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Twisted Hurwitz numbers: Tropical and
polynomial structures

Marvin Anas Hahn & Hannah Markwig

Abstract Hurwitz numbers count covers of curves satisfying fixed ramification data. Via mon-
odromy representation, this counting problem can be transformed to a problem of counting
factorizations in the symmetric group. This and other beautiful connections make Hurwitz
numbers a longstanding active research topic. In recent work [4], a new enumerative invariant
called b-Hurwitz number was introduced, which enumerates non-orientable branched coverings.
For b = 1, we obtain twisted Hurwitz numbers which were linked to surgery theory in [1] and
admit a representation as factorisations in the symmetric group. In this paper, we derive a
tropical interpretation of twisted Hurwitz numbers in terms of tropical covers and study their
polynomial structure.

1. Introduction
Hurwitz numbers are enumerations of branched morphisms between Riemann surfaces
with fixed numerical data. They go back to work by Adolf Hurwitz in the 1890s [14]
and are now important invariants in enumerative geometry. They admit various equiv-
alent descriptions in the language of different areas of mathematics, e.g., as shown by
Hurwitz in his above-mentioned work, they can be computed by an enumeration of
transitive factorisations in the symmetric group. This equivalence gives rise to a deep
connection between Hurwitz theory and the representation theory of the symmetric
group; it will also play a key role in the present work. Moreover, Hurwitz numbers
are closely related to the algebraic topology underlying Riemann surfaces, since they
turn out to be topological invariants. While the theory of Hurwitz numbers has been
dormant for most of the 20th century, the close relationship between Hurwitz and
Gromov–Witten theory discovered in the 1990s has rekindled interest in these enu-
merative invariants and led to several exciting developments.

1.1. Hurwitz numbers, Gromov–Witten theory and variants. When study-
ing relations between Hurwitz numbers and Gromov–Witten theory, certain classes of
Hurwitz numbers with particularly well–behaved structures take center stage. Among
these classes are so-called double Hurwitz numbers, which are defined as follows.

Manuscript received 18th May 2023, revised 4th December 2023 and 26th February 2024, accepted
27th February 2024.
Keywords. Tropical geometry, Hurwitz numbers.

ISSN: 2589-5486 http://algebraic-combinatorics.org/

https://doi.org/10.5802/alco.368
http://algebraic-combinatorics.org/


M. A. Hahn & H. Markwig

Definition 1.1 (Double Hurwitz numbers). Let g ⩾ 0 be a non-negative integer,
n > 0 a positive integer and µ, ν partitions of n. Moreover, we fix p1, . . . , pb ∈ P1,
where b = 2g − 2 + ℓ(µ) + ℓ(ν). Then, we define a cover of type (g, µ, ν) to be a map
f : S → P1, such that

• S is a connected Riemann surface of genus g;
• the ramification profile of 0 is µ;
• the ramification profile of ∞ is ν;
• the ramification profile of p1, . . . , pb is (2, 1 . . . , 1).

Two covers f : S → P1 and f ′ : S′ → P1 are called equivalent if there exists a homeo-
morphism g : S → S′, such that f = f ′ ◦ g.

Then, we define double Hurwitz numbers as

hg(µ, ν) =
∑
[f ]

1
|Aut(f)| ,

where the sum runs over all equivalence classes of covers of type (g, µ, ν).
When ν = (1, . . . , 1), we call hg(µ, ν) a single Hurwitz number and denote it

by hg(µ).

At the core of the relationship between double Hurwitz numbers and Gromov–
Witten theory is a polynomial structure in the prescribed ramification data of these
enumerative invariants. First discovered in the seminal work of Goulden, Jackson and
Vakil in [9], double Hurwitz numbers exhibit a piecewise polynomial behaviour. More
precisely, we consider the space

Hm.n := {(µ, ν) ∈ Nm × Nn |
∑

µi =
∑

νj}

of partitions (µ, ν) of fixed lengths m, n and of the same size. For fixed g, we consider
the map

hg : Hm,n → Q
(µ, ν) 7→ hg(µ, ν)

which parametrises double Hurwitz numbers.
The authors of [9] showed that there exists a hyperplane arrangement Rm,n in Hm,n

(called the resonance arrangement), such that the map hg restricted to each connected
component (called chamber) of Hm,n\Rm,n may be represented as a polynomial in
the entries of µ and ν. In [19, 3, 15], the natural question of how the polynomials
differ from chamber to chamber was studied. It was observed that there is a recursive
structure in the sense that this difference can be expressed by double Hurwitz numbers
with smaller input data. This is called a wall-crossing formula.

We want to highlight the work in [3], in which a graph theoretic approach towards
the polynomiality of double Hurwitz numbers was established. The key technique in
this paper revolves around the field of tropical geometry. Tropical geometry is a rela-
tively new field of mathematics, which may be described as a combinatorial shadow
of algebraic geometry. The tropical geometry perspective allows to degenerate alge-
braic curves to certain metric graphs that are called tropical curves. In this manner,
branched morphisms between Riemann surfaces are tropicalised to maps between
tropical curves that are called tropical covers. Motivated by this point of view, a com-
binatorial interpretation of double Hurwitz numbers in terms of tropical covers was
derived in [2], which laid the groundwork for the analysis of the polynomial behaviour
of double Hurwitz numbers undertaken in [3]. In particular, by proceeding along an
intricate combinatorial analysis of tropical covers in different chambers, the authors
of [3] were able to derive the desired wall-crossing structure.
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In the past years, several variants of Hurwitz numbers have appeared in the lit-
erature in a plethora of different contexts. Among the most prominent ones are so-
called pruned Hurwitz numbers [5, 11], monotone Hurwitz numbers [7], strictly mono-
tone Hurwitz numbers [16], completed cycles Hurwitz numbers [17] and many more.
For all of these variants the piecewise polynomiality of the double Hurwitz numbers
analogue was established and for the majority a wall-crossing structure as well (see
e.g. [10, 12, 13, 20]).

While classical Hurwitz theory deals with the enumeration of branched morphisms
between orientable surfaces, it is very natural to ask for an analogous theory for non-
orientable surfaces. Such a new and exciting theory for so-called b-Hurwitz numbers
was introduced in [4].

1.2. Twisted Hurwitz numbers. The construction of b-Hurwitz numbers is based
on the following idea: Let H be the compactified complex upper half-plane of P1 and
J the corresponding natural involution on P1. A generalised branched covering is a
covering f : S → H where S is a not-necessarily connected compact orientable surface
with orientation double cover Ŝ, such that f may be “lifted” to a branched covering
Ŝ → P1. We give a precise formulation in Section 2. Via these generalised coverings
the authors of [4] introduce a new one-parameter deformation of classical Hurwitz
numbers called b-Hurwitz numbers in reference to the b-conjecture by Goulden and
Jackson in the context of Jack polynomials [8]. In order to obtain b-Hurwitz numbers,
the authors of [4] associate a non-negative integer νp(f) to any generalised branched
covering f which “measures” the non-orientability of the the surface Ŝ. This non-
negative integer is zero if and only if Ŝ is orientable. Based on this idea b-Hurwitz
numbers are defined – depending on a measure of non-orientability p – as a sum over
generalised branched coverings weighted by bνp(f). Thus, one obtains a Hurwitz-type
enumeration for any value of b. For example, under the convention that 00 = 1, one
recovers classical Hurwitz numbers for b = 0. For b = 1, one obtains enumerations of
generalised branched coverings which are called twisted Hurwitz numbers. This is the
case we study in the present paper.

