needed. □
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At this point it is useful to describe the product and coproduct in mMR more
explicitly. Recall the definition of ⩽m from Section 3.1. Given a word w and a set S,
define w ∩S to be the subword of w formed by omitting all letters not in S. Then, as
explained in [24, §4], one has

(4.9) ∇([w′](β)
m ⊗ [w′′](β)

m ) =
∑

w

βℓ(w)−ℓ(w′)−ℓ(w′′)[w](β)
m for w′ ∈ Sm

m and w′′ ∈ Sm
n ,

where the sum is over all w ∈ Sm
m+n such that w′ ⩽m w ∩ [m] and w′′ ↑ m ⩽m

w ∩ (m + [n]). If we fix w = w1w2 · · ·wn ∈ Sm
∞ and define JvK(β)

m := [st(v)](β)
m for an

arbitrary word v, then

(4.10)

∆([w](β)
m ) =

n∑
i=0

Jw1 · · ·wiK
(β)
m ⊗ Jwi+1 · · ·wnK(β)

m

+ β

n∑
i=1

Jw1 · · ·wiK
(β)
m ⊗ Jwi · · ·wnK(β)

m .

These formulas follow directly from the definitions of mWQSym and [w](β)
m . Using

Theorem 3.6, one can translate these identities by duality to product and coproduct
formulas for MMR; see [24, §7.1]. On the other hand, invoking Theorem 4.2 leads to
the following formulas for mΠSym:

Proposition 4.3. Suppose α′ and α′′ are peak compositions. Choose any w′, w′′ ∈ Sm
∞

with αpeak(w′) = α′ and αpeak(w′′) = α′′, and set m = max({0} ∪ w′) and n =
max({0} ∪ w′′). Then

K
(β)
α′ K

(β)
α′′ =

∑
w

βℓ(w)−|α′|−|α′′|K
(β)
αpeak(w)

where the sum is over all w ∈ Sm
m+n with w′ ⩽m w∩ [m] and w′′ ↑ m ⩽m w∩(m+[n]).

If α is a peak composition and w = w1w2 · · ·wℓ ∈ Sm
∞ has αpeak(w) = α, then

∆(K(β)
α ) =

ℓ∑
i=0

K
(β)
αpeak(w1···wi) ⊗K

(β)
αpeak(wi+1···wℓ) + β

ℓ∑
i=1

K
(β)
αpeak(w1···wi) ⊗K

(β)
αpeak(wi···wℓ).

Proof. Apply the morphism in Theorem 4.2 to both sides of (4.9) and (4.10). □

In principle one can also compute products and coproducts in the pseudobasis
{K̄(β)

α } by combining the formulas in Proposition 4.3 with the change-of-basis identi-
ties in (4.3).

Example 4.4. If α′ = α′′ = (1) then K
(β)
α′ K

(β)
α′′ is the sum

∑
w β

ℓ(w)−2K
(β)
αpeak(w) over

all words w ∈ {12, 21, 121, 212, 1212, 2121, 12121, 21212, . . . }, so there is an infinite
product expansion

K
(β)
(1) K

(β)
(1) = 2K(β)

(2) + βK
(β)
(2,1) + βK

(β)
(3) + β2K

(β)
(2,2) + β2K

(β)
(3,1) + β3K

(β)
(2,2,1) + · · · .

However, there is a finite coproduct expansion

∆(K(β)
(2) ) = ∆(K(β)

αpeak(12))

= 1 ⊗K
(β)
(2) +K

(β)
(1) ⊗K

(β)
(1) +K

(β)
(2) ⊗ 1 + β

(
K

(β)
(1) ⊗K

(β)
(2) +K

(β)
(2) ⊗K

(β)
(1)

)
.
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4.2. Multipeak noncommutative symmetric functions. We now consider the
duals of mΠSym and mΠ̄Sym. Fix a set composition A = A1A2 · · ·Am ∈ SetCompn,
so that the union of the blocks of A is [n]. Recall that i ∈ [n− 1] belongs to Des(A)
if and only if the block of A containing i is after the block containing i+ 1.

The peak set of A is Peak(A) := {1 < i < n : i − 1 /∈ Des(A) and i ∈ Des(A)}. If
A belongs to SM

n (so that none of its blocks contain consecutive integers) then one
has i ∈ Peak(A) precisely when 1 < i < n and the block of A containing i is after
the blocks containing i− 1 and i+ 1. Even when A /∈ SM

n , the set Peak(A) is always
equal to I(α) for some peak composition α ⊨ n.

Definition 4.5. For a peak composition α ⊨ n, let

πp(β)
α :=

∑
A∈SM

n

Peak(A)=I(α)

[A](β)
M ∈ MMR.

Define MPeakP to be the free Z[β]-module with
{
πp

(β)
α : α is a peak composition

}
as

a basis.

It also holds that πp
(β)
α =

∑
Λ(γ)=α R

(β)
γ where the sum is over γ ⊨ |α|, so

MPeakP ⊆ MNSym. Define [·, ·] : MPeakP ×mΠSym → Z[β] to be the nondegenerate
bilinear form, continuous in the second coordinate, that has [πp(β)

α ,K
(β)
γ ] = δαγ for

all peak compositions α and γ. Below, let ⟨·, ·⟩ : MNSym × mQSym → Z[β] be as in
Theorem 3.11 and recall the definition of Θ(β) from (4.7).

Lemma 4.6. If f ∈ MPeakP and g ∈ mQSym then
[
f,Θ(β)(g)

]
= ⟨f, g⟩.

Proof. We may assume that f = πp
(β)
α and g = L

(β)
γ for a peak composition α and a

composition γ. Then the desired identity is clear by comparing the definitions of Θ(β)

and πp
(β)
α . □

Theorem 4.7. The module MPeakP is a Hopf subalgebra of MNSym and is the Hopf
algebra dual to mΠSym via [·, ·]. The continuous linear map mMR → mΠSym from
Theorem 4.2 sending [w](β)

m 7→ K
(β)
αpeak(w) for all w ∈ Sm

∞ is the morphism adjoint to
the inclusion MPeakP ↪→ MMR.

Proof. Relative to the form in Theorem 3.6, the set MPeakP is the orthogonal com-
plement of the kernel of the LC-Hopf algebra morphism mMR → mΠSym described
in Theorem 4.2. Therefore MPeakP is a Hopf subalgebra. Lemma 4.6, in view of
Theorem 3.11, implies that the nondegenerate form [·, ·] respects the (co)product and
(co)unit maps of MPeakP and mΠSym, so MPeakP dual to mΠSym. For the last
assertion, we note that if α is a peak composition and w ∈ Sm

∞ then

⟨πp(β)
α , [w](β)

m ⟩ = ⟨πp(β)
α , L

(β)
αdes(w)⟩ = [πp(β)

α ,Θ(β)(L(β)
αdes(w))] = [πp(β)

α ,K
(β)
αpeak(w)]

by Theorem 3.11 for the first equality, Lemma 4.6 for the second, and (4.8) for the
third. □

We call MPeakP the multi-peak algebra. This is a generalization of the peak algebra
carefully studied in [41] (see also [1, 3, 5, 23, 37]), which coincides with MPeakP when
β = 0.

We can compute a product formula for the πp(β)
α -basis of MPeakP . Suppose α and

γ are nonempty peak compositions of length m and n. Define α ◁ γ := αγ and
α ▷ γ := (α1, . . . , αm−1, αm + γ1, γ2, . . . , γn),
α ◦ γ := (α1, . . . , αm−1, αm + γ1 − 1, γ2, . . . , γn).
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Additionally let

(4.11)

α ▶ γ := α ▷ (1, γ1 − 1, γ2, . . . , γn)
= (α1, . . . , αm−1, αm + 1, γ1 − 1, γ2, . . . , γn),

α • γ := α ◦ (1, γ1 − 1, γ2, . . . , γn)
= (α1, . . . , αm, γ1 − 1, γ2, . . . , γn).

If n = 1 then α ▶ γ and α • γ could be integer sequences ending in zero, which we
do not consider to be peak compositions. We define πp(β)

α := 0 if α is not a peak
composition. The following result is a shifted analogue of the product formula [24,
Prop. 8.1] for the R(β)

α -basis of MNSym.

Proposition 4.8. Suppose α and γ are nonempty peak compositions. Then

πp(β)
α πp(β)

γ = πp
(β)
α▶γ + πp

(β)
α▷γ + πp

(β)
α◁γ + β · πp(β)

α◦γ + β · πp(β)
α•γ .

Proof. Choose a word w = w1w2 · · ·wn ∈ Sm
∞. By Proposition 4.3 and Theorem 4.7

the expression [πp(β)
α πp

(β)
γ ,K

(β)
αpeak(w)] = [πp(β)

α ⊗ πp
(β)
γ ,∆(K(β)

αpeak(w))] expands to
n∑

i=0
δα,αpeak(w1···wi)δγ,αpeak(wi+1···wn) + β

n∑
i=1

δα,αpeak(w1···wi)δγ,αpeak(wi···wn).

