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A diagram-like basis for the multiset
partition algebra

Alexander N. Wilson

Abstract There is a classical connection between the representation theory of the symmetric
group and the general linear group called Schur-Weyl duality. Variations on this principle yield
analogous connections between the symmetric group and other objects such as the partition
algebra and more recently the multiset partition algebra. The partition algebra has a well-known
basis indexed by graph-theoretic diagrams which allows the multiplication in the algebra to be
understood visually as combinations of these diagrams. We construct an analogous basis for
the multiset partition algebra called the diagram-like basis and use this basis to construct its
irreducible representations and give a generating set. We also provide a change-of-basis formula
from the orbit basis of the multiset partition algebra to this diagram-like basis which exhibits
similarities to the analogous change-of-basis formula for the partition algebra.

1. Introduction
Let Vn be an n-dimensional vector space, and write Vn

⊗r for its rth tensor power.
The general linear group GLn acts on the tensor power diagonally, where a matrix
M ∈ GLn acts on each tensor factor:

M.(v1 ⊗ · · · ⊗ vr) = (Mv1)⊗ · · · ⊗ (Mvr).
The symmetric group Sr acts on the tensor power by permuting tensor factors:

σ · (v1 ⊗ · · · ⊗ vr) = vσ−1(1) ⊗ · · · ⊗ vσ−1(r).

These two actions are mutual centralizers. That is, taking the endomorphisms of Vn
⊗r

that commute with one action recovers the other. This is an example of Schur-Weyl
duality, and one consequence of such a duality is the decomposition

Vn
⊗r ∼=

⊕
λ

Wλ
GLn
⊗Wλ

Sr

where for a group or algebra A, we write Wλ
A to represent an irreducible representation

of A and the sum is over partitions λ of r. This establishes a correspondence between
irreducible GLn-modules and irreducible Sr-modules and allows information to be
passed between the representation theory of the two groups.

Any situation in which two actions mutually centralize each other leads to an
analogous decomposition. The study of these centralizer algebras is connected to
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long-standing questions in the representation theory of the symmetric group and GLn

including the Kronecker problem [6, 28], the restriction problem, and plethysm [25].
For another example, let Vn,k = (Cn)k be the space of n × k matrices and let

Pr(Vn,k) be the space of polynomial forms on Vn,k. The group GLn naturally acts on
Vn,k by left-multiplication. This action extends to Pr(Vn,k) where M ∈ GLn acts on
f(X) ∈ Pr(Vn,k) by

(M.f)(X) = f(M−1X).
The group GLk can act analogously where N ∈ GLk acts by

(N.f)(X) = f(XN).
In [18], Roger Howe determined that these actions are mutual centralizers leading to
a decomposition

Pr(Vn,k) ∼=
⊕
λ

Wλ
GLn
⊗Wλ

GLk

where the sum is over partitions λ of r of length at most min{n, k} (see e.g. Section
5.2.6 of [11] for details).

In the 1990’s, Martin [22] introduced the partition algebra Pr(n) as a generalization
of the Temperley-Lieb algebra and the Potts model in statistical mechanics. In the case
that n ⩾ 2r, the partition algebra is the algebra whose action centralizes the action
of Sn ⊆ GLn as the subgroup of permutation matrices acting on Vn

⊗r [19, 21, 23].
From this perspective, there is a natural basis for Pr(n) called the orbit basis, but its
product is complicated. A second basis called the diagram basis has a much simpler
product in terms of graph-theoretic diagrams. The partition algebra, its generators,
and its representations have been well-studied, and some major milestones are outlined
in the following timeline.

Partition algebra
introduced with
orbit and diagram basis
[19, 21]

Partition algebra
shown to be cellular
[31] (small correction in [12])

Presentations by generators
and relations given(1)

[17]

Dimensions of irreducibles
described via tableaux(2)

[2, 3, 27]

Irreducible
representations
constructed
[14, 15]

A major motivation for studying the partition algebra is to understand its represen-
tations and use them to study objects in the representation theory of the symmetric
group such as the Kronecker coefficients [2, 3, 4, 5, 10, 13, 16, 14].

In [28], the authors Orellana and Zabrocki restrict the GLn action of Howe duality
to the n × n permutation matrices to obtain the multiset partition algebra MPr,k(n)
and provide a basis analogous to the orbit basis for Pr(n). In [26, 28] Orellana and
Zabrocki use symmetric function methods to compute the dimensions of irreducible
MPr,k(n) as counting the number of semistandard multiset partition tableaux. Our
aim in this paper is to fill in three gaps in the timeline for MPr,k(n) by:

(a) providing a basis analogous to the diagram basis for Pr(n),
(b) providing generators for MPr,k(n), and
(c) constructing the irreducible representations of MPr,k(n) as actions on the

tableaux enumeratively predicted by Orellana and Zabrocki.

(1)Other notable presentations for Pr(n) are given in [8, 9].
(2)Note that once the cellularity and semisimplicity of Pr(n) were established, the dimensions of the
irreducibles are encoded in the cellular data. However, these papers were the first to describe these
dimensions explicitly in terms of tableaux.

Algebraic Combinatorics, Vol. 7 #4 (2024) 1226



A diagram-like basis for the multiset partition algebra

In [24], the authors investigate the centralizer EndSn
(Pa1(Vn)⊗· · ·⊗Pak (Vn)) for

a weak composition a of r of length k, also dubbing it the multiset partition algebra,
written MPa(n). Orellana and Zabrocki state that MPa(n) should be isomorphic to
a subalgebra of their multiset partition algebra, and in this paper we describe that
isomorphic subalgebra.

In Section 2, we define the relevant combinatorial objects and introduce the parti-
tion algebra and multiset partition algebra. In Section 3, we collect some useful facts
about orbits of the combinatorial objects under the action of Young subgroups. In
Section 4, we describe the centralizer of an algebra A acting on a direct sum of pro-
jections of a semisimple module V by idempotents. We then construct the irreducible
modules over this centralizer in terms of irreducible modules of EndA(V ). In the fol-
lowing two sections, we specialize these constructions to the setting of the multiset
partition algebra. In Section 5, we use a decomposition of Pr(Vn,k) as a GLn-module
to obtain the diagram-like basis and describe EndG(Pr(Vn,k)) for general subgroups
G of GLn. In Section 6, we construct the irreducible representations of MPr,k(n) with
bases indexed by multiset-valued tableaux. In Section 7, we provide a generating set
for MPr,k(n), and finally in Section 8 we provide a change-of-basis formula from the
orbit basis of Orellana and Zabrocki to our diagram-like basis.

2. Preliminaries and definitions
2.1. Set and multiset partitions. A set partition ρ of a set S is a set of nonempty
subsets of S called blocks whose disjoint union is S. We write ℓ(ρ) for the number of
blocks in ρ. We define [r] = {1, . . . , r} the unbarred numbers and [r̄] = {1̄, . . . , r̄} the
barred numbers. We write Π2(r) for the set of set partitions of [r] ∪ [r̄]. For a set R
and a set partition ρ of S, write ρ|R for the set partition obtained by restricting the
elements in ρ to only the elements appearing in R.

Example 2.1. A set partition and its restriction to a set:

π = {{1, 3}, {2, 4, 1̄, 2̄}, {3̄, 4̄}} ∈ Π2(4)

π|[4] = {{1, 3}, {2, 4}}

A weak composition of an integer r of length k is a sequence of k non-negative
integers which sum to r. Write Wr,k for the set of weak compositions of r of length
k. For a ∈Wr,k, write ai for the ith number in the sequence.

A multiset of size r from a set S is a finite collection of r unordered elements of
S that can be repeated. We will write multisets in {{, }} to differentiate them from
sets and we will usually denote them by a capital letter with a tilde. We may write
multisets using exponential notation S̃ = {{s1

m1 , . . . , sk
mk}} where the multiplicity of

the element si is given by the exponent mi. We write msi
(S̃) = mi for this multiplicity.

Given multisets S̃ = {{s1
m1 , . . . , sk

mk}} and R̃ = {{s1
n1 , . . . , sk

nk}}, write S̃ ⊎ R̃ =
{{s1

m1+n1 , . . . , sk
mk+nk}} for the union of the two multisets.

A multiset partition ρ̃ of a multiset S̃ is a multiset of multisets called blocks whose
union is S̃. We write ℓ(ρ̃) for the number of blocks. Write Π̃2(r),k for the set of multiset
partitions with r elements from [k] and r elements from

[
k̄
]
. For ρ̃ a multiset partition

and R a set, write ρ̃|R for the multiset partition obtained by restricting the elements
in ρ̃ to only the elements appearing in R.

Example 2.2. A multiset partition and its restriction to a set:

π̃ =
{{{{

1, 1̄, 1̄
}}
,
{{

1, 2, 2̄
}}}}

∈ Π̃2(3),2

π̃|[2̄] =
{{{{

1̄, 1̄
}}
,
{{

2̄
}}}}
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Finally, we define partial orders on multisets and multiset partitions that restrict
to sets and set partitions as a special case. Let S̃ and R̃ be multisets from [k]. We say
that S̃ < R̃ if one of the following conditions hold: (i) S̃ is empty and R̃ is not, (ii)
max(S̃) < max(R̃), or (iii) max(S̃) = max(R̃) = m and S̃ ∖ {m} < R̃∖ {m}. We call
this the last-letter order on multisets.

Example 2.3. Comparisons of multisets:

{{1, 3}} ⩽ {{1, 1, 3}}
{{1, 1, 1, 2}} ⩽ {{3}}

If ν̃ = {S̃1, . . . , S̃k} and π̃ = {R̃1, . . . , R̃ℓ} are multiset partitions, we say that
ν̃ ⩽ π̃, or ν̃ is coarser than π̃, if ν̃ can be obtained by combining blocks of π̃. Precisely,
there exists a set partition {C1, . . . , Ck} of [ℓ] so that S̃i =

⊎
j∈Ci

R̃j for all i.

Example 2.4. An example of comparing two multiset partitions:

{{{{1, 1, 3, 3}} , {{2, 3}}}} ⩽ {{{{1, 3}} , {{1, 3}} , {{2}} , {{3}}}}

2.2. Set and multiset partition diagrams. For a set partition π ∈ Π2(r), there
is a classical graph-theoretic representation of π on two rows of vertices with the top
row being labeled 1 through r and the bottom being labeled 1̄ through r̄. Two vertices
of this graph are in the same connected component if and only if their labels are in
the same block of π.

Example 2.5. The set partition π = {{1, 1̄, 2̄, 3̄}, {2, 3}, {4̄}, {4, 5, 5̄}} could be repre-
sented by either of the following two graphs.

1

1̄

2

2̄

3

3̄

4

4̄

5

5̄

1

1̄

2

2̄

3

3̄

4

4̄

5

5̄

Note that there could be many such graphs that represent the set partition π,
so we consider two graphs equivalent if their connected components give rise to the
same set partition. The diagram of π is the equivalence class of graphs with the same
connected components.

We can similarly consider a graph-theoretic representation of any multiset partition
π̃ ∈ Π̃2(r),k. This time we place r vertices on the top labeled by the unbarred elements
of the blocks of π̃ in weakly increasing order and place r vertices on the bottom labeled
by the barred elements in weakly increasing order. We then connect the vertices in
any way so that the labeled connected components taken together are π̃.

Example 2.6. The multiset partition π̃ =
{{{{

1, 1̄, 1̄, 2̄
}}
, {{1, 1}} ,

{{
2̄
}}
,
{{

2, 2, 2̄
}}}}

could be represented by any of the following graphs.

1 1 1 2 2

1̄ 1̄ 2̄ 2̄ 2̄

1 1 1 2 2

1̄ 1̄ 2̄ 2̄ 2̄

1 1 1 2 2

1̄ 1̄ 2̄ 2̄ 2̄

Again we may have many graphs representing the same multiset partition. The
diagram of π̃ is the equivalence class of graphs whose labeled connected components
give π̃.

