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The Frobenius transform of a symmetric
function

Mitchell Lee

Abstract We define an abelian group homomorphism F , which we call the Frobenius trans-
form, from the ring of symmetric functions to the ring of the symmetric power series. The ma-
trix entries of F in the Schur basis are the restriction coefficients rµ

λ
= dim HomSn (Vµ, SλCn),

which are known to be nonnegative integers but have no known combinatorial interpretation.
The Frobenius transform satisfies the identity F{fg} = F{f}∗F{g}, where ∗ is the Kronecker
product.

We prove for all symmetric functions f that F{f} = FSur {f} · (1 + h1 + h2 + · · · ), where
FSur {f} is a symmetric function with the same degree and leading term as f . Then, we
compute the matrix entries of FSur in the complete homogeneous, elementary, and power sum
bases and of F −1

Sur in the complete homogeneous and elementary bases, giving combinatorial
interpretations of the coefficients where possible. In particular, the matrix entries of F −1

Sur in
the elementary basis count words with a constraint on their Lyndon factorization.

As an example application of our main results, we prove that rµ
λ

= 0 if |λ ∩ µ̂| < 2|µ̂| − |λ|,
where µ̂ is the partition formed by removing the first part of µ. We also prove that rµ

λ
= 0 if the

Young diagram of µ contains a square of side length greater than 2λ1−1, and this inequality is
tight.

1. Introduction
Let n ⩾ 0 and let λ be a partition with at most n parts. There is a corresponding
irreducible GLn(C)-module: the Schur module SλCn. Because the symmetric group
Sn embeds in GLn(C) by permutation matrices, one may ask: how does the restriction
of SλCn to Sn decompose into irreducible Sn-modules?

In other words, let λ and µ be partitions and let n = |µ|. What is the value of the
restriction coefficient

rµ
λ = dim HomSn

(Vµ,SλCn),
where Vµ is the Specht module corresponding to the partition µ? This problem, called
the restriction problem, has held considerable recent interest [2, 15, 14, 18, 20]. How-
ever, there remains no known combinatorial interpretation for rµ

λ .
Let Λ be the ring of symmetric functions in the variables x1, x2, x3, . . . and let Λ be

the ring of symmetric power series in x1, x2, x3, . . .. In this paper, we will consider the
abelian group homomorphism F : Λ→ Λ defined on the basis {sλ} of Schur functions
by

F{sλ} =
∑

µ

rµ
λsµ.
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Equivalently, F{sλ} is the result of applying the Frobenius character map to the rep-
resentation

⊕
n SλCn of

⊕
n C[Sn]. For this reason, we call F the Frobenius trans-

form. It encodes all information about all the restriction coefficients.
Section 3 will cover the basic properties of the Frobenius transform, many of which

are implicit in the work of Orellana and Zabrocki. For example, for any symmetric
functions f, g, we have F{fg} = F{f} ∗F{g}, where ∗ is the Kronecker product
of symmetric functions. Moreover, for any f ∈ Λ, there exists FSur {f} ∈ Λ with the
same degree and leading term as f such that F{f} = FSur {f} · (1 + h1 + h2 + · · · ).
We refer to the map FSur : Λ→ Λ as the surjective Frobenius transform. Because the
surjective Frobenius transform preserves degree and leading term, it has an inverse,
which we denote by F −1

Sur.
The induced trivial character basis {h̃λ}λ and the irreducible character basis {s̃λ}λ,

which were introduced by Orellana and Zabrocki [18] in 2021, can be defined in
terms of the inverse surjective Frobenius transform. Namely, h̃λ = F −1

Sur {hλ} and
s̃λ = F −1

Sur
{

(1 + h1 + h2 + · · · )⊥sλ

}
, where f⊥ : Λ→ Λ denotes the operator adjoint

under the Hall inner product to multiplication by f .
In Section 4, we will use the Frobenius transform to study stable restriction coef-

ficients; that is, the limits

aµ
λ = lim

n→∞
r

(n−|µ|,µ1,...,µℓ(µ))
λ ,

which exist for all λ, µ by a classical result of Littlewood [8]. In 2019, Assaf and
Speyer [2] found a formula for aµ

λ and for the entries bµ
λ of the inverse matrix [bµ

λ] =
[aµ

λ]−1. We will provide an alternative proof of these formulas using the Frobenius
transform. In Theorem 4.2, we will broadly summarize the known relationships be-
tween the five kinds of restriction coefficients considered in this paper.

In Section 5, we will prove the following theorem, which shows how to write
FSur : Λ→ Λ as a sum of operators of the form fg⊥.
Theorem 1.1. Let f be a symmetric function. Then

FSur {f} =
∑

λ

sλ(sλ[h2 + h3 + h4 + · · · ])⊥f,

where the sum is over all partitions λ.
Since Theorem 1.1 involves plethysm and there is no known simple formula for the

plethysm of Schur functions, it is not well-suited for general computation. We will,
however, use it to prove that many restriction coefficients rµ

λ and stable restriction
coefficients aµ

λ vanish.
Theorem 1.2. Let λ, µ be partitions. If rµ

λ > 0, then |λ ∩ µ̂| ⩾ 2|µ̂| − |λ|, where
µ̂ = (µ2, . . . , µℓ(µ)) is the partition formed by removing the first part of µ.

Theorem 1.3. Let λ, µ be partitions. If aµ
λ > 0, then |λ ∩ µ| ⩾ 2|µ| − |λ|.

In Section 6, we will compute FSur {f} when f is a complete homogeneous, elemen-
tary, or power sum symmetric function. We have FSur {en} = en and FSur {pn} =∑

d|n pd for n ⩾ 1. More generally, with N = {0, 1, 2, . . .}:

Theorem 1.4. Let λ be a partition and let ℓ = ℓ(λ) be its length.
(a) Then

FSur {hλ} =
∑
M

∏
j∈Nℓ

hM(j),

where the sum is over all functions M : Nℓ → N such that M(0, . . . , 0) = 0
and

∑
j∈Nℓ jiM(j) = λi for i = 1, . . . , ℓ.
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(b) Then

FSur {eλ} =
∑
M

∏
j∈{0,1}ℓ

{
hM(j) if j1 + · · ·+ jℓ is even;
eM(j) if j1 + · · ·+ jℓ is odd,

where the sum is over all functions M : {0, 1}ℓ → N such that M(0, . . . , 0) = 0
and

∑
j∈{0,1}ℓ jiM(j) = λi for i = 1, . . . , ℓ.

(c) Then

FSur {pλ} =
∑

π

∏
U∈π

 ∑
d|gcd{λi : i∈U}

d|U |−1pd

 ,

where the outer sum is over all partitions π of {1, . . . , ℓ} into nonempty sets.

A statement equivalent to parts (a) and (b) of this theorem has appeared previously
in the work of Orellana and Zabrocki [16, Equation (6)].

Theorem 1.4 has the following interesting consequence. For any partition µ, denote
by D(µ) the size of the Durfee square of µ; that is, D(µ) is the largest integer d such
that µd ⩾ d [1, Chapter 8].

Theorem 1.5. Let µ be a partition and let k ⩾ 1 be an integer. The following are
equivalent:

(A) There exists a partition λ such that λ1 ⩽ k and rµ
λ > 0.

(B) D(µ) ⩽ 2k−1.

In particular, rµ
λ = 0 if D(µ) > 2λ1−1.

Finally, in Section 7, we will compute F −1
Sur {eλ} and F −1

Sur {hλ} (Theorem 7.7). In
particular, we will prove that

F −1
Sur {eλ} =

∑
µ

(−1)|λ|−|µ|Lµ
λeµ,

where Lµ
λ is a nonnegative integer with an explicit combinatorial interpretation in-

volving Lyndon words (Corollary 7.9).

2. Preliminaries
Apart from the definition of the restriction coefficients aµ

λ (Definition 2.2 below), all
the definitions in this section can be found in any standard reference on the theory
of symmetric functions such as [5], [12, Chapter I], or [21, Chapter 7].

Let Λ = ΛZ denote the ring of symmetric functions over Z in the variables
x1, x2, x3, . . .. For n ⩾ 0, let Λn denote the subgroup of Λ consisting of all symmetric
functions that are homogeneous of degree n. Let Λ denote the ring of symmetric formal
power series (that is, formal sums

∑
n fn, where each fn ∈ Λn). Let ⟨·, ·⟩ : Λ×Λ→ Z

denote the Hall inner product.
For any partition λ = (λ1, . . . , λℓ), define the length ℓ(λ) = ℓ and the size |λ| =

λ1 + · · · + λℓ. Let mi(λ) be the number of times the part i appears in λ, and
define zλ =

∏
i imi(λ)(mi(λ))!. Let λT denote the dual (i.e. transpose) of λ. Let

mλ, eλ, hλ, pλ, sλ ∈ Λ denote the monomial, elementary, homogeneous, power sum,
and Schur symmetric functions respectively. Let Vλ denote the corresponding Specht
module, which is an irreducible S|λ|-module. Let χλ denote the character of Vλ. Let Sλ

denote the corresponding Schur functor, which is an endofunctor of the category of
vector spaces over C.

For any partitions λ, µ, define the intersection λ ∩ µ by ℓ(λ ∩ µ) = min(ℓ(λ), ℓ(µ))
and (λ ∩ µ)i = min(λi, µi). That is, it is the partition whose Young diagram is the
intersection of the Young diagrams of λ and µ. Let us say that λ ⊆ µ if λ ∩ µ = λ.
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Let ω : Λ → Λ be the ring homomorphism given by ω(pk) = (−1)k−1pk. Recall
that ω is an involution and for all partitions λ, we have ω(hλ) = eλ and ω(sλ) = sλT .

