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Ehrhart theory on periodic graphs

Takuya Inoue & Yusuke Nakamura

Abstract The purpose of this paper is to extend the scope of Ehrhart theory to periodic
graphs. We give sufficient conditions for the growth sequences of periodic graphs to be a quasi-
polynomial and to satisfy the reciprocity laws. Furthermore, we apply our theory to determine
the growth series in several new examples.

1. Introduction
In this paper, a graph Γ means a directed graph that may have loops and multiple
edges. We define an n-dimensional periodic graph (Γ, L) as a graph Γ on which a
free abelian group L of rank n acts freely and its quotient graph Γ/L is finite (see
Definition 2.2). For a vertex x0 of Γ, the growth sequence (sΓ,x0,i)i⩾0 (resp. cumulative
growth sequence (bΓ,x0,i)i⩾0) is defined as the number of vertices of Γ whose distance
from x0 is i (resp. at most i). The purpose of this paper is to discuss phenomena
similar to Ehrhart theory that appear in the growth sequences of periodic graphs.

Periodic graphs naturally appear in crystallography, and their growth sequences
have been studied intensively in this field. In crystallography, the growth sequence is
also referred to as the coordination sequence. For a periodic graph Γ corresponding to
a crystal, sΓ,x0,1 is nothing but the usual coordination number of the atom x0. The
coordination sequence is utilized in several crystal database entries (cf. [4]), and it
can be useful, for instance, in distinguishing between two allotropes that cannot be
distinguished by the coordination number.

In [13], Grosse-Kunstleve, Brunner and Sloane conjectured that the growth se-
quences of periodic graphs are of quasi-polynomial type, i.e., there exist an integer M
and a quasi-polynomial fs : Z → Z such that sΓ,x0,i = fs(i) holds for all i ⩾ M (see
Definition 2.16). In [19], the second author, Sakamoto, Mase, and Nakagawa prove
this conjecture to be true for any periodic graphs (Theorem 2.17). Although it was
proved to be of quasi-polynomial type, determining the quasi-polynomial in practice
is still difficult. Thus, the following natural question arises.

Question 1.1. Find an effective algorithm to determine the explicit formulae of the
growth sequences.
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So far, various computational methods have been established for several special
classes of periodic graphs. In [7], Conway and Sloane give growth sequences of the
contact graphs of some lattices from the viewpoint of Ehrhart theory (cf. [3, 2]).
In [12], Goodman-Strauss and Sloane propose “the coloring book approach” to obtain
the growth sequence for some periodic tilings. In [21, 22], Shutov and Maleev obtained
the growth sequences for tilings satisfying certain conditions that contain the 20 2-
uniform tilings. However, as far as we know, no algorithm that can be applied to
general periodic graphs has been proposed, even in dimension two.

The difficulty of Question 1.1 is due to the difficulty of determining M that ap-
pears in the definition of “quasi-polynomial type” above. Indeed, if this M can be
determined and a quasi-period of fs is known, then the explicit formula of (sΓ,x0,i)i

can be determined by its first few terms. In this paper, in the context of Ehrhart
theory, we focus on the category of graphs whose growth sequences are honest quasi-
polynomials (i.e. quasi-polynomials on i > 0). We note in advance that for these
graphs, the difficulty of Question 1.1 is avoided.

In Ehrhart theory, for a rational polytope Q ⊂ RN , it is proved that the function
hQ : Z⩾0 → Z⩾0; i 7→ #

(
iQ ∩ ZN

)
is a quasi-polynomial on i ⩾ 0. As we will discuss in Subsection 3.2, for a rational
polytope Q ⊂ RN with 0 ∈ Q, we can construct a periodic graph (ΓQ,ZN ) such that
its cumulative growth sequence bΓQ,0,i coincides with hQ(i). Therefore, we can say
that the study of the growth sequences of periodic graphs essentially contains the
Ehrhart theory of rational polytopes Q satisfying 0 ∈ Q. Since the cumulative growth
sequence (bΓQ,0,i)i is a quasi-polynomial on i ⩾ 0, the following natural question
arises.

Question 1.2. Find a reasonable class P of pairs (Γ, x0) that consist of a periodic
graph Γ and one of its vertices x0 such that

• P contains the class {(ΓQ, 0) | Q is a rational polytope with 0 ∈ Q}, and
• for any (Γ, x0) ∈ P, the sequence (bΓ,x0,i)i is an honest quasi-polynomial (i.e.

a quasi-polynomial on i ⩾ 0).

The word “reasonable” here means that P should be a class that can be described
in terms of graph theory. Note that, unlike the case of Ehrhart theory, the growth
sequences of periodic graphs in general are not necessarily quasi-polynomials, and
they may have finite exceptional terms (see Example 2.18). However, it has been
observed that for some highly symmetric periodic graphs, they are often honest quasi-
polynomials. The intention of this question is to describe the properties of such good
periodic graphs.

Another important topic of Ehrhart theory is the reciprocity law. When we think
of the function hQ as a quasi-polynomial and substitute a negative value for it, we
have hQ(−i) = (−1)dim Q#

(
i · relint(Q) ∩ ZN

)
for i > 0. In the growth sequences of

some n-dimensional periodic graphs, it has been observed that they sometimes satisfy
the equations
(♢) fb(−i) = (−1)nfb(i − 1), fs(−i) = (−1)n+1fs(i),
where fb and fs are the corresponding quasi-polynomials to the sequences (bΓ,x0,i)i

and (sΓ,x0,i)i (see [7, 21, 26]). These equations in (♢) are consistent with the reci-
procity laws of reflexive polytopes. Thus, the following natural question arises.

Question 1.3. Find a reasonable class P ′ of pairs (Γ, x0) such that
• P ′ contains the class {(ΓQ, 0) | Q is a reflexive polytope}, and
• for any (Γ, x0) ∈ P ′, its growth sequence satisfies the reciprocity laws (♢).
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The purpose of this paper is to give answers to Questions 1.2 and 1.3. First, we
introduce invariants C1(Γ, Φ, x0) ∈ R⩾0 and C2(Γ, Φ, x0) ∈ R⩾0 for (Γ, x0) and a
periodic realization Φ: Γ → LR := L ⊗Z R (i.e. a map preserving an L-action). These
invariants measure the deviation from the polytope approximation of dΓ, where dΓ
is the distance function of the graph Γ. Using these invariants, we can give sufficient
conditions for the cumulative growth sequence to be a quasi-polynomial and to satisfy
the reciprocity laws (♢).
Theorem 1.4 (= Theorem 3.4). Let (Γ, L) be a strongly connected n-dimensional
periodic graph, and let x0 be a vertex of Γ. Then, the following assertions hold.

(1) If a periodic realization Φ of (Γ, L) satisfies C1(Γ, Φ, x0) + C2(Γ, Φ, x0) < 1,
then the cumulative growth sequence (bΓ,x0,i)i is a quasi-polynomial on i ⩾ 0.

(2) If a periodic realization Φ of (Γ, L) satisfies both C1(Γ, Φ, x0) < 1
2 and

C2(Γ, Φ, x0) < 1
2 , then the reciprocity laws (♢) are satisfied.

Note that if Γ = ΓQ is a periodic graph obtained by a polytope Q with 0 ∈ Q, then
it follows that C1(Γ, Φ, x0) = 0 and C2(Γ, Φ, x0) < 1. Furthermore, if Γ = ΓQ is a
periodic graph obtained by a reflexive polytope Q, then it follows that C1(Γ, Φ, x0) =
C2(Γ, Φ, x0) = 0. Therefore, Theorem 1.4 is an answer to Questions 1.2 and 1.3. We
also note that Theorem 1.4 is a generalization of a result by Conway and Sloane [7],
where they only consider the contact graphs of lattices (see Remark 3.6 for more
detail).

Answers to Questions 1.2 and 1.3� �
Γ = ΓQ for a polytope Q with 0 ∈ Q

Lemma 3.10
��

Γ = ΓQ for a reflexive polytope Q

Lemma 3.10
��

C1 = 0, C2 < 1

��

C1 = C2 = 0

��
C1 + C2 < 1

Theorem 3.4
��

C1 < 1
2 , C2 < 1

2

Theorem 3.4
��

ks

(bΓ,x0,i)i is an honest q-polynomial. The reciprocity laws (♢).� �
For undirected periodic graphs, we can give a larger class that satisfies the reci-

procity laws (♢). In Subsection 4.2, we define a class of undirected periodic graphs
called “well-arranged”, and we prove that their growth sequences satisfy the reci-
procity laws (♢) (Theorem 4.9). We also introduce the notion of “P -initial” for a
vertex x0, and we see that a quasi-period of the growth sequence can be explicitly
given in this case (Theorem 4.2). The relationship with the invariants C1 and C2 can
be summarized in the following diagram:

Well-arranged graphs� �
Γ is undirected, C1 < 1

2 , C2 < 1
2 .

Proposition 4.8
��

C2 < 1

Lemma 2.26
��

(Γ, Φ, x0) is well-arranged.

Theorem 4.9
��

Lemma 4.7 +3 x0 is P -initial.

Theorem 4.2
��

• (bΓ,x0,i)i is an honest q-polynomial.
• The reciprocity laws (♢).

• a quasi-period of (bΓ,x0,i)i

can be explicitly given.� �
Algebraic Combinatorics, Vol. 7 #4 (2024) 971
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When (Γ, Φ, x0) is well-arranged, the growth sequence (sΓ,x0,i)i is a quasi-
polynomial on i ⩾ 1, and its quasi-period can be explicitly given. Therefore, it is
possible to determine the explicit formula of (sΓ,x0,i)i by computing the first few
terms of it. By this method, we compute the growth series in several new examples
in Section 5. As far as we know, this is the first time that the growth sequences have
been computed for nontrivial 3-dimensional periodic graphs. However, this method
is only applicable to well-arranged graphs, and answers to Question 1.1 for general
periodic graphs remain as future work.

The paper is organized as follows: in Section 2, we first summarize the notations of
graphs, and we define periodic graphs and their growth sequences. We then define an
important concept, the growth polytope, and use it to define the invariants C1 and C2.
In Section 3, we give sufficient conditions for the cumulative growth sequence to be a
quasi-polynomial type and to satisfy the reciprocity laws (Theorem 3.4). Furthermore,
in Subsection 3.2, we see that Theorem 3.4 can be seen as a generalization of the
usual Ehrhart theory for polytopes Q with 0 ∈ Q and for reflexive polytopes Q. In
Section 4, we treat a periodic graph (Γ, L) with a P -initial vertex x0. In this case,
we can calculate the invariant C2 (Proposition 4.4) and a quasi-period of the growth
sequence of Γ with the start point x0 (Theorem 4.2). Furthermore, we also introduce
a class of periodic graphs called “well-arranged”, and we prove that their growth
sequences satisfy the reciprocity laws (Theorem 4.9). In Section 5, for some specific
periodic graphs, we will see whether they are well-arranged and discuss their growth
series. Furthermore, as an application of Theorem 4.9, we determine the growth series
in several new examples (Subsections 5.2 and 5.3). In Appendix A, we summarize the
properties of the growth polytope necessary for the definition of the invariants C1
and C2. In Section B, we discuss a variant of Ehrhart theory (Theorem B.4), which is
necessary for the proof of Theorem 3.4. The difference from the usual Ehrhart theory
is that the center of the dilation need not be the origin, and the dilation factor may
be shifted by a constant.

2. Notation and Preliminaries
2.1. Notation. For a set X, #X denotes the cardinality of X, and 2X denotes the
power set of X.

For a finite subset S ⊂ Z>0, LCM(S) denotes the least common multiple of the
elements of S.

For a polytope P ⊂ RN , Facet(P ) denotes the set of facets of P , Face(P ) denotes
the set of faces of P , and V (P ) denotes the set of vertices of P . Note that both P
itself and the empty set ∅ are considered as faces of P .

For a subset C ⊂ RN , int(C) denotes the interior of C, and relint(C) denotes the
relative interior of C.

For a polytope P ⊂ RN of dimension d, a triangulation T of P means a finite
collection of d-simplices with the following two conditions:

• P =
⋃

∆∈T ∆.
• For any ∆1, ∆2 ∈ T , ∆1 ∩ ∆2 is a face of ∆1 and ∆2.

In this paper, monoids always mean commutative monoids. We refer the reader
to [6] and [19] for the terminology of monoid and its module theory.

Let M be a set equipped with a binary operation ∗. For u ∈ M and subsets
X, Y ⊂ M , we define subsets u ∗ X, X ∗ Y ⊂ M by

u ∗ X := {u ∗ x | x ∈ X}, X ∗ Y := {x ∗ y | (x, y) ∈ X × Y }.

2.2. Graphs and walks. In this paper, a graph means a directed weighted graph
which may have loops and multiple edges. A graph Γ = (VΓ, EΓ, sΓ, tΓ, wΓ) consists
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of the set VΓ of vertices, the set EΓ of edges, the source function sΓ : EΓ → VΓ, the
target function tΓ : EΓ → VΓ, and the (integer) weight function wΓ : EΓ → Z>0. We
often abbreviate sΓ, tΓ and wΓ to s, t and w when no confusion can arise.

Definition 2.1. Let Γ = (VΓ, EΓ, s, t, w) be a graph.
(1) Γ is called to be unweighted if w(e) = 1 holds for every e ∈ EΓ. Γ is called

to be undirected when there exists an involution EΓ → EΓ; e 7→ e′ such that
s(e) = t(e′), t(e) = s(e′) and w(e) = w(e′). Γ is called to be locally finite
when for all x ∈ VΓ, there are only finitely many edges e satisfying s(e) = x
and only finitely many edges e satisfying t(e) = x.

(2) A walk p in Γ is a sequence e1e2 · · · eℓ of edges ei of Γ satisfying t(ei) = s(ei+1)
for each i = 1, . . . , ℓ − 1. We define

s(p) := s(e1), t(p) := t(eℓ), w(p) :=
ℓ∑

i=1
w(ei), length(p) := ℓ.