Now observe that one can have α = αpeak(w1 · · ·wi) and γ = αpeak(wi+1 · · ·wn)
precisely when either i ∈ Peak(w) and αpeak(w) = α ◁ γ, i + 1 ∈ Peak(w) and
αpeak(w) = α ▶ γ, or {i, i + 1} ∩ Peak(w) = ∅ and αpeak(w) = α ▷ γ. Similarly, one
can have α = αpeak(w1 · · ·wi) and γ = αpeak(wi · · ·wn) precisely when i ∈ Peak(w)
and αpeak(w) = α • γ or when i /∈ Peak(w) and αpeak(w) = α ◦ γ. □

Example 4.9. Here are two examples of Proposition 4.8. All five terms appear in

πp
(β)
3252πp

(β)
42 = πp

(β)
325332 + πp

(β)
32562 + πp

(β)
325242 + β · πp(β)

32552 + β · πp(β)
325232.

On the other hand, only three survive in

πp
(β)
3251πp

(β)
42 = πp

(β)
325232 + πp

(β)
32552 + πp

(β)
325142 + β · πp(β)

32542 + β · πp(β)
325132

= πp
(β)
325232 + πp

(β)
32552 + β · πp(β)

32542.

To save space here, we have removed the parentheses and commas from all subscripts
“(α1, α2, . . . , αl)” and rewritten these as “α1α2 · · ·αl”.

Below, we abbreviate by writing πp(β)
n := πp

(β)
(n) for n ∈ Z>0 and set πp(β)

0 := 1.

Lemma 4.10. If n is a positive integer and δ[n] := |{n} ∩ {2, 4, 6, . . . }| then

πp
(β)
1 πp

(β)
n−1 ∈ δ[n] · πp(β)

n +
n−1∑
i=2

(−1)iπp
(β)
i πp

(β)
n−i + Z[β]-span

{
πp(β)

α : |α| < n
}
.

Proof. Let I = Z[β]-span{πp(β)
α : |α| < n}. Proposition 4.8 implies πp(β)

1 πp
(β)
n−1 + I =

πp
(β)
n + πp

(β)
(2,n−2) + I for n > 1, where πp

(β)
(n,0) := 0. Likewise, if 2 ⩽ i < n then

πp
(β)
(i,n−i) + I = πp

(β)
i πp

(β)
n−i − πp

(β)
n − πp

(β)
(i+1,n−i−1) + I. We obtain the lemma by

successively expanding the right hand side of the first identity using the second. □

Proposition 4.11. The set
{
πp

(β)
n : n = 1, 3, 5, . . .

}
freely generates MPeakP as a

Z[β]-algebra.
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Proof. Suppose α = (α1, α2, . . . , αm) is a composition and let

Ξ(β)
α := πp(β)

α1
πp(β)

α2
· · ·πp(β)

αm
.

We say that α is odd if αi is an odd integer for each i ∈ [m]. It suffices to show that the
elements Ξ(β)

α form a Z[β]-basis for MPeakP when α ranges over all odd compositions.
First let <revlex be the partial order on compositions with γ <revlex α if |γ| < |α|

or if |γ| = |α| and γ exceeds α in lexicographic order. It follows from Proposition 4.8
that if α is any peak composition then Ξ(β)

α ∈ πp
(β)
α +Z[β]-span

{
πp

(β)
γ : γ <revlex α

}
.

Thus the elements Ξ(β)
α form a basis for MPeakP at least when α ranges over all peak

compositions.
If α is a peak composition then let odd(α) be the odd composition formed by

replacing each even part αi by two consecutive parts (1, αi − 1). For example,
odd((3, 6, 3, 4, 2)) = (3, 1, 5, 3, 1, 3, 1, 1). Let <lex be the partial order on compositions
with γ <lex α if |γ| < |α| or if |γ| = |α| and γ precedes α lexicographically. It follows by
induction on ℓ(α) using Lemma 4.10 that Ξ(β)

odd(α) ∈ Ξ(β)
α +Z[β]-span

{
Ξ(β)

γ : γ <lex α
}

.
Since odd is a bijection from peak compositions to odd compositions, we deduce that{

Ξ(β)
α : α is an odd composition

}
is another Z[β]-basis for MPeakP as desired. □

To describe the dual of mΠ̄Sym we need a variant of SM
n . Define S̄M

n to consist
of the set compositions A = A1A2 · · ·Am ∈ SetCompn such that if {i, i + 1} ⊆ Aj

for i ∈ [n − 1] and j ∈ [m] then the union A1 ⊔ A2 ⊔ · · · ⊔ Aj contains neither
i − 1 nor i + 2. Then SM

n ⊆ S̄M
n , and for A ∈ S̄M

n it still holds that i ∈ Peak(A)
if and only if 1 < i < n and i appears in a block of A after the blocks con-
taining i − 1 and i + 1. For example, the elements of S̄M

4 − SM
4 with peak set

{3} are {1, 2, 4}{3}, {1, 2}{4}{3}, and {4}{1, 2}{3}. For any A ∈ SetCompn let
o(A) := | {i ∈ [n− 1] : {i, i+ 1} is a subset of some block of A} |.

Definition 4.12. For a peak composition α ⊨ n let

πq(β)
α :=

∑
A∈S̄M

n

Peak(A)=I(α)

2ℓ(α)−o(A)[A](β)
M ∈ MMR.

Let MPeakQ be the free Z[β]-module with basis
{
πq

(β)
α : α is a peak composition

}
.

For example, if α = (3, 1) then we have

πq
(β)
(3,1) = 4 cotπp(β)

(3,1) + 2[{1, 2, 4}{3}](β)
M + 2[{1, 2}{4}{3}](β)

M + 2[{4}{1, 2}{3}](β)
M

= 4πp(β)
(3,1) + 2β[{1, 3}{2}](β)

M + 2β[{1}{3}{2}](β)
M + 2β[{3}{1}{2}](β)

M

= 4πp(β)
(3,1) + 2βπp(β)

(2,1).

The following shows that {πq(β)
α } is linearly independent so MPeakQ is well-defined.

Lemma 4.13. If α is a peak composition with ℓ = ℓ(α) then

πq(β)
α =

∑
δ∈{0,1}ℓ

2ℓ−|δ|β|δ|πp
(β)
α−δ and πp(β)

α =
∑

δ∈(Z⩾0)ℓ

2−ℓ−|δ|(−β)|δ|πq
(β)
α−δ

where we set πp(β)
α−δ := 0 and πq(β)

α−δ := 0 if α− δ is not a peak composition.
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Proof. The map that sends A ∈ SetComp to the unique B ∈ SM
∞ with B ⩽M A is a

bijection

(4.12)
{
A ∈ S̄M

|α| : Peak(A) = I(α)
}

→
⊔
δ

{
B ∈ SM

|α|−|δ| : Peak(B) = I(α− δ)
}

where the union is over δ ∈ {0, 1}ℓ such that α−δ is a peak composition. To construct
the inverse map, define a valley of a big multipermutation B ∈ SM

∞ to be a number
a whose block in B is not weakly after the blocks containing a − 1 or a + 1. Each
B ∈ SM

|α|−|δ| with Peak(B) = I(α− δ) has exactly ℓ valleys a1 < a2 < · · · < aℓ. Form
A from such B by replacing the valley ai by two numbers a′

i < ai whenever δi = 1
and then standardizing. For example, the valleys of B = {1, 3}{2} are 1 and 3 so if
δ = (1, 0) then this inverse map would give

B = {1, 3}{2} 7→ {1′, 1, 3}{2} 7→ {1, 2, 4}{3} = A.

The formula for πq(β)
α follows since if (4.12) sends A ∈ S̄M

|α| to B ∈ SM
|α|−|δ| then

o(A) = |δ| and [A](β)
M = β|δ|[B](β)

M . Inverting this identity to get the formula for πp(β)
α

is straightforward. □

Theorem 4.14. There is a unique extension of [·, ·] to a bilinear form MPeakQ ×
mΠ̄Sym → Z[β], continuous in the second coordinate, with [πq(β)

α , K̄
(β)
γ ] = δαγ for all

α and γ. Therefore MPeakQ is a Hopf subalgebra of MPeakP and is the Hopf algebra
dual to mΠ̄Sym via [·, ·].

Proof. The first claim follows by computing [πq(β)
α , K̄

(β)
γ ] from the identity

[πp(β)
α ,K(β)

γ ] := δαγ

after substituting the formulas in Lemma 4.13 and (4.3) for πq(β)
α and K̄

(β)
γ . The

second assertion holds as MPeakP and mΠSym are already dual via [·, ·] by Theo-
rem 4.7 and each element of mΠ̄Sym is a formal Q[β]-linear combination of elements
of mΠSym by (4.3). □

Remark. It follows that the morphism mMR → mΠ̄Sym adjoint to the inclusion
MPeakQ ↪→ MMR has the same formula [w](β)

m 7→ K
(β)
αpeak(w) for w ∈ Sm

∞ as the adjoint
map in Theorem 4.7.