The term twisted Hurwitz numbers was coined in [1] in the context of surgery
theory. Surgery theory studies the construction of new manifolds from given ones via
cutting and gluing, such that key properties are preserved. In [1], the enumeration of
decompositions of a given surface with boundary and marked points is studied. The
term twisted is motivated by the fact in [1] gluings are performed with respect to a
twist of the natural boundary orientations. It was proved in [1] that the enumeration
of certain decompositions with respect to such a twist may be computed in terms of
factorisations in the symmetric group, reminiscent of Hurwitz’ result in his original
work [14]. More precisely, we fix the involution

τ = (1 n + 1)(2 n + 2) . . . (n 2n) ∈ S2n,

and use the notation

Bn = C(τ) = {σ ∈ S2n | στσ−1 = τ}, C∼(τ) = {σ ∈ S2n | τστ−1 = τστ = σ−1},

where Bn is the hyperoctahedral group. We further define the subset B∼
n ⊂ C∼(τ) con-

sisting of those permutations that have no self-symmetric cycles (see [1, Lemma 2.1]).
We then set, for a partition λ of n, B∼

λ ⊂ B∼
n to consist of those permutations that

have 2ℓ(λ) cycles, two of length λi for each i, that pair up under conjugation with τ .
We are now ready to define twisted single Hurwitz numbers in terms of the
symmetric group.
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Definition 1.2 (Twisted single Hurwitz numbers, [1]). Fix a partition λ of n and a
number b (the number of transpositions). Then define

h̃b(λ) = 1
n! ♯

{
(σ1, . . . , σb) | σs = (is js), js ̸= τ(is), σ1 . . . σb(τσbτ) . . . (τσ1τ) ∈ B∼

λ

}
.

Maybe surprisingly, it was then proved in [1, Theorem 3.2] that these numbers
coincide with b-Hurwitz numbers for b = 1 by showing that the generating series of
both invariants satisfy the same PDE with equal initial data.

1.3. Tropical geometry of twisted Hurwitz numbers. The present paper de-
velops a tropical theory of twisted Hurwitz numbers and demonstrates some first
applications. In Section 2, we define a generalisation of Definition 1.2 to twisted dou-
ble Hurwitz numbers h̃g(µ, ν) which by the same arguments as in [1, Theorem 3.2]
coincides with b-Hurwitz numbers for b = 1. This generalisation arises naturally from
the symmetric group expression for twisted single Hurwitz numbers. Moreover, we
define in Section 3 a tropical analogue of twisted double Hurwitz numbers in terms
of tropical covers. We prove in Section 4 that twisted double Hurwitz numbers coin-
cide with their tropical counterpart, thus giving a tropical correspondence theorem
for these enumerative invariants. This allows us to derive a purely graph-theoretic
interpretation of twisted double Hurwitz numbers in Section 5 by reinterpreting the
tropical covers as directed graphs. Finally, we employ this expression of twisted double
Hurwitz numbers as a weighted enumeration of directed graphs to study the polyno-
miality of twisted Hurwitz numbers in Section 6. Finally, we discuss the wall-crossing
behaviour of twisted Hurwitz numbers.

2. Twisted double Hurwitz numbers
In this section, we define twisted double Hurwitz numbers as a factorization problem
in the symmetric group, generalizing the case of single twisted Hurwitz numbers
discussed in Subsection 1.2. We use the notation of Subsection 1.2. To begin with, we
recall that

C∼(τ) = {σ ∈ S2n | τστ−1 = τστ = σ−1}.

It was proved in [1, Lemma 2.1] for σ ∈ C∼(τ) with the decomposition in cycles
σ = c1 · · · cm, we have for any i that either

• there exists j ̸= i with τciτ = c−1
j or

• we have τciτ = c−1
i and ci has even length.

In the first case, ci and cj are called τ -symmetric, while in the second case ci is
called self-symmetric. As mentioned above, we denote by B∼

n ⊂ C∼(τ) the set of
permutations without self-symmetric cycles and by B∼

λ ⊂ B∼
n the set of permutations

in B∼
n with 2ℓ(λ) cycles and for each i two cycles of length λi that are τ -symmetric.

Definition 2.1 (Cycle type). Let σ ∈ B∼
n . We denote its cycle type by C(σ), which

is a partition of 2n recording the lengths of the cycles of σ.

For a partition µ of n we denote by 2µ the partition of 2n with twice as many
parts, where each part is repeated once.

We may now define twisted double Hurwitz numbers generalising Definition 1.2.

Definition 2.2 (Twisted double Hurwitz numbers). Let g ⩾ 0, n > 0 and µ, ν par-
titions of n. We define Cg(µ, ν) as the set of tuples (σ1, η1, . . . , ηb, σ2), such that we
have:

(1) b = 2g−2+2ℓ(µ)+2ℓ(ν)
2 > 0,

(2) C(σ1) = 2µ, C(σ2) = 2ν, ηi are transpositions satisfying ηi ̸= τηiτ ,
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(3) σ1 ∈ B∼
µ ,

(4) ηb · · · η1σ1(τη1τ) · · · (τηbτ) = σ2,
(5) the subgroup

⟨σ1, η1, . . . , ηb, τη1τ, . . . , τηbτ, σ2⟩
acts transitively on the set {1, . . . , 2d}.

Then, we define the associated twisted double Hurwitz number as

h̃g(µ, ν) = 1
(2n)!! |Cg(µ, ν)|.

When we drop the transitivity condition, we obtain possibly disconnected twisted double
Hurwitz numbers which we denote h̃•

g(µ, ν).

Remark 2.3 (Conventional differences). Compared with the definition of twisted sin-
gle Hurwitz numbers in Definition 1.2, there are two conventional differences:

(1) Rather than the number of transpositions, we use the genus (of the source
of a twisted tropical cover, see Definition 3.3) as subscript in the notation.
In the usual case of Hurwitz numbers (without twisting) counting covers,
this corresponds to the genus of the source curves. By the Riemann-Hurwitz
formula, the genus g and the number b of transpositions (i.e. simple branch
points) are related via

b = 2g − 2 + 2ℓ(µ) + 2ℓ(ν)
2 .

(2) We choose to normalize with the factor 1
(2n)!! rather than 1

n! . This leads to
nicer formulae and structural results.