We will often drop the labels on these graphs. A set partition diagram will be
distinguished by the black color of its vertices, and it will be understood that the
vertices are labeled in increasing order left-to-right. A multiset partition diagram will
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be distinguished by its colored vertices. Its vertices are understood to be labeled with
blue, orange, green, and purple representing 1, 2, 3, and 4 respectively.

Because of this graphical representation, for a set S with elements from [r] ∪ [r̄]
we will sometimes refer to elements at the “top” of S to mean the unbarred elements
and elements at the “bottom” of S to mean the barred elements, and likewise with
multisets.

2.3. Tableaux. A partition of n is a weakly-decreasing sequence λ of positive integers
called parts summing to n. We write ℓ(λ) for the number of parts of λ. We will write
λ ⊢ n to mean that λ is a partition of n and write |λ| = n. Write λi for the ith
element of the sequence λ, called the ith part of λ, and λ∗ for the partition (λ2, . . . , λℓ)
obtained by removing the first part. Given a partition λ, its Young diagram is an array
of left-justified boxes where the ith row from the bottom has λi boxes.

Example 2.7. The Young diagram of the partition (3, 3, 1) ⊢ 7 is

.

When we refer to the ith row of a Young diagram, we mean the ith row from the
bottom, which corresponds to the ith part of λ.

A tableau of shape λ will be a filling of these boxes in λ’s Young diagram with
mathematical objects—in this paper the objects will be positive integers, sets, or
multisets. We will call these integer-valued, set-valued, and multiset-valued tableaux
respectively. We take a moment to define some particular classes of tableaux.

Let ρ be a set partition of [r] and λ ⊢ n such that |λ∗| ⩽ ℓ(ρ). A set partition tableau
of shape λ and content ρ is a filling T of the Young diagram of λ with the blocks of ρ
along with n− ℓ(ρ) empty boxes in the first row. A standard set partition tableau is a
set partition tableau whose rows increase left-to-right and columns increase bottom-
to-top with respect to the last-letter order. Write SPT λ,r for the set of set partition
tableaux of shape λ with content a set partition of [r] and write SSPT λ,r for the
subset of SPT λ,r consisting of standard set partition tableaux.

Example 2.8. The tableau
17
35 68

24 9
∈ SSPT (5,2,1),9

is standard, whereas the tableau

35
17 68

24 9
/∈ SSPT (5,2,1),9

has a decrease in its first column, making it nonstandard, and the tableau

27
35 68

24 19
/∈ SPT (5,2,1),9

does not use each number in [9] exactly once, making it not a set partition tableau.
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Write ΛPr(n) for the set of λ for which SSPT λ,r ̸= ∅ (we choose this notation
because ΛPr(n) will also be an indexing set for the irreducible Pr(n)-modules).

Let ρ̃ be a multiset partition from [k] and λ ⊢ n such that |λ∗| ⩽ ℓ(ρ̃). A multiset
partition tableau of shape λ and content ρ̃ is a filling T̃ of the Young diagram with the
blocks of ρ̃ along with n− ℓ(ρ̃) empty boxes in the first row. A semistandard multiset
partition tableau is a multiset partition tableau that strictly increases along columns
and weakly increases along rows under the last-letter order. Write MPT λ,r,k for the
set of multiset partition tableaux of shape λ with content a multiset partition from [k]
with a total of r numbers. Write SSMPT λ,r,k for the subset ofMPT λ,r,k consisting
of semistandard multiset partition tableaux.

Example 2.9. The tableau
112
12
11 11

22 3

∈ SSMPT (4,2,1,1),12,3

is semistandard, whereas the tableau

112
11
11 12

22 3

/∈ SSMPT (4,2,1,1),12,3

has a repeat in its first column, making it not semistandard.

Write ΛMPr,k(n) for the set of partitions λ ⊢ n for which SSMPT λ,r,k ̸= ∅.

Remark 2.10. We conclude this section on tableaux with two comments regarding
the empty boxes. Note that, except for these empty boxes, the standard set partition
tableaux and the semistandard multiset partition tableaux closely analogize standard
Young tableaux (where each number in [n] is used once) and semistandard Young
tableaux (where repetition is allowed) respectively. Additionally, for reasons discussed
in Section 2.5, we will usually assume that n ⩾ 2r. In this case, the number of empty
boxes in a tableau will always be at least the number of boxes in its second row.

2.4. Double-centralizer theorem. The algebras of interest in this paper arise as
the algebras of endomorphisms of Sn-modules, commonly called centralizer algebras
of Sn. The following theorem summarizes a general case encompassing the Schur-
Weyl duality and Howe duality discussed in the introduction as well as the duality
between Sn and its centralizer algebras.

Theorem 2.11 ([29, Section 6.2.5] and [11, Section 4.2.1]). Let A be a semisimple
algebra acting faithfully on a module V and set B = EndA(V ). Then B is semisimple
and EndB(V ) ∼= A. Furthermore, there is a set P (a subset of the indexing set of
the irreducible representations of A) such that for each x ∈ P , W x

A is an irreducible
A-module occurring in the decomposition of V as an A-module. If we set W x

B =
Hom(W x

A, V ), then W x
B is an irreducible B-module and the decomposition of V as an

A×B-module is
V ∼=

⊕
x∈P

W x
A ⊗W x

B .

Moreover, the dimension of W x
A is equal to the multiplicity of W x

B in V as a B-module
and the dimension of W x

B is equal to the multiplicity of W x
A in V as an A-module.
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The decomposition in the above theorem gives a correspondence between irre-
ducible representations of the algebras A and B and allows information like dimen-
sions and multiplicities to be passed between them. In this paper, we are interested in
setting A = CSn. In this case, the indexing set P for the irreducible representations
is a subset of the integer partitions of n.

2.5. Partition algebra. For r a positive integer and an indeterminate x, the par-
tition algebra Pr(x) is an associative algebra over C(x) first introduced as a gener-
alization of the Temperley-Lieb algebra and the Potts model in statistical mechanics
by Jones [19] and Martin [22, 23]. When x is specialized to an integer n ⩾ 2r, the
algebra Pr(n) is isomorphic to the algebra of endomorphisms EndSn(Vn

⊗r). The par-
tition algebra has two distinguished bases: the orbit basis {Tπ : π ∈ Π2(r)} which arises
naturally from the structure of Pr(n) as a centralizer algebra and the diagram basis
{Lπ : π ∈ Π2(r)} whose product has a combinatorial interpretation in terms of parti-
tion diagrams. The change-of-basis formula is obtained by summing over coarsenings
of a diagram:

Lπ =
∑
ν⩽π

Tν .

The product formula for Lπ can be stated in terms of diagrams as follows. To com-
pute the product of Lπ and Lν , place a graph representing π above one representing
ν and identify the vertices on the bottom of π with the corresponding vertices of
ν to create a three-tiered diagram. Let γ be the restriction of this diagram to the
very top and very bottom, preserving which vertices are connected and let c(π, ν)
be the number of components entirely in the middle of the three-tier diagram. Then
LπLν = nc(π,ν)Lγ .

Example 2.12. Here we show the product of two diagram basis elements. Notice that
two components are entirely in the middle, giving a coefficient of n2.

= n2

In [15], the authors construct the irreducible representations Pλ
r of Pr(n) for n ⩾ 2r

as a combinatorial action of the set partition diagrams on set partition tableaux. For
λ ∈ ΛPr(n), the module Pλ

r is C{vT : T ∈ SSPT λ,r} with action given as follows.
For a set partition π ∈ Π2(r) to act on a tableau T , first pull out the content of T , a
set partition of [r], into a single row. Then, put π on top of this row and identify the
corresponding vertices. Form T ′ by replacing the content of each box in T with the
set of vertices atop π that the box is connected to, and for each block entirely in the
top of π, include it as the content of a box in the first row of T ′. If two blocks above
the first row are combined or the content of a box does not connect to the top of the
partition diagram, the result is zero.

Example 2.13. To illustrate the action, we show three examples of different diagrams
acting on the same tableau. In the first example, the blocks 4 and 5 can be combined
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without resulting in zero because one of them is in the first row.

3
12 4

5

=
2
3 5

1 4
= −

3
2 5

1 4

In the following example, the content of a box above the first row does not connect
to the top of π, so the result is zero.

3
12 4

5

= 0

In the following example, the contents of the boxes containing 12 and 3 become
connected, so the result is zero.

3
12 4

5

= 0

The result T of the above process may not be a standard set partition tableau, so
we need to make sense of what it means to write vT for T nonstandard. The algorithm
for writing vT as a linear combination of standard tableaux is called the straightening
algorithm. The straightening algorithm for Pλ

r is the same as for the Specht modules
of Sn applied to the rows above the first row of T , a complete treatment of which can
be found in [30], but we summarize some key features that will be important for our
constructions. Given T ∈ SPT λ,r nonstandard, the straightening algorithm writes vT

as a linear combination
vT =

∑
S∈SSPT λ,r

cSvS

for some coefficients cS .
The relations between the vT are called Garnir relations and are generally com-

plicated, but one special case will be particularly useful to us: if T ′ is the result of
exchanging two boxes of T above the first row that sit in the same column, then
vT ′ = −vT .

2.6. Multiset partition algebra. The multiset partition algebra naturally arises
by restricting the action of GLn on Pr(Vn,k) in Howe duality to the permutation
matrices. One can think of elements in Pr(Vn,k) as homogeneous polynomials of degree
r in indeterminates xij for 1 ⩽ i ⩽ n and 1 ⩽ j ⩽ k. The action of GLn on the space
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Pr(Vn,k) can be described on monomials as follows. Given a matrixM = (mij) ∈ GLn,
its inverse acts as:

M−1.xij =
n∑

ℓ=1
miℓxℓj

M−1.xi1j1 . . . xirjr
=
(

n∑
ℓ1=1

mi1ℓ1xℓ1j1

)
· · ·

(
n∑

ℓr=1
mirℓr

xℓrjr

)

=
n∑

ℓ1,...,ℓr=1
mi1ℓ1 · · ·mirℓr (xℓ1j1 . . . xℓrjr ).(1)

In [28], the authors introduce a multiset partition algebra MPr,k(x) with bases
indexed by elements of Π̃2(r),k. When x is specialized to an integer n ⩾ 2r, the
algebra MPr,k(n) is isomorphic to EndSn(Pr(Vn,k)) where Sn acts by the restriction
of the GLn action above to the n × n permutation matrices. The authors obtain a
basis analogous to the orbit basis for Pr(n) and prove that for n ⩾ 2r the irreducible
representations of MPr,k(n) occurring in the decomposition

Pr(Vn,k) ∼=
⊕

λ∈ΛMPr,k(n)
Wλ

Sn
⊗Wλ

MPr,k(n)(2)

have dimension dim(Wλ
MPr,k(n)) = #SSMPT λ,r,k.

In [7], the authors generalize the Robinson–Schensted–Knuth algorithm to two-
line arrays of multisets. This algorithm establishes a correspondence between multiset
partitions in Π̃2(r),k and pairs of elements of SSMPT λ,r,k,

Π̃2(r),k
∼←→

⊎
λ∈ΛMPr,k(n)

SSMPT λ,r,k × SSMPT λ,r,k

showing that

dim(MPr,k(n)) =
∑
λ∈Λ

(
dim(Wλ

MPr,k(n))
)2
.

Hence, the
∣∣ΛMPr,k(n)

∣∣ irreducible representations occurring in Equation 2 are pairwise
nonisomorphic, and each irreducible representation of MPr,k(n) is isomorphic to one
representation in the set.

3. Orbits under Young subgroups
The symmetric group algebra CSr sits naturally inside of Pr(n) as the diagrams whose
blocks pair one vertex on top with one on the bottom. For σ ∈ Sr, we will write Lσ for
the diagram basis element corresponding to the set partition {{σ(1), 1̄}, . . . {σ(r), r̄}}.
This embedding leads to natural actions on set partitions and set partition tableaux.
In this section, we collect up some useful facts about orbits of these actions when
they are restricted to Young subgroups. For a ∈ Wr,k, write Sa = S{1,...,a1} × · · · ×
S{a1+···+ak−1,...,a1+···+ak} for the corresponding Young subgroup of Sr.