The Lyndon symmetric function Ln is given by

Ln = 1
n

∑
d|n

µ(d)pn/d
d

for n ⩾ 1, where µ : {1, 2, 3, . . .} → {−1, 0, 1} is the Möbius function.
For all f ∈ Λ, the skewing operator f⊥ : Λ → Λ is the adjoint to multiplication

by f under the Hall inner product:
⟨g, f⊥h⟩ = ⟨fg, h⟩.

We say that a Schur function sλ appears in f ∈ Λ if ⟨sλ, f⟩ ̸= 0. We say that f is
Schur positive if ⟨sλ, f⟩ ⩾ 0 for all partitions λ.

Let Cn denote the space of all C-valued class functions on Sn. Let Rn denote the
additive group of all virtual characters on Sn. In other words, Rn is the subgroup
of Cn generated by the irreducible characters χλ. The nth Frobenius character map
is the map chn : Rn → Λn defined by

chn(χ) = 1
n!

∑
w∈Sn

χ(w)pc(w),

where c(w) denotes the cycle type of w. It is well-known that chn is an isomorphism
and that chn(χλ) = sλ for all λ with |λ| = n.

The Kronecker product is the unique bilinear operator ∗ : Λ × Λ → Λ satisfying
pλ ∗ pµ = δλµzλpλ for all λ, µ. It extends to a bilinear operator ∗ : Λ × Λ → Λ by
continuity. The Frobenius character map and the Kronecker product are related in
the following way: for any χ1, χ2 ∈ Rn, we have ch(χ1χ2) = ch(χ1) ∗ ch(χ2).

For any f, g ∈ Λ, let f [g] denote the plethysm of f by g. This is well-defined as
long as f ∈ Λ or g has no constant term.

Proposition 2.1 (Plethystic Addition Formula, [9, Section 3.2]). Let λ be a partition
and let f, g ∈ Λ. Then

sλ[f + g] =
∑

µ

sλ/µ[f ]sµ[g],

where the sum is over all partitions µ.

For a variable t, let

H(t) =
∑
n⩾0

hntn =
∏
i⩾1

1
1− xit

= exp

∑
k⩾1

pk

k
tk

 ∈ ΛJtK

E(t) =
∑
n⩾0

entn =
∏
i⩾1

(1 + xit) = exp

∑
k⩾1

pk

k
(−1)k−1tk

 ∈ ΛJtK.

It is clear that E(t) = 1
H(−t) . Let H = H(1) = 1 + h1 + h2 + · · · and H+ = h1 + h2 +

h3 + · · · = H − 1.
For any partitions λ, µ, ν, the Littlewood–Richardson coefficient cν

λµ is the Hall
inner product ⟨sν , sλsµ⟩. Define gλµν = ⟨sν , sλ ∗ sµ⟩.

Definition 2.2. Let λ, µ be partitions and let n = |µ|. Then, the Schur module SλCn

can be considered as an Sn-module, with Sn acting on Cn by permutation matrices.
The restriction coefficient

rµ
λ = dim HomSn

(Vµ,SλCn)
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is the multiplicity of the Specht module Vµ in SλCn.

3. The Frobenius transform: definition and basic properties
Recall from the introduction that it is a long-standing open problem to find a com-
binatorial interpretation of rµ

λ . As a potential way to approach this problem, we now
define the Frobenius transform, which is the primary object of study in this paper.

Definition 3.1. The Frobenius transform is the abelian group homomorphism
F : Λ→ Λ defined on the basis {sλ} by

F{sλ} =
∑

µ

rµ
λsµ,

where the sum is over all partitions µ.

Remark 3.2. By a classical result of Littlewood [8], we have
rµ

λ = ⟨sλ, sµ[H]⟩.
Hence, F is adjoint to plethysm by H under the Hall inner product.

Here is the reason for calling F the Frobenius transform. Let n ⩾ 0 and let λ be
any partition. Then SλCn, considered as an Sn-module, can be expressed as a direct
sum of Specht modules: ⊕

|µ|=n

rµ
λVµ = SλCn.

Taking the character of both sides and applying the Frobenius character map, we
obtain
(1)

∑
|µ|=n

rµ
λsµ = chn(χSλCn).

In other words, the degree n part of F{sλ} is equal to the Frobenius character
of SλCn.

Example 3.3. Let r ⩾ 0. We will compute F{er}. First, er = sλ, where λ = (1r).
Hence, for any n, the degree n part of F{er} is the Frobenius character of

SλCn = ∧rCn = IndSn

Sr×Sn−r
(V(1r) ⊗ V(n−r)),

considered as an Sn-module. Thus, it is equal to erhn−r [21, Proposition 7.18.2].
Taking the sum over all n yields F{er} = er ·H.

3.1. The Frobenius transform and representations of combinatorial cat-
egories. The purpose of this subsection is to provide an alternate perspective on the
Frobenius transform. This subsection is not essential to the proofs of our main results,
so the reader may skip it. For a more complete introduction to the representation the-
ory of categories, see Wiltshire-Gordon’s 2016 PhD thesis [22].

In what follows, let VectC be the category whose objects are vector spaces over C
and whose morphisms are linear transformations. (The ground field C can be replaced
by any algebraically closed field of characteristic 0.)

Definition 3.4. Let C be a category. A C-module (over the ground field C) is a
functor M [•] : C → VectC. The category of C-modules is the functor category ModC =
(VectC)C.

We say that a C-module M is finite-dimensional if M [U ] is finite-dimensional for
all U ∈ Ob(C).

If M and N are C-modules, we may form the direct sum M ⊕N by (M ⊕N)[U ] =
M [U ]⊕N [U ].
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Let Bij be the category whose objects are finite sets and whose morphisms are
bijections, and let M be a Bij-module. (Previous authors have referred to Bij-modules
as linear species or tensor species [7, 13].) For n ⩾ 0, denote by M [n] the vector space
M [[n]] = M [{1, . . . , n}], which is an Sn-module. Then M is uniquely determined,
up to natural isomorphism, by the sequence M [0], M [1], M [2], . . . of symmetric group
modules; namely,

(2) M [U ] = CBij([n], U)⊗Sn M [n]

for all finite sets U with |U | = n. Additionally, if M is finite-dimensional, then we
may form the series

ch(M) =
∑

n

chn(χM [n]) ∈ Λ,

which we call the Frobenius character of M . It also uniquely determines M up to
natural isomorphism.

Not every symmetric power series can be written in the form ch(M), where M
is a finite-dimensional Bij-module. (Every symmetric power series can be written
as the Frobenius character of a virtual Bij-module, but we will not define virtual
Bij-modules in this article.) However, it is still helpful to think of ch as a partial
correspondence between (isomorphism classes of) finite-dimensional Bij-modules and
symmetric power series. Many concepts from the theory of symmetric power series
have analogous concepts in the theory of Bij-modules. For example, in Definition 3.10
below, we will define the product M ·N of two Bij-modules M, N . Via the Frobenius
character, this is analogous to the product of symmetric power series in the sense that
ch(M ·N) = ch(M) ch(N) (Proposition 3.11).

In what follows, we will find the construction in the theory of Bij-modules which is
analogous to the Frobenius transform. More precisely, let M be a Bij-module such that
Mn = 0 for all but finitely many n. Then ch(M) is in fact a symmetric function, so its
Frobenius transform F{ch(M)} is well-defined. We will construct a Bij-module whose
Frobenius character is F{ch(M)}. Before we do, we need the following definitions.

Definition 3.5 ([22, Definition 2.6.1]). Let F : C → D be a functor. The pullback
functor F ∗ : ModD → ModC is given by F ∗M = M ◦ F .

Definition 3.6 ([22, Proposition 2.6.2]). Let F : C → D be a functor. The left Kan
extension functor F! : ModC → ModD is the left adjoint to the pullback F ∗, if it exists:

HomModD (F!M, N) = HomModC (M, F ∗N).

Let Fun be the category whose objects are finite sets and whose morphisms are
functions. Clearly, Bij is a subcategory of Fun; let ι : Bij → Fun be the inclusion
functor.

Proposition 3.7. The left Kan extension functor ι! : ModBij → ModFun exists. More-
over, for every Bij-module M , the left Kan extension ι!M is given on finite sets U
by

(ι!M)[U ] =
⊕
n
CUn ⊗Sn M [n].

Here CUn ⊗Sn
M [n] denotes the quotient of the tensor product CUn ⊗M [n] by the

relation that a⊗ wb ∼ aw ⊗ b for all a ∈ CUn, b ∈Mn, and w ∈ Sn.

Proof. This follows from [22, Proposition 2.6.7]. □

Remark 3.8. Joyal refers to ι!M : Fun→ VectC as the analytic functor corresponding
to the tensor species M [7, Definition 4.2].
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We are now ready to show that ι∗ι! is the construction analogous to the Frobenius
transform.

Proposition 3.9. Let M be a finite-dimensional Bij-module such that M [n] = 0 for
all but finitely many n. Then ι∗ι!M is finite-dimensional and F{ch(M)} = ch(ι∗ι!M).

Proof. For any partition λ, define the Bij-module Mλ by

(Mλ)[n] =
{

Vλ if n = |λ|;
0 otherwise,

extending to all of Bij using (2).
We have that M can be written as a direct sum of the Mλ. Since ι∗ and ι! preserve

direct sums, it is enough to prove the proposition for M = Mλ. In this case, ch(M) =
chn(χλ) = sλ.