Remark 2.4 (Connectedness and transitivity). As noted above, one can also drop the
transitivity condition (5) in Definition 2.2 to obtain h̃•

g(µ, ν). On the tropical side,
this amounts to allowing disconnected tropical curves as source of a twisted tropical
cover, see Definition 3.3. In this setting, it can happen that a disconnected twisted
tropical cover contains two twisted components which both just correspond to a single
edge without any interior vertex. This also happens in the connected case if we allow
b = 0. For this case, one has to adapt the tropical multiplicity we set in Definition 3.7:
a twisted tropical cover which consists of a pair of twisted single edges of weight µ
each has multiplicity 1

µ . With this adaption, one can easily generalize our results to
the disconnected case.

As mentioned in the introduction, twisted Hurwitz numbers first appeared in the
Hurwitz theory of non-orientable surfaces. More precisely, we denote by J : P1 → P1

the complex conjugation, by H := {z ∈ C | Im(z) ⩾ 0} the complex upper half-plane
and by H := H∪{∞} the compactified complex upper half-plane. Moreover, we denote
by π : P1 → H the quotient map.

We call continuous maps f : S → H generalised branched coverings, if S is a not-
necessarily orientable surface and there exists a further map f̂ : Ŝ → P1 with

(1) p : Ŝ → S is the orientation double cover,
(2) π ◦ f̂ = f ◦ p,
(3) all the branch points of f̂ are real.

Let T : Ŝ → Ŝ be an orientation reversing involution without fix points, such that
p◦T = p. Then, the second condition of f̂ may be reformulated as f̂ ◦T = J ◦ f̂ . As T
has no fixed points, for any branch points c ∈ P1

R ⊂ P1 of f̂ , the points in its pre-image
come in pairs (a, T (a)) with the same ramification index. Thus, the degree of f̂ is even
and the ramification profile of c repeats any entry twice, e.g. (λ1, λ1, . . . , λs, λs). We
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then say that f has ramification profile (λ1, . . . , λs) at π(s) ∈ ∂H. We further call two
generalised branched coverings f1 and f2 equivalent if their lifts f̂1 and f̂2 are, and
denote the equivalence class of f by [f ].

Definition 2.5. Let g ⩾ 0, n > 0, µ, ν partitions of n. Let b = 2g−2+2ℓ(µ)+2ℓ(ν)
2

and fix p1, . . . , pb pairwise distinct real points on H. We define Gg(µ, ν) as the set of
equivalence classes [f ] of generalised branched coverings f : S → H, such that

• f is of degree n,
• f has ramification profile µ over 0 and ν over ∞,
• f has ramification profile (2, 1, . . . , 1) over pi.

Then, we define 1-Hurwitz numbers as

h1
g(µ, ν) =

∑
[f ]∈Gg(µ,ν)

1
|Aut(f)| .

The parameter g used here is not equal to the genus of the surface S, this is
g′ = g+1

2 .
The following was proved in [1, Theorem 3.2] for ν = (1, . . . , 1). However, the same

approach works for arbitrary ν. In particular, the idea is that in [4, Theorem 6.5] a
recursion of b–Hurwitz numbers was derived. Moreover, twisted Hurwitz numbers were
proved to satisfy a recursion in [1, Theorem 2.12]. It turns out that these recursions
only differ by a factor of 2. The same argument as in the proof of [1, Theorem 3.2]
proves the following result.

Theorem 2.6. Let g ⩾ 0, n > 0 and µ, ν partitions of d. Then, we have

h1
g(µ, ν) = 2−bh̃•

g(µ, ν).

3. Tropical twisted covers and twisted Hurwitz numbers
In [2], tropical Hurwitz numbers have been introduced as a count of tropical covers,
parallel to the count of covers of algebraic curves from Definition 1.1. We start by
recalling the basic notions of tropical curves and covers. Then we introduce twisted
tropical covers, which can roughly be viewed as tropical covers with an involution.
By fixing branch points, we produce a finite count of twisted tropical covers for which
we show in the following section that it coincides with the corresponding twisted
double Hurwitz number. Readers with a background in the theory of tropical curves
are pointed to the fact that we only consider explicit tropical curves in the following,
i.e. there is no genus hidden at vertices.

Definition 3.1 (Abstract tropical curves). An abstract tropical curve is a connected
graph Γ with the following data:

(1) The vertex set of Γ is denoted by V (Γ) and the edge set of Γ is denoted by
E(Γ).

(2) The 1-valent vertices of Γ are called leaves and the edges adjacent to leaves
are called ends.

(3) The set of edges E(Γ) is partitioned into the set of ends E∞(Γ) and the set
of internal edges E0(Γ).

(4) There is a length function

ℓ : E(Γ) → R ∪ {∞},

such that ℓ−1(∞) = E∞(Γ).
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The genus of an abstract tropical curve Γ is defined as the first Betti number of the
underlying graph, i.e. g = 1 + #E0(Γ) − #V (Γ). An isomorphism of abstract tropical
curves is an isomorphism of the underlying graphs that respects the length function.
The combinatorial type of an abstract tropical curve is the underlying graph without
the length function.

We are now ready to define the notion of a tropical cover. We restrict to the case
where the target Γ2 is a subdivided version of R, i.e. a line with some 2-valent vertices.
Definition 3.2 (Tropical covers). A tropical cover of a subdivided version of R, Γ2,
is a surjective harmonic map between abstract tropical curves π : Γ1 → Γ2, i.e.:

(1) We have π(V (Γ1)) ⊂ V (Γ2).
(2) Let e ∈ E(Γ1). Then, we interpret e and π(e) as intervals [0, ℓ(e)] and

[0, ℓ(π(e))] respectively. We require π restricted to e to be a bijective integer
linear function [0, ℓ(e)] → [0, ℓ(π(e))] given by t 7→ ω(e) · t, with ω(e) ∈ Z. If
π(e) ∈ V (Γ2), we define ω(e) = 0. We call ω(e) the weight of e.

(3) For a vertex v ∈ V (Γ1), we denote by Inc(v) the set of incoming edges at v
(edges adjacent to v mapping to the left of π(v)) and by Out(v) the set of
outgoing edges at v (edges adjacent to v mapping to the right of π(v)). We
then require ∑

e∈Inc(v)

ω(e) =
∑

e∈Out(v)

ω(e).

This number is called the local degree of π at v. We call this equality the
harmonicity or balancing condition. For a point v in the interior of an edge
e of Γ1, the local degree of π at v is defined to be the weight ω(e).

Moreover, we define the degree of π as the sum of local degrees of all preimages in Γ1
of a given point of Γ2. The degree is independent of the choice of point of Γ2. This
follows from the harmonicity condition.

For any end e of Γ2, we define a partition µe as the partition of weights of ends
of Γ1 mapping to e. We call µe the ramification profile of e.

We call two tropical covers π1 : Γ1 → Γ2 and π2 : Γ′
1 → Γ2 equivalent if there exists

an isomorphism g : Γ1 → Γ′
1 of metric graphs, such that π2 ◦ g = π1.