A pair of permutations (σ1, σ2) ∈ Sr ×Sr can act on a set partition π ∈ Π2(r) by
taking the product Lσ1LπLσ2 . The resulting set partition σ1.π.σ2 can be obtained by
replacing each i in π with σ1(i) and each ī in π with ¯σ2−1(i).

Given a, b ∈Wr,k, define the coloring map κa,b : Π2(r) → Π̃2(r) to be the function
given by making the following substitutions.
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i 7→


1 i ⩽ a1

2 a1 < i ⩽ a1 + a2
...
k a1 + · · ·+ ak−1 < i

ī 7→


1̄ i ⩽ b1

2̄ b1 < i ⩽ b1 + b2
...
k̄ b1 + · · ·+ bk−1 < i

On diagrams, we can think of κa,b as coloring in the diagram of π with colors
whose multiplicities are given by a on top and b on bottom.

Example 3.1. Two set partitions that map to the same multiset partition under the
coloring map κ(1,2,1),(2,0,2):

κ(1,2,1),(2,0,2)

( )
=

κ(1,2,1),(2,0,2)

( )
=

Then, because the two green vertices at the bottom of the diagram correspond to the
same value, they can be exchanged without changing the underling multiset partition.

= .

Lemma 3.2. For a, b ∈Wr,k, the map κa,b induces a map

κ̄a,b : Π2(r)/(Sa ×Sb)→ Π̃2(r),a,b

from set partitions modulo the action of Sa×Sb to multiset partitions whose elements
have multiplicities given by a and b. These maps taken together give a correspondence

Π̃2(r),k
∼←→

⊎
a,b∈Wr,k

Π2(r)/(Sa ×Sb)(3)

Proof. For (σ1, σ2) ∈ Sa×Sb, it is clear that κa,b(σ1.π.σ2) = κa,b(π) for all π ∈ Π2(r).
Hence, κa,b induces a map κ̄a,b : Π2(r)/(Sa×Sb)→ Π̃2(r),k. Conversely, if κa,b(π) =
κa,b(π′), then π and π′ are in the same orbit. Hence, the map κ̄a,b is injective. Given
π̃ ∈ Π̃2(r),k whose unbarred and barred multiplicities are given by a and b respectively,
we can easily create a set partition π ∈ Π2(r) such that κa,b(π) = π̃ by simply taking
any graph representing π̃ and forgetting the data of the colored vertices. Hence, the
maps κ̄a,b taken together as a map

⊎
a,b∈Wr,k

Π2(r)/(Sa × Sb) → Π̃2(r),k give a
bijection. This map gives us a correspondence between multiset partitions and orbits
of set partitions under an action of a pair of Young subgroups. □

We now obtain a second action from the module structure of Pλ
r . A permutation

σ ∈ Sr acts on the set SPT λ,r by replacing each entry i of a tableau T with σ(i).

Example 3.3.

(1 3 2)(4).
23
1 4 =

12
3 4

Like before, we define a surjective coloring map κa : SPT λ,r → MPT λ,r,k for
a ∈Wr,k that replaces the numbers {1, . . . ,a1} with 1, {a1 + 1, . . . ,a1 + a2} with 2,
and so on.
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Example 3.4. Two set partition tableaux that are sent to the same multiset partition
tableau by the coloring map κ(3,1):

κ(3,1)

 23
1 4

 = κ(3,1)

 12
3 4

 =
11
1 2

Lemma 3.5. There is a correspondence

MPT λ,r,k
∼←→

⊎
a∈Wr,k

SPT λ,r/Sa

where the multiset partition tableau T̃ maps to the set κ−1
a (T̃ ).

Proof. The proof is completely analogous to that of Lemma 3.2. □

Remark 3.6. The orbit of a standard set partition tableau T corresponds to a mul-
tiset partition tableau T̃ whose rows and columns weakly increase. That is, T̃ is
semistandard except for possible repeats within columns.

4. The painted algebra construction
This section considers an algebra B with a subset {e1, . . . , em} of its idempotents
(which we call distinguished idempotents) and M a B-module. We provide construc-
tions of a new algebra B̃ called the corresponding painted algebra and a B̃-module M̃
called the painted module. First, we consider the setting in which this construction
will naturally arise in Section 5.

Lemma 4.1. Let A be an algebra and V a semisimple A-module. Let e1, . . . , em ∈
EndA(V ) be idempotents. Then

EndA

(
m⊕

i=1
eiV

)
∼=

m⊕
i,j=1

ei EndA(V )ej

where the product on the right hand side of eiφej ∈ ei EndA(V )ej and ekψeℓ ∈
ek EndA(V )eℓ is given by

(eiφej) · (ekψeℓ) = δjkei(φejψ)eℓ ∈ ei EndA(V )eℓ.

where the product to the right of the equal sign is taken in EndA(V ) and δjk is the
Kronecker delta function.

Proof. First, note that

EndA

(
m⊕

i=1
eiV

)
∼=

m⊕
i,j=1

HomA(ejV, eiV ).

An element eiφej ∈ ei EndA(V )ej can be viewed as a map ejV → eiV , giving
rise to an injective linear map Φ : ei EndA(V )ej → HomA(ejV, eiV ). Because V is
semisimple, the submodule ejV has a complementary submodule U so that V =
ejV ⊕ U . A map ψ : ejV → eiV ⊆ V can be extended to a map ψ̄ : V → V by
setting ψ̄(u) = 0 for all u ∈ U . Then for any ejv ∈ ejV , we have that eiψ̄ej(ejv) =
eiψ̄(ejv) = eiψ(ejv). Hence, the map Φ is also surjective, so it is an isomorphism.

EndA

(
m⊕

i=1
eiV

)
∼=

m⊕
i,j=1

ei EndA(V )ej
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Suppose j ̸= k. The output of the map ekψeℓ is in ekV , so the component of its
output in ejV is zero. Hence, (eiφej) · (ekψeℓ) = 0. If instead j = k, we have that
(eiφej) · (ekψeℓ) = eiφejekψeℓ. Hence,

(eiφej) · (ekψeℓ) = δjkeiφ(ej)2ψeℓ

= δjkei(φejψ)eℓ ∈ ei EndA(V )eℓ. □

Lemma 4.1 motivates the following definition.

Definition 4.2. For a semisimple algebra B along with distinguished idempotents
{e1, . . . , em}, the corresponding painted algebra with respect to these idempotents is

B̃ =
m⊕

i,j=1
eiBej

with multiplication as in Lemma 4.1. For a B-module M , the corresponding painted
module with respect to these idempotents is

M̃ =
m⊕

i=1
eiM

where (eibej).ekm = δjk(eibej).m, the action on the right side of the equality being
that of B on M .

Example 4.3. We now illustrate the painted algebra construction with two extreme
examples.

(a) If e1, . . . , em ∈ B are already orthogonal idempotents which sum to the iden-
tity, then B̃ ∼= B, and the painted algebra simply corresponds to the usual
decomposition of the algebra by a system of orthogonal idempotents.

(b) If each of e1, . . . , em ∈ B are the identity, then
B̃ ∼= B ⊕ · · · ⊕B︸ ︷︷ ︸

m

.

To conclude this section, we show that the irreducible B̃-modules are precisely the
painted irreducible B-modules.

Lemma 4.4. Let B be a semisimple algebra along with distinguished idempotents
{e1, . . . , em}. Then

(1) For any simple B-module S, either S̃ = {0} or S̃ is a simple B̃-module.
(2) For any simple B̃-module P , there is a simple B-module S so that S̃ ∼= P .

Proof.
(1) Suppose S̃ ̸= {0}, let s̃ =

∑m
i=1 eisi ∈ S̃ be nonzero, and fix any j ∈ [m] such

that ejsj is nonzero. We show that any such s̃ generates S̃ as a B̃-module,
and so S̃ is simple. Note that ej s̃ = ejsj ∈ ejS ⊆ S. Because S is simple,
for any eks ∈ S there exists b ∈ B such that bej s̃ = s and so ekbej s̃ = eks.
Because the elements eks span S̃, we see that S̃ is generated by any nonzero
element and hence is simple.

(2) The remainder of the proof generalizes an argument for the case of a single
idempotent found in the proof of Theorem 1.10.14 of [20]. Suppose P is a
simple B̃-module and define a B-module

U =
(

m⊕
i=1

Aei

)
⊗B̃ P

where B acts on the direct sum by left-multiplication. Write S = U/M where
M is a maximal submodule of U . Then S is a simple B-module. The goal is
now to define a nonzero B̃-module map from P to the painted module S̃.
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Consider the quotient map q : U → S and suppose ei ⊗ p ̸= 0. We claim
that ei⊗p generates U as a B-module and hence q(ei⊗p) ̸= 0 (else ei⊗t ∈M ,
which would mean that M = U). To show this, we need only demonstrate
that for any fixed ℓ ∈ [m] and p′ ∈ P , there exists an element b ∈ B such that
b.(ei ⊗ p) = eℓ ⊗ p′. Because P is a simple module and ei.p ̸= 0, there exists
an element b̃ =

∑
j,k ejbj,kek ∈ B̃ such that

b̃.ei ⊗ p =
∑
j,k

ejbj,kek.ei ⊗ p

= (e1 + · · ·+ em)⊗ (
∑

j

ejbj,iei.p)

= (e1 + · · ·+ em)⊗ eℓp
′

= eℓ ⊗ p′.

Set b =
∑

j ejbj,iei. Then b.ei ⊗ p = eℓ ⊗ p′.
Let p ∈ P be nonzero and note that in B̃ we have e1 + · · · + em = 1, so

(e1 + · · ·+ em).p = p. Hence, some ei.p ̸= 0. Consider the map
eiqei : eiU → eiS.

Because ei.(ei ⊗ p) = ei ⊗ p ∈ eiU , we know that eiqei is nonzero. Define a
B̃-module map

⊕m
i=1 eiU →

⊕m
i=1 eiS by ejr 7→ ejq(r). By the above obser-

vation, this is a nonzero module map. By Schur’s Lemma, it is an isomorphism
and hence

S̃ ∼=
m⊕

i=1
eiU

∼= (
m⊕

i,j=1
eiBej)⊗ P

∼= P. □

5. Painted diagram algebras and a diagram-like basis
In this section, our goal is to decompose Pr(Vn,k) in a way that allows us to use the
results of Section 4.

Let Ua be the span of monomials of the form xi1j1 · · ·xirjr where for each 1 ⩽
m ⩽ k, exactly am of the values j1, . . . , jr are equal to m. For example, the mono-
mials x11x21x23 and x21x21x23 are both in U(2,0,1) ⊂ P3(V2,3). To apply Lemma 4.1
and Lemma 4.4, we will need to write the subspace Ua as the projection by some
idempotent in Pr(n). We define the following idempotent for a ∈Wr,k:

sa = 1
|Sa|

∑
σ∈Sa

Lσ.

From Equation 1 we see that the subspace Ua is in fact a GLn-submodule of
Pr(Vn,k). This gives a decomposition

Pr(Vn,k) =
⊕

a∈Wr,k

Ua

as a GLn-module. We now use this decomposition to construct a linear isomorphism
Φ :
⊕

a∈Wr,k
saVn

⊗r → Pr(Vn,k).
For a ∈Wr,k, define a linear map Φa : Vn

⊗r → Ua by

Φa(ei1 ⊗ · · · ⊗ eir ) =
a1∏

m=1
xim1

a1+a2∏
m=a1+1

xim2 · · ·
r∏

m=a1+···+ak−1+1
ximk.
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Example 5.1. Note that two different tensors may map to equal monomials as in the
following example.

Φ(1,2,2)(e2 ⊗ e2 ⊗ e1 ⊗ e1 ⊗ e2) = x21x22x12x13x23

Φ(1,2,2)(e2 ⊗ e1 ⊗ e2 ⊗ e1 ⊗ e2) = x21x12x22x13x23

Here, the tensors map to the same monomial because the second is obtained from
the first by swapping two factors mapping to indeterminates of the same form xi2.