On the other hand, by Proposition 3.7, we have for m ⩾ 0 that

(ι∗ι!M)[m] =
⊕
n
C[m]n ⊗Sn

M [n]

=
⊕
n

(Cm)⊗n ⊗Sn M [n]

= (Cm)⊗|λ| ⊗S|λ| Vλ.

By Schur-Weyl duality, this is isomorphic as a GLm-module to SλCm. Hence, as a
Sm-module, it decomposes into irreducibles as

(ι∗ι!M)[m] =
⊕

|µ|=m

rµ
λVµ.

It follows that
ch(ι∗ι!M) =

∑
µ

rµ
λsµ = F{sλ} = F{ch(M)}

as desired. □

We will occasionally make use of the following definition in later remarks.

Definition 3.10 ([7, Section 4.1]). Let M, N be Bij-modules. Define the product M ·N
to be the Bij-module given by

(M ·N)[U ] =
⊕

U1∪U2=U
U1∩U2=∅

M [U1]⊗N [U2].

Proposition 3.11 ([13, Proposition 2.1]). Let M , N be finite-dimensional Bij-
modules. Then

ch(M ·N) = ch(M) ch(N).

3.2. The Frobenius transform and evaluation at roots of unity. Let us
now describe the expansion of F{sλ} in the power sum basis. In order to simplify
the description, we will do it one degree at a time. In this subsection, we will write
fn to mean the degree n part of f .

By (1), we have

(3) (F{sλ})n = chn(χSλCn) = 1
n!

∑
w∈Sn

χSλCn(w)pc(w).

It is well-known [5, Section 8.3] that the character of SλCn as a GLn-module is the
Schur function sλ itself. In other words, if g ∈ GLn(C) has eigenvalues x1, . . . , xn,
then χSλCn(g) is equal to the evaluation sλ(x1, . . . , xn).
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For w ∈ Sn, we have χSλCn(w) = sλ(x1, . . . , xn), where x1, . . . , xn are the eigen-
values of the permutation matrix Pw. Let µ = (µ1, . . . , µℓ) be the cycle type of w.
Then the eigenvalues of Pw are the roots of unity

1, exp
(

2πi

µ1

)
, exp

(
4πi

µ1

)
, . . . , exp

(
2(µ1 − 1)πi

µ1

)
,

...

1, exp
(

2πi

µℓ

)
, exp

(
4πi

µℓ

)
, . . . , exp

(
2(µℓ − 1)πi

µℓ

)
.

Following Orellana and Zabrocki [17, 18], let Ξµ ∈ Cn denote this sequence. We have
that χSλCn(w) is the result of evaluating sλ at these roots of unity:

χSλCn(w) = sλ (Ξµ) .

Now, let us group the terms on the right-hand side of (3) according to the cycle type
µ = c(w). The number of permutations w ∈ Sn with cycle type µ is n!

zµ
, so

(F{sλ})n = 1
n!

∑
w∈Sn

χSλCn(w)pc(w)

= 1
n!
∑

|µ|=n

n!
zµ

sλ(Ξµ)pµ

=
∑

|µ|=n

sλ(Ξµ)pµ

zµ
.

Taking the sum over all n, we obtain

F{sλ} =
∑

µ

sλ(Ξµ)pµ

zµ
.

Finally, by linearity, we may extend this result to any f ∈ Λ. We have proved the
following.

Proposition 3.12. Let f ∈ Λ. Then

F{f} =
∑

µ

f(Ξµ)pµ

zµ
.

In the notation of Orellana and Zabrocki [17], this proposition can be written as
F{f} = ϕ0(f) + ϕ1(f) + ϕ2(f) + · · · .

3.3. The Frobenius transform and the Kronecker product. The Frobenius
transform relates the ordinary product of symmetric functions to the Kronecker prod-
uct in the following way.

Proposition 3.13 (cf. [17, Section 2.3]). Let f, g ∈ Λ. Then F{fg} = F{f}∗F{g}.

We provide two different proofs of Proposition 3.13: a category-theoretic proof
using Proposition 3.9 and a direct computational proof using Proposition 3.12.

First proof. Because both sides of the desired equation are bilinear, we may assume
that there exist Bij-modules M, N such that ch(M) = f and ch(N) = g. By Propo-
sition 3.11, we have ch(M ·N) = ch(M) ch(N) = fg, where M ·N is the product as
defined in Definition 3.10.

By [7, Equation 2.1(ii)], we have ι∗ι!(M · N) = (ι∗ι!M) ⊗C (ι∗ι!N), where ⊗C
denotes the object-wise tensor product of Bij-modules. Applying ch to both sides, we
obtain F{fg} = F{f} ∗F{g}, as desired. □
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Second proof. By Proposition 3.12, we have

F{f} ∗F{g} =
(∑

µ

f(Ξµ)pµ

zµ

)
∗

(∑
µ

g(Ξµ)pµ

zµ

)
=
∑

µ

f(Ξµ)g(Ξµ)pµ

zµ

= F{fg}
as desired. □

Corollary 3.14. Let λ, µ, ν be partitions. Then∑
ν′

rν
ν′cν′

λµ =
∑
λ′,µ′

rλ′

λ rµ′

µ gλ′µ′ν .

Proof. In Proposition 3.13, take f = sλ and g = sµ. Then take the Hall inner product
of both sides with sν . □

3.4. The surjective Frobenius transform.

Proposition 3.15. Let f ∈ Λ. Then there exists a symmetric function FSur {f} ∈ Λ
such that F{f} = FSur {f} ·H. Moreover, FSur {f} has the same degree and leading
term as f .

For example, in Example 3.3 we showed that F{er} = er ·H. Thus, FSur {er} =
er. (Note, however, that in general, FSur does not preserve the property of being
homogeneous.) Again, we provide two separate proofs of this proposition: a category-
theoretic proof and a direct computational proof.

First proof. Because both sides of the desired equation are linear in f , we may assume
that there exists a Bij-module M such that ch(M) = f .

Let Sur be the category whose objects are finite sets and whose morphisms are
surjections, and let κ : Bij→ Sur be the inclusion functor. Let κ! : ModBij → ModFun

be the left Kan extension functor along κ, which exists by [22, Proposition 2.6.7]. We
claim that the choice FSur {f} = ch(κ∗κ!M) satisfies the desired properties. For this,
we will show that there is a natural isomorphism
(4) ι∗ι!M = κ∗κ!M · CE,

where ι and · are defined as in Section 3.1 and CE is the Bij-module given by
(CE)[U ] = C for all finite sets U .

By Proposition 3.7, we have
(5) (ι∗ι!M)[U ] =

⊕
n
CUn ⊗Sn

M [n].

Think of Un as the set of all functions [n]→ U . By grouping those functions by their
image V , we may write Un as a disjoint union:

Un =
∑

V ⊆U

Sur([n], V ).

Substituting into (5), we obtain

(ι∗ι!M)[U ] =
⊕
n
C

∑
V ⊆U

Sur([n], V )

⊗Sn
M [n]

=
⊕
n

( ⊕
V ⊆U

CSur([n], V )
)
⊗Sn

M [n]
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=
⊕

V ⊆U

⊕
n
C Sur([n], V )⊗Sn

M [n]

=
⊕

V ⊆U

(κ∗κ!M)[V ]

where the last step follows from [22, Proposition 2.6.7]. Recognizing the latter as
(κ∗κ!M · CE)[U ], we have shown (4). Applying ch to both sides and using Proposi-
tion 3.9 and Proposition 3.11 yields F{f} = ch(κ∗κ!M) ·H.

It remains to show that ch(κ∗κ!M) has the same degree and leading term as f . For
this, we will prove that (κ∗κ!M)[m] and M [m] are isomorphic as Sm-modules for all
m ⩾ deg f . Consider the natural isomorphism

(κ∗κ!M)[U ] =
⊕
n
CSur([n], U)⊗Sn M [n]

with U = [m]. In each summand, the factor C Sur([n], [m]) vanishes when n < m and
the factor M [n] vanishes when n > deg f . If m ⩾ deg f , this means that every term
vanishes except possibly the term n = m. Hence,

(κ∗κ!M)[m] = C Sur([m], [m])⊗Sm
M [m]

= CSm ⊗Sm M [m]
= M [m]

as desired. □

Second proof. We claim that the choice

FSur {f} =
∑

µ

⟨f, sµ[H+]⟩sµ

satisfies the desired properties. In other words, we may take FSur to be the adjoint
to plethysm by H+ under the Hall inner product.

By Remark 3.2, we have

F{f} =
∑

λ

⟨f, sλ[H]⟩sλ

=
∑

λ

⟨f, sλ[H+ + 1]⟩sλ.

By the plethystic addition formula (Proposition 2.1), we have

F{f} =
∑
λ,µ

⟨f, sµ[H+]sλ/µ[1]⟩sλ.

We have

sλ/µ[1] = sλ/µ(1, 0, 0, . . .) =
{

1 if λ/µ is a horizontal strip;
0 otherwise,

so
F{f} =

∑
λ,µ

λ/µ h. strip

⟨f, sµ[H+]⟩sλ

=
∑

µ

⟨f, sµ[H+]⟩

 ∑
λ

λ/µ h. strip

sλ


=
∑

µ

⟨f, sµ[H+]⟩sµ ·H,
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where the last equality follows from the Pieri rule.
Now, the only thing left to show is that f has the same degree and leading term as∑

µ

⟨f, sµ[H+]⟩sµ.

This follows directly from the observation that if |µ| ⩾ deg f , then ⟨f, sµ[H+]⟩ =
⟨f, sµ⟩. □

We refer to FSur : Λ → Λ as the surjective Frobenius transform. Clearly, it is
invertible:

Corollary 3.16. There exists a two-sided inverse F −1
Sur : Λ→ Λ of FSur.