Define α ∗ γ := (α1, . . . , αm−1, αm − 2 + γ1, γ2, . . . , γn) for nonempty peak compo-
sitions α and γ of length m and n. Below, as usual, we set πq(β)

α = 0 if α is not a peak
composition.

Proposition 4.15. Suppose α and γ are nonempty peak compositions of length m and
n. Then
πq(β)

α πq(β)
γ = πq

(β)
α▶γ + 2πq(β)

α▷γ + πq
(β)
α◁γ + (1 + r + s)βπq(β)

α◦γ + βπq
(β)
α•γ + rsβ2πq

(β)
α∗γ

where r = 1 (respectively, s = 1) if the sequence (α1, . . . , αm−1, αm − 1) (respec-
tively, the sequence (γ1 − 1, γ2, . . . , γn)) is a peak composition(1) and otherwise r = 0
(respectively, s = 0).

Proof. For each x, y ∈ Z⩾0 define

(α | x] :=
∑

δ∈{0,1}m

δm=0

2m−1−|δ|β|δ|πp
(β)
(α1,...,αm−1,x)−δ

(1)This means r = 1 if the last part of α is greater than one, and s = 1 if γ1 > 2 or γ = (2).
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and
[y | γ) :=

∑
δ∈{0,1}n

δ1=0

2n−1−|δ|β|δ|πp
(β)
(y,γ2,...,γn)−δ

so that πq(β)
α = 2 · (α | αm] + β · (α | αm − 1] and πq(β)

γ = 2 · [γ1 | γ) + β · [γ1 − 1 | γ).
Also let

(α | x | γ) :=
∑

δ∈{0,1}m+n−1

δm=0

2m+n−2−|δ|β|δ|πp
(β)
(α1,...,αm−1,x,γ2,...,γn)−δ,

(α | x | y | γ) :=
∑

δ∈{0,1}m+n

δm=δm+1=0

2m+n−2−|δ|β|δ|πp
(β)
(α1,...,αm−1,x,y,γ2,...,γn)−δ.

Our conventions mean that these summations are zero if x = 0 or y = 0. By Propo-
sition 4.8
(α | x] · [y | γ) = (α | x+ 1 | y − 1 | γ) + (α | x+ y | γ) + (α | x | y | γ)

+ β · (α | x+ y − 1 | γ) + β · (α | x | y − 1 | γ)
for any positive integers x and y. The desired formula follows by using this identity
to expand the right side of

πq(β)
α πq(β)

γ = (2 · (α | αm] + β · (α | αm − 1]) (2 · [γ1 | γ) + β · [γ1 − 1 | γ))
and then combining terms. There are a large number of terms and a few different cases
to consider (according to whether αm = 1 or γ1 = 1), but this is all straightforward
algebra. □

Example 4.16. It holds that
πq

(β)
(3,2,5,2)πq

(β)
(4,2) = πq

(β)
(3,2,5,3,3,2) + 2 · πq(β)

(3,2,5,6,2) + πq
(β)
(3,2,5,2,4,2)

+ 3β · πq(β)
(3,2,5,5,2) + β · πq(β)

(3,2,5,2,3,2) + β2 · πq(β)
(3,2,5,4,2)

while πq(β)
(3,2,5,1)πq

(β)
(4,2) = πq

(β)
(3,2,5,2,3,2) + 2 · πq(β)

(3,2,5,5,2) + 2β · πq(β)
(3,2,5,4,2).

As above, for n ∈ Z>0 we set

(4.13) πq(β)
n := πq

(β)
(n) =

{
2 · πp(β)

n + β · πp(β)
n−1 if n > 1

2 · πp(β)
n if n = 1

and πq
(β)
0 := 1.

The following identities suffice to compute coproducts in MPeakP and MPeakQ:

Proposition 4.17. If n ∈ Z>0 then ∆(πq(β)
n ) =

∑n
i=0 πq

(β)
i ⊗ πq

(β)
n−i and

∆(πp(β)
n ) = 1 ⊗ πp(β)

n +
n∑

i=1
πp

(β)
i ⊗ πq

(β)
n−i = πp(β)

n ⊗ 1 +
n−1∑
i=0

πq
(β)
i ⊗ πp

(β)
n−i.

Proof. Let α′ and α′′ be peak compositions and choose u ∈ Sm
p and v ∈ Sm

q with
αpeak(u) = α′ and αpeak(v) = α′′. Keeping in mind the product formula in Proposi-
tion 4.3, suppose w ∈ Sm

p+q has u ⩽m w ∩ [p] and v ↑ p ⩽m w ∩ (p+ [q]). Write m :=
ℓ(v) = |α′′|. The only way that we can have Peak(w) = ∅ is if Peak(u) = Peak(v) = ∅
and w is either

ṽ1 · · · ṽi · u · ṽi+1 · · · ṽm or ṽ1 · · · ṽi−1 · u · ṽi · · · ṽm or ṽ1 · · · ṽi · u · ṽi · · · ṽm

where i ∈ [m] is the index of the smallest letter of v and ṽj := vj + p.
Thus by Proposition 4.3 we have

[∆(πp(β)
n ),K(β)

α′ ⊗K
(β)
α′′ ] = [πp(β)

n ,K
(β)
α′ K

(β)
α′′ ] ∈ {0, 1, 2, β}.
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Specifically, the value of the form is zero if ℓ(α′) > 1 or ℓ(α′′) > 1 as then Peak(u) or
Peak(v) is nonempty. If this does not occur, then the value of the form is ℓ(α′)+ℓ(α′′)
when n = |α′| + |α′′|, or β when ℓ(α′) = ℓ(α′′) = 1 and n = |α′| + |α′′| + 1, or else
zero. We conclude by the definition of [·, ·] that

∆(πp(β)
n ) = 1 ⊗ πp(β)

n + πp(β)
n ⊗ 1 + 2

n−1∑
i=1

πp
(β)
i ⊗ πp

(β)
n−i + β

n−2∑
i=1

πp
(β)
i ⊗ πp

(β)
n−i−1.

This identity is equivalent to the displayed equation for ∆(πp(β)
n ) via (4.13). It follows

that
∆(πq(β)

1 ) = 2 · ∆(πp(β)
1 ) = 1 ⊗ πq(β)

n + πq(β)
n ⊗ 1

and
∆(πq(β)

n ) = 2 · ∆(πp(β)
n ) + β · ∆(πp(β)

n−1)
when n > 1. The expression on the right expands to

2 ⊗ πp(β)
n + πp(β)

n ⊗ 2 + β ⊗ πp
(β)
n−1 + πp

(β)
n−1 ⊗ β

+ 2
n−1∑
i=1

πp
(β)
i ⊗ πq

(β)
n−i + β

n−2∑
i=1

πp
(β)
i ⊗ πq

(β)
n−i−1

and one can check that this is equal to
∑n

i=0 πq
(β)
i ⊗ πq

(β)
n−i. □

There is no Q-version of Proposition 4.11. Over Z[β], the set {πq(β)
n : n =

1, 3, 5, . . . } generates a proper subalgebra of MPeakQ which contains 2 · πq(β)
n but

not πq(β)
n for even n ∈ Z>0. This set does freely generate Q[β] ⊗Z[β] MPeakP =

Q[β] ⊗Z[β] MPeakQ as a Q[β]-algebra.
The classical peak algebra is also freely generated by a countable set [41, Thm. 3],

so after an appropriate extension scalars it is isomorphic to

Q[β] ⊗Z[β] MPeakP = Q[β] ⊗Z[β] MPeakQ

as an algebra. By duality, the tensor product Q[β] ⊗Z[β] mΠSym = Q[β] ⊗Z[β] mΠ̄Sym
is isomorphic as a coalgebra to the completion of the peak quasisymmetric functions
ΠQ from [6, 42].

The (co)algebra isomorphisms that come from these observations do not extend
to isomorphisms of Hopf algebras. This is different from the unshifted case (1.2),
where both L(β)

α and Lα := L
(0)
α span mQSym, and we have MNSym ∼= NSym as Hopf

algebras (after an appropriate extension of scalars) [24, Prop. 8.5]. In principle, our
shifted objects might still be isomorphic to their β = 0 specializations by some other
maps; determining whether such maps exist is an open problem.

4.3. Shifted symmetric functions. Finally, we turn to the shifted analogues of
symmetric functions that arise in K-theory. Recall that a partition is strict if its
nonzero parts are all distinct. Choose strict partitions µ ⊆ λ and write

SDλ/µ := {(i, i+ j − 1) ∈ Z>0 × Z>0 : µi < j ⩽ λi}

for the shifted Young diagram. We often refer to the positions in this diagram as
boxes. A shifted set-valued tableau of shape λ/µ is a map T assigning nonempty finite
subsets of {1′ < 1 < 2′ < 2 < . . . } to the boxes in SDλ/µ. We write (i, j) ∈ T when
(i, j) ∈ SDλ/µ and let Tij denote the set assigned by T to box (i, j).