Note that we have w(p) = length(p) if Γ is unweighted.
We say that “p is a walk from x to y” when x = s(p) and y = t(p). We

also define the support supp(p) ⊂ VΓ of p by
supp(p) := {s(e1), t(e1), t(e2), . . . , t(eℓ)} ⊂ VΓ.

By convention, each vertex v ∈ VΓ is also considered as a walk of length 0.
This is called the trivial walk at v and denoted by ∅v: i.e., we define

s(∅v) := v, t(∅v) := v, w(∅v) := 0, length(∅v) := 0, supp(∅v) := {v}.

(3) A path in Γ is a walk e1 · · · eℓ such that s(e1), t(e1), t(e2), . . . , t(eℓ) are distinct.
A walk of length 0 is considered as a path.

(4) A cycle in Γ is a walk e1 · · · eℓ with s(e1) = t(eℓ) such that t(e1), t(e2), . . . , t(eℓ)
are distinct. A walk of length 0 is not considered as a cycle. CycΓ denotes the
set of cycles in Γ.

(5) For x, y ∈ VΓ, dΓ(x, y) ∈ Z⩾0 ∪ {∞} denotes the smallest weight w(p) of
any walk p from x to y. By convention, we define dΓ(x, y) = ∞ when there
is no walk from x to y. A graph Γ is said to be strongly connected when
we have dΓ(x, y) < ∞ for all x, y ∈ VΓ. When Γ is undirected, we have
dΓ(x, y) = dΓ(y, x) for all x, y ∈ VΓ.

(6) C1(Γ,Z) denotes the group of 1-chains on Γ with coefficients in Z, i.e.,
C1(Γ,Z) is the free abelian group generated by EΓ. For a walk p = e1 · · · eℓ

in Γ, let ⟨p⟩ denote the 1-chain
∑ℓ

i=1 ei ∈ C1(Γ,Z). H1(Γ,Z) ⊂ C1(Γ,Z)
denotes the 1-st homology group, i.e., H1(Γ,Z) is a subgroup generated by ⟨p⟩
for p ∈ CycΓ. We refer the reader to [25] for more detail.

2.3. Periodic graphs.

Definition 2.2. Let n be a positive integer. An n-dimensional periodic graph (Γ, L) is
a graph Γ and a free abelian group L ≃ Zn of rank n with the following two conditions:

• L freely acts on both VΓ and EΓ, and their quotients VΓ/L and EΓ/L are
finite sets.

• This action preserves the edge relations, i.e., for any u ∈ L and e ∈ EΓ, we
have sΓ(u(e)) = u(sΓ(e)), tΓ(u(e)) = u(tΓ(e)) and wΓ(u(e)) = wΓ(e).

Then, L is called the period lattice of Γ. Note that Γ automatically becomes a locally
finite graph.

If (Γ, L) is an n-dimensional periodic graph, then the quotient graph Γ/L =
(VΓ/L, EΓ/L, sΓ/L, tΓ/L, wΓ/L) is defined by VΓ/L := VΓ/L, EΓ/L := EΓ/L, and the
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functions sΓ/L : EΓ/L → VΓ/L, tΓ/L : EΓ/L → VΓ/L, and wΓ/L : EΓ/L → Z>0
induced from sΓ, tΓ, and wΓ. Note that the functions sΓ/L, tΓ/L and wΓ/L are
well-defined due to the second condition in Definition 2.2.

Definition 2.3. Let (Γ, L) be an n-dimensional periodic graph.
(1) Since L is an abelian group, we use the additive notation: for u ∈ L, x ∈ VΓ,

e ∈ EΓ and a walk p = e1 · · · eℓ, u+x, u+e and u+p denote their translations
by u.

(2) For any x ∈ VΓ and e ∈ EΓ, let x ∈ VΓ/L and e ∈ EΓ/L denote their images in
VΓ/L = VΓ/L and EΓ/L = EΓ/L. For a walk p = e1 · · · eℓ in Γ, let p := e1 · · · eℓ

denote its image in Γ/L.
(3) When x, y ∈ VΓ satisfy x = y, there exists an element u ∈ L such that

u + x = y. Since the action is free, such u ∈ L uniquely exists and is denoted
by y − x.

(4) For a walk p in Γ with s(p) = t(p), we define

vec(p) := t(p) − s(p) ∈ L.

Definition 2.4. Let (Γ, L) be an n-dimensional periodic graph. We define LR :=
L ⊗Z R.

(1) A periodic realization Φ: VΓ → LR is a map satisfying Φ(u + x) = u + Φ(x)
for any u ∈ L and x ∈ VΓ. When we fix an injective periodic realization of
Φ: VΓ → LR, we sometimes identify VΓ with the subset of LR.

(2) Let Φ be a periodic realization of (Γ, L). For an edge e and a walk p in Γ, we
define

vecΦ(e) := Φ(t(e)) − Φ(s(e)) ∈ LR, vecΦ(p) := Φ(t(p)) − Φ(s(p)) ∈ LR.

It is easy to see that the value vecΦ(e) ∈ LR depends only on the class e ∈
EΓ/L, and therefore, the map

µΦ : EΓ/L → LR; e 7→ vecΦ(e)

is well-defined. It can be extended to a homomorphism

µΦ : C1(Γ/L,Z) → LR;
∑

aiei 7→
∑

aiµΦ(ei).

By construction, it satisfies µΦ(⟨p⟩) = vecΦ(p) for any walk p in Γ.

Remark 2.5.
(1) An injective periodic realization of (Γ, L) always exists. To see this fact, we

take any injective map VΓ/L → LR/L. It is possible because #(VΓ/L) < ∞.
Then, any injective map VΓ/L → LR/L lifts to an injective periodic realization
VΓ → LR.

(2) Even if a periodic realization Φ is not injective, the map VΓ → LR×VΓ/L; x 7→(
Φ(x), x

)
is always injective.

(3) In Definition 2.4(2), we have vecΦ(p) = vec(p) for any p with s(p) = t(p).

Example 2.6 (cf. [26], [19, Figure 3]). The Wakatsuki graph is an undirected un-
weighted graph Γ = (VΓ, EΓ, sΓ, tΓ) defined by

VΓ = {v0, v1, v2} × Z2, EΓ = {e0, e1, . . . , e9} × Z2,
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and
sΓ(e0, (x, y)) = sΓ(e1, (x, y)) = sΓ(e2, (x, y)) = sΓ(e3, (x, y)) = (v0, (x, y)),
sΓ(e4, (x, y)) = sΓ(e5, (x, y)) = sΓ(e6, (x, y)) = sΓ(e7, (x, y)) = (v1, (x, y)),

sΓ(e8, (x, y)) = sΓ(e9, (x, y)) = (v2, (x, y)),
tΓ(e0, (x, y)) = (v1, (x, y)), tΓ(e1, (x, y)) = (v1, (x − 1, y)),

tΓ(e2, (x, y)) = (v1, (x − 1, y − 1)), tΓ(e3, (x, y)) = (v2, (x, y)),
tΓ(e4, (x, y)) = (v0, (x, y)), tΓ(e5, (x, y)) = (v0, (x + 1, y)),

tΓ(e6, (x, y)) = (v0, (x + 1, y + 1)), tΓ(e7, (x, y)) = (v2, (x, y)),
tΓ(e8, (x, y)) = (v0, (x, y)), tΓ(e9, (x, y)) = (v1, (x, y))

for any (x, y) ∈ Z2. Then, Γ admits an action of L = Z2 by
(a, b) + (vi, (x, y)) := (vi, (x + a, y + b)),
(a, b) + (ej , (x, y)) := (ej , (x + a, y + b))

for each (a, b), (x, y) ∈ Z2, 0 ⩽ i ⩽ 2 and 0 ⩽ j ⩽ 9. By this action, (Γ, L) becomes a
2-dimensional periodic graph. A periodic realization Φ of (Γ, L) is defined by

Φ(v0, (x, y)) = (x, y), Φ(v1, (x, y)) =
(

x + 1
2 , y + 1

2

)
, Φ(v2, (x, y)) =

(
x + 1

2 , y

)
Let v′

i := (vi, (0, 0)) for each 0 ⩽ i ⩽ 2, and let e′
j := (ej , (0, 0)) for each 0 ⩽ j ⩽ 9.

Then, the realization and the quotient graph Γ/L can be illustrated as in Figures 1, 2
and 3.

Figure 1. The Wakatsuki graph Γ.

Lemma 2.7. Let (Γ, L) be an n-dimensional periodic graph. Let µΦ be the homomor-
phism defined in Definition 2.4(2). The restriction map µΦ|H1(Γ/L,Z) : H1(Γ/L,Z) →
LR is independent of the choice of the periodic realization Φ. Furthermore, its image
is contained in L.

Proof. Since H1(Γ/L,Z) is generated by ⟨q⟩ for q ∈ CycΓ/L, it is sufficient to show
that µΦ(⟨q⟩) ∈ L and that the value µΦ(⟨q⟩) is independent of the choice of Φ. Take
any walk p in Γ such that p = q. Since t(p) = s(p), we have

µΦ(⟨q⟩) = vecΦ(p) = Φ(t(p)) − Φ(s(p)) = t(p) − s(p) ∈ L,
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Figure 2. e′
0, . . . , e′

9. Figure 3. Γ/L.

and this is independent of the choice of Φ. □

Definition 2.8. Let (Γ, L) be an n-dimensional periodic graph. We denote by
µ : H1(Γ/L,Z) → L the restriction of µΦ in Definition 2.4(2) to H1(Γ/L,Z). Note
that this restriction map is well-defined by Lemma 2.7.

Remark 2.9. The homomorphism µ in Definition 2.8 coincides with µ defined in [25,
Section 6.1].

Example 2.10. In the Wakatsuki graph (see Example 2.6), the walks e′
5 e′

0 and e′
6 e′

3 e′
9

in Γ/L are examples of cycles, and we have

µ
(〈

e′
5 e′

0

〉)
= (1, 0), µ

(〈
e′

6 e′
3 e′

9

〉)
= (1, 1).

We finish this subsection with some observations on the decomposition and the
composition of walks.

Definition 2.11. Let (Γ, L) be an n-dimensional periodic graph. Let q0 be a path
in Γ/L, and let q1, . . . , qℓ ∈ CycΓ/L be cycles. The sequence (q0, q1, . . . , qℓ) is called
walkable if there exists a walk q′ in Γ/L such that ⟨q′⟩ =

∑ℓ
i=0⟨qi⟩.

Lemma 2.12. Let (Γ, L) be an n-dimensional periodic graph.
(1) For a walk q′ in Γ/L, there exists a walkable sequence (q0, q1, . . . , qℓ) such that

⟨q′⟩ =
∑ℓ

i=0⟨qi⟩.
(2) Let q0 be a path in Γ/L, and let q1, . . . , qℓ ∈ CycΓ/L be cycles. Then,

(q0, q1, . . . , qℓ) is walkable if and only if there exists a permutation σ :
{1, 2, . . . , ℓ} → {1, 2, . . . , ℓ} such that(

supp(q0) ∪
⋃

1⩽i⩽k

supp(qσ(i))
)

∩ supp(qσ(k+1)) ̸= ∅

holds for any 0 ⩽ k ⩽ ℓ − 1.

Proof. For any walk q′ in Γ/L, if q′ is not a path, then there exist a walk q′′ and a
cycle q1 in Γ/L such that ⟨q′⟩ = ⟨q′′⟩+⟨q1⟩. Therefore, the assertion (1) follows by the
induction on the length of q′. The assertion (2) also follows from the induction. □
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Remark 2.13.
(1) If q′ in Lemma 2.12(1) satisfies s(q′) = t(q′), then q0 must be a trivial path

(i.e., length(q0) = 0).
(2) If a walk q′ in Γ/L and a vertex x0 ∈ VΓ satisfy s(q′) = x0, then there exists

the unique walk p in Γ satisfying p = q′ and s(p) = x0 (we call such p the lift
of q′ with initial point x0). Therefore, for a walkable sequence (q0, q1, . . . , qℓ)
and a vertex x0 ∈ VΓ satisfying s(q0) = x0, there exists a walk p in Γ such
that s(p) = x0 and ⟨p⟩ =

∑ℓ
i=0⟨qi⟩. Conversely, for a walk p in Γ, applying

Lemma 2.12(1) to p, there exists a walkable sequence (q0, q1, . . . , qℓ) satisfying
⟨p⟩ =

∑ℓ
i=0⟨qi⟩.

(3) For a walk p in Γ and a walkable sequence (q0, q1, . . . , qℓ) satisfying ⟨p⟩ =∑ℓ
i=0⟨qi⟩, it follows that

w(p) =
ℓ∑

i=0
w(qi), length(p) =

ℓ∑
i=0

length(qi).

Furthermore, if we fix a periodic realization Φ, we also have

vecΦ(p) =
ℓ∑

i=0
µΦ(⟨qi⟩).

Example 2.14. In the Wakatsuki graph (see Example 2.6), we consider a walk p as
in Figure 4. Then, the image of p in the quotient graph Γ/L is given by

p = e′
3 e′

9 e′
5 e′

0 e′
6 e′

3 e′
9 e′

6 e′
1 e′

6 e′
3 e′

9,

Then, we have two decompositions

⟨p⟩ =
〈

e′
1

〉
+
〈

e′
5 e′

0

〉
+ 3

〈
e′

6 e′
3 e′

9

〉
,

⟨p⟩ =
〈

e′
3 e′

9

〉
+
〈

e′
5 e′

0

〉
+
〈

e′
6 e′

1

〉
+ 2

〈
e′

6 e′
3 e′

9

〉
.

Here, e′
1 and e′

3 e′
9 are paths in Γ/L, and e′

5 e′
0, e′

6 e′
3 e′

9, and e′
6 e′

1 are cycles in Γ/L.

Figure 4. The walk p.
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2.4. Growth sequences of periodic graphs. Let Γ be a locally finite graph, and
let x0 ∈ VΓ. For i ∈ Z⩾0, we define subsets BΓ,x0,i, SΓ,x0,i ⊂ VΓ by

BΓ,x0,i := {y ∈ VΓ | dΓ(x0, y) ⩽ i}, SΓ,x0,i := {y ∈ VΓ | dΓ(x0, y) = i}.