Proof. Define M : Λ→ Λ by M{f} = f −FSur {f}. By Proposition 3.15, we have
deg(M{f}) < deg f

for any f ∈ Λ ∖ {0}. Hence, Mk{f} = 0 for any k > deg f .
Define F −1

Sur : Λ→ Λ by
F −1

Sur {f} = f +M{f}+M2{f}+ · · · .

This is well-defined by the above, and it is easy to check that it is the two-sided
inverse of FSur. □

Like the ordinary Frobenius transform, the surjective Frobenius transform can be
described in terms of its matrix entries in the Schur basis.

Definition 3.17. Let λ, µ be partitions. Define the surjective restriction coefficient
tµ
λ = ⟨FSur {sλ} , sµ⟩

and define the inverse surjective restriction coefficient
uµ

λ = ⟨F −1
Sur {sλ} , sµ⟩.

By the above, we have tµ
λ = uµ

λ = δλµ for |µ| ⩾ |λ|.

4. Stable restriction
Define the stable restriction coefficients aµ

λ as follows. For any partition µ =
(µ1, . . . , µℓ) and any n ⩾ µ1 + |µ|, define µ(n) = (n − |µ|, µ1, . . . , µℓ). Then, for any
partitions λ, µ, the stable restriction coefficient aµ

λ is defined by the following limit,
which exists by a classical result of Littlewood [8]:

aµ
λ = lim

n→∞
rµ(n)

λ .

Littlewood also showed that aµ
λ = δλµ if |λ| ⩽ |µ|, so the infinite matrix [aµ

λ], with rows
and columns indexed by partitions in increasing order of size, is upper unitriangular.
In 2019, Assaf and Speyer [2] found the following formula for the entries bµ

λ of the
inverse matrix [bµ

λ] = [aµ
λ]−1:

Theorem 4.1 ([2, Theorem 2]). Let λ, µ be partitions. Then

bµ
λ = (−1)|λ|−|µ|⟨sλT , sµT [L1 + L2 + L3 + · · · ] ·H⟩.

In particular, (−1)|λ|−|µ|bµ
λ is a nonnegative integer.

In this section, we will provide an alternative proof of Theorem 4.1. In fact, we will
prove similar plethystic formulas for all five kinds of restriction coefficients defined so
far. These formulas have all been collected into Theorem 4.2 below.

Theorem 4.2. Let λ, µ be partitions with |λ| = m and |µ| = n.
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(a) The restriction coefficient rµ
λ is given by

rµ
λ = ⟨F{sλ}, sµ⟩

= ⟨sλ, sµ[H]⟩.

(b) The surjective restriction coefficient tµ
λ is given by

tµ
λ = ⟨FSur {sλ} , sµ⟩

= ⟨sλ, sµ[H+]⟩.

(c) The inverse surjective restriction coefficient uµ
λ is given by

uµ
λ = ⟨F −1

Sur {sλ} , sµ⟩
= ⟨sλ, sµ[ω(L1)− ω(L2) + ω(L3)− · · · ]⟩
= (−1)m−n⟨sλT , sµT [L1 + L2 + L3 + · · · ]⟩.

(d) The stable restriction coefficient aµ
λ is given by

aµ
λ = ⟨H⊥FSur {sλ} , sµ⟩

= ⟨FSur {sλ} , sµ ·H⟩
= ⟨sλ, (sµ ·H)[H+]⟩.

(e) The inverse stable restriction coefficient bµ
λ is given by

bµ
λ = ⟨F −1

Sur
{

(H⊥)−1sλ

}
, sµ⟩

= ⟨sλ, sµ[ω(L1)− ω(L2) + ω(L3)− · · · ] · (1− e1 + e2 − e3 + · · · )⟩
= (−1)m−n⟨sλT , sµT [L1 + L2 + L3 + · · · ] ·H⟩.

Before proving Theorem 4.2, we restate a basic result of plethystic calculus.

Lemma 4.3 (Negation Rule, [9, Theorem 6]). Let f ∈ Λ and g ∈ Λ. If f is homoge-
neous, then

f [−g] = (−1)deg f (ω(f))[g].

Proof of Theorem 4.2. (a) The first equality is true by definition. The second
follows from Remark 3.2.

(b) The first equality is true by definition. The second is demonstrated in the
second proof of Proposition 3.15.

(c) The first equality is true by definition.
For the second, Cadogan showed in 1971 that ω(L1)−ω(L2) + ω(L3)−· · ·

is the plethystic inverse of H+ [3]. In part (b), we showed that FSur is adjoint
to plethysm by H+. Hence, F −1

Sur is adjoint to plethysm by ω(L1)− ω(L2) +
ω(L3)− · · · , as desired.

For the third, by Lemma 4.3 and the associativity of plethysm, we have

⟨sλ, sµ[ω(L1)− ω(L2) + ω(L3)− · · · ]⟩
=⟨sλ, sµ[−(L1 + L2 + L3 + · · · )[−p1]]⟩
=⟨sλ, (sµ[−(L1 + L2 + L3 + · · · )])[−p1]⟩
=⟨sλ[−p1], sµ[−(L1 + L2 + L3 + · · · )]⟩
=⟨(−1)mω(sλ)[p1], (−1)nω(sµ)[L1 + L2 + L3 + · · · ]⟩
=(−1)m−n⟨sλT , sµT [L1 + L2 + L3 + · · · ]⟩

as desired.
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(d) By part (a), we have

(6) aµ
λ = lim

n→∞
⟨F{sλ}, sµ(n)⟩ = lim

n→∞
⟨FSur {sλ} ·H, sµ(n)⟩.

Now, we claim that for any f ∈ Λ, we have

(7) lim
n→∞

⟨f ·H, sµ(n)⟩ = ⟨f, sµ ·H⟩.

By linearity, it is enough to show (7) when f = sν for some partition ν. In
that case, by the Pieri rule,

lim
n→∞

⟨f ·H, sµ(n)⟩ = lim
n→∞

{
1 if µ(n)/ν is a horizontal strip;
0 otherwise.

For n sufficiently large, it is easy to see that µ(n)/ν is a horizontal strip if and
only if ν/µ is a horizontal strip. So the above limit is equal to{

1 if ν/µ is a horizontal strip;
0 otherwise,

which is just ⟨f, sµ · H⟩. Hence, (7) indeed holds. Substituting (7) into (6)
with f = FSur {sλ}, we obtain

aµ
λ = ⟨FSur {sλ} , sµ ·H⟩.

The result now follows from the fact that FSur is adjoint to plethysm by H+.
(e) Define the stable Frobenius transform A : Λ → Λ by A{f} = H⊥FSur {f}.

Part (d) implies that the matrix of A in the Schur basis is [aµ
λ]. Therefore,

the matrix of A−1 in the Schur basis is [bµ
λ]. This proves the first equality.

The second equality then follows from the fact that F −1
Sur is adjoint to

plethysm by ω(L1)− ω(L2) + ω(L3)− · · · .
For the third equality, we again use Lemma 4.3, together with the fact that

plethysm by −p1 is an isometry and a ring automorphism:

⟨sλ, sµ[ω(L1)− ω(L2) + ω(L3)− · · · ] · (1− e1 + e2 − e3 + · · · )⟩
=⟨sλ, sµ[−(L1 + L2 + L3 + · · · )][−p1] · (1− e1 + e2 − e3 + · · · )⟩
=⟨sλ[−p1], sµ[−(L1 + L2 + L3 + · · · )] · (1− e1 + e2 − e3 + · · · )[−p1]⟩
=⟨(−1)mω(sλ)[p1], (−1)nω(sµ)[L1 + L2 + L3 + · · · ] ·H⟩
=(−1)m−n⟨sλT , sµT [L1 + L2 + L3 + · · · ] ·H⟩,

as desired. □

5. An expansion of the Frobenius transform
In 1999, Zabrocki showed that every abelian group homomorphism from Λ to itself can
be written as a sum of operators of the form fg⊥ where f, g ∈ Λ [23, Corollary 4.11].
In this section, we will prove the following theorem, which shows how to write FSur
in this way.

Theorem 1.1. Let f be a symmetric function. Then

FSur {f} =
∑

λ

sλ(sλ[h2 + h3 + h4 + · · · ])⊥f,

where the sum is over all partitions λ.
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Remark 5.1. The symmetric power series sλ[h2 + h3 + h4 + · · · ] ∈ Λ appearing in
Theorem 1.1 contains only terms of degree at least 2|λ|. Hence, the degree of the
summand sλ(sλ[h2 + h3 + h4 + · · · ])⊥f is at most deg(f) − |λ|. In particular, it
vanishes if |λ| > deg(f), so the sum in Theorem 1.1 is finite.

Proof of Theorem 1.1. Let µ be an arbitrary partition. It suffices to show that

(8) ⟨sµ, FSur {f}⟩ =
〈

sµ,
∑

λ

sλ(sλ[h2 + h3 + h4 + · · · ])⊥f

〉
.

By Theorem 4.2(b) and Proposition 2.1, we have

⟨sµ, FSur {f}⟩ = ⟨sµ[H+], f⟩

=
〈∑

λ

sµ/λsλ[h2 + h3 + h4 + · · · ], f

〉

=
〈∑

λ

sλ[h2 + h3 + h4 + · · · ]s⊥
λ sµ, f

〉

=
〈

sµ,
∑

λ

sλ(sλ[h2 + h3 + h4 + · · · ])⊥f

〉
,

completing the proof of (8) and of the theorem. □

Now, we will use Theorem 4.2 and Theorem 1.1 to study the vanishing of the
surjective restriction coefficients tµ

λ, the restriction coefficients rµ
λ , and the restriction

coefficients aµ
λ.