For ease of notation, we will write ei = ei1 ⊗ · · · ⊗ eir for i ∈ [n]r. It is clear that
Φa is surjective and that Φa(ei) = Φa(ei′) exactly when ei′ can be obtained from
ei by rearranging factors grouped into the same product above. That is, ei′ = σ(ei)
for some σ ∈ Sa. Hence, Φa restricts to an isomorphism saVn

⊗r ∼−→ Ua, so the map
Φ :
⊕

a∈Wr,k
saVn

⊗r → Pr(Vn,k) sending sa(ei) to Φa(sa(ei)) is an isomorphism.

Lemma 5.2. The linear isomorphism Φ :
⊕

a∈Wr,k
saVn

⊗r → Pr(Vn,k) above induces
an isomorphism of algebras

EndG(Pr(Vn,k)) ∼−→ EndG

( ⊕
a∈Wr,k

saVn
⊗r

)
for each subgroup G of GLn.

Proof. The action of M ∈ GLn on sa(ei1 ⊗ · · · ⊗ eir
) is given by

M.sa(ei1 ⊗ · · · ⊗ eir ) = sa(Mei1 ⊗ · · · ⊗Meir )

=
n∑

ℓ1,...,ℓr=1
mi1ℓr · · ·mirℓrsa(eℓ1 ⊗ · · · ⊗ eℓr ).

Comparing this computation with Equation 1, we see that the map Φ is nearly
a homomorphism of GLn-modules, but the action of M ∈ GLn on one space is the
action of M−1 on the other. That is, for M ∈ GLn,

ΦM = M−1Φ.

Multiplying by Φ−1 on the left and right of both sides yields an analogous statement
for Φ−1:

MΦ−1 = Φ−1M−1.

The linear isomorphism Φ induces an algebra isomorphism

EndC(Pr(Vn,k)) ∼−→ EndC

( ⊕
a∈Wr,k

saVn
⊗r

)
φ 7−→ Φ−1φΦ.

Now we make the following observation for G ⊆ GLn a subgroup.
φ ∈ EndG(Pr(Vn,k)) ⇐⇒ φ = M−1φM ∀M ∈ G

⇐⇒ Φ−1φΦ = Φ−1M−1φMΦ ∀M ∈ G
⇐⇒ Φ−1φΦ = MΦ−1φΦM−1 ∀M ∈ G

⇐⇒ Φ−1φΦ ∈ EndG

( ⊕
a∈Wr,k

saVn
⊗r

)
Hence, the map φ 7→ Φ−1φΦ restricts to an isomorphism

EndG(PrVn,k
⊗r) ∼−→ EndG

( ⊕
a∈Wr,k

saVn
⊗r

)
. □
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Let G be a subgroup of GLn. Because G ⊆ GLn, we have that
CSn

∼= EndGLn
(Vn

⊗r) ⊆ EndG(Vn
⊗r).

Hence, the idempotents sa for a ∈Wr,k are in EndG(Vn
⊗r), allowing us to use Lemma

4.1 to make the following computation.

EndG (Pr(Vn,k)) ∼= EndG

( ⊕
a∈Wr,k

saVn
⊗r

)
∼=

⊕
a,b∈Wr,k

sa EndG(Vn
⊗r)sb

where the product is given by
(saφsb) · (scψsd) = δb,csaφsbψsd.(4)

If we write Ar(n) = EndG(Vn
⊗r), this algebra is precisely the painted algebra

Ãr,k(n) with respect to the idempotents {sa : a ∈ Wr,k}. We summarize the above
analysis in the following theorem.

Theorem 5.3. Let G ⊆ GLn be a subgroup and let Ar(n) = EndG

(
Vn

⊗r
)
. Then

EndG (Pr(Vn,k)) ∼= Ãr,k(n)
where Ãr,k(n) is the painted algebra of Ar(n) with respect to the idempotents {sa :
a ∈Wr,k}.

Ar(n) GLn Ãr,k(n)

Vn
⊗r Pr(Vn,k)

Sr G GLk

Figure 1. This diagram illustrates how Theorem 5.3 relates the
centralizers of a group G under Schur-Weyl duality (left) and Howe
duality (right). Note that the diagonals should only be taken to sig-
nify mutual centralizers when the conditions of the double-centralizer
theorem are satisfied (e.g. when G is a linear reductive subgroup).

Now, we use this isomorphism to construct a basis for MPr,k(n) ∼= EndSn
(Pr(Vn,k))

from the diagram basis of Pr(n). Such a basis can be similarly constructed for other
subalgebras of Pr(n) that contain Sr (see Remark 5.7). In general, the projection
saLπsb can be computed as follows.

saLπsb = 1
|Sa ×Sb|

∑
(σ,σ′)∈Sa×Sb

LσLπLσ′

= 1
|Sa ×Sb|

∑
(σ,σ′)∈Sa×Sb

Lσ.π.σ′

Each diagram basis element Lπ projects to the sum of the orbit of π under the
Sa × Sb-action. Because the orbits are disjoint, the set of distinct projections are
linearly independent and hence form a basis of saPr(n)sb. Due to the correspondence
between orbits of set partitions under the action of a Young subgroup and multiset
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partitions given in Section 3, we know that these basis elements are indexed by multi-
set partitions obtained by applying the map κa,b to set partitions. Diagrammatically,
this corresponds to coloring in the vertices of elements in Π2(r) with colors whose
multiplicities are given by a on the top and b on the bottom.

For π̃ ∈ Π̃2(r),k define Dπ̃ = saLπsb where π is any set partition in the orbit
corresponding to π̃. We then see that {Dπ̃ : π̃ ∈ Π̃} is a basis for P̃r,k(n) ∼= MPr,k(n).
Using the formula in Lemma 4.1, the product Dπ̃Dν̃ for π̃ ∈ Π̃2(r),k with multiplicities
on top and bottom given by a and b respectively and ν̃ ∈ Π̃2(r),k with multiplicities
on top and bottom given by b′ and c respectively is the following.

Dπ̃Dν̃ = (saLπsb) · (sb′Lνsc)
= δb,b′saLπsbLνsc

=
δb,b′

|Sb|
∑

σ∈Sb

saLπLσLνsc

=
δb,b′

|Sb|
∑

σ∈Sb

saLπLσ.νsc

To interpret this product combinatorially, it will be helpful to assign a combinato-
rial object to each term in the sum.

Definition 5.4. For a pair π̃, ν̃ ∈ Π̃2(r),k, a snapshot is a pair (π, ν) where κa,b(π) =
π̃ and κb,c = ν̃. We can represent these visually as a stack of partition diagrams
whose vertices are painted from k colors. To differentiate from the multiset partition
diagrams (and to emphasize that the identically colored vertices in this situation are
not interchangeable and are instead fixed in place), we draw the vertices as open circles.

The formula above can then be thought of as beginning with any snapshot (π, ν)
and them summing over the snapshots {(π, σ.ν) : σ ∈ Sb}. In the summand, LπLσ.ν

is the product of the two set partitions as elements of Pr(n) and multiplying by the
idempotents sa and sb projects to the diagram-like basis element corresponding to
the multiset partition obtained by filling in the vertices.

Example 5.5. The product of and is given by choosing a snapshot,

such as
(

,
)

, then acting on the top of the second diagram with each
permutation in S(2,2).

1
2!2!

 + + +


= 1

4

(
n + + +

)
Another snapshot we could have chosen is

(
,

)
because if the ver-

tices were filled in, the resulting multiset partition diagrams would still be identical
to the two we are taking the product of.

We call this basis {Dπ̃ : π̃ ∈ Π̃2r,k} for MPr,k(n) ∼= EndSn
(Pr(Vn,k)) the diagram-

like basis.
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Remark 5.6. This perspective resolves the question of how the multiset partition
algebra MPa(n) for a ∈Wr,k defined in [24] sits inside MPr,k(n):

MPa(n) ∼= EndSn
(saVn

⊗r)
∼= saPr(n)sa.

Note that saPr(n)sa is the span of diagram-like basis elements in MPr,k(n) whose
colors on top and bottom have multiplicity given by a.
Remark 5.7. Let Ar(n) ⊆ Pr(n) be a subalgebra spanned by the diagram-basis el-
ements indexed by the set partitions in some set Π. If Π contains the set partitions
corresponding to the symmetric group Sr, then the construction of the diagram-like
basis above restricts to the painted version of this subalgebra. In particular, Ãr,k(n)
has basis given by the diagram-like basis elements indexed by

⊎
a,b∈Wr,k

κa,b(Π).
For a concrete example, the Brauer algebra Br(n) is the subalgebra of Pr(n)

spanned by the set partition diagrams whose blocks are all of size two. The corre-
sponding painted Brauer algebra B̃r,k(n) has a basis indexed by the multiset partition
diagrams whose blocks are all of size two.

Note that planar subalgebras of Pr(n) (such as the Temperley-Lieb algebra) do not
contain the symmetric group, and hence this painted algebra construction does not
extend nicely to them. It may be the case that there are painted analogues of these
planar algebras which centralize a group action on Pr(Vn,k), but they do not seem
amenable to description with the methods of this paper.

6. Irreducible representations of MPr,k(n)
In this section, we aim to construct the irreducible representations of MPr,k(n). Part
(2) of Lemma 4.4 tells us that in order to construct each of these irreducible repre-
sentations, we need only consider the irreducible Pr(n) representations painted with
respect to the idempotents {sa : a ∈Wr,k}. For λ ∈ ΛPr(n), define

MPλ
r,k := P̃λ

r =
⊕

a∈Wr,k

saP
λ
r .

By Lemma 4.4, each module in {MPλ
r,k : λ ∈ ΛPr(n)} is either a simple MPr,k(n)-

module or the zero module, and each simple MPr,k(n) module appears in the set.
To investigate the structure of these modules, we note that for T ∈ SPT λ,r, the
projection savT is the average over the Sa-orbit of T :

savT = 1
|Sa.T |

∑
S∈Sa.T

vS

This orbit corresponds to T̃ = κa(T ) ∈MPT λ,r,k, and so we define

wT̃ = savT = 1∣∣κ−1
a (T̃ )

∣∣ ∑
T ∈κ−1

a (T̃ )

vT

where κ−1
a (T̃ ) is the preimage of T̃ under the coloring map.

Lemma 6.1. If T ∈ SSPT λ,r, then either wT̃ = 0 or T̃ ∈ SSMPT λ,r,k.
Proof. As observed in Remark 3.6, if T ∈ SSPT λ,r, then T̃ has rows and columns
weakly increasing. If T̃ is not semistandard, then it must have two boxes within the
same column that have identical contents. For a tableau T , write T ′ for the tableau
obtained by swapping the content of these two boxes. Then

wT̃ = wT̃ ′ = 1
|Sa.T |

∑
S∈Sa.T

vS′ = 1
|Sa.T |

∑
S∈Sa.T

−vS = −wT̃ .
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Hence, if T̃ /∈ SSMPT λ,r,k, then wT̃ = 0. □

We can now use Lemma 6.1 to describe a straightening algorithm for MPλ
r,k. Suppose

T̃ is not semistandard and wT̃ ̸= 0. Then there exists a nonstandard T in the Sa-orbit
corresponding to T̃ . Then using the straightening algorithm for Pλ

r , we can write

vT =
∑

S∈SSPT λ,r

cSvS .

Then projecting by sa, we obtain

wT̃ = savT =
∑

S∈SSPT λ,r

cSsavS =
∑

S∈SSPT λ,r

cSwS̃

where each S̃ for which wS̃ ̸= 0 is semistandard.

Theorem 6.2. The set {MPλ
r,k : λ ∈ ΛMPr,k(n)} forms a complete set of irreducible rep-

resentations for MPr,k(n) and for each λ ∈ ΛMPr,k(n), the set {wT̃ : T̃ ∈ SSMPT λ,r,k}
forms a basis of MPλ

r,k.