Let bΓ,x0,i := #BΓ,x0,i and sΓ,x0,i := #SΓ,x0,i denote their cardinalities. The sequence
(sΓ,x0,i)i is called the growth sequence of Γ with the start point x0. The sequence
(bΓ,x0,i)i is called the cumulative growth sequence.

The growth series GΓ,x0(t) is the generating function

GΓ,x0(t) :=
∑
i⩾0

sΓ,x0,it
i

of the growth sequence (sΓ,x0,i)i.

Remark 2.15. In crystallography, the growth sequence is called a coordination se-
quence (see [19]).

Definition 2.16 (cf. [24, Chapter 0]).
(1) A function f : Z → C is called a quasi-polynomial if there exist a positive

integer N and polynomials Q0, . . . , QN−1 ∈ C[x] such that f(n) = Qi(n) holds
for all n ∈ Z and i ∈ {0, . . . , N − 1} with n ≡ i (mod N). The polynomials
Q0, . . . , QN−1 are called the constituents of f .

(2) A function g : Z → C is called to be of quasi-polynomial type if there exists
a non-negative integer M ∈ Z⩾0 and a quasi-polynomial f such that g(n) =
f(n) holds for all n > M . The positive integer N is called a quasi-period of
g when f is of the form in (1). Note that the notion of quasi-period is not
unique. The minimum quasi-period is called the period of g. We say that the
function g is a quasi-polynomial on n ⩾ m if g(n) = f(n) holds for n ⩾ m.

The growth sequences of periodic graphs are known to be of quasi-polynomial type
(Theorem 2.17).

Theorem 2.17 ([19, Theorem 2.2]). Let (Γ, L) be a periodic graph, and let x0 ∈ VΓ.
Then, the functions b : i 7→ bΓ,x0,i and s : i 7→ sΓ,x0,i are of quasi-polynomial type. In
particular, its growth series is a rational function.

In [19], Theorem 2.17 is proved for unweighted periodic graphs, and the same proof
also works for weighted periodic graphs.

Example 2.18. One can show that the growth sequence of the Wakatsuki graph (see
Example 2.6) with the start point v′

0 is given by sΓ,v′
0,0 = 1 and

sΓ,v′
0,n =

{
9
2 n − 1 (n ≡ 0 mod 2)
9
2 n − 1

2 (n ≡ 1 mod 2)

for n ⩾ 1. The growth sequence is exactly the same when the start point is v′
1.

When the start point is v′
2, the growth sequence is given by sΓ,v′

2,0 = 1, sΓ,v′
2,1 = 2,

sΓ,v′
2,2 = 4 and

sΓ,v′
2,n =

{
3n (n ≡ 0 mod 2)
6n − 6 (n ≡ 1 mod 2)

for n ⩾ 3.

Algebraic Combinatorics, Vol. 7 #4 (2024) 978



Ehrhart theory on periodic graphs

2.5. Growth polytope (periodic graphs → polytopes). In this subsection,
we define the growth polytope PΓ ⊂ LR for a periodic graph (Γ, L). The concept of
a growth polytope has been defined and studied in various contexts [15, 16, 27, 10,
20, 11, 1]. This is helpful in understanding the asymptotic behavior of the growth
sequence via convex geometry (see Theorem A.2).

Definition 2.19. Let (Γ, L) be an n-dimensional periodic graph.
(1) We define the normalization map ν : CycΓ/L → LR := L ⊗Z R by

ν : CycΓ/L → LR; p 7→ µ(⟨p⟩)
w(p) .

We define the growth polytope

PΓ := conv
(
Im(ν) ∪ {0}

)
⊂ LR

as the convex hull of the set Im(ν) ∪ {0} ⊂ LR. Note that CycΓ/L is a finite
set. Furthermore, we have Im(ν) ⊂ LQ since w(p) ∈ Z>0 and µ(⟨p⟩) ∈ L (cf.
Definition 2.8). Therefore, PΓ is a rational polytope (i.e., PΓ is a polytope
whose vertices are on LQ := L ⊗Z Q). When Γ is strongly connected, we have
0 ∈ int(PΓ) by Lemma A.1.

(2) For a polytope Q ⊂ LR and y ∈ LR, we define

dQ(y) := inf{t ∈ R⩾0 | y ∈ tQ} ∈ R⩾0 ∪ {∞}.

When 0 ∈ int(Q), we have dQ(y) < ∞ for any y ∈ LR.
(3) For a periodic realization Φ: VΓ → LR, we define

dPΓ,Φ(x, y) := dPΓ

(
Φ(y) − Φ(x)

)
for x, y ∈ VΓ.

Remark 2.20. In this paper, we assume that the weight function w takes integer
values (see Subsection 2.2). This assumption is used for PΓ to be a rational polytope.

Next, we define the notation “a vertex is P -initial” as follows. As far as we know,
this concept was first considered by Shutov and Maleev in [21].

Definition 2.21. Let (Γ, L) be a periodic graph. A vertex y ∈ VΓ is called P -initial if
the following condition holds:

• For any vertex u ∈ V (PΓ) ∖ {0}, there exists a cycle pu ∈ CycΓ/L such that
ν(pu) = u and y ∈ supp(pu).

Example 2.22. For the Wakatsuki graph (see Example 2.6), Im(ν) can be illustrated
as in Figure 5. Here, the numbers written beside each point are the possible lengths
of the cycles that give that point. For example, the cycle q1 := e′

5 e′
0 gives a point

µ(⟨q1⟩)
w(q1) = 1

2 (1, 0). The cycle q2 := e′
6 e′

3 e′
9 gives a point µ(⟨q2⟩)

w(q2) = 1
3 (1, 1). In this case,

the growth polytope PΓ is a hexagon.
Furthermore, we can see that v′

0 and v′
1 are P -initial, but v′

2 is not. The six paths
from v′

0 in Figure 6 give the six vertices of PΓ, which shows that v′
0 is P -initial. On

the other hand, there are no paths from v′
2 to v′

2 + (0, 1) of length two. This causes
v′

2 not to be P -initial.

Lemma 2.23. Let (Γ, L) be a strongly connected periodic graph, and let x0 ∈ VΓ. Then
we have

dPΓ(y − x0) ⩽ dΓ(x0, y)
for any y ∈ VΓ satisfying y = x0.
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Figure 5. Im(ν). Figure 6. Paths giving V (PΓ).

Proof. Let p be a walk in Γ from x0 to y satisfying w(p) = dΓ(x0, y). By Lemma 2.12,
p decomposes to a walkable sequence (q0, q1, . . . , qℓ) with q0 = ∅x0 such that ⟨p⟩ =∑ℓ

i=1⟨qi⟩. Then, we have

y − x0 =
ℓ∑

i=1
µ(⟨qi⟩) ∈

ℓ∑
i=1

w(qi) · PΓ = w(p) · PΓ,

which proves the desired inequality. □

We define C1(Γ, Φ, x0) and C2(Γ, Φ, x0) as invariants that measure the difference
between dΓ and dPΓ,Φ.

Definition 2.24. Let (Γ, L) be a strongly connected periodic graph. Let Φ : VΓ → LR
be a periodic realization, and let x0 ∈ VΓ. Then, we define

C1(Γ, Φ, x0) := sup
y∈VΓ

(
dPΓ,Φ(x0, y) − dΓ(x0, y)

)
,

C2(Γ, Φ, x0) := sup
y∈VΓ

(
dΓ(x0, y) − dPΓ,Φ(x0, y)

)
.

By Theorem A.2, we have C1(Γ, Φ, x0) < ∞ and C2(Γ, Φ, x0) < ∞.

Remark 2.25. (1) By the proof of Theorem A.2, we have

C1(Γ, Φ, x0) = max
y∈B′

c−1

(
dPΓ,Φ(x0, y) − dΓ(x0, y)

)
,

where c := #(VΓ/L) and

B′
c−1 := {y ∈ VΓ | there exists a walk p from x0 to y with length(p) ⩽ c − 1}.

(2) It is not so easy to calculate C2(Γ, Φ, x0) in general. In Proposition 4.4, we
will discuss a way of the calculation of C2(Γ, Φ, x0) when x0 is P -initial.

Lemma 2.26. Let (Γ, L) be a strongly connected periodic graph. Let Φ : VΓ → LR be a
periodic realization, and let x0 ∈ VΓ.

(1) We have C1(Γ, Φ, x0) ⩾ 0 and C2(Γ, Φ, x0) ⩾ 0.
(2) Suppose #(VΓ/L) = 1. Then, any y ∈ VΓ is P -initial. Furthermore, we have

C1(Γ, Φ, x0) = 0.
(3) If C2(Γ, Φ, x0) < 1, then x0 is P -initial.
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Proof. (1) can be easily shown by setting y = x0 in the definition of C1(Γ, Φ, x0) and
C2(Γ, Φ, x0). The first assertion of (2) immediately follows from the definition of being
P -initial. The second assertion of (2) follows from Lemma 2.23.

We prove (3). Suppose C2(Γ, Φ, x0) < 1. Let u ∈ V (PΓ). We take d ∈ Z>0 such
that du ∈ L. Then, by Lemma 2.23, we have

dΓ(x0, du + x0) ⩾ dPΓ(du) = d ∈ Z>0.

Since C2(Γ, Φ, x0) < 1, we have dΓ(x0, du + x0) = d. Here, we have used the fact that
the weight function wΓ is defined to be integral. Therefore, there exists a walk p in
Γ from x0 to du + x0 such that w(p) = d. By Lemma 2.12(1), p decomposes to a
walkable sequence (q0, q1, . . . , qℓ) with q0 = ∅x0 such that ⟨p⟩ =

∑ℓ
i=1⟨qi⟩. Then, we

have ∑ℓ
i=1 µ(⟨qi⟩)∑ℓ
i=1 w(qi)

= µ(⟨p⟩)
d

= u ∈ V (PΓ).

Here,
∑ℓ

i=1
µ(⟨qi⟩)∑ℓ

i=1
w(qi)

is a convex combination of µ(⟨q1⟩)
w(q1) , . . . , µ(⟨qℓ⟩)

w(qℓ) ∈ PΓ. Since∑ℓ

i=1
µ(⟨qi⟩)∑ℓ

i=1
w(qi)

= u is a vertex of PΓ, we conclude that µ(⟨qi⟩)
w(qi) = u for any 1 ⩽ i ⩽ ℓ. By

Lemma 2.12(2), x0 ∈ supp(qi) holds for some 1 ⩽ i ⩽ ℓ. Therefore, we can conclude
that x0 is P -initial. □

3. Ehrhart theory on periodic graphs
In Subsection 3.1, we treat a class of periodic graphs for which Ehrhart theory can
be applied. More precisely, in Theorem 3.4(1)(2), we see that the cumulative growth
sequence (bΓ,x0,i)i is a quasi-polynomial on i ⩾ 0 if a periodic realization Φ satisfies
C1(Γ, Φ, x0) + C2(Γ, Φ, x0) < 1. Furthermore, in Theorem 3.4(3), we see that the
growth series has the same reciprocity law as the Ehrhart series of reflexive polytopes
if a periodic realization Φ satisfies both C1(Γ, Φ, x0) < 1

2 and C2(Γ, Φ, x0) < 1
2 .

Theorem 3.4 can be seen as a generalization of a result of Conway and Sloane [7], where
they treat the contact graphs of lattices (see Remark 3.6). In the proof of Theorem 3.4,
we essentially use a variant of Ehrhart theory that is proved in Appendix B.

In Subsection 3.2, we construct periodic graphs (ΓQ, L) from rational polytopes Q.
By this construction, Theorem 3.4 can be seen as a generalization of the Ehrhart
theory for polytopes Q with 0 ∈ Q.

3.1. Ehrhart graphs.

Definition 3.1. Let (Γ, L) be a strongly connected periodic graph, and let Φ : VΓ → LR
be a periodic realization. Let x0 ∈ VΓ and let α ∈ R. The triple (Γ, Φ, x0) is called to
be α-Ehrhart if we have

BΓ,x0,i = {y ∈ VΓ | dPΓ,Φ(x0, y) ⩽ i + α}

for all i ∈ Z⩾0.
This condition is equivalent to the condition that

dPΓ,Φ(x0, y) − α ⩽ dΓ(x0, y) < dPΓ,Φ(x0, y) + 1 − α

holds for all y ∈ VΓ.

Definition 3.2. Let (Γ, L) be a strongly connected n-dimensional periodic graph.
Let Φ : VΓ → LR be a periodic realization, and let x0 ∈ VΓ. We say that Φ is symmet-
ric with respect to x0 if #(Φ−1(y)) = #(Φ−1(y′)) holds for all y, y′ ∈ LR satisfying
y′ + y = 2Φ(x0).
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Remark 3.3. When #(VΓ/L) = 1, there exists an essentially unique periodic realiza-
tion Φ (unique up to translation), and this Φ is symmetric with respect to any vertex
x0 ∈ VΓ.

Theorem 3.4. Let (Γ, L) be a strongly connected n-dimensional periodic graph.
Let Φ: VΓ → LR be a periodic realization, and let x0 ∈ VΓ. Let si := sΓ,x0,i and
bi := bΓ,x0,i be the growth sequence and the cumulative growth sequence with the start
point x0. Let Gs(t) :=

∑
i⩾0 sit

i and Gb(t) :=
∑

i⩾0 bit
i be their generating functions.