Theorem 5.2. Let λ, µ be partitions. If tµ
λ > 0, then |λ ∩ µ| ⩾ 2|µ| − |λ|.

Proof. By the definition of the surjective restriction coefficients, the Schur function
sµ appears in FSur {sλ}. By Theorem 1.1, there exists a partition ν such that sµ

appears in
sν(sν [h2 + h3 + h4 + · · · ])⊥sλ.

Hence, there exists a partition ρ such that sρ appears in (sν [h2 + h3 + h4 + · · · ])⊥sλ

and sµ appears in sνsρ.
Since sρ appears in (sν [h2 + h3 + h4 + · · · ])⊥sλ, we have that ρ ⊆ λ and

(9) |ρ| ⩽ |λ| − 2|ν|.

Since sµ appears in sνsρ, we have that ρ ⊆ µ and

(10) |µ| = |ν|+ |ρ|.

Combining (9) and (10), we obtain |ρ| ⩾ 2|µ| − |λ|. Now, we have ρ ⊆ λ ∩ µ, so

|λ ∩ µ| ⩾ |ρ| ⩾ 2|µ| − |λ|,

as desired. □

Theorem 1.2. Let λ, µ be partitions. If rµ
λ > 0, then |λ ∩ µ̂| ⩾ 2|µ̂| − |λ|, where

µ̂ = (µ2, . . . , µℓ(µ)) is the partition formed by removing the first part of µ.

Proof. By the Pieri rule and the definition of FSur, we have

rµ
λ =

∑
ν

µ/ν is a horizontal strip

tν
λ.
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Hence, there exists a partition ν such that µ/ν is a horizontal strip and tν
λ > 0. By

Theorem 5.2, we have
|λ ∩ ν| ⩾ 2|ν| − |λ|.

Now, µ̂ ⊆ ν, so
|λ ∩ µ̂| ⩾ |λ ∩ ν| − (|ν| − |µ̂|)

⩾ (2|ν| − |λ|)− (|ν| − |µ̂|)
= (2|µ̂| − |λ|) + (|ν| − |µ̂|)
⩾ 2|µ̂| − |λ|,

as desired. □

Theorem 1.3. Let λ, µ be partitions. If aµ
λ > 0, then |λ ∩ µ| ⩾ 2|µ| − |λ|.

Proof. By the Pieri rule and Theorem 4.2(d), we have

aµ
λ =

∑
ν

ν/µ is a horizontal strip

tν
λ.

Hence, there exists a partition ν such that ν/µ is a horizontal strip and tµ
ν > 0. By

Theorem 5.2, we have
|λ ∩ ν| ⩾ 2|ν| − |λ|.

Now, µ ⊆ ν, so
|λ ∩ µ| ⩾ |λ ∩ ν| − (|ν| − |µ|)

⩾ (2|ν| − |λ|)− (|ν| − |µ|)
= (2|µ| − |λ|) + (|ν| − |µ|)
= 2|µ| − |λ|,

as desired. □

6. Computations of the surjective Frobenius transform
In this section, we will compute FSur {f} for various symmetric functions f . Recall
from the introduction:

Theorem 1.4. Let λ be a partition and let ℓ = ℓ(λ) be its length.
(a) Then

FSur {hλ} =
∑
M

∏
j∈Nℓ

hM(j),

where the sum is over all functions M : Nℓ → N such that M(0, . . . , 0) = 0
and

∑
j∈Nℓ jiM(j) = λi for i = 1, . . . , ℓ.

(b) Then

FSur {eλ} =
∑
M

∏
j∈{0,1}ℓ

{
hM(j) if j1 + · · ·+ jℓ is even;
eM(j) if j1 + · · ·+ jℓ is odd,

where the sum is over all functions M : {0, 1}ℓ → N such that M(0, . . . , 0) = 0
and

∑
j∈{0,1}ℓ jiM(j) = λi for i = 1, . . . , ℓ.

(c) Then

FSur {pλ} =
∑

π

∏
U∈π

 ∑
d|gcd{λi : i∈U}

d|U |−1pd

 ,

where the outer sum is over all partitions π of {1, . . . , ℓ} into nonempty sets.
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Example 6.1. Let us use Theorem 1.4(a) to compute FSur {h2,2}. First, we list all
the functions M : N2 → N such that M(0, 0) = 0 and

∑
j∈N2 jM(j) = (2, 2). There

are nine such functions M1, . . . , M9. Here are all of their nonzero values.(1)

M1(2, 2) = 1
M2(1, 1) = 2

M3(2, 1) = 1 M3(0, 1) = 1
M4(1, 2) = 1 M4(1, 0) = 1
M5(2, 0) = 1 M5(0, 2) = 1
M6(2, 0) = 1 M6(0, 1) = 2
M7(0, 2) = 1 M7(1, 0) = 2

M8(1, 1) = 1 M8(1, 0) = 1 M8(0, 1) = 1
M9(1, 0) = 2 M9(0, 1) = 2

Thus
FSur {h2,2} = h1︸︷︷︸

M1

+ h2︸︷︷︸
M2

+ h2
1︸︷︷︸

M3

+ h2
1︸︷︷︸

M4

+ h2
1︸︷︷︸

M5

+ h1h2︸︷︷︸
M6

+ h1h2︸︷︷︸
M7

+ h3
1︸︷︷︸

M8

+ h2
2︸︷︷︸

M9

= h1 + h2 + 3h1,1 + 2h2,1 + h1,1,1 + h2,2.

Example 6.2. Let us use Theorem 1.4(b) to compute FSur {e5,3}. First, we list all
the functions M : {0, 1}2 → N such that M(0, 0) = 0 and

∑
j∈{0,1}2 jM(j) = (5, 3).

There are four such functions M1, M2, M3, M4. Here are all of their nonzero values.
M1(1, 0) = 5 M1(0, 1) = 3

M2(1, 1) = 1 M2(1, 0) = 4 M2(0, 1) = 2
M3(1, 1) = 2 M3(1, 0) = 3 M3(0, 1) = 1

M4(1, 1) = 3 M4(1, 0) = 2
Thus

FSur {e5,3} = e5e3︸︷︷︸
M1

+ h1e4e2︸ ︷︷ ︸
M2

+ h2e3e1︸ ︷︷ ︸
M3

+ h3e2︸︷︷︸
M4

.

Example 6.3. Let us use Theorem 1.4(c) to compute FSur {p15,10,6}. Take λ =
(15, 10, 6) and ℓ = 3. There are five partitions of [ℓ] into nonempty sets: {{1, 2, 3}},
{{1, 2}, {3}}, {{1, 3}, {2}}, {{2, 3}, {1}}, and {{1}, {2}, {3}}. Thus,

FSur {pλ} =

 ∑
d|gcd(λ1,λ2,λ3)

d2pd


+

 ∑
d|gcd(λ1,λ2)

dpd

∑
d|λ3

pd


+

 ∑
d|gcd(λ1,λ3)

dpd

∑
d|λ2

pd


(1)For readers who are familiar with the language of multisets and multiset partitions [18], it can

be helpful to remember that such functions M are in bijection with multiset partitions of {{1, 1, 2, 2}}.
The multiset partition corresponding to the function M contains M(j) copies of {{1j1 , 2j2 }} for all
j ∈ N2. For example, the function M6 corresponds to the multiset partition {{{{1, 1}}, {{2}}, {{2}}}} ⊩
{{1, 1, 2, 2}}.
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+

 ∑
d|gcd(λ2,λ3)

dpd

∑
d|λ1

pd


+

∑
d|λ1

pd

∑
d|λ2

pd

∑
d|λ3

pd


= p1 + (p1 + 5p5)(p1 + p2 + p3 + p6)

+ (p1 + 3p3)(p1 + p2 + p5 + p10)
+ (p1 + 2p2)(p1 + p3 + p5 + p15)
+ (p1 + p3 + p5 + p15)(p1 + p2 + p5 + p10)(p1 + p2 + p3 + p6).

Proof of Theorem 1.4. (a) Let t1, . . . , tℓ be variables and let
f = H(t1) · · ·H(tℓ) ∈ ΛJt1, . . . , tℓK.

We will use Proposition 3.12 to compute
F{f} ∈ ΛJt1, . . . , tℓK.

For any partition µ, we have

f(Ξµ) =
ℓ∏

i=1
H(ti)(Ξµ)

=
ℓ∏

i=1

ℓ(µ)∏
j=1

µj−1∏
k=0

1
1− ti exp(2πik/µj)

=
ℓ∏

i=1

ℓ(µ)∏
j=1

1
1− t

µj

i

.

Hence, by Proposition 3.12, we have

F{f} =
∑

µ

 ℓ∏
i=1

ℓ(µ)∏
j=1

1
1− t

µj

i

 pµ

zµ
.

We may recognize the right-hand side as a product of exponentials, and then evaluate
the product as follows.

F{f} =
∏

k

exp
(

pk

k

ℓ∏
i=1

1
1− tk

i

)

=
∏

k

exp

pk

k

∑
j∈Nℓ

(tj1
1 · · · t

jℓ

ℓ )k


=
∏

j∈Nℓ

exp
(∑

k

pk

k
(tj1

1 · · · t
jℓ

ℓ )k

)
=
∏

j∈Nℓ

H(tj1
1 · · · t

jℓ

ℓ ).

Hence,

FSur {f} = F{f}
H

=
∏

j∈Nℓ∖{(0,...,0)}

H(tj1
1 · · · t

jℓ

ℓ ).