Definition 3.3 (Twisted tropical covers). We define a twisted tropical cover of type
(g, µ, ν) to be a tropical cover π : Γ1 → Γ2 with an involution ι : Γ1 → Γ1 which
respects the cover π, such that:

• The target Γ2 is a subdivided version of R with vertices {p1, . . . , pb} = V (Γ2),
where pi < pi+1. Here, b = 2g−2+2ℓ(µ)+2ℓ(ν)

2 . These points are called the
branch points.

• There are ℓ(µ) pairs of ends mapping to (−∞, p1] with weights µ1, . . . , µℓ(µ)
and ℓ(ν) pairs of ends mapping to [pb, ∞) with weights ν1, . . . , νℓ(ν).

• in the preimage of each point pi, there are either two 3-valent vertices or one
4-valent vertex.

• the edges adjacent to a 4-valent vertex all have the same weight.
• the fixed locus of ι is exactly the set of 4-valent vertices.

Definition 3.4 (Quotient graph Γ/ι). Let π : Γ → R be a twisted tropical cover with
involution ι : Γ → Γ. The involution ι induces a symmetric relation on the vertex and
edge sets of Γ: We define for v, v′ ∈ V (Γ) (resp. e, e′ ∈ E(Γ)) that v ∼ v′ (resp. e ∼ι e′)
if and only ι(v) = v′ (resp. ι(e) = e′). We define Γ/ι as the graph with vertex set
V (Γ)/ ∼ and edge set E(Γ)/ ∼ with natural identifications. For e = [e′, e′′] ∈ E(Γ/ι)
we define the length ℓ(e) as ℓ(e′) = ℓ(e′′) and its weight ω(e) with respect to π to be
the weight ω(e′) = ω(e′′).
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Figure 1. A twisted tropical cover and its quotient graph.

Example 3.5. The graph on the left in Figure 1 shows a twisted tropical cover π of
type (0, (4), (2, 2)). We fix p1 = −5 and p2 = 5. The graph on the top represents the
source curve Γ1, whereas the graph Γ2 on the bottom is R with two marked points p1
and p2. The graph above is mapped to the graph below via the projection indicated by
the arrow, e.g. the two left most edges of Γ1 are each mapped to (−∞, −5). The green
labels indicate the lengths of the corresponding edge. We have six unbounded edges
of Γ1, whose lengths we denote by ∞ and two bounded edges, each of length five and
each mapped to (−5, 5). The graph Γ2 has two unbounded edges corresponding to the
intervals (−∞, −5) and (5, ∞) and one bounded edge which corresponds to (−5, 5).
The red labels indicate the weights ω(e) of the corresponding edges e. For the two
bounded edges of Γ1, we see immediately that the corresponding weight has to be 2,
since ℓ(π(e)) = ω(e) · ℓ(e). For the unbounded edges the weight cannot be read off the
difference of lengths of the original edge and its image. However, the choices of weights
in Figure 1 satisfy the balancing condition. The involution ι can be visualized in the
picture as the reflection along a horizontal line passing through the 4-valent vertex.
We can see that the picture yields a twisted tropical cover of type (0, (4), (2, 2)). On
the right of Figure 1 the quotient graph Γ/ι is illustrated.

Definition 3.6 (Automorphisms). Let π : Γ → R be a twisted tropical cover with
involution ι : Γ → Γ. An automorphism of π is a morphism of abstract tropical curves
(i.e. a map of metric graphs) f : Γ → Γ respecting the cover and the involution, i.e.
π ◦ f = π and f ◦ ι = ι ◦ f . We denote the group of automorphisms of π by Aut(π).

Definition 3.7 (Twisted tropical Hurwitz number). We define the tropical twisted
double Hurwitz number h̃trop

g (µ, ν) to be the weighted enumeration of equivalence
classes of twisted tropical covers of type (g, µ, ν), such that each equivalence class
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[π : Γ → R] is counted with multiplicity

2b · 1
| Aut(π)| ·

∏
V

(ωV − 1)
∏

e

ω(e),

where b is the number of branch points. Moreover, the first product goes over all
4-valent vertices and ωV denotes the weight of the adjacent edges, while the second
product is taken over all internal edges of the quotient graph Γ/ι and ω(e) denotes
their weights.

4. The Correspondence Theorem
In this section, we show that twisted double Hurwitz numbers coincide with their trop-
ical counterparts. In Construction 4.1, we associate a twisted tropical cover to a tuple
in the symmetric group counting towards a twisted Hurwitz number. In Lemma 4.2,
we show that the outcome is indeed a twisted tropical cover. In Proposition 4.6, we
show that the multiplicity with which a twisted tropical cover is counted exactly equals
the number of tuples that are mapped to it via Construction 4.1. This proof builds
on [1, Theorem 2.12], where the cut-and-join operator for twisted Hurwitz numbers
was derived. The result is summed up in Theorem 4.7.

Construction 4.1. Let (σ1, η1, . . . , ηb, σ2) ∈ Cg(µ, ν). We let Γ2 be R subdivided by b
vertices pi and construct a twisted tropical cover π : Γ1 → Γ2 associated to this tuple.

(1) First, we fix p1, . . . , pb ∈ V (Γ2) with pi < pi+1 and set p0 = −∞ and pb+1 =
∞.

(2) We begin with 2ℓ(µ) ends over the interval (−∞, p1], labelled by σ1
1 , . . . , σ

2ℓ(µ)
1 ,

where σ1 = σ1
1 ◦ . . . ◦ σ

2ℓ(µ)
1 is a decomposition of σ1 into cycles. The action

of τ on σ1 yields an involution on these ends.
(3) By [1, Theorem 2.14], the product

(*) η1 ◦ σ1 ◦ (τη1τ)

gives rise to three cases.
(a) In this first case, we have four cycles σ1

1 , σ2
1 , σ3

1 , σ4
1 of σ1, such that

σ1
1σ2

1σ3
1σ4

1 ∈ B∼
n .

Then, the product in (*) joins two pairs of these cycles to two new cy-
cles, e.g. σ1

1, σ2
1 to a new cycle η1σ1

1σ2
1τη1τ ; and σ3

1, σ4
1 to a new cycle

η1σ3
1σ4

1τη1τ . In this case, we create two vertices over p1 each adjacent
to two ends. We attach the ends that are joint via (*) to the same ver-
tex. Moreover, we attach to each vertex two edges projecting to [p1, p2]
that are temporarily labeled by the corresponding cycles obtained from the
join. Later, we replace this label by the length of the cycle as weight. This
is illustrated in the following picture for the case that σ1

1 is joined with
σ2

1 and σ3
1 is joined with σ4

1. Again, the action of τ on the permutation
obtained from the join yields an involution of the tropical cover.
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σ1
1

σ2
1

σ3
1

σ4
1

p1

η1σ1
1σ2

1τη1τ

η1σ3
1σ4

1τη1τ

(b) In the second case, we have two cycles σ1
1 , σ2

1 of σ1, such that

σ1
1σ2

1 ∈ B∼
n .