Proof. Because MPλ
r,k is the span of {wT̃ : T̃ ∈ SSMPT λ,r,k}, we know that MPλ

r,k = 0
unless λ ∈ ΛMPr,k(n). We then have that each of the

∣∣ΛMPr,k(n)
∣∣ irreducible represen-

tations appears in the smaller set {MPλ
r,k : λ ∈ ΛMPr,k(n)}. Because there are only∣∣ΛMPr,k(n)

∣∣ representations in this set, it must be a complete set of irreducible repre-
sentations for MPr,k(n).

A priori, we do not know that these wT̃ are linearly independent, so we can only
conclude that dim(MPλ

r,k) ⩽ #SSMPT λ,r,k. However, we do know that∑
λ∈ΛMPr,k(n)

(dim(MPλ
r,k))2 = dim(MPr,k(n)) =

∑
λ∈ΛMPr,k(n)

(#SSMPT λ,r,k)2.

Hence dim(MPλ
r,k) = #SSMPT λ,r,k and so for each λ ∈ ΛMPr,k(n) the set {wT̃ : T̃ ∈

SSMPT λ,r,k} indeed forms a basis of MPλ
r,k. □

We now consider the action of an element Dπ̃ on wT̃ . Suppose that the multiplicities
of colors in π̃ are given by a and b respectively and that the multiplicities of elements
in T̃ are given by c. Then the definition of a painted module gives us the following
formula:

Dπ̃.wT̃ = saLπsb.scvT

= δb,c(saLπsbvT )

= δb,c

∑
σ∈Sb

saLπ.σvT

We can interpret this formula for diagrams as follows.
(i) Pull out the content of T̃ , a multiset partition with r elements from [k], in a

row above and fix the order.
(ii) Place π̃ on top and permute the vertices of the same color at the bottom in

each possible way.
(iii) For each permutation, compute the action as for Pλ

r .
(iv) Sum the resulting tableaux and divide by the number of permutations.

Example 6.3. The action of a multiset partition on a multiset partition tableau.
Note that in the latter two permutations of the diagram, the content of the box in
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the second row does not reach the top of the diagram, so the output is zero.

12
1

1

11
1

2

12
1

1

0

12
1

1

0

π̃.

12
1

1
= 1

3

1
11

2
= −1

3

11
1

2

7. Generators
To describe a generating set for MPr,k(n), we will give an algorithm for factoring out
certain blocks from a diagram.

Definition 7.1. We call a block of the form
{{
i, ī
}}

a vertical bar. A block of a multiset
partition π̃ that is not a vertical bar or a singleton is called a nonbasic block. For a
set partition π with κa,b(π) = π̃, we call a vertex in the diagram of π nonbasic if it is
mapped to a nonbasic block under κa,b.

We now define a statistic on multiset partitions and prove a lemma about how this
statistic interacts with the diagram-like product.

Definition 7.2. Write N(π̃) for the multiset of nonbasic blocks of π̃ and define the
nonbasic weight of π̃ to be

nbw(π̃) =
∑

B̃∈N(π̃)

∣∣B̃∣∣ .
Example 7.3. We compute the nonbasic weight of some multiset partitions. The
nonbasic vertices have their vertices highlighted in green.

nbw

  = 2 + 4 + 4 = 10

nbw

  = 2 + 3 + 4 = 9

Lemma 7.4. If Dν̃ appears with nonzero coefficient in the product Dπ̃1Dπ̃2 , then
nbw(ν̃) ⩽ nbw(π̃1) + nbw(π̃2)

with equality if and only if N(ν̃) = N(π̃1) ⊎N(π̃2).

Proof. Consider a snapshot (π1, π2) in the product Dπ̃1Dπ̃2 and suppose Lπ1Lπ2 =
ncLν . Suppose π̃1 = κa,b(π1) and π̃2 = κb,c(π2). Write ν̃ = κa,c(ν). Our goal is now
to construct an injective map φ from the set of nonbasic vertices of ν to the nonbasic
vertices of π1 and π2.
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Consider a nonbasic vertex v of ν labeled i. There is a corresponding vertex v′ of
π1 also labeled i. If v′ is the only element in its block, the same is true for v. Hence,
v′ must either be a nonbasic vertex or one end of a vertical bar. In the first case, set
φ(v) equal to v′, which is nonbasic. In the latter case, let j̄ be the label of the other
vertex in the vertical bar and let φ(v) be the vertex of π2 labeled j. If the diagram of
π1 were set atop that of π2, this would be the vertex on the top of π2 that the vertical
bar lands on. If v is labeled ī, the same process is followed swapping which elements
are barred (see Figure 2 for an illustration of this map).

→

Figure 2. Illustration of the injective map φ constructed in Lemma
7.4. The nonbasic vertices on the right and the corresponding non-
basic vertices in the image of φ on the left are highlighted in green.

In the latter case, if φ(v) is basic, it is either the only element of its block (in
which case, v would be a singleton) or part of a vertical bar (in which case, v is in
a vertical bar). Either way, this contradicts the assumption that v is nonbasic, so
we have constructed a map φ from the set of nonbasic vertices of ν to the nonbasic
vertices of π1 and π2. It is clear that this map is injective, and so the number of
nonbasic vertices of ν is less than the total number of nonbasic vertices of π1 and π2,
giving us the desired inequality.

Now to investigate the case of equality we consider how the map φ interacts with the
set partition structure. Suppose that φ(v) and φ(w) are in the same block. Without
loss of generality, assume they are in the same block of π1. We then need to consider
the following cases: (see Figure 3(i)-(iii) for illustrations of these cases)

(i) φ(v) and φ(w) are both on the top of the block.
The vertex φ(v) has the same label as v and φ(w) has the same label as

w. Because the vertices with these labels are connected, the vertices with the
same labels must be connected in the product, so v and w are in the same
block.

(ii) φ(v) and φ(w) are both on the bottom of the block.
The vertices φ(v) and φ(w) each meet a vertical bar whose other end is

labeled the same as v and w respectively. Hence, v and w are joined in the
product.

(iii) Without loss of generality φ(v) is on the top of the block and φ(w) is on the
bottom.

The vertex φ(v) is labeled the same as v and the vertex on the other end
of the vertical bar meeting φ(w) is labeled the same as w. Hence v and w are
again joined in the product.

Hence, if φ(v) and φ(w) are in the same block, then u and v are in the same block.
Suppose that v and w are in the same block but φ(v) and φ(w) are not (see Figure

3(iv)-(v)). Then two nonbasic blocks in the product must have been combined, and
any vertex where the two nonbasic blocks meet must not be in the image of φ, meaning
φ is not a surjection in this case.
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(i) → (ii) →

(iii) → (iv) →

(v) →

Figure 3. Illustrations of cases when φ(u) and φ(w) are in the same block.

When equality holds, the map φ is a bijection and φ(v) is in the same block as
φ(w) if and only if v and w are in the same block. The map φ then induces a bijection
of nonbasic blocks, hence N(ν̃) = N(π̃1) ⊎N(π̃2). □

We will introduce a sort of factorization of a diagram π̃ with a nonbasic block B̃
into diagrams with fewer nonbasic blocks, and to that end we define two diagrams
π̃/B̃ and π̃|B̃ . Informally, the diagram π̃/B̃ is the result of removing the block B̃ and
replacing it with basic blocks, and the diagram π̃|B̃ is a diagram whose only nonbasic
block is B̃.

Example 7.5. Here we show how the diagram π̃ can be factored at the nonbasic block
B̃.

π̃ =

B̃

π̃|B̃ =

π̃/B̃ =

Note that in π̃|B̃ , the block B̃ is joined by vertical bars matching the remaining
vertices atop π̃ as well as two singletons

{{
1̄
}}

at the bottom so that the number
of vertices on top and on bottom match. In π̃/B̃, the block B̃ is removed from π̃,
leaving behind a vertical bar matching each vertex at the bottom of B̃ as well as two
singletons {{1}} so that the number of vertices on top and on bottom again match.

We now define this factorization more precisely.

Definition 7.6. Let π̃ ∈ Π̃2r,k have a nonbasic block B̃. Without loss of generality,
assume B̃ has more unbarred entries than barred entries. Write π̃/B̃ for the multiset
partition obtained by replacing B̃ with vertical bars

{{
i, ī
}}

for each barred entry ī of
B̃ and a number of singletons

{{
1̄
}}

making up the difference in the number of barred
and unbarred entries in B̃. Write π̃|B̃ for the multiset partition consisting of B̃, a
vertical bar

{{
i, ī
}}

for each vertex labeled i in π̃ not in B̃, and enough
{{

1̄
}}

to make
it an element of Π̃2(r),k.
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We see immediately in Example 7.5 that although the element Dπ̃ will appear
with nonzero coefficient in Dπ̃|B̃

Dπ̃/B̃ , many diagrams other than Dπ̃ also appear.
To systematically account for these extra diagrams, we now define a partial order in
which they are smaller than the desired diagram Dπ̃. This will allow us to use the
factorization recursively to write Dπ̃ as a polynomial in simpler diagrams.

Write vb(π̃) for the number of vertical bars in π̃. Define a partial order on Π̃r,k by
saying that π̃ ≺ τ̃ if either

nbw(π̃) < nbw(τ̃)
or

nbw(π̃) = nbw(τ̃) and vb(π̃) < vb(τ̃).

Lemma 7.7. Let π̃ be a multiset partition and B̃ a nonbasic block of π̃ with more
unbarred entries than barred entries. Then there is a constant c ∈ C so that

cDπ̃|B̃
Dπ̃/B̃ −Dπ̃ ∈ spanC{Dν̃ : ν̃ ≺ π̃}.

Proof. Consider a snapshot in the product Dπ̃|B̃
Dπ̃/B̃ in which each vertex at the

bottom of the block B̃ in π̃|B̃ meets a vertical bar in π̃/B̃ and each singleton
{{

1̄
}}

in π̃|B̃ created in the factorization meets a singleton {{1}} in π̃/B̃ created during the
factorization. Such a snapshot exists because there is a vertical bar in π̃|B̃ matching
each vertex at the bottom of B̃ and the number of singletons added to each factor is
precisely the difference between the number of vertices in the top and in the bottom
of B̃. The resulting diagram from this snapshot is π̃, and so Dπ̃ appears with nonzero
coefficient in the product. Let c be the reciprocal of the coefficient it appears with.

By Lemma 7.4 any Dν̃ appearing in the product must have nbw(ν̃) ⩽ nbw(π̃|B̃) +
nbw(π̃/B̃) = nbw(π̃) with equality only if

N(ν̃) = N(π̃|B̃)
⊎
N(π̃/B̃) = N(π̃).

If any vertical bars in ν̃ came from nonbasic blocks of π̃|B̃ and π̃/B̃ meeting,
then ν̃ would necessarily have a smaller nonbasic weight. Hence, in the case that
nbw(ν̃) = nbw(π̃), it must either be the case that ν̃ = π̃ or ν̃ has fewer vertical bars.
So, every ν̃ ̸= π̃ that appears in the product is smaller in (Π̃2(r),k,⪯). □

Example 7.8. Lemma 7.7 can be used recursively to write a diagram as a polynomial
in diagrams with a single nonbasic block. At each step, the nonbasic block B̃ that the
diagram will next be factored at is highlighted. Notice that example (ii) ends where
example (i) begins.

(i) = 1
n2

( )( )
= 1
n2

( )( )( )
(ii) = 3

n2

( )( )
− 2
n

( )
= 3
n4

( )( )( )
− 2
n

( )
We now introduce our generators. For i, j ∈ [k] and a ∈ Wr−1,k, write Pi,j,a for

the diagram-like basis element indexed by the set partition with singleton blocks {{i}}
and

{{
j̄
}}

and vertical bars whose colors have multiplicity given by a. Now fix i ∈ [r],
a, b ∈ Wi,k and c ∈ Wr−i,k. Write Ra,b,c for the diagram-like basis element for the
set partition with a block whose colors on top and bottom are given by a and b
respectively as well as vertical bars with multiplicities given by c.
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Example 7.9. Here we show an example of each type of generator.