Finally, the result follows from taking the coefficient of tλ1
1 · · · t

λℓ

ℓ on both sides.
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(b) Let t1, . . . , tℓ be variables and let

f = E(t1) · · ·E(tℓ) ∈ ΛJt1, . . . , tℓK.

We will use Proposition 3.12 to compute

F{f} ∈ ΛJt1, . . . , tℓK.

For any partition µ, we have

f(Ξµ) =
ℓ∏

i=1
E(ti)(Ξµ)

=
ℓ∏

i=1

ℓ(µ)∏
j=1

µj−1∏
k=0

(1 + ti exp(2πik/µj))

=
ℓ∏

i=1

ℓ(µ)∏
j=1

(1− (−ti)µj ).

Hence, by Proposition 3.12, we have

F{f} =
∑

µ

 ℓ∏
i=1

ℓ(µ)∏
j=1

(1− (−ti))µj

 pµ

zµ
.

We may recognize the right-hand side as a product of exponentials, and then evaluate
the product as follows.

F{f} =
∏

k

exp
(

pk

k

ℓ∏
i=1

(1− (−ti)k)
)

=
∏

k

exp

pk

k

∑
j∈{0,1}ℓ

(−1)j1+···+jℓ((−t1)j1 · · · (−tℓ)jℓ)k


=

∏
j∈{0,1}ℓ

exp
(∑

k

pk

k
((−1)j1+···+jℓ)k−1(tj1

1 · · · t
jℓ

ℓ )k

)

=
∏

j∈{0,1}ℓ

{
H(tj1

1 · · · t
jℓ

ℓ ) if j1 + · · ·+ jℓ is even;
E(tj1

1 · · · t
jℓ

ℓ ) if j1 + · · ·+ jℓ is odd.

Hence,

FSur {f} = F{f}
H

=
∏

j∈{0,1}ℓ∖{(0,...,0)}

{
H(tj1

1 · · · t
jℓ

ℓ ) if j1 + · · ·+ jℓ is even;
E(tj1

1 · · · t
jℓ

ℓ ) if j1 + · · ·+ jℓ is odd.

Finally, the result follows from taking the coefficient of tλ1
1 · · · t

λℓ

ℓ on both sides.
(c) By Proposition 3.12, we have

(11) F{pλ} =
∑

µ

pλ(Ξµ)pµ

zµ
.

For all k, we have
pk(Ξµ) =

∑
d|k

dmd(µ),
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so (11) becomes

(12) F{pλ} =
∑

µ

ℓ∏
i=1

∑
d|λi

dmd(µ)

 pµ

zµ
.

Let us say that a function d : [ℓ]→ N is permissible if d(i) | λi for all i. The product on
the right-hand side of (12) can be expanded into a sum over all permissible functions:

F{pλ} =
∑

µ

∑
d permissible

(
ℓ∏

i=1
d(i)md(i)(µ)

)
pµ

zµ

=
∑

µ

∑
d permissible

(∏
d

(dmd(µ))|d−1(d)|

)
pµ

zµ
.(13)

For any k, let (x)k = x(x− 1) · · · (x− k + 1) denote the falling factorial. It is well-
known [6, Chapter 6.1] that for any n, the monomial xn can be written as a linear
combination

xn =
∑

k

{
n

k

}
(x)k

of falling factorials, where the coefficient
{

n
k

}
(a Stirling number of the second kind)

is the number of partitions of [n] into k nonempty sets. Let us use this to rewrite the
factor (md(µ))|d−1(d)| appearing in (13). We obtain

(14) F{pλ} =
∑

µ

∑
d permissible

(∏
d

d|d−1(d)|
∑

k

{
|d−1(d)|

k

}
(md(µ))k

)
pµ

zµ
.

Given a permissible function d : [ℓ]→ N and a partition π of [ℓ] into nonempty sets,
let us say that π is level with respect to d if d(i) = d(j) whenever i and j are in the
same part of π. If π is level with respect to d, we may define the function d̃ : π → N
by taking d̃(U) to be the common value of d(i) for i ∈ U .

Suppose that d is a fixed permissible function and {kd}d is any sequence. Then it
is easy to see that the product ∏

d

{
|d−1(d)|

kd

}
is equal to the number of set partitions π that are level with respect to U and which
satisfy |d̃−1(d)| = kd for all d. Using this fact, we may expand the product in (14)
into a sum over all functions that are level with respect to d:

F{pλ} =
∑

µ

∑
d permissible

∑
π level

(∏
d

d|d−1(d)|(md(µ))|d̃−1(d)|

)
pµ

zµ

We will simplify this expression by switching the order of summation so that the sum
over π is all the way on the outside. To do so, given a partition π of [ℓ] into nonempty
sets, we will now describe the set of all permissible functions d : [ℓ]→ N such that π

is level with respect to d. These are exactly the functions given by d(i) = d̃(U) for
all U ∈ π and i ∈ U , where d̃ : π → N is any function satisfying

d̃(U) | gcd{λi : i ∈ U}
for all U ∈ π. Let us call such functions π-permissible. Then

F{pλ} =
∑

π

∑
d̃ π-permissible

∑
µ

(∏
d

d|d−1(d)|(md(µ))|d̃−1(d)|

)
pµ

zµ
.

Algebraic Combinatorics, Vol. 7 #4 (2024) 949



Mitchell Lee

Now, let us evaluate the inner sum over µ. Expanding pµ and zµ gives

F{pλ} =
∑

π

∑
d̃ π-permissible

∑
µ

(∏
d

d|d−1(d)|(md(µ))|d̃−1(d)|
p

md(µ)
d

dmd(µ)(md(µ))!

)

=
∑

π

∑
d̃ π-permissible

∏
d

(
d|d−1(d)|

∞∑
m=0

(m)|d̃−1(d)|
pm

d

dmm!

)

=
∑

π

∑
d̃ π-permissible

∏
d

d|d−1(d)|
∞∑

m=|d̃−1(d)|

pm
d

dm(m− |d̃−1(d)|)!


=
∑

π

∑
d̃ π-permissible

∏
d

(
d|d−1(d)|

(pd

d

)|d̃−1(d)|
exp

(pd

d

))

=

∑
π

∑
d̃ π-permissible

∏
d

(
d|d−1(d)|

(pd

d

)|d̃−1(d)|
) ·H

=

∑
π

∑
d̃ π-permissible

∏
d

(
d|d−1(d)|−|d̃−1(d)| · p|d̃−1(d)|

d

) ·H.

We will rewrite the remaining product as a product over U ∈ π instead of over d ∈ N.
Each U ∈ π with d̃(U) = d contributes 1 to |d̃−1(d)| and contributes |U | to |d−1(d)|.
So we obtain

F{pλ} =

∑
π

∑
d̃ π-permissible

∏
U∈π

(d̃(U))|U |−1pd̃(U)

 ·H.

Given that d̃ is π-permissible, the possible values of d̃(U) are exactly those d ∈ N
that divide gcd{λi : i ∈ U}. The choice of d̃(U) can be made independently for each
U ∈ π. Hence, we may factor the innermost sum, which finally yields

F{pλ} =

∑
π

∏
U∈π

 ∑
d|gcd{λi : i∈U}

d|U |−1pd

 ·H.

The result follows from dividing both sides of this equation by H. □

Remark 6.4. Theorem 1.4(a) has an alternate, “purely combinatorial” proof. It in-
volves exhibiting a combinatorial species Eλ : Bij → Fun with ch(CEλ) = hλ, and
then computing ι∗ι!Eλ in terms of known combinatorial species. The details for this
proof are forthcoming in a separate paper.

Remark 6.5. One consequence of Theorem 1.4(c) which is not obvious a priori is
that the matrix entries of FSur in the power sum basis are all nonnegative integers.
The same is not true of F ; for example, F{1} = H = 1 + p1 + 1

2 (p2 + p2
1) + · · ·

certainly has some non-integer coefficients.

To illustrate the utility of Theorem 1.4, we now restate and prove Theorem 1.5
about the vanishing of restriction coefficients. Recall from the introduction that D(µ)
is the size of the Durfee square of µ; that is, the largest integer d such that µd ⩾ d.

Theorem 1.5. Let µ be a partition and let k ⩾ 1 be an integer. The following are
equivalent:
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(A) There exists a partition λ such that λ1 ⩽ k and rµ
λ > 0.

(B) D(µ) ⩽ 2k−1.

Before proceeding to the proof, we need a few lemmas.

Lemma 6.6. For any k ⩾ 0, we have
span{eλ : ℓ(λ) ⩽ k} = span{sλ : λ1 ⩽ k}.

(Here span S refers to the additive subgroup of Λ generated by a subset S ⊆ Λ.)

Proof. By the Pieri rule, every eλ with ℓ(λ) ⩽ k is a linear combination of Schur
functions sµ, where µ is the union of at most k vertical strips. Hence,

span{eλ : ℓ(λ) ⩽ k} ⊆ span{sλ : λ1 ⩽ k}.
By the dual Jacobi–Trudi identity, every sλ with λ1 ⩽ k can be written as the

determinant of a k × k matrix whose entries are elementary symmetric functions er.
Hence,

span{sλ : λ1 ⩽ k} ⊆ span{eλ : ℓ(λ) ⩽ k}.
The result follows. □

Lemma 6.7. Let λ be a partition and let d ⩾ 0. Then D(λ) ⩽ d if and only if there
exist partitions µ, ν with ℓ(µ), ℓ(ν) ⩽ d such that sλ appears in hµeν .

Proof. For the “only if” direction, assume that D(λ) ⩽ d. Take
µ = (λ1, . . . , λD(λ))
ν = (λT

1 −D(λ), . . . , λT
D(λ) −D(λ)).