Set C1 := C1(Γ, Φ, x0) and C2 := C2(Γ, Φ, x0).
(1) Suppose that the triple (Γ, Φ, x0) is α-Ehrhart for some α ∈ [0, 1). Then, the

function i 7→ bi is a quasi-polynomial on i ⩾ 0.
(2) Suppose C1 + C2 < 1. Then, (Γ, Φ, x0) is α-Ehrhart for any α ∈ [C1, 1 − C2).
(3) Suppose both C1 < 1

2 and C2 < 1
2 . Suppose one of the following conditions

holds:
(i) Γ is undirected, or
(ii) Φ is symmetric with respect to x0.
Then, we have

Gb(1/t) = (−1)n+1tGb(t), Gs(1/t) = (−1)nGs(t).
In particular, we have

fb(−i) = (−1)nfb(i − 1)
for any i ∈ Z, and

fs(−i) = (−1)n+1fs(i)
for any i ∈ Z∖ {0}, where fb and fs are the quasi-polynomials corresponding
to the sequences (bi)i and (si)i.

Proof. As in Appendix B, for a rational polytope P ⊂ LR, v ∈ LR, and β ∈ R, we
define a function hP,v,β : Z → Z by

hP,v,β(i) := #
(
(v + (i + β)P ) ∩ L

)
,

and its generating function HP,v,β(t) =
∑

i∈Z hP,v,β(i)ti. We also define
◦
hP,v,β and

◦
HP,v,β similarly. Note that we have relint(PΓ) = int(PΓ) by the assumption that Γ is
strongly connected (see Lemma A.1).

Let c := #(VΓ/L). Take y1, . . . , yc ∈ VΓ such that {y1, . . . , yc} = VΓ/L. Then, we
have VΓ =

⊔c
j=1(yj + L), and hence,

BΓ,x0,i = {y ∈ VΓ | dPΓ,Φ(x0, y) ⩽ i + α}
= Φ−1(Φ(x0) + (i + α)PΓ

)
=

c⊔
j=1

(
Φ−1(Φ(x0) + (i + α)PΓ

)
∩ (yj + L)

)
=

c⊔
j=1

(
yj +

{
m ∈ L

∣∣ Φ(yj) + m ∈ Φ(x0) + (i + α)PΓ
})

=
c⊔

j=1

(
yj +

(
Φ(x0) − Φ(yj) + (i + α)PΓ

)
∩ L
)
.

Hence, we have

bi =
c∑

j=1
#
((

Φ(x0) − Φ(yj) + (i + α)PΓ
)

∩ L
)

=
c∑

j=1
hPΓ,Φ(x0)−Φ(yj),α(i).
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Therefore, (1) follows from Theorem B.4(1).
(2) follows from the definitions of C1 and C2.
We prove (3). When the condition (ii) is satisfied, we have

(♡) #
(
Φ−1(Φ(x0) + a · int(PΓ))

)
= #

(
Φ−1(Φ(x0) + a · int(−PΓ))

)
for any a ∈ R⩾0. When the condition (i) is satisfied, we have −PΓ = PΓ, and the
same assertion (♡) holds.

By (2), (Γ, Φ, x0) is 1
2 -Ehrhart. Furthermore, (Γ, Φ, x0) is α-Ehrhart for α = 1

2 − ϵ
for sufficiently small ϵ > 0. Therefore, we have both

BΓ,x0,i = Φ−1
(

Φ(x0) +
(

i + 1
2

)
PΓ

)
,

BΓ,x0,i = Φ−1
(

Φ(x0) +
(

i + 1
2

)
int(PΓ)

)
for any i ∈ Z. Therefore, we have

Gb(t−1) =
c∑

j=1
HPΓ,Φ(x0)−Φ(yj), 1

2
(t−1)

= (−1)n+1
c∑

j=1

◦
HPΓ,−(Φ(x0)−Φ(yj)),− 1

2
(t)

= (−1)n+1
c∑

j=1

◦
H−PΓ,Φ(x0)−Φ(yj),− 1

2
(t)

= (−1)n+1t

c∑
j=1

◦
H−PΓ,Φ(x0)−Φ(yj), 1

2
(t)

= (−1)n+1t

c∑
j=1

◦
HPΓ,Φ(x0)−Φ(yj), 1

2
(t)

= (−1)n+1tGb(t).

Here, the second equality follows from Theorem B.4(3), the third follows from
Lemma B.3, and the fifth follows from (♡). Since Gs(t) = (1 − t)Gb(t), we have

Gs(t−1) = (1 − t−1)Gb(t−1) = (−1)n+1(1 − t−1)tGb(t)
= (−1)n+1(1 − t−1)t(1 − t)−1Gs(t) = (−1)nGs(t).

Since fb is a quasi-polynomial, we have∑
i∈Z<0

fb(i)ti = −
∑

i∈Z⩾0

fb(i)ti

as rational functions (cf. [5, Exercise 4.7]). Therefore, we have∑
i∈Z>0

fb(−i)t−i = −
∑

i∈Z⩾0

fb(i)ti

= −Gb(t)
= (−1)nt−1Gb(t−1)

= (−1)nt−1
∑

i∈Z⩾0

fb(i)t−i

= (−1)n
∑

i∈Z>0

fb(i − 1)t−i
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Here, the second equality follows because the function i 7→ bi is a quasi-polynomial
on i ⩾ 0. By comparing the coefficients, we can conclude that fb(−i) = (−1)nfb(i−1)
for any i ∈ Z>0. The statement for fs(−i) follows from the same argument. □

Remark 3.5. The reciprocity laws appearing in Theorem 3.4(3) are the same as the
reciprocity laws of the Ehrhart series of reflexive polytopes (cf. [5, Section 4.4]). We
will see in Remark 3.12 that Theorem 3.4(3) can be seen as a generalization of the
reciprocity laws of the Ehrhart series of reflexive polytopes.

Remark 3.6. In this remark, we explain that Theorem 3.4 is a generalization of results
of Conway and Sloane in [7], where only the case #(VΓ/L) = 1 is treated.

In [7], Conway and Sloane study the growth sequence of the contact graph Γ of an
n-dimensional lattice L in Rn that is spanned by its minimal vectors. More precisely,
they considered the graphs obtained in the following way:

• L ⊂ Rn is a lattice of rank n. Let F be the set of all v ∈ L ∖ {0} such that
its Euclidean norm ||v|| is the smallest among L ∖ {0}. Suppose that L is
spanned by F .

• Define a periodic graph (Γ, L) by
– VΓ := L, EΓ := L × F , and
– for e = (x, v) ∈ EΓ, we set

s(e) := x, t(e) := x + v, w(e) = 1.

Note that #(VΓ/L) = 1 in this case.
Conway and Sloane define the “contact polytope” P of L as the convex hull of F ,

and they study the growth sequence of Γ using Ehrhart theory on P. Note that P
coincides with the growth polytope PΓ in our notation. Since #(VΓ/L) = 1, we have
C1 = 0.

Conway and Sloane also introduce the notations “well-placed”, “well-rounded” and
“well-coordinated” according to the property of L. The condition “well-placed” co-
incides with the condition that the P is a reflexive polytope. The condition “well-
rounded” coincides with the condition “C2 < 1”. L is called “well-coordinated” if L is
well-placed and well-rounded. They prove the following assertions ([7, Theorems 2.5
and 2.9]):

• If L is well-rounded, the growth sequence (bi)i of Γ is a polynomial on i ⩾ 0.
• If L is well-coordinated, the growth sequence satisfies the reciprocity laws in

Theorem 3.4(3).
Therefore, Theorem 3.4 can be seen as the generalization of these results to the case
where #(VΓ/L) > 1.

3.2. Polytopes → periodic graphs. In this subsection, we define a periodic graph
ΓQ from a rational polytope Q, and we see that the study of the growth sequences of
periodic graphs can be essentially seen as a generalization of the Ehrhart theory of
rational polytopes Q satisfying 0 ∈ Q.

First, we define a periodic graph ΓQ for a rational polytope Q (possibly 0 ̸∈ Q).

Definition 3.7. Let Q ⊂ RN be a d-dimensional rational polytope. Let a be the min-
imum positive integer such that aQ is a lattice polytope. We define a graph ΓQ as
follows:

• VΓQ
:= ZN .

• EΓQ
:= ZN × FQ, where FQ :=

{
(i, m) ∈ Z>0 × ZN

∣∣ i < a(d + 1), m ∈ iQ
}

.
• For e = (x, (i, m)) ∈ EΓQ

, we define

s(e) := x, t(e) := x + m, w(e) := i.
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Then, (ΓQ, L) for L := ZN becomes an N -dimensional periodic graph. Since
#
(
VΓQ

/L
)

= 1, there exists the unique realization Φ : VΓQ
→ LR such that Φ(0) = 0.

We set Ci := Ci(ΓQ, Φ, 0) for i ∈ {1, 2}.

Remark 3.8. Let i be a positive integer satisfying i < a(d + 1), and let x, y ∈ VΓQ
=

ZN be any two vertices. Then, the graph ΓQ is defined so that the following two
conditions are equivalent:

• There exists an edge from x to y of weight i.
• y − x ∈ iQ.

Note that without the boundedness condition “i < a(d+1)” in the definition of FQ,
we could have #

(
EΓQ

/L
)

= #FQ = ∞, and therefore, ΓQ could not be a periodic
graph. This specific value “a(d + 1)” will be used in the proof of Lemma 3.10(1) when
applying Lemma 3.11.

Example 3.9. Let N = d = 2, and let Q = conv
({

(0, 0), (0, 1/2), (1/2, 0)
})

. In this
case, we have a = 2 and

FQ = {(i, (0, 0)) | 1 ⩽ i ⩽ 5} ∪ {(i, (1, 0)) | 2 ⩽ i ⩽ 5} ∪ {(i, (0, 1)) | 2 ⩽ i ⩽ 5}
∪ {(i, (1, 1)) | i = 4, 5} ∪ {(i, (2, 0)) | i = 4, 5} ∪ {(i, (0, 2)) | i = 4, 5}.

For example, for all x ∈ VΓQ
= Z2, there are four distinct edges from x to x + (1, 0)

of weights 2, 3, 4 and 5.

Lemma 3.10. Let x ∈ ZN .
(1) For any i ∈ Z⩾0, the condition x ∈

⋃
0⩽j⩽i jQ is equivalent to the condition

dΓQ
(0, x) ⩽ i. In particular, the cumulative growth sequence bΓQ,0,i coincides

with

#
(( ⋃

0⩽j⩽i

jQ

)
∩ ZN

)
.

(2) The growth polytope PΓQ
coincides with conv(Q ∪ {0}).

(3) When 0 ∈ Q, we have bΓQ,0,i = #
(
iQ ∩ ZN

)
.

(4) If 0 ∈ Q and dQ(x) < ∞, we have dΓQ
(0, x) = ⌈dQ(x)⌉.

(5) The strong connectedness of ΓQ is equivalent to the condition that 0 ∈ int(Q).
(6) If 0 ∈ int(Q), we have

C1 = 0, C2 ∈ {0} ∪
[

1
2 , 1
)

.

(7) Suppose 0 ∈ int(Q). Then, C2 = 0 holds if and only if

(i + 1) int(Q) ∩ ZN = iQ ∩ ZN

holds for all i ∈ Z⩾0.

Proof. We prove (1). Let i ∈ Z⩾0. First, we suppose that dΓQ
(0, x) ⩽ i. Then, there

exists a path p = e1 · · · eℓ of ΓQ from 0 to x with w(p) ⩽ i. By the definition of ΓQ

(cf. Remark 3.8), we have t(ei) − s(ei) ∈ w(ei) · Q for all 1 ⩽ i ⩽ ℓ. Hence, we have

x =
ℓ∑

i=1

(
t(ei) − s(ei)

)
∈

(
ℓ∑

i=1
w(ei)

)
· Q = w(p) · Q ⊂

⋃
0⩽j⩽i

jQ.

Next, we suppose that x ∈ jQ for some 0 ⩽ j ⩽ i. Set b := max
{

0,
⌊

j−a(d+1)
a

⌋
+ 1
}

.
Then, by Lemma 3.11 below, we have

x ∈ jQ ∩ ZN ⊂
(
(j − ba)Q ∩ ZN

)
+ b

(
aQ ∩ ZN

)
.
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Therefore, there exist m0 ∈ (j − ba)Q ∩ ZN and m1, . . . , mb ∈ aQ ∩ ZN such that
x =

∑b
k=0 mk. For each 0 ⩽ ℓ ⩽ b, we set xℓ :=

∑ℓ
k=0 mk. If j − ba ̸= 0, there exists

an edge from 0 to x0 of weight j − ba by the definition of ΓQ (cf. Remark 3.8). Here,
we have used the fact j − ba < a(d + 1) which follows from the choice of b. Therefore,
we have dΓQ

(0, x0) ⩽ j − ba (this is correct even if j − ba = 0). Similarly, we have
dΓQ

(xℓ, xℓ+1) ⩽ a for all 0 ⩽ ℓ ⩽ b − 1. Hence, we have

dΓQ
(0, x) ⩽ dΓQ

(0, x0) +
b−1∑
ℓ=0

dΓQ
(xℓ, xℓ+1) ⩽ j − ba + ba = j ⩽ i,

which completes the proof of (1).
We prove (2). By the definition of the growth polytope PΓQ

, we have

PΓQ
= conv

({
t(e) − s(e)

w(e)

∣∣∣∣ e ∈ EΓQ

}
∪ {0}

)
= conv

({m

i

∣∣∣ (i, m) ∈ FQ

}
∪ {0}

)
.

By the definition of FQ, we have

conv
({m

i

∣∣∣ (i, m) ∈ FQ

})
= Q,

which completes the proof of (2).
(3) and (4) follow from (1) since we have

⋃
0⩽j⩽i jQ = iQ when 0 ∈ Q. (5) also

follows from (1). (7) follows from (4).
We shall see (6) below. The assertion C1 = 0 follows from Lemma 2.26(2) (or

directly from (4)). By (4), we have

C2 = sup
x∈ZN

(
⌈dQ(x)⌉ − dQ(x)

)
= max

x∈ZN

(
⌈dQ(x)⌉ − dQ(x)

)
< 1.

If ⌈dQ(x)⌉ − dQ(x) ∈
[
0, 1

2
)
, we have ⌈dQ(2x)⌉ − dQ(2x) = 2(⌈dQ(x)⌉ − dQ(x)).