P2,1,(2,0,1,2) = ∈ MP6,4(n)

R(2,0,1),(0,2,1),(0,0,2) = ∈ MP5,3(n)

As a base case, we show how the elements {Pi,j,a : i, j ∈ [k],a ∈Wr−1,k} generate
the diagrams with no nonbasic blocks.

Lemma 7.10. The elements {Pi,j,a : i, j ∈ [k],a ∈Wr−1,k} generate each Dπ̃ where π̃
has no nonbasic blocks.

Proof. Fix b ∈Wr,k. For m ⩽ b1, write Qm for the diagram-like basis element indexed
by the multiset partition with m pairs of singletons {{1}} and

{{
1̄
}}

along with vertical
bars

{{
1, 1̄
}}b1−m

,
{{

2, 2̄
}}b2

, . . . ,
{{
k, k̄
}}bk . Notice that Q1 = P1,1,b′ where b′ is b

with the first entry decremented by one.
Now consider the product Q1Qm. The singleton at the bottom of Q1 will meet

one of the m singletons at the top of Qm in m
b1

of the snapshots. In the remaining
snapshots, the singleton meets a vertical bar and breaks it into a singleton, resulting
in Qm+1:

Q1Qm = m

b1
nQm + b1 −m

b1
Qm+1.

Hence, the elements Qm for 1 ⩽ m ⩽ b1 are generated by the elements Pi,j,a (see
Figure 4(i)).

Suppose π̃ is a multiset partition with no nonbasic blocks and a singleton {{i}}
with i ̸= 1. Let π̃′ be the result of replacing that {{i}} with {{1}}. Then for c ∈Wr−1,k

chosen so that Pi,1,cDπ̃′ is nonzero, this product includes Dπ̃ along with diagrams
with fewer vertical bars (see Figure 4(ii)). Via this process and the corresponding
process for singletons

{{
ī
}}

, we can write any basic diagram with a non-one singleton
as a polynomial in diagrams with fewer non-one singletons or fewer vertical bars.
Repeating this process for any diagram in the resulting polynomial with a non-one
singleton terminates in a polynomial in diagrams with all basic blocks and singletons
of the form {{1}} or

{{
1̄
}}

. These are just the Qm above for different choices of b, so
the {Pi,j,a : i, j ∈ [k],a ∈Wr−1,k} generate the diagrams with all basic blocks. □

(i)
Q1 =

Q2 =
= 2n

4 ︸ ︷︷ ︸
Q2

+ 2
4 ︸ ︷︷ ︸

Q3

(ii) = 3n
4 + 1

4

Figure 4. Examples of the processes employed in Lemma 7.10.

Finally, we use Lemma 7.7 and Lemma 7.10 to prove that the elements Pi,j,a and
Ra,b,c defined above generate the algebra MPr,k(n).

Theorem 7.11. The algebra MPr,k(n) is generated by the set Θ = {Pi,j,a : i, j ∈
[k],a ∈Wr−1,k} ∪ {Ra,b,c : a, b ∈Wi,k, c ∈Wr−i,k for some i ∈ [r]}.
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(i) π̃1 =

π̃2 =

π̃3 =

=

(ii) π̃1 =

π̃2 =

π̃3 =

= 1
3 + 2

3

Figure 5. Examples of the products in Theorem 7.11.

Proof. If π̃ has more than one nonbasic block, then we apply Lemma 7.7 to write Dπ̃

as a polynomial in elements Dν̃ where ν̃ ≺ π̃. We can iterate this process on each
Dν̃ in this polynomial where ν̃ has more than one nonbasic block (see Example 7.8).
Because the poset (Π̃2(r),k,⪯) is finite, this iteration terminates with Dπ̃ written as
a polynomial in elements Dν̃ where each ν̃ has at most one nonbasic block. Hence, it
suffices to show that Θ generates the elements Dν̃ where ν̃ has at most one nonbasic
block.

By Lemma 7.10, Θ generates the elements Dπ̃ where π̃ has no nonbasic blocks. We
now prove that Θ generates the diagrams with a single nonbasic block by induction
on the number of vertical bars. If π̃ has a single nonbasic block and no vertical bars,
it has a straightforward factorization as Dπ̃ = Dπ̃1Dπ̃2Dπ̃3 where π̃2 is obtained from
π̃ by connecting all vertices into a single block, π̃1 has a vertical bar for each vertex
at the top of the nonbasic block of π̃ and a pair of identically colored singletons for
each singleton atop π̃, and π̃3 is obtained similarly from the bottom of π̃ (see Figure
5(i)). Notice that Dπ̃1 ,Dπ̃2 ,Dπ̃3 ∈ Θ.

For π̃ with a single nonbasic block and s vertical bars, one can try a modified version
of the above factorization in which a copy of each vertical bar in π̃ is put in π̃1, π̃2,
and π̃3 (see Figure 5(ii)). The element Dπ̃ appears in the product Dπ̃1Dπ̃2Dπ̃3 when
each singleton in π̃1 and π̃3 meets the nonbasic block in π̃2. When these singletons
instead meet vertical bars in π̃2, the resulting diagram has fewer than s vertical bars.
By induction on the number of vertical bars, the set Θ generates the diagrams with
at most one nonbasic block and hence the algebra MPr,k(x). □

8. Change-of-basis formula
In this section, we give a change-of-basis formula from Orellana and Zabrocki’s orbit
basis to the diagram-like basis. While the earlier sections dealt with the centralizer
algebras Pr(n) and MPr,k(n), the combinatorics of the change-of-basis formula do
not depend on the semisimplicity of the algebras. Hence, this section considers the
abstract algebras Pr(x) and MPr,k(x) over C(x) for x an indeterminate. These results
can all be applied to the centralizer algebra case by specializing x to an integer n ⩾ 2r.

In analogy with the construction of the diagram-like basis as a projection of the
diagram basis of Pr(x), we can define the orbit-like basis by projecting the orbit basis
of Pr(x):

Oπ̃ = saTπsb
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where π ∈ Π2(r) is any set partition so that κa,b(π) = π̃. For a multiset partition π̃,
define mB̃(π̃) to be the multiplicity of the block B̃ in π̃ and write

m(π̃)! =
∏

B̃∈π̃
distinct

mB̃(π̃)!

where the product is over distinct blocks of π̃.

Theorem 8.1. For π̃ ∈ Π̃2(r),k whose unbarred entries have multiplicity given by
a ∈Wr,k, write

ω(π̃) = m(π̃)!
|Sa|

∏
B̃∈π̃

m(B̃|[k̄])!.

Then the map

φ : P̃r,k(x)→ MPr,k(x)
Oπ̃ 7→ ω(π̃)Xπ̃

where {Xπ̃ : π̃ ∈ Π̃2(r),k} is the orbit basis of Orellana and Zabrocki is an isomorphism
of algebras.

Because each ω(π̃) is nonzero, it is clear that this map is an isomorphism of vec-
tor spaces–the remainder of this section is devoted to proving that it respects the
multiplication. First, we observe that such an isomorphism gives us the following
change-of-basis formula from Orellana and Zabrocki’s orbit basis to the diagram-like
basis:

Dπ̃ = φ(saLπsb)

=
∑
ν̃⩽π̃

cν̃,π̃ω(ν̃)Xν̃

where for a fixed π such that κa,b(π) = π̃, cν̃,π̃ is the number of ν ⩽ π such that
κa,b(ν) = ν̃.

Example 8.2. We expand the following diagram-like basis element in the orbit basis
of Orellana and Zabrocki:

D = s(2,2)L s(3,1)

= s(2,2)

(
T + T + T + T + T

)
s(3,1)

D = O + O + 2O + O

7→ ω(π̃1)X + ω(π̃2)X + 2ω(π̃3)X + ω(π̃4)X

= 2!
3!X + 2!

3!X + 22!
3!X + 3!

3!X

= 1
3X + 1

3X + 2
3X + X
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8.1. Preliminary definitions and enumerative results. The product formula
for the orbit basis {Tπ : π ∈ Π2(r)} for Pr(x) uses set partitions that include unbarred,
barred, and double-barred elements. To that end, we make the following definitions.
For π, ν ∈ Π2(r), write Γπ

ν for the set of set partitions γ of [r] ∪ [r̄] ∪
[¯̄r] such that

γ|[r]∪[r̄] = π and γ|[r̄]∪[¯̄r] = ν̄ where ν̄ is the result of adding a bar to each element
in ν. For such a γ, write βγ = {S ∈ γ : ∀i ∈ S, i ∈ [r̄]} for the set of blocks of γ
containing only barred numbers. Write

bγ(x) = (x− ℓ(γ|[r]∪[¯̄r]))ℓ(βγ )

where (a)n = a(a− 1) · · · (a− n+ 1). The product formula for the orbit basis is

TπTν =
∑

γ∈Γπ
ν

bγ(x)Tγ

where the γ in the subscript is understood to be an element of Π2(r) by taking the
restriction γ|[r]∪[¯̄r] and removing a bar from each double-barred entry (see Theorem
4.14 of [2] for details).

For the orbit basis {Xπ̃ : π̃ ∈ Π̃2(r),k} of MPr,k(x) we make similar definitions.
For π̃, ν̃ ∈ Π̃2(r),k, write Γ̃π̃

ν̃ for the set of multiset partitions γ̃ with r elements each
from [k],

[
k̄
]
, and

[¯̄k] such that γ̃|[k]∪[k̄] = π̃ and γ̃|[k̄]∪
[¯̄k] = ¯̃ν. For such a γ̃, write

βγ̃ =
{{
S̃ ∈ γ̃ : ∀i ∈ S̃, i ∈

[
k̄
]}}

. Finally, write

b̃γ̃(x) =
(x− ℓ(γ̃|[k]∪

[¯̄k]))ℓ(βγ̃ )

m(βγ̃)!

aγ̃ =
∏

S̃∈γ̃|
[k]∪[¯̄k]

distinct

ℓ(γ̃S̃)!
m(γ̃S̃)!

where γ̃S̃ =
{{
T̃ ∈ γ̃ : T̃ |[k]∪

[¯̄k] = S̃

}}
. Then, the product for the orbit basis of

MPr,k(x) is given by

Xπ̃Xν̃ =
∑

γ̃∈Γ̃π̃
ν̃

aγ̃ b̃γ̃(x)Xγ̃

where the γ̃ in the subscript is understood to be an element of Π̃2r,k by taking the
restriction γ|[k]∪

[¯̄k] and removing a bar from each double-barred entry (see Section 3
of [28] for details).

To handle these set and multiset partitions on three alphabets combinatorially, we
will want to extend the notation of our painting function κa,b to them. In particular,
κa,b,c(γ) will be the result of replacing the unbarred, barred, and double-barred ele-
ments according to a, b, and c respectively. It will be useful later to write Γπ

ν (µ̃) for
the set of γ ∈ Γπ

ν such that κa,b,c(γ) = µ̃.
For π, ν ∈ Π2(r) with π|[r̄] = ν̄|r̄, let π ∗ ν ∈ Γπ

ν be the set partition obtained by
placing the diagram of π atop the diagram of ν and identifying the corresponding
vertices in the center. This set partition plays a central role because any γ ∈ Γπ

ν only
differs from π∗ν by connecting some blocks on the very top and very bottom. That is,
if we denote by break(γ) the result of splitting each block of γ that does not contain
a vertex in the middle row of the diagram into its restriction to [r] and restriction to
[r̄], then γ ∈ Γπ

ν if and only if break(γ) = π ∗ ν.
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Example 8.3. We compute break(γ) of a set partition γ of [6] ∪
[
6̄
]
∪
[
¯̄6
]
.