Clearly ℓ(µ), ℓ(ν) ⩽ d. Also, the Young diagram of λ can be decomposed into a union
of horizontal strips of lengths µ1, . . . , µℓ(µ) and vertical strips of lengths ν1, . . . , νℓ(ν),
so sλ appears in hµeν by the Pieri rule.

For the “if” direction, it easily follows from induction on ℓ(ν) and the Pieri rule
that if sλ appears in hµeν , then λℓ(µ)+1 < ℓ(ν)+1 (where we take λi = 0 for i > ℓ(λ)).
Assuming that ℓ(µ), ℓ(ν) ⩽ d, we get λd+1 < d + 1, so D(λ) ⩽ d as desired. □

Proof of Theorem 1.5. First, observe that by multiplying both sides by H, Theo-
rem 1.4(b) can be written in the following form, using the Frobenius transform instead
of the surjective Frobenius transform. For any partition λ with ℓ(λ) ⩽ k, we have

(15) F{eλ} =
∑
M

∏
j∈{0,1}k

{
hM(j) if j1 + · · ·+ jℓ is even;
eM(j) if j1 + · · ·+ jℓ is odd,

where the sum is over all functions M : {0, 1}k → N such that
∑

j∈{0,1}k jiM(j) =
λi for i = 1, . . . , k (where we take λi = 0 for i > ℓ(λ)). We do not require that
M(0, . . . , 0) = 0, so the sum in (15) is infinite.

Consider the following statements:
(A) There exists a partition λ such that λ1 ⩽ k and rµ

λ > 0.
(C1) There exists a partition λ such that λ1 ⩽ k and ⟨F{sλ}, sµ⟩ ≠ 0.
(C2) There exists a partition λ such that ℓ(λ) ⩽ k and ⟨F{eλ}, sµ⟩ ≠ 0.
(C3) There exists a function M : {0, 1}k → N such that sµ appears in∏

j∈{0,1}k

{
hM(j) if j1 + · · ·+ jℓ is even;
eM(j) if j1 + · · ·+ jℓ is odd.

(C4) There exist partitions ν, ν′ such that ℓ(ν), ℓ(ν′) ⩽ 2k−1 and sµ appears
in hνeν′ .
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(B) D(µ) ⩽ 2k−1.
By the definition of the Frobenius transform, (A) is equivalent to (C1). By the linearity
of F and Lemma 6.6, (C1) is equivalent to (C2). Since each term of (15) is Schur
positive, sµ appears in the sum if and only if it appears in one or more of its terms,
so (C2) is equivalent to (C3). By taking the parts of ν to be the nonzero values of
M(j) for j1 + · · ·+ jℓ even and taking the parts of ν′ to be the nonzero values of M(j)
for j1 + · · · + jℓ odd, we see that (C3) is equivalent to (C4). By Lemma 6.7, (C4) is
equivalent to (B). Putting it all together, (A) is equivalent to (B), as desired. □

7. Computations of the inverse surjective Frobenius transform
We will now compute F −1

Sur {eλ} and F −1
Sur {hλ}. In order to state our formulas, first

we must recall some definitions from combinatorics on words. For a more complete
introduction, see [10, Chapter 5].

Definition 7.1. Let A be a set. A word over the alphabet A is a sequence w =
w1 · · ·wn with w1, . . . , wn ∈ A. Given a letter a ∈ A, we write ma(w) to denote the
number of times the letter a appears in w.

Definition 7.2 ([11]). Let A be a totally ordered set. We say that a nonempty word
w = w1 · · ·wn over the alphabet A is a Lyndon word if it is lexicographically less than
its suffix wi · · ·wn for i = 2, . . . , n. Let Lyndon(A) be the set of all Lyndon words
over the alphabet A.

Theorem 7.3 (Witt’s Formula [19]). Let ℓ > 0 and let t1, . . . , tℓ be variables. For any
word w = i1 · · · in over [ℓ], denote by tw the product

ti1 · · · tin
=

ℓ∏
i=1

t
mi(w)
i .

Then the evaluation (L1 + L2 + L3 + · · · )(t1, . . . , tℓ) is equal to∑
w∈Lyndon([ℓ])

tw.

Theorem 7.4 (Chen–Fox–Lyndon Theorem [4]). Let A be a totally ordered set. Any
word w over the alphabet A has a unique Lyndon factorization; that is, an expression
as a (lexicographically) non-increasing concatenation of Lyndon words.

Definition 7.5. Let w be a word over a totally ordered alphabet. Define π(w) to be
the partition obtained by listing the number of times each Lyndon word appears in
the Lyndon factorization of w, and then sorting the resulting positive numbers in
decreasing order.

Example 7.6. If A = {1, 2} and w = 21212121111, then the Lyndon factorization of w
is w = (2)(12)(12)(12)(1)(1)(1)(1). The Lyndon words appearing in this factorization
are 2, 12, and 1, which appear once, three times, and four times, respectively, so
π(w) = (4, 3, 1).

Now, we are ready to compute F −1
Sur {eλ} and F −1

Sur {hλ}. The cleanest way to state
our results is to use the series H(t) from Section 2.

Theorem 7.7. Let ℓ > 0 and let t1, . . . , tℓ be variables.
(a) For any word w = i1 · · · in over [ℓ], denote by tw the product

ti1 · · · tin =
ℓ∏

i=1
t
mi(w)
i .

Algebraic Combinatorics, Vol. 7 #4 (2024) 952



The Frobenius transform of a symmetric function

Then

F −1
Sur

{
1∏ℓ

i=1 H(ti)

}
= 1∏

w∈Lyndon([ℓ]) H(tw) .

(b) For any word w = (i1, j1) · · · (in, jn) over [ℓ]2 (ordered lexicographically), de-
note by tw the product

(ti1tj1) · · · (tintjn) =
ℓ∏

i,j=1
(titj)m(i,j)(w).

Then

F −1
Sur

{
ℓ∏

i=1
H(ti)

}
=
∏

w∈Lyndon([ℓ]) H(tw)∏
w∈Lyndon([ℓ]2) H(tw) .

Before we proceed to the proof of Theorem 7.7, we will prove some corollaries that
illustrate how to use it.

Corollary 7.8. For any r, we have

F −1
Sur {hr} =

⌊r/2⌋∑
k=0

(−1)khr−2kek.

Proof. Take ℓ = 1 in Theorem 7.7(b). In this case, 1 is the only Lyndon word over [1]
and (1, 1) is the only Lyndon word over [1]2. So, with t = t1,

F −1
Sur {H(t)} = H(t)

H(t2) = H(t)E(−t2).

The result follows from taking the coefficient of tr. □

Corollary 7.9. Let λ = (λ1, . . . , λℓ) be a sequence of nonnegative integers (not nec-
essarily weakly decreasing). Then

F −1
Sur {eλ} =

∑
w∈W

(−1)|λ|−|π(w)|eπ(w),

where W is the set of all words w over [ℓ] such that mi(w) = λi for all i ∈ [ℓ].

Proof. First, the right-hand side of Theorem 1.4(a) can be written

(16)
∏

w∈Lyndon(ℓ)

( ∞∑
r=0

(−1)rer(tw)r

)
=
∑

r

∏
w∈Lyndon(ℓ)

(−1)r(w)er(w)(tw)r(w)

where the sum is over all finitely supported functions r : Lyndon([ℓ]) → N. By the
Chen–Fox–Lyndon theorem (Theorem 7.4), there is a bijection

{words over [ℓ]} ←→
ϕ
{finitely supported functions Lyndon([ℓ])→ N},

where (ϕ(w))(w′) is the number of times that w′ appears in the Lyndon factorization
of w. Using this bijection, we can rewrite (16) as a sum over all words w over [ℓ]:

F −1
Sur

{
1∏ℓ

i=1 H(ti)

}
=
∑

w

(−1)|π(w)|eπ(w)t
w.

The result follows from taking the coefficient of tλ1
1 · · · t

λℓ

ℓ . □

Corollary 7.10. Let ℓ ⩾ 0. Then
F −1

Sur
{

eℓ
1
}

= e1(e1 − 1) · · · (e1 − ℓ + 1).
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Proof. Take λ = (1ℓ) in Corollary 7.9. Then W = Sℓ. Moreover, the Lyndon factor-
ization of any w ∈ Sℓ contains only distinct Lyndon words, one beginning with each
left-to-right minimum of w (that is, each letter wi such that wi < wj for all j < i).
So π(w) = (1k), where k is the number of left-to-right minima of w. It follows that

F −1
Sur
{

eℓ
1
}

=
∑

k

(−1)ℓ−k

[
ℓ

k

]
ek

1 ,

where
[

ℓ
k

]
(a Stirling number of the first kind) is the number of permutations w ∈

Sℓ with k left-to-right minima. This is well-known [6, Chapter 6.1] to be equal to
e1(e1 − 1) · · · (e1 − ℓ + 1). □

More generally, we have the following.

Corollary 7.11. Let λ = (λ1, . . . , λℓ) be a sequence of nonnegative integers (not
necessarily weakly decreasing) and let k ⩾ 0. For any word w over {0} ∪ [ℓ], write
p+(w) to denote the longest prefix of w that does not contain the letter 0. Then

F −1
Sur
{

eλek
1
}

=
(∑

w∈W

(−1)|λ|−|π(p+(w))|eπ(p+(w))

)
· e1(e1 − 1) · · · (e1 − k + 1),

where W is the set of all words w over {0}∪ [ℓ] such that m0(w) = k and mi(w) = λi

for all i ∈ [ℓ].