Then the product in (*) splits two cycles σ1
1 and σ2

1 each into two cycles,
that we denote by σ1,a

1 , σ1,b
1 and σ2,a

1 , σ2,b
1 respectively. In this case, we

create two vertices over p1 each adjacent to one end labeled by σ1
1 and

σ2
1 respectively. Moreover, we attach to each vertex two edges projecting

to [p1, p2] that are temporarily labeled by the corresponding cycles ob-
tained from the split, i.e. the new edges attached to the vertex adjacent
to σi

1 are labeled by σi,a
1 and σi,b

1 . We illustrate this construction in the
following picture.

p1

σ1
1

σ2
1

σ1,a
1

σ1,b
1

σ2,a
1

σ2,b
1

(c) In the third case, we have two cycles σ1
1 and σ2

1 of σ1 of the same length.
Here, the product in (*) rearranges σ1

1 and σ2
1 into two new cycles σ̃1

1 , σ̃2
1

of the same length. In this case, we create one vertex over p1 that joins
the two ends labeled by σ1

1 , σ2
1. Moreover, we attach two new edges to this

vertex that map to [p1, p2] and that are labeled by σ̃1
1 , σ̃2

1. We illustrate
this construction in the following picture.
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p1

σ1
1

σ̃2
1

σ̃1
1

σ2
1

In each case, we further extend all ends not attached to a vertex over p1
to [p1, p2].

(4) We now take the permutation η1σ1τη1τ and consider the product

η2(η1σ1τη1τ)τη2τ.

We proceed as in step (2) and create the corresponding vertices over p2. More-
over, we proceed inductively for ηiηi−1 . . . η1σ1τη1 · · · ηiτ until i = b. For i = b,
we obtain ends that are labeled by the cycles of σ2 and that project to [pb, ∞).
This gives a map between graphs π̃ : Γ̃1 → Γ2.

(5) The conjugation by τ induces a natural involution ι̃ : Γ̃1 → Γ̃1 that respects
the map π̃.

(6) Next, for each edge e of Γ̃1, we replace the cycle labeling it by the length of
this cycle. We consider this cycle length as the weight of e.

Lemma 4.2. Let (σ1, η1, . . . , ηb, σ2) ∈ Cg(µ, ν). Perform Construction 4.1 to obtain
π : Γ1 → Γ2. Then π : Γ1 → Γ2 is indeed a twisted tropical cover.

Proof. This follows from the fact that the lengths of cycles (which become weights
of the cover) in the cut-and-join analysis add up as expected in the harmonicity
condition. The involution is obtained from the action of τ . The connectedness of Γ1
follows from the transitivity condition in Definition 2.2 (5). □

Remark 4.3. Given a twisted tropical cover, we can label the edges recursively by
cycles of a permutation σ1 resp. of permutations of the form η1σ1τη1τ and so on. In
the following, we study how many ways there are to label the edges of a cover. This
builds on [1, Theorem 2.12] which studies the cut-and-join analysis for the action of
two partner transpositions. With this, we can determine the number of labels for the
edges on the right of a vertex, if the edges on the left are already labeled. We obtain a
recursive way to count the number of tuples that yield a given twisted tropical cover.
This is detailed in Proposition 4.6. Before, we count the number of ways to label the
left ends of a twisted tropical cover.

The following is a well-known fact (see e.g. [8], Proposition 5.2). For the sake of
completeness, we nevertheless include the short proof below.

Lemma 4.4. Let µ be a partition of n. The cardinality of B∼
µ equals

1
2ℓ(µ)

1∏
µi

1
| Aut(µ)| (2n)!!.
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Proof. We consider an “empty” permutation consisting of 2 cycles of length µi for
every i such that each cycle contains µi placeholders. Then we count the possibilities
to fill up the placeholders one by one with numbers from 1, . . . , 2n.

For the first place, we have 2n options. Having chosen one placeholder to be j, the
element τ(j) is not allowed to be in the same cycle. For that reason, if our cycle is
not yet completed, we have 2n − 2 options to choose for the next place. If the cycle
is completed, the involution τ requires us to fill up the partner cycle of length 1 as
(τ(j)). Thus, we cannot choose τ(j) either as we fill up the first placeholder of the
next cycle. We thus have 2n − 2 options again.

Recursively, we can see that we have 2n!! ways to fill our placeholders with numbers.
This is not the right count yet, we have overcounted in multiple ways:

• For every cycle and its partner cycle, it does not matter in which way we
arranged the cycles, so we have to divide by a factor of 2 of each entry of µ,
i.e. by 1

2ℓ(µ) .
• If µ has automorphisms, using the same argument, it does not matter how

we arranged, so we have to divide by Aut(µ).
• Finally, we overcounted for each cycle a factor of µi, as we can cyclically

exchange the entries in a cycle without changing the cycle.
Altogether, we obtain the claimed expression. □

Example 4.5. Let n = 3 and µ = (2, 1). Then τ = (14)(25)(36). The expression above
yields 1

22
1

2·1 6!! = 6. The six elements in B∼
µ are

(12)(3)(45)(6), (13)(2)(46)(5), (15)(3)(24)(6),
(16)(2)(34)(5), (23)(1)(56)(4), (26)(1)(53)(4).

Let n = 3 and µ = (3). The expression yields 1
2

1
3 6!! = 8. The eight elements in B∼

µ

are

(123)(654), (132)(564), (126)(354), (162)(534),
(135)(264), (153)(624), (156)(324), (165)(234).

Let n = 2 and µ = 2. The τ = (13)(24). The 1
2

1
2 4!! = 2 elements in B∼

µ are

(12)(34), (14)(23).

We are now ready to enumerate twisted factorisations that give rise to the same
twisted tropical cover.

Proposition 4.6. Given a twisted tropical cover π : Γ → R with involution ι of type
(g, µ, ν). Then, the numbers of twisted factorisations in Cg(µ, ν) giving rise to (π, ι)
via Construction 4.1 is

(2n)!! · 2b ·
∏
V

(ωV − 1)
∏

e

ω(e) · 1
| Aut(π)| ,

where b is the number of branch points. Here, the first product goes over all 4-valent
vertices of Γ and ωV denotes the weight of the adjacent edges, while the second product
is taken over all internal edges of Γ/ι and ω(e) denotes their weight.