γ = break(γ) =

To analyze the orbit basis of MPr,k(x), we want to investigate how π∗ν acts when ν
is acted upon by some permutation. This inspires the definition of several subgroups
of permutations. For ρ a set partition of [r] and a ∈Wr,k, define

Sρ
a = {σ ∈ Sa : σ.ρ = ρ}

where the action σ.ρ applies σ to each element of each block of ρ. This subgroup
factors as a semidirect product

Sρ
a = Xρ

aY
ρ

a

where the permutations in Xρ
a permute whole blocks and the permutations in Y ρ

a

permute only within blocks of ρ.

Example 8.4. For clarity, we illustrate the above factorization in the case that all
elements are the same color (where the corresponding young subgroup S(r) is equal
to the full symmetric group Sr). The permutation

σ = (3 4)(1 5)(2 6)(8)(7 9)
fixes the set partition ρ = {{1, 2, 4}, {3, 5, 6}, {8}, {7, 9}} and hence σ ∈ Sρ

(r). It then
factors as σ = σXσY where

σX = (1 4 2)(3 5 6)(7 9)
permutes elements within each block and

σY = (1 3)(2 5)(4 6)
swaps the two blocks of ρ of size three.

Given π ∈ Π2(r), consider the subgroup Aπ
a,b of Xπ|[r̄]

b that only permutes blocks in
π|[r̄] if they are part of blocks of π that are painted identically by κa,b (see Example
3.1). Let Bν

a,b be the analogous subgroup of Xν|[r̄]
b for the restrictions to the top. More

precisely,

Aπ
a,b = {σ ∈ Xπ|[r̄]

b : ∀S, T ∈ π, S|[r̄] = σ(T |[r̄]) =⇒ κa,b(S) = κa,b(T )}

Bν
b,c = {σ ∈ Xν|[r]

b : ∀S, T ∈ ν, S|[r] = σ(T |[r]) =⇒ κb,c(S) = κb,c(T )}
Put another way, these permutations σ of the blocks in the middle row of π ∗ ν do

not change the resulting multiset partition. That is, κa,b,c(π ∗ ν) = κa,b,c(π ∗ σ.ν) for
σ ∈ Aπ

a,b or σ ∈ Bν
b,c.

Finally, we collect up formulas for the sizes of these subgroups. To that end, it
will be useful to consider the following multiset partitions obtained by restricting to
particular blocks.

π̃+ = {S̃ ∈ π̃ : ∀i ∈ S, i ∈ [k]}
π̃− = {S̃ ∈ π̃ : ∀i ∈ S, i ∈

[
k̄
]
}

γ̃± = {S̃ ∈ π̃ : ∀i ∈ S, i ∈ [k] ∪
[¯̄k]}

We think of π̃+ (resp. π̃−) as the blocks contained entirely in the top (resp. bottom)
of π̃ and γ̃± as the blocks of γ̃ that have no vertex in the middle row.
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Lemma 8.5. Let a, b, c ∈ Wr,k, π, ν ∈ Π2(r), π̃ = κa,b(π), and ν̃ = κb,c(ν). Then, the
subgroups defined above have sizes given by the following.

|Xρ
a| = m(κa(ρ))! |Y ρ

a | =
∏

B̃∈π̃ m(B̃|[k̄])!∣∣∣Aπ
a,b

∣∣∣ = m(π̃)!
m(π̃+)!

∣∣∣Bν
b,c

∣∣∣ = m(ν̃)!
m(ν̃−)!

Furthermore, for any γ̃ ∈ Γ̃π̃
ν̃ , the size of the intersection of Aπ

a,b and Bν
b,c is given

by ∣∣Aπ
a,b ∩Bν

b,c

∣∣ = m(γ̃)!
m(γ̃±)! .

Proof. The equalities in the first row are clear. The next two follow from the obser-
vation that the only blocks of π̃ that contribute to Aπ

a,b are the ones that touch the
bottom, so we cancel out the contribution of those contained entirely in the top.

For the last equality, we can think of Aπ
a,b∩Bν

b,c as the permutations of the vertices
in the middle row of π ∗ ν that only permute blocks that are the restrictions of blocks
painted the same in κa,b,c(π∗ν). The number of such permutations is m(κa,b,c(π∗ν))!

m(κa,b,c(π∗ν)±)! .
Because γ̃ only differs from κa,b,c(π∗ν) by blocks that do not touch the center (whose
contributions are all canceled) we can make the substitution of γ̃ for κa,b,c(π ∗ν). □

8.2. Proof of the isomorphism.

Proof of Theorem 8.1. Let π̃, ν̃ ∈ Π̃2(r) and let a, b, b′, c ∈ Wr,k be such that there
exist π, ν ∈ Π2(r) so that κa,b(π) = π̃ and κb′,c(ν) = ν̃. Note that when b ̸= b′, we
have Oπ̃Oν̃ = 0 and Xπ̃Xν̃ = 0, so we need only address the case when b = b′:

Oπ̃Oν̃ = 1
|Sb|

∑
σ∈Sb

saTπTσ.νsc

= 1
|Sb|

∑
σ∈Sb

∑
γ∈Γπ

σ.ν

bγ(x)saTγsb

To simplify notation, we will write γ̃ = κa,b,c(γ). Note that bγ(x) = b̃γ̃(x)m(βγ̃)!, so
we can rewrite the expression as follows.

Oπ̃Oν̃ = 1
|Sb|

∑
σ∈Sb

∑
γ∈Γπ

σ.ν

b̃γ̃(x)m(βγ̃)!Oγ̃

We then partition the sum over the possible multiset partitions µ̃ that could arise from
γ in this sum, noting that κb,c(σ.ν) = ν̃, and then we swap the order of summation
to obtain

Oπ̃Oν̃ = 1
|Sb|

∑
µ̃∈Γ̃π̃

ν̃

b̃µ̃(x)m(βµ̃)!
( ∑

σ∈Sb

∑
γ∈Γπ

σ.ν
γ̃=µ̃

1
)
Oµ̃

= 1
|Sb|

∑
µ̃∈Γ̃π̃

ν̃

b̃µ̃(x)m(βµ̃)!
( ∑

σ∈Sb

|Γπ
σ.ν(µ̃)|

)
Oµ̃.
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Recall that φ(Oπ̃) = ω(π̃)Xπ̃. Applying φ to both sides of the above equation and
writing φ(Oπ̃Oν̃)|Xτ̃ for the coefficient of Xτ̃ in φ(Oπ̃Oν̃) then yields

φ(Oπ̃Oν̃)|Xτ̃ = ω(τ̃)
|Sb|

∑
µ̃∈Γπ̃

ν̃

µ̃|
[k]∪[¯̄k]=τ̃

b̃µ̃(x)m(βµ̃)!
( ∑

σ∈Sb

|Γπ
σ.ν(µ̃)|

)
.(5)

We now compare this to the same coefficient in φ(Oπ̃)φ(Oν̃):

φ(Oπ̃)φ(Oν̃)|Xτ̃ = ω(π̃)ω(ν̃)
∑

µ̃∈Γ̃π̃
ν̃

µ̃|
[k]∪[¯̄k]=τ̃

aµ̃b̃µ̃(x)(6)

The goal is now to show that the rather unpleasant expressions given in Equation
5 for φ(Oπ̃Oν̃) and Equation 6 for φ(Oπ̃)φ(Oν̃) are equal. We will leverage their
similarities—namely that they sum over the same objects and each include a factor of
b̃µ̃(x) in each summand—to simplify the task. It would suffice to show the following
equality:

ω(τ̃)
|Sb|

m(βµ̃)!
( ∑

σ∈Sb

|Γπ
σ.ν(µ̃)|

)
= ω(π̃)ω(ν̃)aµ̃

By using the definition of ω(π̃) and noticing that τ̃ |[k̄] = ν̃|[k̄], we are able to
rearrange the above equality to

∑
σ∈Sb

|Γπ
σ.ν(µ̃)| = aµ̃

m(π̃)!m(ν̃)!
m(τ̃)!m(βµ̃)!

∏
B̃∈π̃

m(B̃|[k̄])!.

Then using the formulas in Lemma 8.5 for the sizes of the subgroups, we rewrite the
right-hand side to obtain

∑
σ∈Sb

|Γπ
σ.ν(µ̃)| = aµ̃

m(π̃+)!m(ν̃−)!
m(τ̃)!m(βµ̃)!

m(µ̃)!
m(µ̃±)!

∣∣∣Aπ
a,b

∣∣∣ ∣∣∣Bν
b,c

∣∣∣ ∣∣∣Y π|[r̄]
b

∣∣∣∣∣∣Aπ
a,b ∩Bν

b,c

∣∣∣
= aµ̃

m(π̃+)!m(ν̃−)!
m(τ̃)!m(βµ̃)!

m(µ̃)!
m(µ̃±)!

∣∣∣Aπ
a,bB

ν
b,cY

π|[r̄]
b

∣∣∣
=
(
aµ̃

m(µ̃)!
m(τ̃)!m(βµ̃)!

)
m(π̃+)!m(ν̃−)!

m(µ̃±)!
where the second equality follows from the fact that Aπ

a,b and Bν
b,c are subgroups of

X
π|[r̄]
b , which intersects trivially with Y

π|[r̄]
b .

Finally, we turn our attention to the factor in parentheses in the above expression.
Because τ̃ = µ̃|[k̄]∪

[¯̄k], we have for each block S̃ ∈ µ̃|[k̄]∪
[¯̄k] that ℓ(µ̃S̃) = mS̃(τ̃). This

fact allows us to cancel the ℓ(µ̃S̃)! terms in the definition of aµ̃ with m(τ̃)! to get

aµ̃
m(µ̃)!

m(τ̃)!m(βµ̃)! =
( ∏

S̃∈µ̃|
[k]∪[¯̄k]

distinct

ℓ(µ̃S̃)!
m(µ̃S̃)!

)
m(µ̃)!

m(τ̃)!m(βµ̃)!

=
( ∏

S̃∈µ̃|
[k]∪[¯̄k]

distinct

1
m(µ̃S̃)!

)
m(µ̃)!
m(βµ̃)! .
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Note that the terms m(µ̃S̃)! contribute mŨ (µ̃)! to the denominator for each block
Ũ ∈ µ̃ which contains either an unbarred or a double-barred element. Furthermore,
m(βµ̃)! contributes a mŨ (µ̃)! to the denominator for each block Ũ ∈ µ̃ consisting only
of barred elements. In total, this cancels the contribution of m(µ̃)!, so

aµ̃
m(µ̃)!

m(τ̃)!m(βµ̃)! = 1

Hence, φ is an isomorphism of algebras if the equality∑
σ∈Sb

|Γπ
σ.ν(µ̃)| = m(π̃+)m(ν̃−)

m(µ̃±)

∣∣∣Aπ
a,bB

ν
b,cY

π|[r̄]
b

∣∣∣
holds. The proof of this equality will be carried out in two lemmas. First, Lemma 8.8
will show that the set of σ such that |Γπ

σ.ν(µ̃)| ̸= 0 is given by a translation of the
product Aπ

a,bB
ν′

b,cY
π|[r̄]

b where κb,c(ν′) = κb,c(ν) so Bν′

b,c
∼= Bν

b,c. Finally, Lemma 8.11
will show that for each such σ,

|Γπ
σ.ν(µ̃)| = m+(π̃)m−(ν̃)

m±(µ̃) .

Because this quantity is independent of σ, the value of the sum is simply the prod-
uct of the quantity m+(π̃)m−(ν̃)

m±(µ̃) with the number of nonzero summands, given by∣∣∣Aπ
a,bB

ν′

b,cY
π|[r̄]

b

∣∣∣. □

To set the stage for the final two lemmas, we first need to investigate a particular
class of permutations in σ ∈ Sρ

b.

Lemma 8.6. Let π, ν ∈ Π2(r) such that π|[r̄] = ν̄|[r̄] = ρ and fix a, b, c ∈Wr,k. Then

{σ ∈ Sρ
b : κa,b,c(π ∗ σ.ν) = κa,b,c(π ∗ ν)} = Aπ

a,bB
ν
b,cY

ρ
b .