A shifted set-valued tableau has weakly increasing rows and columns if max(Tij) ⩽
min(Ti+1,j) and max(Tij) ⩽ min(Ti,j+1) for all relevant (i, j) ∈ T . A shifted set-valued
tableau T with this property is semistandard if no primed number occurs in multiple
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boxes of T in the same row and no unprimed number occurs in multiple boxes of T
in the same column. For example,

345

12 23′ 7

· · 1′ 2′3

and

3′4

2′2 3′ 7′

· · 1′1 235

are semistandard shifted set-valued tableaux of shape (4, 3, 1)/(2) drawn in French
notation. Given such a tableau T , we let

|T | :=
∑

(i,j)∈T

|Tij | and xT :=
∏

(i,j)∈T

∏
k∈Tij

x⌈k⌉.

Our examples have |T | = 11 and xT = x2
1x

3
2x

3
3x4x5x7. Also set |λ/µ| := |SDλ/µ|. The

following definitions originate in work of Ikeda and Naruse [21, §9]:

Definition 4.18. Let ShSVTQ(λ/µ) denote the set of all semistandard shifted set-
valued tableaux of shape λ/µ, and let ShSVTP (λ/µ) be the subset of such tableaux with
no primed numbers in diagonal boxes. The K-theoretic Schur P - and Q-functions are
the formal power series

GP
(β)
λ/µ :=

∑
T ∈ShSVTP (λ/µ)

β|T |−|λ/µ|xT and GQ
(β)
λ/µ :=

∑
T ∈ShSVTQ(λ/µ)

β|T |−|λ/µ|xT .

When µ = ∅ is the empty partition let GP (β)
λ := GP

(β)
λ/∅ and GQ(β)

λ := GQ
(β)
λ/∅.

If deg(β) = 0 and deg(xi) = 1, then GP
(β)
λ/µ and GQ

(β)
λ/µ have unbounded degree,

but their lowest degree terms are the Schur P - and Schur Q-functions Pλ/µ and
Qλ/µ = 2ℓ(λ)−ℓ(µ)Pλ/µ. As {Pλ} and {Qλ} are bases for subalgebras of MSym, the
sets {GP (β)

λ } and {GQ(β)
λ } are linearly independent.

Definition 4.19. Define mSymP and mSymQ to be the linearly compact Z[β]-modules
with the sets {GP (β)

λ } and {GQ(β)
λ } (where λ ranges over all strict partitions) as

respective pseudobases.

If one sets deg(β) = −1 and deg(xi) = 1 then GP (β)
λ/µ and GQ(β)

λ/µ are homogeneous
of degree |λ/µ|. Both mSymP and mSymQ are LC-Hopf subalgebras of mSym [8,
Thm. 5.11] and if µ ⊆ λ are strict partitions then GP

(β)
λ/µ ∈ mSymP and GQ

(β)
λ/µ ∈

mSymQ [8, Cor. 5.13].
It remains to identify the dual Hopf algebras MSymP and MSymQ in (1.5). Con-

tinue to assume µ ⊆ λ are strict partitions. A shifted reverse plane partition of shape
λ/µ is an assignment of numbers from {1′ < 1 < 2′ < 2 < . . . } to the boxes in SDλ/µ

such that rows and columns are weakly increasing. If T is a shifted reverse plane
partition, then we let

wtRPP(T ) := (a1 + b1, a2 + b2, . . . ) and |wtRPP(T )| := a1 + b1 + a2 + b2 + . . .

where ai is the number of distinct columns of T containing i and bi is the number
of distinct rows of T containing i′. For example, if λ = (4, 3, 2) and µ = (2) then T
could be either of

5′ 5′

3 3 5′

· · 1′ 1′
and

5 5
3′ 3′ 3

· · 1 3
and we would have wtRPP(T ) = (1, 0, 2, 0, 2) and |wtRPP(T )| = 5 in both cases.
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Definition 4.20. Let ShRPPQ(λ/µ) be the set of shifted reverse plane partitions of
shape λ/µ, and let ShRPPP (λ/µ) be the subset of T ∈ ShRPPQ(λ/µ) whose diagonal
entries are all primed. The dual K-theoretic Schur P - and Q-functions are

gp
(β)
λ/µ :=

∑
T ∈ShRPPP (λ/µ)

(−β)|λ/µ|−|wtRPP(T )|xwtRPP(T )

and
gq

(β)
λ/µ :=

∑
T ∈ShRPPQ(λ/µ)

(−β)|λ/µ|−|wtRPP(T )|xwtRPP(T ).

When µ = ∅ is the empty partition we write gp(β)
λ := gp

(β)
λ/∅ and gq

(β)
λ := gq

(β)
λ/∅. We

will adopt a similar convention for all later notations indexed by skew shapes λ/µ.

By [26, Thm. 1.4], gp(β)
λ and gq

(β)
λ are special cases of the dual universal factorial

Schur P - and Q-functions that Nakagawa and Naruse characterize in [35, Def. 3.2]
via a general Cauchy identity. The skew versions gp(β)

λ/µ and gq
(β)
λ/µ of these functions

were first considered in [12, §6].
If we set deg(β) = deg(xi) = 1, then gp

(β)
λ/µ and gq

(β)
λ/µ are both homogeneous of

(bounded) degree |λ/µ|. If instead deg(β) = 0 and deg(xi) = 1, then the terms of
highest degree in gp

(β)
λ/µ and gq

(β)
λ/µ are Pλ/µ and Qλ/µ, so {gp(β)

λ } and {gq(β)
λ } are

linearly independent over Z[β].

Definition 4.21. Define MSymP and MSymQ to be the free Z[β]-modules with the
sets {gp(β)

λ } and {gq(β)
λ } (where λ ranges over all strict partitions) as respective bases.

The functions gp
(β)
λ/µ and gq

(β)
λ/µ satisfy the following Cauchy identity. Let x =

(x1, x2, . . . ) and y = (y1, y2, . . . ) be commuting variables and set xi = −xi

1+βxi
. Then

(4.14)
∑

λ

GP
(β)
λ (x)gq(β)

λ (y) =
∑

λ

GQ
(β)
λ (x)gp(β)

λ (y) =
∏

i,j⩾1

1−xiyj

1−xiyj

by [26, Thm. 1.4] via [35, Conj. 5.1].(2) Since the right hand side of (4.14) is invariant
under permutations of the y variables, the power series gp(β)

λ and gq(β)
λ are symmetric.

This implies that

(4.15)

gp
(β)
λ (x,y) =

∑
µ

gp(β)
µ (x)gp(β)

λ/µ(y) and

gq
(β)
λ (x,y) =

∑
µ

gq(β)
µ (x)gq(β)

λ/µ(y),

where f(x,y) is the power series f(x1, y1, x2, y2, . . . ) for f ∈ Z[β]Jx1, x2, . . .K. The
sums here are over all strict partitions µ, setting gp

(β)
λ/µ = gq

(β)
λ/µ = 0 when µ ̸⊆ λ.

Both sides of (4.15) are symmetric under all permutations of the y variables, so gp(β)
λ/µ

and gq
(β)
λ/µ are also symmetric.

Remark 4.22. The continuous Z[β]-linear map with f(x)g(y) 7→ f ⊗ g for all power
series f, g ∈ Z[x1, x2, . . . ] is a bijection

Z[β]Jx1, y1, x2, y2, . . .K
∼−→ Z[β]Jx1, x2, . . .K ⊗̂ Z[β]Jx1, x2, . . .K.

(2)[35, Conj. 5.1] asserts that the power series gq
(β)
λ

and gp
(β)
λ

defined by (4.14) have the generating
function formulas in Definition 4.20, and [26, Thm. 1.4] proves this conjecture.
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Composing this map with f 7→ f(x,y) gives an operation

Z[β]Jx1, x2, . . .K → Z[β]Jx1, x2, . . .K ⊗̂ Z[β]Jx1, x2, . . .K

which restricts to the coproduct of mSym and MSym [16, §2.1]. Thus we can rewrite
the formula (4.15) as

(4.16) ∆(gp(β)
λ ) =

∑
µ

gp(β)
µ ⊗ gp

(β)
λ/µ and ∆(gq(β)

λ ) =
∑

µ

gq(β)
µ ⊗ gq

(β)
λ/µ

where the sums are over all strict partitions.