Therefore, we can conclude C2 ̸∈
(
0, 1

2
)
. □

Lemma 3.11 (cf. [8, Theorem 2.2.12]). For k ∈ R⩾a(d+1), we have

kQ ∩ ZN ⊂
(
(k − a)Q ∩ ZN

)
+
(
aQ ∩ ZN

)
.

Proof. By taking a triangulation of Q, we may assume that Q is a simplex. Let
v0, . . . , vd ∈ QN be its vertices. By the choice of a, we may write vi = mi/a for some
mi ∈ ZN . Let m ∈ kQ ∩ ZN . Then, we may uniquely write

m =
d∑

i=0
αivi =

d∑
i=0

αi

a
· mi

for some αi ∈ R⩾0 satisfying
∑d

i=0 αi = k. Since
∑d

i=0 αi = k ⩾ a(d + 1), there exists
i ∈ {0, 1, . . . , d} such that αi

a ⩾ 1. Then, for such i, we have

m = (m − mi) + mi ∈
(
(k − a)Q ∩ ZN

)
+
(
aQ ∩ ZN

)
.

We complete the proof. □

Remark 3.12. For a lattice polytope Q, it is known that Q is a reflexive polytope if
and only if the condition

(i + 1) int(Q) ∩ ZN = iQ ∩ ZN

holds for all i ∈ Z⩾0 (cf. [5, Section 4.4]). Therefore, Theorem 3.4(3) can be seen as
a generalization of the reciprocity laws of the Ehrhart series of reflexive polytopes.
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4. P -initial vertex and well-arranged graphs
4.1. The P -initial case. In this subsection, we treat a periodic graph (Γ, L) and
a P -initial vertex x0 ∈ VΓ. In this case, we can calculate the invariant C2 (Propo-
sition 4.4) and a quasi-period of the growth sequence of Γ with the start point x0
(Theorem 4.2).

The following lemma will be used in Theorem 4.2.
Lemma 4.1. Let (Γ, L) be a periodic graph, and let x0 ∈ VΓ. Suppose that x0 is P -
initial. For each v ∈ V (PΓ)∖{0}, we pick a cycle qv ∈ ν−1(v) such that x0 ∈ supp(qv).
We define

B := {(i, y) ∈ Z⩾0 × VΓ | dΓ(x0, y) ⩽ i} ⊂ Z⩾0 × VΓ.

We define a subset M ′ ⊂ Z⩾0 × L by
M ′ :=

{(
w(qv), µ(⟨qv⟩)

) ∣∣ v ∈ V (PΓ) ∖ {0}
}

.

Let M ⊂ Z⩾0 × L be the submonoid generated by M ′ and (1, 0).
Then, B is a finitely generated M -module.

Proof. First, we prove that B is an M -module (i.e. M + B ⊂ B). Take (i, y) ∈ B and
v ∈ V (PΓ) ∖ {0}. Then, by the definition of B, there exists a walk p in Γ from x0 to
y satisfying w(p) ⩽ i. By the choice of qv, we have x0 ∈ supp(qv). In particular, we
have supp(p) ∩ supp(qv) ̸= ∅. Therefore, there exists a path p′ in Γ from x0 such that

⟨p′⟩ = ⟨qv⟩ + ⟨p⟩.
Then, we have

t(p′) = µ(⟨qv⟩) + t(p) = µ(⟨qv⟩) + y.

Furthermore, we have
w(p′) = w(qv) + w(p) ⩽ w(qv) + i.

They show that
(
w(qv)+i, µ(⟨qv⟩)+y

)
∈ B. Hence, we can conclude that M ′+B ⊂ B.

Since it is clear that (1, 0) + B ⊂ B, we conclude that M + B ⊂ B.
Next, we prove that the M -module B is generated by some finite subset B′ ⊂ B.

For each q ∈ CycΓ/L, we take a positive integer dq with the following condition:
• Let Facet′(PΓ) be the set of σ ∈ Facet(PΓ) satisfying 0 ̸∈ σ. First, for each

σ ∈ Facet′(PΓ), we fix a triangulation Tσ of σ such that V (∆) ⊂ V (σ) holds
for all ∆ ∈ Tσ.

• For each q ∈ CycΓ/L, we take σ ∈ Facet′(PΓ) and ∆ ∈ Tσ such that ν(q) ∈
R⩾0∆. Then, we take a positive integer dq such that

dq · µ(⟨q⟩) =
∑

v∈V (∆)

bv · µ(⟨qv⟩)

holds for some bv ∈ Z⩾0.
We note that for q ∈ CycΓ/L, ∆ and bv’s above, we have

dq · w(q) ⩾
∑

v∈V (∆)

bv · w(qv)

since µ(⟨q⟩)
w(q) = ν(q) ∈ [0, 1] · ∆. Therefore, we have

dq ·
(
w(q), µ(⟨q⟩)

)
∈ M.

We shall show that the M -module B is generated by

B′ :=

(i, y) ∈ B

∣∣∣∣∣∣ i ⩽ W ·
(
#(VΓ/L)

)2 +
∑

q∈CycΓ/L

(dq − 1) · w(q)

 ,
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where W := maxe∈EΓ w(e).
Take (i, y) ∈ B. Then, by the definition of B, there exists a walk p in Γ from x0

to y satisfying w(p) ⩽ i. By decomposing p (Lemma 2.12(1)), there exists a walkable
sequence (q0, q1, . . . , qℓ) such that ⟨p⟩ =

∑ℓ
i=0⟨qi⟩. By Lemma 2.12(2), by rearranging

the indices of q1, . . . , qℓ, we may assume the following condition for each 0 ⩽ j ⩽ ℓ−1:

•
(⋃

0⩽i⩽j supp(qi)
)

∩ supp(qj+1) ̸= ∅.

Furthermore, we may also assume the following condition for each 0 ⩽ j ⩽ ℓ − 1:
• If

⋃
0⩽i⩽j supp(qi) ̸= supp(p), then supp(qj+1) ̸⊂

⋃
0⩽i⩽j supp(qi).

In particular, for ℓ′ := #(supp(p)) − #(supp(q0)) ⩽ #(VΓ/L) − length(q0) − 1, it
follows that

• (q0, q1, . . . , qℓ′) is a walkable sequence, and
•
⋃

0⩽i⩽ℓ′ supp(qi) = supp(p).
For each q ∈ CycΓ/L, we define αq ∈ Z⩾0 by

αq := #{ℓ′ + 1 ⩽ i ⩽ ℓ | qi = q}.

Let βq ∈ Z⩾0 be the integer satisfying 0 ⩽ βq < dq and βq ≡ αq (mod dq). We set
ℓ′′ := ℓ′ +

∑
q∈CycΓ/L

βq. Then, by rearranging the indices of qℓ′+1, . . . , qℓ, we may
assume the following condition

#{ℓ′ + 1 ⩽ i ⩽ ℓ′′ | qi = q} = βq.

Since supp(qi) ⊂ supp(p) for any 1 ⩽ i ⩽ ℓ, the sequence (q0, q1, . . . , qℓ′′) is also a
walkable sequence. Furthermore, since

ℓ′∑
i=0

length(qi) = length(q0) +
ℓ′∑

i=1
length(qi)

⩽ length(q0) + ℓ′ · #(VΓ/L)
⩽ length(q0) + (#(VΓ/L) − length(q0) − 1) · #(VΓ/L)
⩽ (#(VΓ/L))2,

we have
ℓ′∑

i=0
w(qi) ⩽ W · (#(VΓ/L))2.

We also have
ℓ′′∑

i=ℓ′+1
w(qi) =

∑
q∈CycΓ/L

βq · w(q) ⩽
∑

q∈CycΓ/L

(dq − 1) · w(q)

Since (q0, q1, . . . , qℓ′′) is a walkable sequence, there exists a path p′ in Γ from x0

such that ⟨p′⟩ =
∑ℓ′′

i=0⟨qi⟩. Then, we have

w(p′) =
ℓ′∑

i=0
w(qi) +

ℓ′′∑
i=ℓ′+1

w(qi)

⩽ W ·
(
#(VΓ/L)

)2 +
∑

q∈CycΓ/L

(dq − 1) · w(q),
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and hence, (w(p′), t(p′)) ∈ B′. Since

i − w(p′) ⩾ w(p) − w(p′) =
ℓ∑

i=ℓ′′+1
w(qi) =

∑
q∈CycΓ/L

(αq − βq) · w(q),

y − t(p′) = t(p) − t(p′) =
ℓ∑

i=ℓ′′+1
µ(⟨qi⟩) =

∑
q∈CycΓ/L

(αq − βq) · µ(⟨q⟩),

and dq | (αq − βq) for each q ∈ CycΓ/L, we have

(i, y) −
(
w(p′), t(p′)

)
=
(
i − w(p), 0

)
+

∑
q∈CycΓ/L

αq − βq

dq
· dq ·

(
w(q), µ(⟨q⟩)

)
∈ M.

Therefore, we have B = M + B′. Since B′ is a finite set, we can conclude that B is a
finitely generated M -module. □

Theorem 4.2. Let (Γ, L) be a periodic graph, and let x0 ∈ VΓ. Suppose that x0 is P -
initial. For each v ∈ V (PΓ)∖{0}, we pick a cycle qv ∈ ν−1(v) such that x0 ∈ supp(qv).
Then,

LCM{w(qv) | v ∈ V (PΓ) ∖ {0}}
is a quasi-period of the growth sequence (sΓ,x0,d)d. More precisely, the growth series
GΓ,x0(t) is of the form

GΓ,x0(t) = Q(t)∏
v∈V (PΓ)∖{0}(1 − tw(qv))

with some polynomial Q(t).
In particular, if the graph Γ is unweighted, then LCM {1, 2, . . . , #(VΓ/L)} is a

quasi-period of the growth sequence.

Proof. We keep the notation B, M ′ and M in Lemma 4.1. For i ∈ Z⩾0, we define
Bi := {y ∈ VΓ | (i, y) ∈ B}. In this notation, we have bΓ,x0,d = #Bd.

By Lemma 4.1, B is a finitely generated M -module. Furthermore, the monoid
M is generated by the finite set M ′ ∪ {(1, 0)}, and the degree of each element of
M ′ ∪ {(1, 0)} divides LCM{w(qv) | v ∈ V (PΓ)∖ {0}}. Therefore, the assertion follows
from Theorem 4.3. □

The following theorem is well-known.

Theorem 4.3 (cf. [6, Theorem 6.38]). Let N be a monoid. Let M ′ ⊂ Z>0×N be a finite
subset, and let M ⊂ Z⩾0 × N be the submonoid generated by M ′. Let X ⊂ Z⩾0 × N
be a finitely generated M -submodule. Then, the function

h : Z⩾0 → Z⩾0; i 7→ #{x ∈ N | (i, x) ∈ X}
is of quasi-polynomial type.

More precisely, its generating function
∑

i⩾0 h(i)ti is of the form
Q(t)∏

a∈M ′(1 − tdeg a)
with some polynomial Q(t). Here, deg : Z⩾0 × N → Z⩾0 denotes the first projection.

Proposition 4.4. Let (Γ, L) be a strongly connected periodic graph. Let Φ: VΓ → LR
be a periodic realization, and let x0 ∈ VΓ. Suppose that x0 is P -initial. We define a
bounded set Q ⊂ LR as follows:

• For each v ∈ V (PΓ), we pick a cycle qv ∈ ν−1(v) such that x0 ∈ supp(qv),
and we define dv := w(qv).
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• For each σ ∈ Facet(PΓ), we fix a triangulation Tσ of σ such that V (∆) ⊂ V (σ)
holds for any ∆ ∈ Tσ.

• We define a bounded set Q ⊂ LR as follows:

Q :=
⋃

σ∈Facet(PΓ),
∆∈Tσ

 ∑
v∈V (∆)

[0, 1)dvv

 ⊂ LR.

Then, we have
C2(Γ, Φ, x0) = max

{
dΓ(x0, y) − dPΓ,Φ(x0, y)

∣∣ y ∈ VΓ, Φ(y) − Φ(x0) ∈ Q
}

.

Proof. By the definition of C2(Γ, Φ, x0), we have
C2(Γ, Φ, x0) ⩾ max

{
dΓ(x0, y) − dPΓ,Φ(x0, y)

∣∣ y ∈ VΓ, Φ(y) − Φ(x0) ∈ Q
}

.

The opposite inequality follows from the same argument as the proof of Theorem A.2
by making the following modifications:

• Replacing dv and qv in the proof of Theorem A.2 with dv and qv in the
statement of Proposition 4.4.

• Replacing C ′
2 in the proof of Theorem A.2 with

max
{

dΓ(x0, y) − dPΓ,Φ(x0, y)
∣∣ y ∈ VΓ, Φ(y) − Φ(x0) ∈ Q

}
.

Then, by the choice of qv, we have x0 ∈ supp(qv). In particular, for any walk p in
Γ from x0, we have supp(p) ∩ supp(qv) ̸= ∅. Therefore, we can see that the same
argument as the proof of Theorem A.2 works. □

4.2. Well-arranged periodic graphs. In this subsection, we introduce a class
of periodic graphs called “well-arranged”, and we prove that their growth sequences
satisfy the same reciprocity laws as in Theorem 3.4(3).

Definition 4.5. Let (Γ, L) be a strongly connected n-dimensional periodic undirected
graph. Let Φ : VΓ → LR be a periodic realization, and let x0 ∈ VΓ. We say that the
triple (Γ, Φ, x0) is well-arranged if the following condition holds: there exist

• an integer dv ∈ Z>0 for each v ∈ V (PΓ), and
• a triangulation Tσ of σ for each σ ∈ Facet(PΓ)

with the following conditions:
(1) V (∆) ⊂ V (σ) holds for any ∆ ∈ Tσ.
(2) dvv ∈ L.
(3) For any σ ∈ Facet(PΓ), ∆ ∈ Tσ and any subset V ′ ⊂ V (∆), we have

dΓ(x0, y) + dΓ(y, z) =
∑

v∈V ′

dv

for z :=
(∑

v∈V ′ dvv
)

+ x0 and for any y ∈ VΓ such that Φ(y) − Φ(x0) ∈∑
v∈V ′ [0, dv)v.