Proof. We count the numbers of twisted factorisations (σ1, η1, . . . , ηb, σ2) ∈ Cg(µ, ν)
that give rise to (π, ι) via Construction 4.1. To begin with, we count the number of
first permutations σ that may be assigned to the incoming ends. By Lemma 4.4, this
number is equal to

1
2ℓ(µ)

1∏
µi

1
| Aut(µ)| (2n)!!.
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We fix such a σ and follow Construction 4.1. First, we label the edges over [−∞, p1]
by the cycles of σ that is in accordance with ι. There are 2ℓ(µ) · |Aut(µ)| ways to do
this: First, each edge can be labeled with a cycle or its conjugation under τ , leading
to 2ℓ(µ) possibilities for labeling. Furthermore, if we have incoming edges of the same
weight, i.e. automorphisms of µ, there are a priori | Aut(µ)| possibilities to permute
the cycles for these edges; except if two incoming edges end at the same vertex. Then
these two edges are not distinguishable. We nevertheless temporarily record a factor
of 2ℓ(µ) · |Aut(µ)| and keep in mind that we overcounted with a factor of 2 for each
pair of incoming ends adjacent to the same vertex. The overcounting factors will be
cancelled later, when we divide by | Aut(π)|, as described below.

We now follow the cut-and-join analysis of [1, Theorem 2.12] to count the number
of transpositions that give rise to (Γ, ι) by starting with σ. We consider the first
branch point p1. There are three cases by Construction 4.1.

In the first case, we have two 3-valent vertices mapping to p1 that perform a
simultaneous join of two pairs of edges e1, e2 adjacent to the first vertex and e3, e4
adjacent to the second vertex. Given such a pair of vertices and fixing cycles σl

k for
the edges left of the vertices, there are 2ℓ(σi

1)ℓ(σj
1) = 2ω(e1)ω(e2) = 2ω(e3)ω(e4)

transposition η1 joining σi
1 with σj

1 and the other two cycles with each other, where
we use the notation of Construction 4.1.

In the second case, we again have two 3-valent vertices mapping to p1 that perform
a simultaneous cut of two edges e1 and e2 into e3, e4 and e5, e6 respectively. Using
again the notation of Construction 4.1 and [1, Theorem 2.12], we obtain the following
count of transpositions for fixed cycles corresponding to the edges left of the vertices:
If ℓ(σ1,a

1 ) ̸= ℓ(σ1,b
1 ), there are 2ℓ(σ1

1) many transpositions η1 giving rise to this cut.
If ℓ(σ1,a

1 ) = ℓ(σ1,b
1 ), this number is ℓ(σ1

1). Since the lengths of the cycles are turned
into the weights of the edges of the twisted tropical cover, this can be rephrased as
follows: If ω(e3) ̸= ω(e4), there are 2ω(e1) = 2ω(e2) corresponding transpositions η1.
If ω(e3) = ω(e4), this number is ω(e1) = ω(e2). If e3 and e4 have distinguishable
evolution in the tropical cover, it matters which cycle takes which path. Therefore,
in this case, we have a further contribution of a factor 2. If the evolution of e3 and
e4 is identical, it does not matter which cycle takes which path. Nevertheless, we
momentarily insist on overcounting with a factor of 2 as usual, but remark that an
identical evolution corresponds to a factor of Z2 in the automorphism group of the
tropical cover. Hence, dividing by 1

| Aut(π)| later will cancel the overcounting with a
factor of 2 also in the case of identical evolution.

In the third case, we have a 4-valent vertex that performs a join and cut of two
incoming edges to two outgoing edges all of the same weight. Using the notation
of Construction 4.1 and [1, Theorem 2.12], we obtain the following count of trans-
positions for fixed cycles corresponding to the edges left of the vertices: There are
ℓ(σ1

1)(ℓ(σ1
1) − 1) transpositions η1 giving rise to this picture. Since the lengths of the

cycles are turned into the weights of the edges of the twisted tropical cover, this can
again be rephrased as follows: There are ω(e)(ω(e) − 1) many transpositions η1 to
account for, where e is one of the edges adjacent to the vertex. As in the second case,
it matters which cycle corresponding to an outgoing edge takes which path. Thus, we
obtain a factor 2. Again, if the evolution of the two outgoing edges is identical, this
corresponds to a non-trivial automorphism of the tropical cover, so the overcounting
by 2 will be cancelled later.

Next, we consider the automorphisms of the tropical cover. We have already dis-
cussed that two edges obtained from a cut resp. from a 4-valent vertex with indistin-
guishable evolution correspond to factors of Z2 in the automorphism group.
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Since we have only 3 and 4-valent vertices (with two incoming and two outgoing
edges), any non-trivial automorphism must exchange pairs of edges with the same
image. Accordingly, the automorphism group is a product of factors of Z2. If we follow
the evolution of our cover from the left to the right, then any pair of edges which can
lead to a factor of Z2 comes from a cut or a 4-valent vertex whose outgoing edges
have indistinguishable evolution, except of pairs of incoming ends. The factors coming
from a cut or a 4-valent vertex are already taken into account, since they cancel with
our overcounting for the vertex contributions from above. We only need to discuss
pairs of incoming edges which lead to a factor of Z2 in the automorphism group,
because they have the same end vertex. But these factors are canceled because of the
overcounting we performed when we counted the possibilities to label the incoming
edges, as mentioned before.

To summarise, we obtain the the desired number of twisted factorisations giving
rise to (π, ι). □

As the number of tuples in the symmetric group yielding a fixed twisted tropical
cover which we determined in Proposition 4.6 exactly equals the multiplicity with
which we count a twisted tropical cover in the definition of tropical twisted double
Hurwitz number (see Definition 2.2) (up to the global factor 1

(2n)!! ), and since all
twisted tropical covers of type (g, µ, ν) arise in this manner, we have now proved the
following theorem, which we consider the main result of this section.

Theorem 4.7 (Correspondence Theorem). For g a non-negative integer and µ, ν par-
titions of the same positive integer, the twisted double Hurwitz number of Defini-
tion 2.2 coincides with the tropical twisted double Hurwitz number of Definition 3.7:

h̃g(µ, ν) = h̃trop
g (µ, ν).

As shown in the next chapters, the Correspondence Theorem 4.7 allows to use
a graphical way of determining twisted Hurwitz numbers, and it can be applied to
deduce structural properties such as piecewise polynomiality.

5. A graphical count of twisted Hurwitz numbers
We distill the combinatorial essence of the count of twisted tropical covers: the metric
of the tropical source curve is imposed by the distances of the branch points in the
image. Thus, length data does not have to be specified and we can merely count the
combinatorial types of tropical twisted covers. This is specified in terms of monodromy
graphs.

We can thus use the tropical approach to provide an easy graphical way to deter-
mine twisted double Hurwitz numbers.

Definition 5.1 (Twisted monodromy graphs). For fixed g and two partitions µ and
ν of n, a graph Γ is a twisted monodromy graph of type (g, µ, ν) if:

(1) Γ is a connected, genus g, directed graph.
(2) Γ has 3-valent and 4-valent vertices.
(3) Γ has an involution whose fixed points are the 4-valent vertices.
(4) Γ has 2ℓ(µ) inward ends of weights µi. Ends which are mapped to each other

under the involution have the same weight.
(5) Γ has 2ℓ(ν) outward ends of weights νi. Ends mapped to each other via the

involution have the same weight.
(6) Γ does not have sinks or sources.
(7) The inner vertices are ordered compatibly with the partial ordering induced by

the directions of the edges.
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(8) Every bounded edge e of the graph is equipped with a weight w(e) ∈ N. These
satisfy the balancing condition at each inner vertex: the sum of all weights of
incoming edges equals the sum of the weights of all outgoing edges.