4.4. Finite expansions and duality. To identify the algebraic structure of
MSymP and MSymQ we need a short digression. Suppose λ ⊆ ν are strict partitions.
A box (i, j) ∈ SDλ is a removable corner of λ if SDλ − {(i, j)} = SDµ for a strict
partition µ ⊊ λ. Let RC(λ) be the set of all such boxes and define

(4.17) GP
(β)
ν//λ :=

∑
µ

β|λ|−|µ|GP
(β)
ν/µ and GQ

(β)
ν//λ :=

∑
µ

β|λ|−|µ|GQ
(β)
ν/µ

where both sums are over all strict partitions µ ⊆ λ with SDλ/µ ⊆ RC(λ). For strict
partitions λ ̸⊆ ν set GP (β)

ν//λ = GQ
(β)
ν//λ := 0. These functions arise in the identities

(4.18)

GP (β)
ν (x,y) =

∑
λ

GP
(β)
λ (x)GP (β)

ν//λ(y),

GQ(β)
ν (x,y) =

∑
λ

GQ
(β)
λ (x)GQ(β)

ν//λ(y),

which by Remark 4.22 can be restated as the coproduct formulas

(4.19) ∆(GP (β)
ν ) =

∑
λ

GP
(β)
λ ⊗GP

(β)
ν//λ and ∆(GQ(β)

ν ) =
∑

λ

GQ
(β)
λ ⊗GQ

(β)
ν//λ.

The sums here are over all strict partitions λ, but the terms indexed by λ ̸⊆ ν are all
zero.

Because mSymP and mSymQ are LC-Hopf algebras, and because the pseudobases
{GP (β)

λ } and {GQ(β)
λ } consist of homogeneous elements if we set deg(β) = −1, there

are unique integers aν
λµ, b

ν
λµ, â

ν
λµ, b̂

ν
λµ ∈ Z indexed by strict partitions λ, µ, ν with

(4.20)

GP
(β)
λ GP (β)

µ =
∑

ν

aν
λµβ

|ν|−|λ|−|µ|GP (β)
ν ,

GQ
(β)
λ GQ(β)

µ =
∑

ν

bν
λµβ

|ν|−|λ|−|µ|GQ(β)
ν ,

GP
(β)
ν//λ =

∑
µ

b̂ν
λµβ

|λ|+|µ|−|ν|GP (β)
µ ,

GQ
(β)
ν//λ =

∑
µ

âν
λµβ

|λ|+|µ|−|ν|GQ(β)
µ .

The following result is a special case of [35, Prop. 3.2] since gp(β)
λ and gq(β)

λ are special
cases of [35, Def. 3.2]. We outline a self-contained proof for completeness.

Proposition 4.23 ([35, Prop. 3.2]). For all strict partitions λ, µ, ν it holds that

gp
(β)
λ gp(β)

µ =
∑

ν

âν
λµβ

|λ|+|µ|−|ν|gp(β)
ν

gq
(β)
λ gq(β)

µ =
∑

ν

b̂ν
λµβ

|λ|+|µ|−|ν|gq(β)
ν

and

gp
(β)
ν/λ =

∑
µ

bν
λµβ

|ν|−|λ|−|µ|gp(β)
µ

gq
(β)
ν/λ =

∑
µ

aν
λµβ

|ν|−|λ|−|µ|gq(β)
µ .
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Proof. One can derive these identities from (4.14) by introducing a third sequence of
variables z = (z1, z2, . . . ) and then extracting coefficients. For example, we have∑

ν

GQ(β)
ν (x,y)gp(β)

ν (z) =
∏
i,j

1−xizj

1−xizj

∏
i,j

1−yizj

1−yizj
.

The left side is ∑
λ,µ,ν

âν
λµβ

|λ|+|µ|−|ν|GQ
(β)
λ (x)GQ(β)

µ (y)gp(β)
ν (z)

while the right side is ∑
λ,µ

GQ
(β)
λ (x)GQ(β)

µ (y)gp(β)
λ (z)gp(β)

µ (z),

which leads to the first formula. □

Let ℓ(λ) be the number of parts in a partition λ. Given strict partitions µ ⊆ λ,
define cols(λ/µ) = |{j : (i, j) ∈ SDλ/µ}| to be the number of columns occupied by
SDλ/µ. A subset of Z>0 ×Z>0 is a vertical strip if it contains at most one position in
each row. Then it holds by [12, Thm. 1.1] that

(4.21) GQ(β)
µ =

∑
λ

2ℓ(µ)(−1)cols(λ/µ)(−β/2)|λ/µ|GP
(β)
λ

and by [12, Cor. 6.2] that

(4.22) gq
(β)
λ =

∑
µ

2ℓ(µ)(−1)cols(λ/µ)(−β/2)|λ/µ|gp(β)
µ

where both sums are over strict partitions λ ⊇ µ with ℓ(λ) = ℓ(µ) such that SDλ/µ is
a vertical strip. For example GQ(β)

(3,2) = 4GP (β)
(3,2) +2βGP (β)

(4,2) −β2GP
(β)
(4,3) and gq(β)

(3,2) =
4gp(β)

(3,2) + 2βgp(β)
(3,1) − β2gp

(β)
(2,1).

We use the following notation from [22] just in the next result. Let GΓ be the
linearly compact Q(β)-module with {GP (β)

λ } as a pseudobasis (where λ ranges over
all strict partitions) and let gΓ be the free Q(β)-module with {gp(β)

λ } as a basis. The
identities (4.21) and (4.22) imply that {GQ(β)

λ } is another pseudobasis for GΓ while
{gq(β)

λ } is another basis for gΓ .

Proposition 4.24. There is a unique bilinear form [·, ·] : gΓ×GΓ → Q(β), continuous
in the second coordinate, with [gp(β)

λ , GQ
(β)
µ ] = [gq(β)

λ , GP
(β)
µ ] = δλµ for all strict

partitions λ and µ.

Proof. Let (·, ·) be the bilinear form, continuous in the second coordinate, with
(gp(β)

λ , GP
(β)
µ ) = δλµ. Write ϕ and ψ for the (continuous) linear maps with

ϕ(gq(β)
λ ) = gp

(β)
λ and ψ(GQ(β)

µ ) = GP (β)
µ .

The identities (4.21) and (4.22) imply that (ϕ(f), g) = (f, ψ(g)) for all f ∈ gΓ and
g ∈ GΓ . Then the form [f, g] := (ϕ(f), g) = (f, ψ(g)) has the desired properties. □

Remark. The module GΓ coincides with the ring considered in [22, §5.2], which Iwao
defines by a certain K-theoretic Q-cancellation property; [21, Thm. 3.1] shows that the
infinite linear span of the GP (β)

λ ’s is characterized by the same property. Comparing
the Cauchy identity (4.14) with the one in [22, §8.2] shows that gΓ similarly coincides
with the ring defined in [22, §8.1], and that the form in Proposition 4.24 is equal to
the one in [22, Eq. (30)].

Putting everything together leads to this theorem:
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Theorem 4.25. Both MSymP and MSymQ are Hopf subalgebras of MSym. In partic-
ular, MSymP (respectively, MSymQ) is the Hopf algebra dual to mSymQ (respectively,
mSymP ) via [·, ·].

Proof. It is clear from (4.16) and Proposition 4.23 that MSymP and MSymQ are the
sub-bialgebras of MSym dual to mSymQ and mSymP via [·, ·]. The fact that these
bialgebras are preserved by the antipode of MSym follows by duality as mSymQ and
mSymP are LC-Hopf subalgebras of mSym. □

As mentioned in Section 3.5, the Hopf algebras MSym and mSym have another
pair of dual bases for ⟨·, ·⟩ besides the Schur functions, given by the (dual) stable
Grothendieck polynomials {g(β)

λ } and {G(β)
λ }. We need to quote two results involving

these functions. First, one has

(4.23) gp(n) =
n∑

i=1
g

(β)
(i,1n−i)

for all positive integers n by [35, Prop. 5.3]; see the proof of [12, Prop. 7.5] for another
derivation. Second, if λ is a partition with k parts and Θ(β) : mQSym → mΠSym is
the map (4.7) then

(4.24) Θ(β)(G(β)
λ ) = GQ

(β)
(λ+δ)/δ for δ := (k − 1, . . . , 2, 1, 0), by [8, §4.6].

Taking k = 1 gives Θ(β)(G(β)
(n)) = GQ

(β)
(n) for all n > 0. Thus Θ(β) restricts to a map

mSym → mSymQ, which is surjective by [8, Cor. 5.17]. The following result reduces
to [42, (A.9)] when β = 0:

Theorem 4.26. If f ∈ gΓ and g ∈ mSym then
[
f,Θ(β)(g)

]
= ⟨f, g⟩.

Proof. Write gp(β)
n := gp

(β)
(n) and gq

(β)
n := gq

(β)
(n) for n ∈ Z>0. Define G(β)

n and GQ
(β)
n

analogously. For compositions α = (α1, α2, . . . , αk) let G(α) :=
∏

i∈[k] G
(β)
αi , GQ(α) :=

Θ(β)(G(α)) =
∏

i∈[k] GQ
(β)
αi , and gp(α) :=

∏
i∈[k] gp

(β)
αi . The Pieri rule in [25, Thm. 3.4]

implies that every element of mSym is possibly infinite Z[β]-linear combination of
G(α)’s. The analogous Pieri rule in [26, Prop. 2.7] with (4.22) implies that every
element of gΓ is a finite Q(β)-linear combination of gp(α)’s. Thus we just need to
check that [gp(α), GQ(γ)] = ⟨gp(α), G(γ)⟩ for all compositions α and γ.