Proof. Let
λ′ = (1, . . . , 1︸ ︷︷ ︸

k

, λ1, . . . , λℓ)

and let W ′ be the set of all words w over [k+ℓ] such that mi(w) = λ′
i for all i ∈ [k+ℓ].

By Corollary 7.9, we have

(17) F −1
Sur
{

eλek
1
}

=
∑

w∈W ′

(−1)|λ|+k−|π(w)|eπ(w).

Now, define the function
ϕ : W ′ →W ×Sk

as follows. For any word w ∈ W ′, let ϕ1(w) ∈ W be the word formed from w by
replacing all the letters 1, . . . , k with 0 and replacing all copies of the letters k +
1, . . . , k + ℓ with 1, . . . , ℓ respectively. Let ϕ2(w) ∈ Sk be the word formed from w by
deleting all copies of the letters k + 1, . . . , k + ℓ. It is easy to see that ϕ = (ϕ1, ϕ2)
is a bijection. Moreover, for all w ∈ W ′, we have that π(w) is the concatenation
of π(p+(ϕ1(w))) and π(ϕ2(w)). Hence, we may factor (17):

F −1
Sur
{

eλek
1
}

=
(∑

w∈W

(−1)|λ|−|π(p+(w))|eπ(p+(w))

)( ∑
w∈Sk

(−1)k−|π(w)|e|π(w)|

)
.

As in the proof of Corollary 7.10, the second factor is equal to e1(e1−1) · · · (e1−k+1).
The result follows. □

Corollary 7.12. Let f ∈ Λ and k ⩾ 0. Then e1(e1 − 1) · · · (e1 − k + 1) divides f if
and only if ek

1 divides FSur {f}.

Proof. Let n = deg f . Let I be the set of all symmetric functions of degree at most n
that are divisible by e1(e1 − 1) · · · (e1 − k + 1) and let J be the set of all symmetric
functions of degree at most n that are divisible by ek

1 . Now, J is spanned by symmetric
functions of the form eλek

1 , where λ is a partition with |λ| ⩽ n−k. By Corollary 7.11,
we have F −1

Sur {J} ⊆ I. Since I and J have the same dimension (and Λ/J is torsion-
free), it follows that F −1

Sur {J} = I. Thus, FSur {I} = J . The result follows. □
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We are almost ready to prove Theorem 1.4. First, we will restate some lemmas
from Loehr and Remmel’s 2011 “exposé” on plethysm [9].

Lemma 7.13 ([9, Example 1]). There is a unique binary operation •[•] : Λ ×
ZJt1, · · · , tℓK→ ZJt1, · · · , tℓK satisfying the following properties.

(i) For any fixed g ∈ ZJt1, · · · , tℓK, the function •[g] : Λ→ ZJt1, · · · , tℓK is a ring
homomorphism.

(ii) For any fixed k > 0, the function pk[•] : ZJt1, · · · , tℓK→ ZJt1, · · · , tℓK is a ring
homomorphism which preserves summable infinite series.

(iii) For any k and i, we have pk[ti] = tk
i .

We refer to the operation from Lemma 7.13 as plethysm, because it is closely related
to the plethysm of symmetric functions •[•] : Λ×Λ→ Λ mentioned in Section 2. For
example, the two operations are related by a kind of associative property:

Lemma 7.14 (Associativity of Plethysm, [9, Theorem 5]). Let f, g ∈ Λ and h ∈
ZJt1, · · · , tℓK. Then

f [g[h]] = (f [g])[h] ∈ ZJt1, · · · , tℓK.

If g has positive integer coefficients, then the plethysm f [g] can be described as an
evaluation:

Lemma 7.15 (Monomial Substitution Rule, [9, Theorem 7]). Let f ∈ Λ and let
M1, M2, M3, . . . ∈ ZJt1, · · · , tℓK be a (finite or infinite) sequence of monic monomials.
Then

f

[∑
n

Mn

]
= f(M1, M2, M3, . . .),

where the right-hand side denotes the evaluation of f at M1, M2, M3, . . ..

In general, plethysm can be expressed as a Hall inner product:

Lemma 7.16. Let M1, M2, M3, . . . ∈ Z[t1, · · · , tℓ] be a (finite or infinite) sequence of
monic monomials and let a1, a2, a3, . . . ∈ Z be a sequence of the same length. Suppose
that the series

∑
n anMn is summable in ZJt1, · · · , tℓK. Then for any f ∈ Λ, we have

(18) f

[∑
n

anMn

]
=
〈

f,
∏
n

H(Mn)an

〉
.

Proof. Fix M1, M2, M3, . . . and let a1, a2, a3, . . . vary. Given any fixed monomial M ∈
Z[t1, . . . , tℓ], it is easy to see that the coefficient of M on either side of (18) is a
polynomial in a1, a2, a3, . . .. Hence, we may assume that an ⩾ 0 for all n. Then by
replacing each Mn with an copies of Mn, we may make the even stronger assumption
that an = 1 for all n. In other words, we wish to prove

(19) f

[∑
n

Mn

]
=
〈

f,
∏
n

H(Mn)
〉

.

By linearity, it suffices to show (19) in the case that f = mλ is a monomial sym-
metric function. Then, since ⟨mλ, hµ⟩ = δλµ, the right-hand side of the equation be-
comes mλ(M1, M2, M3, . . .). The result follows from the monomial substitution rule
(Lemma 7.15). □

Proof of Theorem 7.7. In what follows, let
L = L1 + L2 + L3 + · · · ∈ Λ

and
L̃ = ω(L1)− ω(L2) + ω(L3)− · · · ∈ Λ.
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(a) Let ω : Λ→ Λ be the involution given by
ω(f) = f [−p1] = (−1)deg f ω(f)

for all homogeneous f ∈ Λ. Clearly, ω is a ring automorphism and

ω(H(t)) = E(−t) = 1
H(t) .

We wish to show that

(20) (ω ◦F −1
Sur ◦ ω)

{
ℓ∏

i=1
H(ti)

}
=

∏
w∈Lyndon([ℓ])

H(tw).

To do so, let f ∈ Λ be arbitrary. It is sufficient to show that each side of (20) has
the same Hall inner product with f . By Theorem 4.2(c), ω ◦F −1

Sur ◦ ω is adjoint to
plethysm by L, so〈

f, (ω ◦F −1
Sur ◦ ω)

{
ℓ∏

i=1
H(ti)

}〉
=
〈

f [L],
ℓ∏

i=1
H(ti)

〉
= (f [L])[t1 + · · ·+ tℓ]
= f [L[t1 + · · ·+ tℓ]]
= f [L(t1, . . . , tℓ)]

= f

 ∑
w∈Lyndon([ℓ])

tw


=
〈

f,
∏

w∈Lyndon([ℓ])

H(tw)
〉

,

where we used Lemma 7.16, Lemma 7.14, Lemma 7.15, and Theorem 7.3. This com-
pletes the proof of (20) and of part (a) of the theorem.

(b) Again, let f ∈ Λ be arbitrary. It is sufficient to show that each side of the
equation has the same Hall inner product with f . By Theorem 4.2(c), F −1

Sur is adjoint
to plethysm by L̃, so〈

f, F −1
Sur

{
ℓ∏

i=1
H(ti)

}〉
=
〈

f [L̃],
ℓ∏

i=1
H(ti)

〉
= (f [L̃])[t1 + · · ·+ tℓ]
= f [L̃[t1 + · · ·+ tℓ]](21)

Now, let us describe the monomials that appear in the plethysm L̃[t1 + · · ·+ tℓ]. By
the definition of Lyndon symmetric functions, we have

L̃ =
∑

n

(−1)n−1ω(Ln)

=
∑

n

(−1)n−1

n

∑
d|n

µ(d)ω(pn/d
d )

=
∑

n

(−1)n−1

n

∑
d|n

µ(d)(−1)(d−1)n/dp
n/d
d

=
∑

n

1
n

∑
d|n

µ(d)(−1)n/d−1p
n/d
d .
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Now, the term (−1)n/d−1 is equal to −1 if d divides n
2 and 1 otherwise. Hence,

L̃ =
∑

n

1
n

∑
d|n

µ(d)pn/d
d − 2

∑
d| n

2

µ(d)pn/d
d


where the sum over d | n

2 is understood to be empty if n is odd. Splitting this into two
sums and then performing the change of variables n

2 → n in the second, we obtain

L̃ =
∑

n

1
n

∑
d|n

µ(d)pn/d
d −

∑
n

2
n

∑
d| n

2

µ(d)pn/d
d

=
∑

n

1
n

∑
d|n

µ(d)pn/d
d −

∑
n

1
n

∑
d|n

µ(d)p2n/d
d

= L− L[p2
1].

By Lemma 7.14 and Theorem 7.3,

L̃[t1 + · · ·+ tℓ] = L[t1 + · · ·+ tℓ]− (L[p2
1])[t1 + · · ·+ tℓ]

= L[t1 + · · ·+ tℓ]− L[p2
1[t1 + · · ·+ tℓ]]

= L[t1 + · · ·+ tℓ]− L[(t1 + · · ·+ tℓ)2]

=
∑

w∈Lyndon([ℓ])

tw −
∑

w∈Lyndon([ℓ]2)

tw.

Substituting into (21) and using Lemma 7.16 one last time, we finally obtain〈
f, F −1

Sur

{
ℓ∏

i=1
H(ti)

}〉
= f

 ∑
w∈Lyndon([ℓ])

tw −
∑

w∈Lyndon([ℓ]2)

tw


=
〈

f,

∏
w∈Lyndon([ℓ]) H(tw)∏
w∈Lyndon([ℓ]2) H(tw)

〉
,

completing the proof. □
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