(9) The four edges adjacent to a 4-valent vertex all have the same weight.
(10) The involution is compatible with the weights.

Corollary 5.2. For genus g and two partitions µ and ν of n, the twisted Hurwitz
number h̃g(µ, ν) equals the weighted sum of all twisted monodromy graphs of type
(g, µ, ν), where each graph is weighted as follows. Let b denote the number of branch
points. For a 4-valent vertex V , let ωV denote the weight of its 4 adjacent edges. For
an edge e, let ω(e) denote its weight.

Then we have

h̃g(µ, ν) =
∑

Γ
2b ·

∏
V

(ωV − 1)
∏

e

ω(e) · 1
| Aut(π)| ,

where the sum goes over all twisted monodromy graphs Γ of type (g, µ, ν), the first
product goes over all 4-valent vertices of Γ and the second over all pairs of internal
edges of Γ, paired up by the involution.

Proof. By mapping the vertices of a twisted monodromy graph to a line according to
their order, each monodromy graph gives rise to a twisted tropical cover. The genus g
and the labeling µ, ν of the ends are given by the type of the monodromy graph. Vice
versa, each twisted tropical cover of genus g with ends labeled by µ and ν gives rise
to a monodromy graph of type (g, µ, ν) by forgetting lengths of edges and the map to
the line. Thus the statement follows from Theorem 4.7. □

Corollary 5.3. We can simplify the count in Corollary 5.2 as

h̃g(µ, ν) =
∑

Γ
o(Γ) · 2b ·

∏
V

(ωV − 1)
∏

e

ω(e) · 1
| Aut(π)| ,

where now the sum goes over all twisted monodromy graphs without a fixed vertex
ordering and o(Γ) denotes the number of vertex orderings which are compatible with
the edge directions.

Example 5.4. We compute h̃1((4), (2, 2)) = 160.
Figure 2 shows all monodromy graphs of type (1, (4), (2, 2)). We did not draw

directions for the edges, they are all directed to the right. The order of the vertices
is always fixed by the direction of the edges, except for the top right graph for which
the second and third vertex could be exchanged. As these orderings yield isomorphic
covers, we only need to consider one.

There are 3 branch points. In the top left graph in Figure 2, we have two 4-valent
vertices, each adjacent to edges of weight 4, four (independent) automorphisms and
two pairs of inner edges of weight 4 each. Thus the top graph contributes 23 · 3 · 3 · 4 ·
4 · ( 1

2 )4 = 72.
For the top right graph, there are two 4-valent vertices, each adjacent to edges of

weight 2, three (independent) automorphism and two pairs of inner edges of weight
2 each. Thus the top right graph contributes 23 · 1 · 1 · 2 · 2 · ( 1

2 )3 = 4.
For the left graph in the second row, there are two 4-valent vertices, each adjacent

to edges of weight 2, three (independent) automorphism and two pairs of inner edges
of weight 2 each. Thus the third graph contributes 23 · 1 · 1 · 2 · 2 · ( 1

2 )3 = 4.
The right graph in the second row has two 4-valent vertices, one adjacent to edges

of weight 4 the other to weight 2, it has three (independent) automorphisms and two
pairs of inner edges of weight 4 resp. 2. Thus it contributes 23 · 3 · 1 · 4 · 2 · ( 1

2 )3 = 24.
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Figure 2. The tropical count of h̃1((4), (2, 2)).

The left graph in the third row has no 4-valent vertices, three (independent) auto-
morphism and three pairs of inner edges of weights 2, 2 resp. 4. Thus it contributes
23 · 2 · 2 · 4 · ( 1

2 )3 = 16.
The right graph in the third row has no 4-valent vertices, two (independent) au-

tomorphism, one pairs of inner edges of weight 2 and two pairs of inner edges of
weight 1. Thus, it contributes 23 · 1 · 1 · 2 · ( 1

2 )2 = 4.
The left graph in the last row has no 4-valent vertices, one automorphism and three

pairs of inner edges of weights 1, 1 resp. 3. Thus it contributes 23 · 1 · 1 · 3 · 1
2 = 12.

The right graph in the last row has no 4-valent vertices, two automorphisms and
three pairs of inner edges of weights 1, 3 resp. 4. Thus it contributes 23·1·3·4·( 1

2 )2 = 24.

6. Piecewise polynomial structure of twisted double Hurwitz
numbers

As for usual double Hurwitz numbers, the tropical approach can be used to deduce
the piecewise polynomial structure.

Theorem 6.1. Fix g, ℓ(µ) and ℓ(ν). Consider the twisted double Hurwitz numbers as
a function

h̃g(µ, ν) :
{

(µ, ν) |
∑

µi =
∑

νj

}
−→ Q.

Then the twisted double Hurwitz numbers h̃g(µ, ν) are piecewise polynomial in the
entries µi, νi. The chambers of polynomiality are given by the hyperplane arrangement
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{
∑

i∈I µi =
∑

j∈J νj}, where I and J are subsets of [ℓ(µ)] resp. [ℓ(ν)] of size at least 1
and at most ℓ(µ) − 1 resp. ℓ(ν) − 1. In a chamber, the polynomial h̃g(µ, ν) is of degree
ℓ(µ) + ℓ(ν) − 1 + 2g.

Here, since we treat µ and ν as variables, we assume implicitly that Aut(µ) and
Aut(ν) are trivial. If one inserts special values µ, ν for which this is not the case, one
has to divide the piecewise polynomial expression by Aut(µ) · Aut(ν) to pass to the
twisted Hurwitz number.

Proof. The proof builds on the proof of the piecewise polynomiality for double Hurwitz
numbers obtained by tropical methods in Theorem 3.1 and 3.9 in [3].

Let Γ be a twisted monodromy graph of type (g, µ, ν). Here, we treat the entries of
µ and ν as variables, but g, ℓ(µ) and ℓ(ν) are fixed numbers. Accordingly, the weights
of the edges of Γ are also variable and depend on the µi and νj . The number o(Γ)
of vertex orderings compatible with the edge directions, the factor 1

| Aut(π)| and the
factor 2b (where b is the number of branch points) showing up in the multiplicity with
which Γ contributes to h̃g(µ, ν) in Corollary 5.3 are all numbers. Thus it remains to
show the piecewise polynomiality of the factors

∏
V (ωV −1) and

∏
e ω(e). Recall that

the first factor is the product over all 4-valent vertices V and ωV denotes the weight
of its adjacent edges, and the second factor the product over all inner edges e and
ω(e) denotes their weight.