To show this, let k = ℓ(α) and l = ℓ(γ) be the lengths of two arbitrary compositions.
Recall that we denote iterated coproducts by ∆(k) := (1⊗∆(k−1))◦∆ = (∆(k−1)⊗1)◦∆
where ∆(1) := ∆. Since [·, ·] : MSymP × mSymQ → Z[β] and ⟨·, ·⟩ : MSym × mSym →
Z[β] induce Hopf algebra dualities and since coproducts in Hopf algebras are algebra
morphisms, we have

[gp(α), GQ(γ)] =
[

∆(l−1)(gp(α)),
⊗

j∈[l]
GQ(β)

γj

]

=
[ ⊗

i∈[k]
∆(l−1)(gp(β)

αi
),
⊗

j∈[l]
∆(k−1)(GQ(β)

γj
)
]

and similarly

⟨gp(α), G(γ)⟩ =
〈

∆(l−1)(gp(α)),
⊗

j∈[l]
G(β)

γj

〉

=
〈 ⊗

i∈[k]
∆(l−1)(gp(β)

αi
),
⊗

j∈[l]
∆(k−1)(G(β)

γj
)
〉
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where we appropriately reorder the kl tensor factors in
⊗

i∈[k] ∆(l−1)(gp(β)
αi ) to eval-

uate the two rightmost expressions.
It is clear from (4.16) that ∆(gp(β)

n ) =
∑n

i=0 gp
(β)
i ⊗ gp

(β)
n−i and from (4.19) that

∆(GQ(β)
n ) =

n∑
i=0

GQ
(β)
i ⊗GQ

(β)
n−i + β

n∑
i=1

GQ
(β)
i ⊗GQ

(β)
n+1−i

where gp(β)
0 = GQ

(β)
0 := 1. It follows similarly from the well-known set-valued tableau

generating function for Gλ (see e.g. [8, Eq. (3.9)]) that

∆(G(β)
n ) =

n∑
i=0

G
(β)
i ⊗G

(β)
n−i + β

n∑
i=1

G
(β)
i ⊗G

(β)
n+1−i.

We deduce from these formulas that the equality [gp(α), GQ(γ)] = ⟨gp(α), G(γ)⟩ will
hold if we can just show that [gp(β)

m , GQ
(β)
n ] = δmn = ⟨gp(β)

m , G
(β)
n ⟩ for all m,n ∈ Z⩾0.

This simpler identity is immediate from (4.23). □

Recall the elements πp(β)
n ∈ MPeakP and πq

(β)
n ∈ MPeakQ for n ∈ Z>0 from

Section 4.2.
Theorem 4.27. The map MPeakP → MSymP adjoint to mSymQ ↪→ mΠSym relative
to the forms [·, ·] in Theorems 4.7 and 4.25 is the unique algebra morphism with
πp

(β)
n 7→ gp

(β)
n and πq

(β)
n 7→ gq

(β)
n . This morphism restricts to the map MPeakQ →

MSymQ adjoint to mSymP ↪→ mΠ̄Sym.

Proof. We first claim that [πp(β)
n , GQ

(β)
λ ] = δ(n),λ for all n ∈ Z⩾0 and strict partitions

λ. This follows from the discussion in [8, §4.6] which gives the K(β)
α -decomposition

of GQ(β)
λ . In detail, define a standard shifted set-valued tableau of shape λ to be a

semistandard shifted set-valued tableau of shape λ whose entries are pairwise disjoint
nonempty sets, never containing any consecutive integers, with union {1, 2, . . . , N}
for some N ⩾ |λ|. Suppose T is such a tableau and set |T | := N . The peak set of T is
the set Peak(T ) of integers 1 < i < N such that i appears in a column of T strictly
after i−1 and in a row of T strictly before i+1. Then GQ(β)

λ =
∑

α k
α
λ ·β|α|−|λ| ·K(β)

α

where the sum is over all peak compositions of α and kα
λ is the number of standard

shifted set-valued tableaux T with |T | = |α| and Peak(T ) = I(α) [8, Eq. (4.14)].
Equivalently, [πp(β)

α , GQ
(β)
λ ] = kα

λ · β|α|−|λ|.
Now observe that if ℓ(λ) > 1, then every standard shifted set-valued tableau T of

shape λ has a nonempty peak set, since if i + 1 is the smallest number in box (2, 2)
of T then i ∈ Peak(T ). On the other hand, if ℓ(λ) ⩽ 1 then there is exactly one
standard shifted set-valued tableau T of shape λ, and this tableau has |T | = |λ| and
Peak(T ) = ∅. Thus if α = (n) for some n ∈ Z⩾0 so that I(α) = ∅, then we have
kα

λ = δ(n),λ and [πp(β)
n , GQ

(β)
λ ] = δ(n),λ as desired.

Our claim shows that [πp(β)
n , GQ

(β)
λ ] = [gp(β)

n , GQ
(β)
λ ] so the adjoint map

MPeakP → MSymP must send πp
(β)
n 7→ gp

(β)
n for all n ∈ Z⩾0. There is at

most one algebra morphism with this property since {πp(β)
n : n = 1, 3, 5, . . . } freely

generates MPeakP by Proposition 4.11. The adjoint map also sends πq(β)
n 7→ gq

(β)
n

since we have
πq

(β)
1 = 2πp(β)

1 and gq
(β)
1 = 2gp(β)

1
as well as

πq(β)
n = 2πp(β)

n + βπp
(β)
n−1 and gq(β)

n = 2gp(β)
n + βgp

(β)
n−1

for n > 1 by (4.13) and (4.22). □
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The maps in Theorem 4.27 are shifted analogues of the morphism MNSym →
MSym in (1.2). As noted earlier, Lam and Pylyavskyy show that the image of R(β)

α

under this map is a specific dual stable Grothendieck polynomial g(β)
λ/µ [24, Thm. 9.13].

We do not know if this result has a shifted version. When α is a peak composi-
tion, the images of πp(β)

α and πq
(β)
α under the adjoint maps MPeakP → MSymP and

MPeakQ → MSymQ typically are not of the form gp
(β)
λ/µ or gq(β)

λ/µ.

4.5. Antipode formulas. We gave the general definition of the antipode for a Hopf
algebra or LC-Hopf algebra in Section 2. Here we describe some specific antipode
formulas for the objects in (1.5).

If α is a finite sequence then we write αr for its reversal. Given α ⊨ n, let αc be the
unique composition of n with I(αc) = [n− 1] ∖ I(α), and define αt := (αc)r = (αr)c.
For example, we have (3, 2)r = (2, 3), (3, 2)c = (1, 1, 2, 1), and (3, 2)t = (1, 2, 1, 1).

Recall from Remark 3.8 that the homogeneous functions

Lα := L(0)
α =

∑
γ⊨|α|,I(γ)⊇I(α)

Mγ

form another basis for QSym. Write ω : QSym → QSym for the linear map with
ω(Lα) := Lαt . This map is a Hopf algebra automorphism which preserves Sym, acting
on Schur functions as ω(sλ) = sλ⊤ where λ⊤ is the transpose of a partition λ. The
antipode of QSym is the linear map S with

(4.25)
S(Lα) = (−1)|α|Lαt = (−1)|α|ω(Lα) and

S(sλ) = (−1)|λ|sλ⊤ = (−1)|λ|ω(sλ)
for all compositions α and partitions λ [28, §3.6]. We can extend ω to a continuous
automorphism of mQSym. The antipode of mQSym is the continuous extension of the
antipode of QSym.

A multiset is a set allowing repeated elements. Given a peak composition α =
(α1, α2, . . . , αk) let α♭ := (αk + 1, αk−1, . . . , α2, α1 − 1) when k > 1 and set α♭ := α
if k ⩽ 1. The following statement is equivalent to identities in [8], and reduces to [42,
Prop. 3.5] when β = 0.

Proposition 4.28 ([8, Prop 6.5 and Obs. 6.9]). If α is a peak composition then

S
(
K

(β)
α♭

)
=
∑

S

(−β)|S|−NxS and S
(
K̄

(β)
α♭

)
=
∑

S

(−β)|S|−NxS

where both sums are over N -tuples S = (S1 ⪯ · · · ⪯ SN ) satisfying the same respective
conditions (4.1) and (4.2) as in Definition 4.1, but with each Si a finite nonempty
multi-subset of 1

2Z>0.

Proposition 4.29. The antipode S of MPeakQ ⊃ MPeakP is the algebra anti-
automorphism with

(a) S
(
πq(β)

n

)
= (−1)n

∑
k∈[n]

(
n−1
k−1
)

· βn−k · πq(β)
k for all n ∈ Z>0, and

(b) S
(
πp(β)

n

)
= (−1)n

∑
k∈[n]

(
n
k

)
· βn−k · πp(β)

k for all n ∈ Z>0.