Remark 4.6. Applying Definition 4.5(3) to the case y = x0, we have dΓ(x0, z) =∑
v∈V ′ dv in Definition 4.5(3). Therefore, the equation in (3) says “for any y, there

exists a shortest walk from x0 to z factors through y”.

Lemma 4.7. If (Γ, Φ, x0) is well-arranged, then x0 is P -initial.

Proof. Let v ∈ V (PΓ). Take σ ∈ Facet(PΓ) and ∆ ∈ Tσ satisfying v ∈ V (∆). Then, by
Definition 4.5(3) for V ′ = {v}, we have dΓ(x0, x0 + dvv) = dv. Therefore, there exists
a walk p in Γ from x0 such that w(p) = dv and t(p) = dvv + s(p). By Lemma 2.12,
p decomposes to a walkable sequence (q0, q1, . . . , qℓ) with q0 = ∅x0 such that ⟨p⟩ =∑ℓ

i=1⟨qi⟩. Note that we have µ(⟨p⟩)
w(p) = v ∈ V (PΓ) and µ(⟨qi⟩)

w(qi) = ν(qi) ∈ PΓ. Therefore,
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we have ν(qi) = v for each 1 ⩽ i ⩽ ℓ. Since x0 ∈ supp(qi) for some i, we conclude
that x0 is P -initial. □

Proposition 4.8 below shows that the graphs treated in Theorem 3.4(3)(i) are
well-arranged. Therefore, Theorem 4.9 below can be seen as the generalization of
Theorem 3.4(3) for undirected periodic graphs.

Proposition 4.8. Let (Γ, L) be a strongly connected n-dimensional periodic undirected
graph. Let Φ : VΓ → LR be a periodic realization, and let x0 ∈ VΓ. Suppose that
C1(Γ, Φ, x0) < 1

2 and C2(Γ, Φ, x0) < 1
2 . Then (Γ, Φ, x0) is well-arranged.

Proof. Since Γ is undirected, we have dΓ(y1, y2) = dΓ(y2, y1) for any y1, y2 ∈ VΓ. By
Theorem 3.4(2), we have both

(♢) dΓ(y1, y2) =
⌈

dPΓ,Φ(y1, y2) − 1
2

⌉
, dΓ(y1, y2) =

⌊
dPΓ,Φ(y1, y2) + 1

2

⌋
for any y1, y2 ∈ VΓ satisfying y1 = x0.

For each v ∈ V (PΓ), take dv ∈ Z>0 satisfying Definition 4.5(2). For each σ ∈
Facet(PΓ), take a triangulation Tσ of σ satisfying Definition 4.5(1). We prove that
Definition 4.5(3) is satisfied for any choice of such dv’s and Tσ’s.

Let σ ∈ Facet(PΓ), ∆ ∈ Tσ, and V ′ ⊂ V (∆). Take y ∈ VΓ such that Φ(y)−Φ(x0) ∈∑
v∈V ′ [0, dv)v. Then, by the condition on y, we have

dPΓ,Φ(x0, y) + dPΓ,Φ(y, z) =
∑

v∈V ′

dv ∈ Z⩾0.

Then, the desired equality dΓ(x0, y) + dΓ(y, z) =
∑

v∈V ′ dv follows from (♢). □

Theorem 4.9. Let (Γ, L) be a strongly connected n-dimensional periodic undirected
graph. Let Φ : VΓ → LR be a periodic realization, and let x0 ∈ VΓ. Suppose that
(Γ, Φ, x0) is well-arranged. Then, the following assertions hold.

(1) The function i 7→ sΓ,x0,i obtained by the growth sequence is a quasi-polynomial
on i ⩾ 1. The function i 7→ bΓ,x0,i is a quasi-polynomial on i ⩾ 0.

(2) More precisely, the generating function Gs(t) :=
∑

i⩾0 sΓ,x0,it
i of the growth

sequence (sΓ,x0,i)i can be expressed as

Gs(t) = Q1(t)
Q2(t)

with polynomials Q1 and Q2 satisfying the two conditions:
• Q2(t) = LCM

{∏
v∈V (∆)(1 − tdv )

∣∣∣ σ ∈ Facet(P ), ∆ ∈ Tσ

}
.

• deg Q1 ⩽ deg Q2.
(3) The same reciprocity as in Theorem 3.4(3) is satisfied.

Proof. The assertion (1) follows from (2) since the generating function corresponding
to the function i 7→ bΓ,x0,i is equal to Q1(t)

(1−t)Q2(t) . For the reciprocity in Theorem 3.4(3),
it is sufficient to show the formula Gs(1/t) = (−1)nGs(t) because this formula implies
the other three formulas. For a subset E ⊂ LR, we define

GE(t) :=
∑

y∈VΓ∩Φ−1(E)

tdΓ(x0,y).

Using this notation, Gs(t) in Theorem 3.4(3) can be expressed as Gs(t) = GLR(t).
Take dv’s for v ∈ V (PΓ) and a triangulation Tσ of σ for each σ ∈ Facet(PΓ) as in

Definition 4.5. We set
T := {∆′ | σ ∈ Facet(PΓ), ∆ ∈ Tσ, ∆′ ∈ Face(∆)}

Algebraic Combinatorics, Vol. 7 #4 (2024) 991



T. Inoue & Y. Nakamura

For ∆′ ∈ T , we define subsets D+
∆′ , D−

∆′ ⊂ LR by

D+
∆′ :=

∑
v∈V (∆′)

[0, ∞)v, D−
∆′ :=

∑
v∈V (∆′)

(−∞, 0)v.

Then, we have both

GLR(t) = G{0}(t) +
∑

∆′∈T

GD−
∆′

(t) = 1 +
∑

∆′∈T

GD−
∆′

(t).(♠)

GLR(t) = (−1)n

(
G{0}(t) +

∑
∆′∈T

(−1)dim ∆′
GD+

∆′
(t)
)

= (−1)n

(
1 +

∑
∆′∈T

(−1)dim ∆′
GD+

∆′
(t)
)

.

For ∆′ ∈ T , we define

♢+
∆′ :=

∑
v∈V (∆′)

[0, dv)v, ♢−
∆′ :=

∑
v∈V (∆′)

[−dv, 0)v.

Then the following assertions hold.

Claim 4.10. (1) For any y ∈ VΓ ∩ ♢+
∆′ and for av ∈ Z⩾0, we have

dΓ

x0, y +
∑

v∈V (∆′)

avdvv

 = dΓ(x0, y) +
∑

v∈V (∆′)

avdv.

(2) For any y ∈ VΓ ∩ ♢−
∆′ and for av ∈ Z⩾0, we have

dΓ

x0, y −
∑

v∈V (∆′)

avdvv

 = dΓ(x0, y) +
∑

v∈V (∆′)

avdv.

(3) For any y ∈ VΓ ∩ ♢+
∆′ , we have

dΓ(x0, y) + dΓ

x0, y −
∑

v∈V (∆′)

dvv

 =
∑

v∈V (∆′)

dv.

(4) We have

GD+
∆′

(t) =
G♢+

∆′
(t)∏

v∈V (∆′)(1 − tdv ) , GD−
∆′

(t) =
G♢−

∆′
(t)∏

v∈V (∆′)(1 − tdv ) .

(5) We have td∆′ G♢−
∆′

(1/t) = G♢+
∆′

(1/t), where d∆′ :=
∑

v∈V (∆′) dv.
(6) We have GD−

∆′
(1/t) = (−1)dim ∆′+1GD+

∆′
(t).

(7) We have deg G♢+
∆′

(t) ⩽
∑

v∈V (∆′) dv.

Proof. We prove (1). We set

z := x0 +
∑

v∈V (∆′)

dvv,

y′ := y +
∑

v∈V (∆′)

avdvv,

z′ := z +
∑

v∈V (∆′)

avdvv.
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For each v ∈ V (PΓ), by the proof of Lemma 4.7, we can take a closed walk qv in Γ/L
such that

w(qv) = dv, µ(⟨qv⟩) = dvv, x0 ∈ supp(qv).
Let p be a walk in Γ from x0 to y with w(p) = dΓ(x0, y). Since supp p∩ supp(qv) ̸= ∅,
there exists a walk p′ in Γ from x0 to y′ such that w(p′) = w(p) +

∑
v∈V (∆′) avdv.

Therefore, we have

(i) dΓ(x0, y′) ⩽ dΓ(x0, y) +
∑

v∈V (∆′)

avdv.

On the other hand, we have

dΓ(x0, z′) ⩽ dΓ(x0, y′) + dΓ(y′, z′).

Here, we have
dΓ(x0, z′) =

∑
v∈V (∆′)

(av + 1)dv

by Lemma 2.23 and the inequality (i) for y = x0. Furthermore, we have

dΓ(y′, z′) = dΓ(y, z) = −dΓ(x0, y) +
∑

v∈V (∆′)

dv

by Definition 4.5(3). Therefore, we get the opposite inequality of (i). We complete the
proof of the assertion (1). The assertion (2) is proved by the similar way.

By translation, we have

dΓ

x0, y −
∑

v∈V (∆′)

dvv

 = dΓ(z, y).

Therefore, the assertion (3) follows from Definition 4.5(3).
The assertion (4) follows from (1) and (2). The assertion (5) follows from (3). The

assertion (6) follows from (4) and (5).
By the inequality (i), we have dΓ(x0, y) ⩽

∑
v∈V (∆′) dv for any y ∈ VΓ ∩ ♢+

∆′ .
Therefore, we conclude the assertion (7). □

By (♠) and Claim 4.10(4)(7), we conclude that GLR(t) is a rational function of the
form Q1(t)

Q2(t) satisfying the two conditions in (2). By (♠) and Claim 4.10(6), we have
the reciprocity GLR(1/t) = (−1)nGLR(t). We complete the proof. □

Remark 4.11. When a periodic graph is well-arranged for some realization, we can
conclude that the growth sequence (sΓ,x0,i)i is a quasi-polynomial on d ⩾ 1 (The-
orem 4.9(1)), and we can find a quasi-period (Theorem 4.9(2)). Therefore, we can
determine the growth sequence from its first few terms. In Section 5, by using this
method, we determine the growth series for several new examples.

5. Examples
In this section, for some specific periodic graphs, we will see whether they are well-
arranged or not. Furthermore, we determine the growth series in several new examples
by the method explained in Remark 4.11.

• In Subsection 5.1, we will examine seven tilings in [12]. For these examples,
the growth sequences have already been determined by Goodman-Strauss and
Sloane in [12]. However, we expect that this subsection will help the reader
to understand the concepts “well-arranged” and “P -initial”.
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• In Subsection 5.2, we treat another tiling called the (36; 32.4.3.4; 32.4.3.4)
3-uniform tiling. We check that the corresponding periodic graph is well-
arranged under a suitable realization. Furthermore, we determine its growth
series. As far as we know, this is the first time that its growth series have
been determined with a proof.

• In Subsection 5.3, we treat 3-dimensional periodic graphs obtained by carbon
allotropes. We confirm that 22 of them are well-arranged, and we determine
their growth series. As far as we know, this is the first time that the growth
sequences have been computed for nontrivial 3-dimensional periodic graphs.

Remark 5.1. It is not difficult to implement the following calculations and verifica-
tions in a computer program.

(1) Calculate the first few terms of the growth sequence (sΓ,x0,i)i (breadth-first
search algorithm).

(2) Check that x0 is P -initial or not.
(3) Calculate C1(Γ, Φ, x0) (Remark 2.25(1)).
(4) Calculate C2(Γ, Φ, x0) when x0 is P -initial (Proposition 4.4).
(5) Check that (Γ, Φ, x0) is well-arranged or not for given dv’s and triangula-

tions Tσ’s.
(6) Determine the growth series for well-arranged periodic graphs (Remark 4.11).

We prepare implementations of the algorithms in Python to compute or check (1)–
(6) above for unweighted periodic graphs. For details, see the source code:

https://github.com/yokozuna57/Ehrhart_on_PG

5.1. 2-dimensional periodic graphs from [12]. In this subsection, we examine
seven specific periodic tilings from [12] illustrated in Figures 7-13. Let (Γ, L) be the
corresponding unweighted undirected periodic graphs, and let Φ be the periodic re-
alizations shown in the figures. The parallelogram drawn with red lines represents
a fundamental region of the periodic graph (Γ, L). In [12], Goodman-Strauss and
Sloane determine their growth sequences. We list their generating functions in the item
“Growth series” of Table 1. With the help of a computer program (cf. Remark 5.1), we
can check whether these tilings (and their starting points) are P -initial and whether
they are well-arranged as in Table 1. In the table, “PI” stands for P -initial, “WA” for
well-arranged, and “RL” for reciprocity law.

Figure 7. The Cairo tiling and its Im(ν).
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Figure 8. The 32.4.3.4 uniform tiling and its Im(ν).

Figure 9. The 4.82 uniform tiling and its Im(ν).

5.2. The (36; 32.4.3.4; 32.4.3.4) 3-uniform tiling. The (36; 32.4.3.4; 32.4.3.4) 3-
uniform tiling is a two-dimensional tiling illustrated in Figure 14. Let (Γ, L) be
the corresponding unweighted undirected periodic graph, and let Φ be the periodic
realization shown in the figure. The parallelogram drawn with red lines represents a
fundamental region of the periodic graph (Γ, L). The vertices x1, x2, x3, x5, x10 and
x11 are symmetric with respect to Aut Γ. The vertices x4, x6, x7, x8, x9 and x12 are
also symmetric.

With the help of a computer program, we can see that all vertices are P -initial,
and we have

C1(Γ, Φ, x0) = C2(Γ, Φ, x0) = 0.267...,

C1(Γ, Φ, x1) = C2(Γ, Φ, x1) = 0.535...,

C1(Γ, Φ, x4) = C2(Γ, Φ, x4) = 0.422....
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Figure 10. The 3.4.6.4 uniform tiling and its Im(ν).

Figure 11. The 3.122 uniform tiling and its Im(ν).