Proof. First, note that σ factors as σ = σXσY for σX ∈ Xρ
m and σY ∈ Y ρ

m. Because
σY .ν = ν for all ν, we need only determine which σX can be factored into a product
of an element of Aπ

a,b and an element of Bν
b,c.

One containment is straightforward. Suppose σX = σAσB with σA ∈ Aπ
a,b and

σB ∈ Bν
b,c. Consider a block in π ∗ ν. Although the bottom half of this block may be

different in π ∗ σB .ν, the condition that σB ∈ Bν
b,c guarantees that it is not different

in κa,b,c(π ∗ σB .ν). Hence, κa,b,c(π ∗ σB .ν) = κa,b,c(π ∗ ν) for any π ∈ Π2(r) with
π|[r̄] = ν̄|[r̄]. Analogously, we see that κa,b,c(π.σA

−1 ∗ ν) = κa,b,c(π ∗ ν) for any
ν ∈ Π2(r) with π|[r̄] = ν̄|[r̄]. Hence,

κa,b,c(π ∗ σAσB .ν) = κa,b,c(π.σA
−1 ∗ σB .ν)

= κa,b,c(π.σA
−1 ∗ ν)

= κa,b,c(π ∗ ν).

For the other containment, suppose that κa,b,c(π ∗ ν) = κa,b,c(π ∗ σX .ν) = µ̃. We use
the following convention for indexing the blocks of π ∗ ν. Write ρ = {M1 < · · · < Mℓ}
for the restrictions of the blocks of π ∗ ν to [r̄] in last-letter order, and write Si for
the block of π ∗ ν with Mi ⊆ Si. An element σ ∈ Xρ

m permutes the blocks of ρ and
hence the indices [ℓ]. For Si ∈ π ∗ ν, it will be helpful to write σ(Si) for the block in
π ∗ σ.ν such that Si|[r]∪[r̄] = σ(Si)|[r]∪[r̄]. Equivalently, σ(Si) is obtained by replacing
the bottom row Si|[¯̄r] with Sσ−1(i)|[¯̄r].

For a fixed σ ∈ Xρ
b and S̃ a multiset from [k] ∪

[
k̄
]
∪
[¯̄k], write

Wσ,S̃ = {i : κa,b,c(σ(Si)) = S̃}.
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For an example of these sets, see Example 8.7. The following two properties can
be observed in this example—we show that they hold in general.

1. For a fixed R̃ ∈ κa,b(π) such that R̃ ∩
[
k̄
]
̸= ∅,⊎

S̃∈µ̃

S̃|[k]∪[k̄]=R̃

W1,S̃ =
⊎

S̃∈µ̃

S̃|[k]∪[k̄]=R̃

WσX ,S̃ .

This follows just about immediately from the fact that σ(Si)|[r]∪[r̄] =
Si|[r]∪[r̄] for any σ ∈ Sρ

b. Furthermore,

⊎
S̃∈µ̃

S̃|[k]∪[k̄]=R̃

WσX ,S̃ =
{
i : κa,b,c(σX(Si))|[k]∪[k̄] = R̃

}

=
{
i : κa,b,c(Si)|[k]∪[k̄] = R̃

}
=

⊎
S̃∈µ̃

S̃|[k]∪[k̄]=R̃

W1,S̃ .

Note that the assumption that κa,b,c(π ∗ ν) = κa,b,c(π ∗ σX .ν) = µ̃ is
necessary here so that the unions on either side of the equality are over the
same set of S̃.

2. For a fixed S̃ ∈ µ̃ with S̃ ∩
[
k̄
]
̸= ∅,

|WσX ,S̃ | = |W1,S̃ |.

For σ ∈ Sρ
b and S̃ ∈ κa,b,c(π ∗ σ.ν) with S̃ ∩

[
k̄
]
̸= ∅, we have∣∣∣Wσ,S̃

∣∣∣ =
∣∣{i : κa,b,c(σ(Si)) = S̃

}∣∣
= mS̃(κa,b,c(π ∗ σ.ν)).

The statement then follows from the assumption that κa,b,c(π ∗ ν) =
κa,b,c(π ∗ σX .ν) = µ̃.

These two facts allow us to construct a permutation in the following way. Fix-
ing R̃ ∈ κa,b(π) such that R̃ ∩

[
k̄
]
̸= ∅, there exists a permutation ηR̃ of {i :

κa,b,c(Si)|[k]∪[k̄] = R̃} such that ηR̃(WσX ,S̃) = W1,S̃ for all S̃ with S̃|[k]∪[k̄] = R̃.
Because ηR̃ by definition permutes only blocks that restrict to the same block in
κa,b(π), we see ηR̃ is an element of Aπ

a,b. Now define η ∈ Aπ
a,b by

η :=
∏

R̃∈κa,b(π)
R̃∩[k̄]̸=∅

ηR̃

with the product taken in any order.
It remains only to show that ησX ∈ Bν

m,b. Fix i ∈ [ℓ] and let S̃ = κa,b,c(ησX(Si)).
Then,

S̃ = κa,b,c(ησX(Si))
= κa,b(Si|[r]∪[r̄]) ∪ κc(S(ησX )−1(i)).
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Then by the fact that η ∈ Aπ
a,b,

S̃ = κa,b(Sη−1(i)|[r]∪[r̄]) ∪ κc(SσX
−1(η−1(i)))

= κa,b,c(σX(Sη−1(i))).

Then η−1(i) ∈ WσX ,S̃ , so i ∈ η(WσX ,S̃) = W1,S̃ . Hence, S̃i = S̃ = κa,b,c(ησX(Si))
for each i and so ησX ∈ Bπ

t,m, meaning σX ∈ Aπ
t,mBν

m,b. Thus σ = σXσY ∈
Aπ

t,mBν
m,bY

ρ
m. □

Example 8.7. Here, we provide an example of the sets Wσ,S̃ defined in Lemma 8.6.
This definition relies on an (arbitrary) ordering of the blocks of π ∗ ν which contain a
barred element (i.e. touch the middle row in the diagram). In this example, we order
these blocks by their restriction to the middle row, and we label them as-such in the
following diagram.

π ∗ ν = 1 2 3 4 5 6 7 8 9

Letting σX = (1 2)(3 5 6), we similarly label the diagram for π ∗ σX .ν.

π ∗ σX .ν = 1 2 3 4 5 6 7 8 9

We can now read off the blocks S2 = {3, 4, 2̄, 4̄, ¯̄2, ¯̄3} and σX(S2) = {3, 4, 2̄, 4̄, ¯̄1} as
the blocks labeled two in the first and second diagram respectively. Now we apply the
above labels to the diagrams of κa,b,c(π ∗ ν) and κa,b,c(π ∗ σX .ν) where a = (7, 2, 2),
b = (2, 7, 2), and c = (2, 5, 4).

κa,b,c(π ∗ ν) = 1 2 3 4 5 6 7 8 9

κa,b,c(π ∗ σX .ν) = 1 2 3 4 5 6 7 8 9

Now we can read off that κa,b,c(σX(S2)) =
{{

1, 1, 1̄, 2̄, ¯̄1
}}

by looking at the block
labeled 2 in the above diagram.

Consider R̃ =
{{

1, 2̄
}}
∈ κa,b(π). There are two distinct blocks in κa,b,c(π ∗ ν) that

restrict to this R̃: S̃ =
{{

1, 2̄, ¯̄2, ¯̄2
}}

and S̃′ =
{{

1, 2̄, ¯̄3
}}

. The first corresponds to the
blocks labeled 3 and 4, while the second corresponds to just the block labeled 5. From
this, we can conclude the following:

W1,S̃ = {3, 4} W1,S̃′ = {5}
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Applying the same logic to κa,b,c(π ∗ ν) yields the following:

WσX ,S̃ = {4, 5} WσX ,S̃′ = {3}

Notice that the sets in each column have the same size and the union across rows
is always {3, 4, 5}.

Lemma 8.8. Fix π, ν ∈ Π2(r) such that π|[r̄] = ν̄[r̄] = ρ and a, b, c ∈ Wr,k. Let
µ̃ ∈ Γ̃κa,b(π)

κb,c(ν) . The set of σ ∈ Sm for which there exists a γ ∈ Γπ
σ.ν(µ̃) is given by

Aπ
a,bB

σ0.ν
b,c Y ρ

b σ0

for some σ0 ∈ Sb.

Proof. Let π, ν ∈ Π2(r). If there exists γ ∈ Γπ
ν (µ̃), then

break(µ̃) = κa,b,c(π ∗ ν).

Conversely if break(µ̃) = κa,b,c(π ∗ ν) we can construct a γ ∈ Γπ
ν (µ̃) as follows. For

each block of µ̃ broken into T̃ in the top and B̃ in the bottom, find blocks T and
B in π and ν for which κa,b(T ) = T̃ and κb,c(B) = B̃ and connect these blocks in
π ∗ ν. After connecting such a pair for each block broken in µ, we have constructed
the desired γ (see Example 8.9).

Hence, we are looking for the set of σ ∈ Sb for which κa,b,c(π ∗ σ.ν) = break(µ̃).
Note that π ∗σ.ν only makes sense when σ.ν|[r] = ρ, so we need only consider σ ∈ Sρ

b.
Choose σ0 so that break(µ̃) = κa,b,c(π∗σ0.ν) and write ν′ = σ0.ν. Then the desired

set of σ is precisely the permutations σ ∈ Sρ
m such that

κa,b,c(π ∗ (σσ−1
0 ).ν′) = κa,b,c(π ∗ ν′).

Lemma 8.6 tells us that this set is precisely those σ where

σσ0
−1 ∈ Aπ

t,mBν′

m,bY
ρ

m

as desired. □

Example 8.9. Here we have an example of a µ̃, π, and ν such that break(µ̃) =
κa,b,c(π ∗ ν). In the diagram of µ̃, we represent with dotted lines the connections
that must be severed to form break(µ̃). To form γ ∈ Γπ

ν (µ̃) we add the corresponding
connections to π ∗ ν, again represented by dotted lines in the diagram of γ.

µ̃ =

π ∗ ν =

γ =

Lemma 8.10. Let µ be a set partition of [m] and a ∈ Wm,ℓ such that the blocks of
κa(µ) = µ̃ are all sets. Then the number of set partitions γ of [m] such that κa(γ) = µ̃
is

a1! . . .aℓ!
m(µ̃)! .

Algebraic Combinatorics, Vol. 7 #4 (2024) 1257



A. N. Wilson

Proof. First, observe that

{γ : κa(γ) = µ̃} = Sa.µ.

By the orbit-stabilizer theorem (see [1, Proposition 6.8.4]), the size of this orbit is
the same as the number of cosets of the corresponding stabilizer Sµ

a. Because the
blocks of µ̃ are sets, no permutation of Sa swaps elements within a block of µ.
Hence, the permutations that fix µ are precisely the ones that swap whole blocks, so
|Sµ

a| = m(µ̃)!. The number of cosets is then obtained using Lagrange’s theorem as
the quotient of |Sa| by the size of this stabilizer. □

Lemma 8.11. Fix π, ν ∈ Π2(r) and suppose µ̃ ∈ Γ̃κa,b(π̃)
κb,c(ν̃) . If Γπ

ν (µ̃) ̸= ∅, then

|Γπ
ν (µ̃)| = m(π̃+)!m(ν̃−)!

m(µ̃±)! .

Proof. Let γ ∈ Γπ
ν (µ̃). Because γ differs from π ∗ ν by connecting some number of

blocks in the very top and very bottom, we can recover γ uniquely from the partial
matching of blocks of (π ∗ ν)± induced by γ±. The question then becomes how many
set partitions ρ on the blocks of (π ∗ ν)± there are such that κa,c(ρ) = µ̃±. Because
we are only connecting blocks on top to blocks on bottom, we can apply Lemma 8.10
where the ℓ colors are the different multisets that appear in µ̃±. The number is then

m(µ̃±|[k])!m(µ̃±|[¯̄k])!
m(µ̃±)! = m(π̃+)!m(ν−)!

m(µ̃±)!
where π̃ = κa,b(π) and ν̃ = κb,c(ν). □
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