Proof. The antipode of any Hopf algebra is an anti-endomorphism [16, Prop. 1.4.10]
and is invertible when the Hopf algebra is cocommutative [16, Rem. 1.4.13]. One
has ∇ ◦ (S ⊗ id) ◦ ∆ = ι ◦ ϵ by definition, so by Proposition 4.17 we deduce that
S(πq(β)

n ) = −πq(β)
n −

∑n−1
m=1 S(πq(β)

m )πq(β)
n−m for all n ∈ Z>0. Checking that the formula

in part (a) satisfies this recurrence, using Proposition 4.15, is a somewhat involved
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but completely elementary computation, requiring only sum manipulations and the
identity

(
m
k

)
=
(

m−1
k−1

)
+
(

m−1
k

)
. Part (b) follows from part (a) by (4.13), since one can

similarly check that the formula for S(πp(β)
n ) is the unique solution to the recurrence

with S(πq(β)
1 ) = 2 · S(πp(β)

1 ) and S(πq(β)
n ) = 2 · S(πp(β)

n ) + β · S(πp(β)
n−1) for n > 1. □

Patrias [38, Thms. 33 and 35] computes explicit antipode formulas for mQSym and
MNSym in the (pseudo)bases {L(β)

α } and {R(β)
α }, using slightly different notation.(3)

We have only given partial formulas for the antipodes of the shifted analogues of these
Hopf algebras. It may be possible to extend our results along the lines of [38].

Now we turn to the shifted versions of stable Grothendieck polynomials. Choose
strict partitions µ ⊆ λ. A shifted multiset-valued tableau of shape λ/µ is a map T
assigning nonempty finite multi-subsets of 1

2Z>0 to the boxes in SDλ/µ. We write Tij

to denote the multiset assigned by T to position (i, j). The definition of a semistandard
shifted multiset-valued tableau is identical to the set-valued case.

Let ShMVTQ(λ/µ) denote the set of all semistandard shifted multiset-valued
tableaux of shape λ/µ, and let ShMVTP (λ/µ) be the subset of such tableaux with
no primed numbers appearing in diagonal positions. Then define

(4.26)

JP
(β)
λ/µ :=

∑
T ∈ShMVTP (λ/µ)

(−β)|T |−|λ/µ|xT ,

JQ
(β)
λ/µ :=

∑
T ∈ShMVTQ(λ/µ)

(−β)|T |−|λ/µ|xT ,

where as usual |T | :=
∑

(i,j)∈SDλ/µ
|Tij | and xT :=

∏
(i,j)∈SDλ/µ

∏
k∈Tij

x⌈k⌉. The
functions JP (β)

λ/µ become the weak shifted stable Grothendieck polynomials from [17,
§3] when β = −1 and µ = ∅.

Proposition 4.30 ([8]). If µ ⊆ λ are strict partitions then

S
(
GP

(β)
λ/µ

)
= (−1)|λ/µ|JP

(β)
λ/µ and S

(
GQ

(β)
λ/µ

)
= (−1)|λ/µ|JQ

(β)
λ/µ.

Proof. This holds since ω
(
GP

(β)
λ/µ

)
= JP

(−β)
λ/µ and ω

(
GQ

(β)
λ/µ

)
= JQ

(−β)
λ/µ by [8,

Cor. 6.6]. □

A partition of a set S is a set Π of disjoint nonempty blocks B ⊆ S with S =⊔
B∈Π B. Choose strict partitions µ ⊆ λ. A semistandard shifted bar tableau of shape

λ/µ is a pair T = (V,Π), where V is a semistandard shifted tableau(4) of shape λ/µ
and Π is a partition of SDλ/µ into subsets of adjacent positions containing the same
entry in V . One might draw this as a picture like

(4.27) 2 3′

· · 1 1 3
to represent the pair

(V,Π) =
(

2 2 2 3′

3′· · 1 1 3
,

· ·

)

(3)To convert the functions L̃α and R̃α in [38] to our notation, set L̃α = β|α|L
(β)
α and β|α|R̃α =

R
(β)
α .

(4)That is, a semistandard shifted set-valued tableau whose entries are all sets with exactly one
element.

Algebraic Combinatorics, Vol. 7 #4 (2024) 1150



Shifted combinatorial Hopf algebras from K-theory

when λ = (6, 4) and µ = (2). Let |T | := |Π| and xT :=
∏

i⩾1 x
bi
i where bi is the number

of blocks in Π containing i or i′. Our example (4.27) has |T | = 5 and xT = x2
1x2x

2
3.

Let ShBTQ(λ/µ) be the set of semistandard shifted bar tableaux of shape λ/µ and
let ShBTP (λ/µ) be the subset of such tableaux with no primed entries in diagonal
positions. Then define

jp
(β)
λ/µ :=

∑
T ∈ShBTP (λ/µ)

β|λ/µ|−|T |xT and jq
(β)
λ/µ :=

∑
T ∈ShBTQ(λ/µ)

β|λ/µ|−|T |xT .

These generating functions were first considered as part of some conjectural formulas
in [12, §7].

Proposition 4.31 ([26]). If µ ⊆ λ are strict partitions then

S
(
gp

(β)
λ/µ

)
= (−1)|λ/µ|jp

(β)
λ/µ and S

(
gq

(β)
λ/µ

)
= (−1)|λ/µ|jq

(β)
λ/µ.

Proof. This holds since ω
(
gp

(β)
λ/µ

)
= jp

(−β)
λ/µ and ω

(
gq

(β)
λ/µ

)
= jq

(−β)
λ/µ by [26, Thms. 1.4

and 1.5]. □

There are similar formulas in the unshifted case for S
(
G

(β)
λ/µ

)
and S

(
g

(β)
λ/µ

)
; see

[38, §8].

Corollary 4.32. For all strict partitions µ ⊆ λ one has

jp
(β)
λ/µ ∈ MSymP , jq

(β)
λ/µ ∈ MSymQ, JP

(β)
λ/µ ∈ mSymP , and JQ

(β)
λ/µ ∈ mSymQ.

Moreover, the form in Proposition 4.24 has [jp(β)
λ , JQ

(β)
µ ] = [jq(β)

λ , JP
(β)
µ ] = δλµ for

all λ, µ.

Proof. The containments hold since MSymP , MSymQ, mSymP , and mSymQ are all
closed under S. The antipode of any commutative Hopf algebra is an involution [16,
Cor. 1.4.12] so Theorem 4.25 implies

(−1)|λ|+|µ|[jp(β)
λ , JQ(β)

µ ] = [S(gp(β)
λ ), S(GQ(β)

µ )]

= [S2(gp(β)
λ ), GQ(β)

µ ]

= [gp(β)
λ , GQ(β)

µ ] = δλµ.

One derives the identity [jq(β)
λ , JP

(β)
µ ] = δλµ similarly. □

Let GP ⊊ mSymP and GQ ⊊ mSymQ denote the proper Z[β]-submodules with
{GP (β)

λ } and {GQ(β)
λ } as bases, rather than pseudobases, where λ ranges over all strict

partitions.

Proposition 4.33. Both GP and GQ are sub-bialgebras of mSym but not Hopf alge-
bras.

Proof. We already know that {GP (β)
λ } and {GQ(β)

λ } are pseudobases for LC-Hopf
subalgebras of mSym. This result makes three nontrivial additional claims. First, the
products GP (β)

λ GP
(β)
µ and GQ(β)

λ GQ
(β)
µ always expand as finite linear combinations of

GP (β)- and GQ(β)-functions. For the GP (β)-functions, this was first shown in [13]; for
other proofs, see [17, §4], [32, §1.2], or [39, §8]. For the GQ(β)-functions, the desired
finiteness property is [26, Thm 1.6].

Second, the coproducts ∆(GP (β)
ν ) and ∆(GQ(β)

ν ) are always finite linear combina-
tions of tensor products of the form GP

(β)
λ ⊗GP

(β)
µ and GQ(β)

λ ⊗GQ
(β)
µ . By (4.19) and

(4.20) this is equivalent to the numbers âν
λµ and b̂ν

λµ being nonzero for only finitely
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many pairs (λ, µ) when ν is fixed. This holds since both numbers are zero if λ ̸⊆ ν (by
definition) or if µ ̸⊆ ν (since âν

λµ = âν
µλ and b̂ν

λµ = b̂ν
µλ as mSym is cocommutative).

To show that GP and GQ are not Hopf algebras, it suffices to check that JP (β)
λ =

±S(GP (β)
λ ) and JQ(β)

λ = ±S(GQ(β)
λ ) may fail to be finite linear combinations of GP (β)-

and GQ(β)-functions. This can already be seen for λ = (1) by setting xi = 0 for
all i > 1. Under this specialization one has JP (β)

(1) = −x1
1+βx1

, JQ(β)
(1) = −2x1+βx2

1
1+βx1

,
GP

(β)
(n) = xn

1 , and GQ
(β)
(n) = (2 + βx1)xn

1 for all n ∈ Z>0, while GP (β)
µ = GQ

(β)
µ = 0

whenever ℓ(µ) > 1, so the relevant expansions are clearly infinite. □

Remark 4.34. The span of the stable Grothendieck polynomials {G(β)
λ } is a bialgebra

by [9, Cor. 6.7]. A similar argument shows that this bialgebra is also not a Hopf
algebra, as G(β)

(1) = GP
(β)
(1) .