Therefore, (Γ, Φ, x0) and (Γ, Φ, x4) are well-arranged by Proposition 4.8. Note that we
cannot apply Proposition 4.8 to x1 because C1(Γ, Φ, x1) + C2(Γ, Φ, x1) ⩾ 1. Further-
more, we could not check whether (Γ, Φ, x1) is well-arranged or not by our computer
program (indeed, we checked the desired condition (3) in Definition 4.5 for one trian-
gulation Tσ and dv satisfying (1) and (2), but the result was negative). Fortunately,
by changing the periodic realization as Figure 15, we can confirm that (Γ, Φ′, x1) is
well-arranged.

Since we have confirmed that (Γ, Φ, x0), (Γ, Φ′, x1), and (Γ, Φ, x4) are well-arranged,
according to the method explained in Remark 4.11, we can determine their growth
series as in Table 2.

In what follows, we shall give the calculation of GΓ,x0 in detail. By Theorem 4.9,
it follows that GΓ,x0(t) is of the form

GΓ,x0(t) = Q(t)
(1 − t4)(1 − t7)
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Figure 12. The 34.6 uniform tiling and its Im(ν).

Figure 13. The snub-632 3-uniform tiling and its Im(ν).

with some polynomial Q(t) with deg Q ⩽ 11. In particular, we can conclude that the
growth sequence (sΓ,x0,i)i⩾0 satisfies the linear recurrence relation corresponding to
(1 − t4)(1 − t7) for i ⩾ 1.

With the help of a computer program (breadth-first search algorithm), the first 12
terms (sΓ,x0,i)0⩽i⩽11 can be computed: 1, 6, 12, 12, 24, 30, 36, 36, 42, 54, 54, 60. Then
the sequence (sΓ,x0,i)i⩾0 is completely determined by the linear recurrence relation,
and its generating function can be calculated as

GΓ,x0(t) =
(
The terms of (1 − t4)(1 − t7)

∑11
i=0 sΓ,x0,it

i of degree 11 or less
)

(1 − t4)(1 − t7)

= 1 + 6t + 12t2 + 12t3 + 23t4 + 24t5 + 24t6 + 23t7 + 12t8 + 12t9 + 6t10 + t11

(1 − t4)(1 − t7) .

Here, we can see that GΓ,x0(t) actually satisfies the reciprocity law GΓ,x0(1/t) =
GΓ,x0(t).
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Tiling / start pt.
#(VΓ/L) PI WA RL C1 C2

Growth series

Fig. 7 / x2, x3
6 YES YES YES 1/3 1/3

1+2t+t2

(1−t)2

Fig. 7 / otherwise
6 NO NO NO 2/3 ⩾ 1

1+2t+5t2+4t3+2t4+3t5−t7

(1−t)(1−t4)

Fig. 8 / all
4 YES YES YES 0.36... 0.36...

1+4t+6t2+4t3+t4

(1−t)(1−t3)

Fig. 9 / all
4 YES YES YES 0.58... 0.58...

1+2t+2t2+2t3+t4

(1−t)(1−t3)

Fig. 10 / all
6 YES YES YES 0.46... 0.46...

1+2t+t2

(1−t)2

Fig. 11 / all
6 NO NO NO 0.38... ⩾ 1
1+3t+4t2+6t3+6t4+6t5+6t6+3t7+3t8−2t10

(1−t4)2

Fig. 12 / all
6 YES YES YES 5/7 5/7

1+4t+4t2+6t3+4t4+4t5+t6

(1−t)(1−t5)

Fig. 13 / x0
9 YES NO NO 3/7 1

1+6t+12t2+10t3+12t4+12t5+t6

(1−t3)2

Fig. 13 / x2, x6
9 NO NO NO 3/7 ⩾ 1

1+3t+6t2+13t3+15t4+6t5+4t6+9t7−3t10

(1−t3)2

Fig. 13 / otherwise
9 NO NO NO 6/7 ⩾ 1

1+3t+9t2+13t3+12t4+9t5+8t6+4t7−t8−2t9−2t10

(1−t3)2

Table 1. Growth series of the seven tilings in [12].

5.3. 3-dimensional periodic graphs. In this subsection, we treat 3-dimensional
periodic graphs obtained by some carbon allotropes. Samara Carbon Allotrope Data-
base [14] currently lists 525 carbon allotropes. In this paper, we examine only the
carbon allotropes that satisfy the following conditions:

• The corresponding graph Γ is a uniform graph (i.e. all vertices of Γ are sym-
metric with respect to Aut(Γ)).

• Each vertex of Γ has order 4.
There are 49 such carbon allotropes in SACADA database: #1, 8, 10, 11, 12, 13, 20,
21, 29, 30, 31, 33, 35, 37, 39, 51, 52, 56, 57, 58, 59, 60, 65, 66, 67, 68, 69, 70, 71, 73,
74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 613, 628, 629 in SACADA
database. Of these graphs, 22 graphs can be verified to be well-arranged by a computer
program: #1, 10, 21, 37, 39, 52, 56, 60, 65, 67, 74, 75, 76, 77, 80, 81, 82, 86, 87, 88,
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Figure 14. The (36; 32.4.3.4; 32.4.3.4) 3-uniform tiling and its Im(ν).

Figure 15. New realization Φ′ obtained by moving the vertex x2 to
the right.

Start pt. Growth series

x0
1+6t+12t2+12t3+23t4+24t5+24t6+23t7+12t8+12t9+6t10+t11

(1−t4)(1−t7)

x1, x2, x3, x5, x10, x11
1+4t+5t2+7t3+5t4+7t5+5t6+4t7+t8

(1−t)(1−t7)

x4, x6, x7, x8, x9, x12
1+5t+12t2+17t3+22t4+21t5+21t6+22t7+17t8+12t9+5t10+t11

(1−t4)(1−t7)

Table 2. Growth series of the (36; 32.4.3.4; 32.4.3.4) 3-uniform tiling.

89, 613 in SACADA database. Using the method explained in Remark 4.11, we can
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determine the growth series of these 22 periodic graphs as in Table 3. We also display
the graphs Γ and the growth polytopes PΓ for #1 and #60 in Figures 16 and 17.

SACADA# Growth series

#1 1+2t+4t2+2t3+t4

(1−t)2(1−t2)

#10 1+t+t2+t3

(1−t)3

#21 1+2t+4t2+2t3+t4

(1−t)2(1−t2)

#37 1+2t+5t2+5t3+5t4+2t5+t6

(1−t)2(1−t4)

#39 1+3t+5t2+9t3+12t4+9t5+5t6+3t7+t8

(1−t)(1−t3)(1−t4)

#52 1+3t+5t2+8t3+10t4+8t5+5t6+3t7+t8

(1−t)(1−t3)(1−t4)

#56 1+2t+5t2+6t3+5t4+2t5+t6

(1−t)2(1−t4)

#60 1+3t+7t2+11t3+11t4+7t5+3t6+t7

(1−t)(1−t3)2

#65 1+2t+2t2+3t3+3t4+2t5+2t6+t7

(1−t)2(1−t5)

#67 1+3t+6t2+9t3+9t4+6t5+3t6+t7

(1−t)(1−t3)2

#74 1+3t+6t2+10t3+14t4+18t5+18t6+14t7+10t8+6t9+3t10+t11

(1−t)(1−t5)2

#75 1+3t+6t2+9t3+9t4+6t5+3t6+t7

(1−t)(1−t3)2

#76 1+2t+4t2+4t3+6t4+4t5+4t6+2t7+t8

(1−t)2(1−t6)

#77 1+2t+2t2+3t3+3t4+2t5+2t6+t7

(1−t)2(1−t5)

#80 1+3t+6t2+10t3+12t4+12t5+10t6+6t7+3t8+t9

(1−t)(1−t3)(1−t5)

#81 1+3t+7t2+12t3+14t4+15t5+15t6+14t7+12t8+7t9+3t10+t11

(1−t)(1−t3)(1−t7)

#82 1+2t+3t2+5t3+5t4+3t5+2t6+t7

(1−t)2(1−t5)

#86 1+3t+5t2+7t3+9t4+12t5+15t6+16t7+15t8+12t9+9t10+7t11+5t12+3t13+t14

(1−t)(1−t6)(1−t7)

#87 1+3t+5t2+8t3+11t4+11t5+8t6+5t7+3t8+t9

(1−t)(1−t3)(1−t5)

#88 1+3t+7t2+11t3+15t4+20t5+20t6+15t7+11t8+7t9+3t10+t11

(1−t)(1−t5)2

#89 1+2t+4t2+3t3+4t4+4t5+6t6+4t7+4t8+3t9+4t10+2t11+t12

(1−t)2(1−t10)

#613 1+3t+6t2+9t3+9t4+6t5+3t6+t7

1−t−2t3+2t4+t6−t7

Table 3. Growth series of the 22 carbon allotropes.
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Figure 16. The diamond crystal structure (SACADA #1) and its PΓ.

Figure 17. A carbon allotrope SACADA #60 and its PΓ.

Appendix A. Properties of the growth polytope
In this section, we explain some properties of the growth polytope defined in Subsec-
tion 2.5.

Lemma A.1 ([11, Proposition 21]). If (Γ, L) is a strongly connected n-dimensional
periodic graph, then we have 0 ∈ int(PΓ). In particular, we have dPΓ(y) < ∞ for any
y ∈ LR.

Proof. It is sufficient to prove the following claim:

• For any u ∈ L, there exists m ∈ Z>0 such that u ∈ mPΓ.

We fix x0 ∈ VΓ. Since the graph Γ is strongly connected by assumption, there exists
a walk p in Γ from x0 to u + x0. Then, by applying Lemma 2.12(1) to p (cf. Re-
mark 2.13(1)), there exists a sequence q1, . . . , qℓ ∈ CycΓ/L satisfying ⟨p⟩ =

∑ℓ
i=1⟨qi⟩.
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Since µ(⟨q⟩)
w(q) ∈ PΓ holds for any q ∈ CycΓ/L, we have

u = µ(⟨p⟩) =
ℓ∑

i=1
µ(⟨qi⟩) ∈

( ℓ∑
i=1

w(qi)
)

PΓ,

which completes the proof. □

The following theorem shows that the growth polytope PΓ can describe the asymp-
totic behavior of the growth sequence. In the theorem, we fix a periodic realization
Φ, and C ′

1 and C ′
2 depend on the choice of Φ. We should emphasize that the growth

polytope PΓ itself does not depend on the choice of the realization.
In [23, Theorem 1], Shutov and Maleev explain that the following theorem is proved

in the papers [27] and [20] (written in Russian). We also emphasize that Kotani and
Sunada in [16], Fritz in [11], and Akiyama, Caalim, Imai and Kaneko in [1] have similar
results. We will give a proof since the proof is referred to the proof of Proposition 4.4.

Theorem A.2. Let (Γ, L) be a strongly connected n-dimensional periodic graph. Let
Φ: VΓ → LR be a periodic realization, and let x0 ∈ VΓ. Then there exist C ′

1, C ′
2 ∈ R⩾0

such that for any y ∈ VΓ, we have

dPΓ,Φ(x0, y) − C ′
1 ⩽ dΓ(x0, y) ⩽ dPΓ,Φ(x0, y) + C ′

2.

Proof. Set c := #(VΓ/L) and

B′
c−1 := {y ∈ VΓ | there exists a walk p from x0 to y with length(p) ⩽ c − 1}.

We define C ′
1 ∈ R⩾0 by

C ′
1 := max

y∈B′
c−1

(
dPΓ,Φ(x0, y) − dΓ(x0, y)

)
.

Note that C ′
1 exists by Lemma A.1 and the fact that B′

c−1 is a finite set.
Let y ∈ VΓ. We prove dPΓ,Φ(x0, y) − C ′

1 ⩽ dΓ(x0, y). Let p be a walk in Γ from x0
to y such that w(p) = d := dΓ(x0, y). By applying Lemma 2.12(1) to p, there exists a
walkable sequence (q0, q1, . . . , qℓ) such that ⟨p⟩ =

∑ℓ
i=0⟨qi⟩. Then, the following three

conditions hold.
• length(q0) ⩽ c − 1.
• Φ(y) − Φ(x0) = µΦ(⟨p⟩) =

∑ℓ
i=0 µΦ(⟨qi⟩).

• d = w(p) =
∑ℓ

i=0 w(qi).
Here, the first condition follows from the fact that q0 is a path. Since we have µ(⟨q⟩) ∈
w(q) · PΓ for each q ∈ CycΓ/L, we have

ℓ∑
i=1

µ(⟨qi⟩) ∈

(
ℓ∑

i=1
w(qi)

)
PΓ.

Let p0 be the unique lift of q0 with initial point x0. Then, by the choice of C ′
1, we

have
dPΓ,Φ(x0, t(p0)) − dΓ

(
x0, t(p0)

)
⩽ C ′

1,

and hence,

µΦ(⟨q0⟩) = vecΦ(p0) = Φ(t(p0)) − Φ(x0) ∈
(
C ′

1 + w(p0)
)
PΓ.
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Therefore, we have

Φ(y) − Φ(x0) =
ℓ∑

i=0
µΦ(⟨qi⟩)

∈

(
C ′

1 + w(q0) +
ℓ∑

i=1
w(qi)

)
PΓ

= (C ′
1 + d)PΓ,

and hence, we have dPΓ,Φ(x0, y) ⩽ C ′
1 + d.

Next, we define C ′
2 ∈ R⩾0 as follows.

• First, we define dv := minq∈ν−1(v) w(q) for each v ∈ V (PΓ).
• For y ∈ VΓ, we define d′(x0, y) as the smallest weight w(p) of a walk p from

x0 to y satisfying supp(p) = VΓ/L. We have d′(x0, y) < ∞ since Γ is assumed
to be strongly connected.

• For each σ ∈ Facet(PΓ), we fix a triangulation Tσ of σ such that V (∆) ⊂ V (σ)
holds for any ∆ ∈ Tσ.