It is often of interest to derive cancellation-free antipode formulas. We should point
out that the results in this section are mostly not of this form, as we do not know
how to expand JP

(β)
λ/µ, JQ(β)

λ/µ, jp(β)
λ/µ, and jq

(β)
λ/µ in the respective {GP (β)

ν }, {GQ(β)
ν },

{gp(β)
ν }, and {gq(β)

ν } bases.
We have also not discussed the multi-Malvenuto-Reutenauer Hopf algebras mMR

and MMR. The problem of finding cancellation-free antipode formulas for these Hopf
algebras appears to be open. Progress on this question would give K-theoretic gener-
alizations of the results in [4, §5].

4.6. Positivity properties. To conclude this article, we collect some open prob-
lems and conjectures related to positivity properties of our various symmetric func-
tions. Let G+ and g+ denote the respective (finite) Z⩾0[β]-linear spans of the stable
Grothendieck polynomials {G(β)

λ } and their dual versions {g(β)
λ }, with λ ranging over

all partitions. Buch [9, Cors. 5.5 and 6.7] derives Littlewood-Richardson rules for
(co)products of stable Grothendieck polynomials, which imply that G(β)

λ G
(β)
µ ∈ G+

and ∆(G(β)
λ ) ∈ G+ ⊗ G+ for all partitions λ and µ.

Similarly, let GP+, GQ+, gp+, and gq+ be the respective (finite) Z⩾0[β]-linear
spans of {GP (β)

λ }, {GQ(β)
λ }, {gp(β)

λ }, and {gq(β)
λ }, with λ ranging over all strict par-

titions. It is known that GP (β)
λ GP

(β)
µ ∈ GP+ and GQ

(β)
λ GQ

(β)
µ ∈ GQ+ for all strict

partitions λ and µ, or equivalently that the integers aν
λµ and bν

λµ in (4.20) are always
nonnegative [26, Thm. 1.6]. By Proposition 4.23, this implies that we always have
gp

(β)
λ/µ ∈ gp+ and gq

(β)
λ/µ ∈ gq+.

Computations support some other conjectural positivity properties:

Conjecture 4.35. One has GP (β)
λ//µ ∈ GP+ and gq(β)

λ gq
(β)
µ ∈ gq+ for all strict parti-

tions λ, µ.

Conjecture 4.36. One has GQ
(β)
λ//µ ∈ GQ+ and gp

(β)
λ gp

(β)
µ ∈ gp+ for all strict

partitions λ, µ.

These conjectures are equivalent to the inequalities b̂ν
λµ ⩾ 0 and âν

λµ ⩾ 0, or
via (4.19) to the coproduct identities ∆(GP (β)

λ ) ∈ GP+ ⊗ GP+ and ∆(GQ(β)
λ ) ∈

GQ+ ⊗GQ+. We do not know how to leverage the geometric interpretation of GP (β)
λ

and GQ
(β)
λ in [21, §8.3] to prove these properties.

Littlewood-Richardson rules are known for the coefficients aν
λµ ; see [13, Thm. 1.2]

or [39, §8]. Outside some special cases considered in [11, 26], the following problem is
open:
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Problem 4.37. Find combinatorial interpretations of the integers bν
λµ, âν

λµ, and b̂ν
λµ

in (4.20).

Remark. As noted in [8, Conj. 5.15], it also seems to hold that GP (β)
λ/µ ∈ GP+ and

GQ
(β)
λ/µ ∈ GQ+. By (4.17), these containments would imply Conjectures 4.35 and

4.36. The analogous property for stable Grothendieck polynomials G(β)
λ/µ indexed by

skew shapes follows from [9, Thm. 6.9].

The conjugate (dual) stable Grothendieck polynomials are given by

J
(β)
λ := (−1)|λ|S

(
G

(β)
λ

)
= ω

(
G

(−β)
λ

)
and j

(β)
λ := (−1)|λ|S

(
g

(β)
λ

)
= ω

(
g

(−β)
λ

)
for partitions λ. The second equalities in these definitions hold by [44, Thm. 4.6].
Setting β = −1 turns J (β)

λ into the weak set-valued tableau generating function Jλ in
[24, §9.7]. Setting β = 1 turns j(β)

λ into the valued-set tableau generating function jλ

in [24, §9.8]. It follows from [24, §9] that

(4.28)
J

(β)
λ = (−β)−|λ|Jλ(−βx1,−βx2, . . . ),

j
(β)
λ = β|λ|jλ(β−1x1, β

−1x2, . . . ).

The power series {J (β)
λ } and {j(β)

λ } are another pair of dual bases for mSym and
MSym relative to the form ⟨·, ·⟩, since this inner product is S-invariant.

Below, we use the term Schur positive to refer to any element of mSym that can be
expressed as a possibly infinite linear combination of Schur functions with coefficients
in Z⩾0[β].

Theorem 4.38 ([24, 25]). For each partition λ, both G(β)
λ and j(β)

λ are Schur positive,
while sλ is both a finite Z⩾0[β]-linear combination of g(β)

µ ’s and an infinite Z⩾0[β]-
linear combination of J (β)

µ ’s.

Proof. A few algebraic manipulations are needed to derive this statement from [24,
25]. First, [25, Thm. 2.8] expresses sλ as an infinite Z⩾0-linear combination of G(−1)

µ

functions. On substituting xi 7→ βxi, dividing both sides by β|λ|, and applying ω,
this becomes a Z⩾0[β]-linear expansion of sλ into J

(β)
µ functions. By duality j

(β)
λ is

Schur positive; in view of (4.28), this also follows from [24, Thm. 9.8], which gives the
Schur expansion of gλ = ω(jλ). Finally, [25, Thm. 2.2] gives a positive combinatorial
interpretation of the Schur expansion of G(β)

λ , and by duality we have sλ ∈ g+. □

It is known that GP (β)
λ and GQ

(β)
λ are both in G+ and hence Schur positive, for

any strict partition λ [30, Thms. 3.27 and 3.40]. Combining [33, Cor. 4.7] and [34,
Thm. 4.17] with the results in [10] gives an algorithm to compute the G

(β)
µ terms

appearing in GP (β)
λ . The only known algorithm to do the same for GQ(β)

λ is to expand
the right side of (4.21), which may involve cancellations.

Computations suggest some other instances of Schur positivity:

Conjecture 4.39. If λ is a strict partition then jp
(β)
λ and jq(β)

λ are Schur positive.

The more interesting open problem implicit in this conjecture is the following:

Problem 4.40. Find combinatorial interpretations of the coefficients in the expan-
sions of GP (β)

λ , GQ(β)
λ , jp(β)

λ , and jq(β)
λ into Schur functions and stable Grothendieck

polynomials.
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The canonical (dual) stable Grothendieck functions G(α,β)
λ and g

(α,β)
λ are general-

izations of stable Grothendieck polynomials introduced in [43]. In our notation, they
satisfy G

(0,β)
λ = G

(β)
λ , G(−β,0)

λ = J
(β)
λ , g(0,−β)

λ = g
(β)
λ , and g

(β,0)
λ = j

(β)
λ . Both G

(α,β)
λ

and g
(α,β)
λ are Schur positive by [18, Thm. 4.6] and [43, Thm. 9.8]. This suggests

another open problem:

Problem 4.41. Describe the shifted analogues GP
(α,β)
λ and GQ

(α,β)
λ (respectively,

gp
(α,β)
λ and gq(α,β)

λ ) of the power series G(α,β)
λ (respectively, g(α,β)

λ ) and prove similar
positivity results.

Theorem 4.38 implies that G(β)
λ is an infinite Z⩾0[β]-linear combination of J (β)

µ ’s
and that j(β)

λ is a finite Z⩾0[β]-linear combination of g(β)
µ ’s. Patrias gives an explicit

description of the coefficients in these expansions in [38, Thm. 59] using the notation
Gλ := G

(−1)
λ and j̃λ := j

(−1)
λ .

There appears to be a shifted analogue of this result. Here, we write ĴP+ and ĴQ+

for the respective sets of infinite Z⩾0[β]-linear combinations of JP (β)- and JQ(β)-
functions.

Conjecture 4.42. If λ is a strict partition then GP
(β)
λ ∈ ĴP+ and jq(β)

λ ∈ gq+.

Conjecture 4.43. If λ is a strict partition then GQ
(β)
λ ∈ ĴQ+ and jp(β)

λ ∈ gp+.

As usual, beyond simply proving these conjectures, the following is of interest:

Problem 4.44. Find combinatorial interpretations of the coefficients appearing in the
positive expansions suggested by Conjectures 4.42 and 4.43
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