• We define a bounded set Q ⊂ LR as follows:

Q :=
⋃

σ∈Facet(PΓ),
∆∈Tσ

 ∑
v∈V (∆)

[0, 1)dvv

 ⊂ LR.

• Then, we set

C ′
2 := max

{
d′(x0, y) − dPΓ,Φ(x0, y)

∣∣ y ∈ VΓ, Φ(y) − Φ(x0) ∈ Q
}

.

Such C ′
2 exists since the set{

y ∈ VΓ
∣∣ Φ(y) − Φ(x0) ∈ Q

}
is a finite set.

Let y ∈ VΓ. We prove dΓ(x0, y) ⩽ dPΓ,Φ(x0, y) + C ′
2. By Lemma A.1, there exist

σ ∈ Facet(PΓ) and ∆ ∈ Tσ such that Φ(y) − Φ(x0) ∈ R⩾0∆. Then we can uniquely
write

Φ(y) − Φ(x0) =
∑

v∈V (∆)

bvdvv

with bv ∈ R⩾0. Then, we have

dPΓ,Φ(x0, y) =
∑

v∈V (∆)

bvdv.

We define y′ := −
(∑

v∈V (∆)⌊bv⌋dvv
)

+ y. Here, we have dvv ∈ L by the choice of dv.
Then, y′ satisfies

Φ(y′) − Φ(x0) = Φ(y) − Φ(x0) −
∑

v∈V (∆)

⌊bv⌋dvv

=
∑

v∈V (∆)

(bv − ⌊bv⌋)dvv

∈
∑

v∈V (∆)

[0, 1)dvv ⊂ Q.

By the choice of C ′
2, there exists a walk q in Γ from x0 to y′ satisfying

supp(q) = VΓ/L, w(q) ⩽ C ′
2 + dPΓ,Φ(x0, y′).
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For each v ∈ V (∆), we can take qv ∈ CycΓ/L such that

w(qv) = dv, µ(⟨qv⟩) = dvv.

Since we have supp(q) = VΓ/L, and qv’s are closed walks, there exists a walk r′ in
Γ/L such that

⟨r′⟩ = ⟨q⟩ +
∑

v∈V (∆)

⌊bv⌋⟨qv⟩.

Let r be the unique lift of r′ with initial point x0. Then, we have

t(r) =

 ∑
v∈V (∆)

⌊bv⌋dvv

+ t(q) =

 ∑
v∈V (∆)

⌊bv⌋dvv

+ y′ = y.

Furthermore, its weight satisfies

w(r) = w(q) +
∑

v∈V (∆)

⌊bv⌋w(qv)

⩽ C ′
2 + dPΓ,Φ(x0, y′) +

∑
v∈V (∆)

⌊bv⌋dv

= C ′
2 +

∑
v∈V (∆)

(bv − ⌊bv⌋)dv +
∑

v∈V (∆)

⌊bv⌋dv

= C ′
2 + dPΓ,Φ(x0, y).

Therefore, we have dΓ(x0, y) ⩽ C ′
2 + dPΓ,Φ(x0, y). □

Example A.3. For the Wakatsuki graph with the injective periodic realization Φ in
Example 2.6 and the start point x0 = v′

2, we shall compute the values C ′
1 and C ′

2. We
identify VΓ with the subset of LR.

First, C ′
1 is given by

C ′
1 := max

y∈B′
c−1

(
dPΓ,Φ(x0, y) − dΓ(x0, y)

)
= 1.

Note that we have c = #(VΓ/L) = 3 in this case, and B′
2 consists of seven vertices

x0, x1, . . . , x6 shown in Figure 18. The values dPΓ,Φ(x0, xi) and dΓ(x0, xi) for i =
0, 1, . . . , 6 are as in Table 4.

Figure 18. x0, x1, . . . , x6, and x0 + iPΓ for i = 1, 2, 3.
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i 0 1 2 3 4 5 6
dPΓ,Φ(x0, xi) 0 1 1 2 3 1 2

dΓ(x0, xi) 0 1 1 2 2 2 2

Table 4. dPΓ,Φ(x0, xi) and dΓ(x0, xi) for i = 0, 1, . . . , 6.

Next, C ′
2 is given by

C ′
2 = max

y∈int(Q)∩VΓ

(
d′(x0, y) − dPΓ,Φ(x0, y)

)
= 3,

where Q is the hexagram-like figure illustrated as in Figure 19. Note that int(Q) ∩ VΓ
consists of nine points x0, x1, . . . , x8. The values d′(x0, xi) and dPΓ,Φ(x0, xi) for i =
0, 1, . . . , 8 are as in Table 5.

Figure 19. Q and x0, x1, . . . , x8.

i 0 1 2 3 4 5 6 7 8
d′(x0, xi) 3 2 2 2 3 3 2 3 2

dPΓ,Φ(x0, xi) 0 1 1 2 2 1 1 2 2

Table 5. d′(x0, xi) and dPΓ,Φ(x0, xi) for i = 0, 1, . . . , 8.

The following corollary is proved by Shutov and Maleev [23], and this is an immedi-
ate consequence of Theorem A.2. For a lattice L ≃ Zn and a polytope P ⊂ LR, we can
define the volume volL(P ) of P as follows. We fix a group isomorphism i : L

≃−→ Zn.
Then, i is extended to an isomorphism iR : LR

≃−→ Rn, and we define volL(P ) as the
volume of iR(P ) ⊂ Rn. Note that the value volL(P ) is independent of the choice of i.

Corollary A.4 ([23, Theorem 2]). Let (Γ, L) be a strongly connected n-dimensional
periodic graph, and let x0 ∈ VΓ. Let fb and fs be the quasi-polynomials corresponding
to the functions b : i 7→ bΓ,x0,i and s : i 7→ sΓ,x0,i (Theorem 2.17). Then the following
assertions hold.
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(1) Each constituent of fb is a polynomial of degree n, and its leading coefficient
is #(VΓ/L) · VolL(PΓ).

(2) Let Q0, . . . , QN−1 be the constituents of fs. Then, for each i = 0, . . . , N − 1,
we have deg Qi ⩽ n − 1. Furthermore, let ai denote the coefficient of Qi of
degree n − 1. Then, we have 1

N

∑N−1
i=0 ai = n · #(VΓ/L) · VolL(PΓ).

Proof. We fix an injective periodic realization Φ satisfying Φ(x0) = 0. By Φ, we
identify VΓ with the subset of LR. We take C ′

1 and C ′
2 to satisfy Theorem A.2. Then,

for each d ∈ Z⩾0, we have
#((d − C ′

2)PΓ ∩ VΓ) ⩽ bΓ,x0,d ⩽ #((d + C ′
1)PΓ ∩ VΓ).

Therefore, (1) follows from the following fact (cf. [5, Lemma 3.19]):

#(VΓ/L) · VolL(PΓ) = lim
d→∞

1
dn

· #
(
dPΓ ∩ VΓ

)
.

(2) follows from (1). □

Remark A.5. In crystallography, the invariant 1
N

∑N−1
i=0 ai in Corollary A.4(2) is

called the topological density (cf. [13]).

Example A.6. For the Wakatsuki graph (see Example 2.6), the invariant 1
N

∑N−1
i=0 ai

in Corollary A.4(2) for the start point x0 = v′
0 is given by 1

2
( 9

2 + 9
2
)

= 9
2 (see Exam-

ple 2.18). The same invariant for the start point x0 = v′
2 is also given by 1

2 (3+6) = 9
2 .

They are actually equal to 2 · #(VΓ/L) · VolL(PΓ) = 2 · 3 · 3
4 = 9

2 as proved in Corol-
lary A.4(2).

Appendix B. Ehrhart theory
In this section, we discuss a variant of Ehrhart theory (Theorem B.4), which is nec-
essary for the proof of Theorem 3.4. The difference from the usual Ehrhart theory is
that the center v of the dilation need not be the origin, and the dilation factor may
be shifted by a constant α.
Definition B.1. Let P ⊂ RN be a rational polytope, and let v ∈ RN and α ∈ R.

(1) We define a function hP,v,α : Z → Z as follows
hP,v,α(d) := #

(
(v + (d + α)P ) ∩ ZN

)
.

Here, we define tP = ∅ for t < 0.
(2) Let relint(P ) denote the relative interior of P . Then, we also define a function

◦
hP,v,α : Z → Z as follows

◦
hP,v,α(d) := #

(
(v + (d + α) · relint(P )) ∩ ZN

)
.

Here, we define t · relint(P ) = ∅ for t ⩽ 0.
(3) Let

HP,v,α(t) :=
∑
i∈Z

hP,v,α(i)ti,
◦
HP,v,α(t) :=

∑
i∈Z

◦
hP,v,α(i)ti

denote their generating functions.
Remark B.2.

(1) In the definition above, we have defined 0 ·P = {0} but 0 ·relint(P ) = ∅. This
definition is necessary for the equations (♠) in the proof of Theorem B.4.

(2) The usual Ehrhart theory (cf. [5]) treats the case where v = 0 and α = 0.
McMullen (in [17]) and de Vries and Yoshinaga (in [9, Section 3]) discuss
hP,v,α when α = 0.
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Lemma B.3. We have hP,v,α = h−P,−v,α and
◦
hP,v,α =

◦
h−P,−v,α.

Proof. The first assertion follows from

#
(
(v + (d + α)P ) ∩ ZN

)
= #

(
(−(v + (d + α)P )) ∩ ZN

)
= #

(
(−v + (d + α)(−P ) ∩ ZN

)
.

The second assertion can be proved in the same way. □

Theorem B.4. Let P ⊂ RN be a rational polytope of dimension M , and let v ∈ RN

and α ∈ R. Then, the following assertions hold:
(1) hP,v,α is a quasi-polynomial on d ⩾ −α, and hP,v,α(d) = 0 holds for d < −α.
(2)

◦
hP,v,α is a quasi-polynomial on d > −α, and

◦
hP,v,α(d) = 0 holds for d ⩽ −α.

(3) HP,v,α(1/t) = (−1)M+1
◦
HP,−v,−α(t).

(4) Let fP,v,α be the corresponding quasi-polynomial to the function hP,v,α on
d ⩾ −α. Then, we have fP,v,α(−i) = (−1)M

◦
hP,−v,−α(i) for any i ∈ Z>α.

Proof. For a subset S ⊂ RN+1, let

σS(z) = σS(z1, . . . , zN+1) :=
∑

m∈S∩ZN+1

zm

denote the integer-point transform of S (see [5, Section 3.3]). This is a formal sum of
Laurent monomials zm = zm1

1 · · · z
mN+1
N+1 for m = (m1, . . . , mN+1) ∈ S ∩ ZN+1.

Let K := R⩾0
(
{1} × P

)
⊂ RN+1 be the cone over P . Then, we have

HP,v,α(t) = σ(−α,v)+K(t, 1, . . . , 1),
◦
HP,−v,−α(t) = σ(α,−v)+relint(K)(t, 1, . . . , 1).

(♠)

Furthermore, we have

σ(−α,v)+K(z−1
1 , . . . , z−1

N+1) = (−1)M+1σ(α,−v)+relint(K)(z1, . . . , zN+1)

by [5, Exercises 4.5 and 4.6]. Therefore, we get the desired equality in (3).
The second assertions of (1) and (2) are obvious from the definition of hP,v,α and

◦
hP,v,α.

By taking a triangulation of P , the first assertions in (1) and (2) can be reduced
to the same assertions for simplices P . Assume that P is a simplex. Let v1, . . . , vM+1
be the vertices of P . Since P is rational polytope, we may write vi = ui/ai for some
ui ∈ ZN and ai ∈ Z>0. We set D, D◦ ⊂ RN+1 by

D :=
{

M+1∑
i=1

αi(ai, ui)

∣∣∣∣∣ α1, . . . , αM+1 ∈ [0, 1)
}

,

D◦ :=
{

M+1∑
i=1

αi(ai, ui)

∣∣∣∣∣ α1, . . . , αM+1 ∈ (0, 1]
}

.

Then, by [5, Theorem 3.5], we have

σ(−α,v)+K(z1, z) =
σ(−α,v)+D(z1, z)∏M+1

i=1 (1 − zai
1 zui)

,

σ(−α,v)+relint(K)(z1, z) =
σ(−α,v)+D◦(z1, z)∏M+1

i=1 (1 − zai
1 zui)

,
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where z = (z2, . . . , zN+1). Therefore, we have

HP,v,α(t) = σ(−α,v)+K(t, 1, . . . , 1) =
σ(−α,v)+D(t, 1, . . . , 1)∏M+1

i=1 (1 − tai)
,

◦
HP,v,α(t) = σ(−α,v)+relint(K)(t, 1, . . . , 1) =

σ(−α,v)+D◦(t, 1, . . . , 1)∏M+1
i=1 (1 − tai)

.

Here, we have

deg σ(−α,v)+D(t, 1, . . . , 1) < −α +
M+1∑
i=1

ai,

deg σ(−α,v)+D◦(t, 1, . . . , 1) ⩽ −α +
M+1∑
i=1

ai.

Therefore, we can conclude that hP,v,α is a quasi-polynomial on d ⩾ −α, and that
◦
hP,v,α is a quasi-polynomial on d > −α. We complete the proof of (1) and (2).

Finally, we prove (4). Since fP,v,α is a quasi-polynomial, we have∑
i∈Z<−α

fP,v,α(i)ti = −
∑

i∈Z⩾−α

fP,v,α(i)ti

as rational functions (cf. [5, Exercise 4.7]). Therefore, we have∑
i∈Z>α

fP,v,α(−i)t−i =
∑

i∈Z<−α

fP,v,α(i)ti

= −
∑

i∈Z⩾−α

fP,v,α(i)ti

= −HP,v,α(t)

= (−1)M
◦
HP,−v,−α(t−1)

= (−1)M
∑
i∈Z

◦
hP,−v,−α(i)t−i.

Here, the third equality follows from (1), and the fourth follows from (3). By compar-
ing the coefficients, we conclude that fP,v,α(−i) = (−1)M

◦
hP,−v,−α(i) for i ∈ Z>α. □
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