Assume Γ has c 4-valent vertices. By an Euler-characteristics computation, Γ has

2(ℓ(µ) + ℓ(ν)) + 3g − 3 − c

bounded edges and

2(ℓ(µ) + ℓ(ν)) + 2g − 2 − 2c

3-valent vertices. The quotient Γ/ι thus has

ℓ(µ) + ℓ(ν) + 3g − 3 − c

2

bounded edges and

ℓ(µ) + ℓ(ν) + g − c − 1

3-valent vertices. In addition, it has c 2-valent vertices. We can temporarily remove
those and merge the adjacent edges, arriving at a 3-valent graph with ℓ(µ)+ℓ(ν) ends
and ℓ(µ) + ℓ(ν) + 3g−3−c

2 − c edges. Again by an Euler characteristic computation, for
the genus g′ of Γ/ι we obtain ℓ(µ) + ℓ(ν) + 3g′ − 3 bounded edges. Equating the two
expressions above, we derive at g′ = 1

2 · (g − c + 1).
We pick g′ edges in Γ/ι whose removal produces a connected tree. We denote the

weights of these edges by variables i1, . . . , ig′ . Then by the balancing condition, the
weights of the remaining edges are fixed and a homogeneous linear polynomial in the
µi, νj and the variables ik. The condition that the edge weights have to be positive
provides summation bounds for the variables ik forming a bounded polyhedron. We
sum the product over the edge weights and the factors (ωV −1) for the 4-valent vertices
over the lattice points of this polyhedron. We have ℓ(µ) + ℓ(ν) + 3g−3−c

2 factors for
the inner edges, and c for the 4-valent vertices. Using the Faulhaber formulae for
summation of powers of the variables ik, we increase the degree by one with each
summation. Thus, we obtain a polynomial of degree
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ℓ(µ) + ℓ(ν) + 3g − 3 − c

2 + c + g′

= ℓ(µ) + ℓ(ν) + 3g − 3 − c

2 + c + 1
2(g − c + 1)

= ℓ(µ) + ℓ(ν) + 2g − 1.

As we obtain a polynomial contribution of this degree for every twisted monodromy
graph, we deduce that h̃g(µ, ν) is a polynomial of degree ℓ(µ) + ℓ(ν) + 2g − 1.

The piecewise polynomial structure and the walls for the chambers of polynomiality
arise as in Theorem 3.9 of [3], which we state below in Theorem 6.2. □

Theorem 6.2 (Theorem 3.9, [3]). For the piecewise polynomial function which as-
sociates to µ, ν the double Hurwitz number counting branched covers of P1 with two
special ramification profiles µ, ν and only simple ramification else as in [9, 3], the
walls separating the chambers of polynomiality are given by equations of the form∑

i∈I

µi −
∑
j∈J

νj = 0,

where I and J are subsets of [ℓ(µ)] resp. [ℓ(ν)] of size at least 1 and at most ℓ(µ) − 1
resp. ℓ(ν) − 1.

These equations state that an edge of a feasible monodromy graph can have
weight 0. On one side of the wall, the graph with this edge directed in one way
appears; on the other side, the graph with the direction of this edge reversed. This is
in charge of the piecewise polynomial behaviour: we do not sum over the same mon-
odromy graphs. The situation is exactly the same in the case of twisted monodromy
graphs.

Remark 6.3. If we consider double Hurwitz numbers counting branched covers of P1

with two special ramification profiles µ, ν and only simple ramification else as in [9, 3],
we obtain a polynomial in the µi, νj of degree 4g − 3 + ℓ(µ) + ℓ(ν). This fits nicely
with the genus of the surface S mentioned in Definition 2.5, which equals g+1

2 .

Remark 6.4. Note that [4, Theorem 6.6] proves piecewise polynomiality for the more
general b-Hurwitz numbers, which for b = 1 coincide with our twisted Hurwitz num-
bers up to a factor of n. One could say that Theorem 6.1 improves this result, as it
shows that the polynomials in [4, Theorem 6.6] are divisible by n. This can be seen
also directly in the context of [4, Theorem 6.6] however, as for the special case b = 1
the factor of n corresponds to a combinatorial factor.

In the following, we study the special situations of twisted double Hurwitz numbers
of genus zero and genus one, as in these cases we can be more precise and include
statements not only about the top degree but also about the smallest degree appearing
in the polynomials h̃0(µ, ν) and h̃1(µ, ν). The next lemma serves as a preparation for
the two following propositions dealing with the cases genus zero and genus one.

Lemma 6.5. Let Γ be a twisted monodromy graph of type (g, µ, ν). Then Γ can have
at most g + 1 4-valent vertices.

Proof. The tropical twisted cover induced by a twisted monodromy graph of type
(g, µ, ν) has ℓ(µ)+ℓ(ν)+g −1 branch points, by an Euler characteristics computation
for Γ. If the branch point is given by a 4-valent vertex, the partition of weights left of
the branch point equals the partition of weights right of the branch points. In order to
change the partition from 2µ to 2ν, we need at least as many branch points which are
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not 4-valent as two involuted copies of a rational cover with ends µ and ν have, i.e.
ℓ(µ)+ ℓ(ν)−2. Thus at most g +1 branch points can come from 4-valent vertices. □

Proposition 6.6. Consider the genus zero twisted double Hurwitz numbers as a piece-
wise polynomial function

h̃0(µ, ν) :
{

(µ, ν) |
∑

µi =
∑

νj

}
−→ Q.

In each chamber, the polynomial h̃0(µ, ν) has two homogeneous components, one
of degree ℓ(µ) + ℓ(ν) − 1 and one of degree ℓ(µ) + ℓ(ν) − 2.

Moreover, each monodromy graph contributing to the count of h̃0(µ, ν) has precisely
one 4-valent vertex.

Proof. By Lemma 6.5, a rational twisted monodromy graph has at most one 4-valent
vertex. By an Euler characteristics computation, Γ has 2(ℓ(µ) + ℓ(ν)) − 3 − c inner
edges, where c is the number of 4-valent vertices. Because of the involution, this
number must be even and thus there is precisely one 4-valent vertex.

The weight with which Γ contributes to the count of h̃0(µ, ν) by Corollary 5.2
equals the product of the edge weights of each pair of inner edges times a factor
of (ωV − 1) for the 4-valent vertex times a rational number. Each edge weight is a
homogeneous linear polynomial in the µi and νj , and thus also the factor (ωV − 1)
is linear in µi and νj (although not homogeneous). It follows that Γ contributes a
polynomial of degree 1

2 · (2(ℓ(µ) + ℓ(ν)) − 3 − 1) + 1 = ℓ(µ) + ℓ(ν) − 1. The terms of
smallest degree have degree ℓ(µ) + ℓ(ν) − 2. □

Example 6.7. In this example, we compute the polynomial h̃0((µ), (ν1, ν2)). As the
partition (µ) consists of just one entry, there are no walls and there is no piecewise
structure, but there is only one polynomial. The three monodromy graphs which
contribute to the count of h̃0((µ), (ν1, ν2)) are depicted in Figure 3. The polynomial
with which they contribute is written next to the picture. Altogether, we obtain
h̃0((µ), (ν1, ν2)) = µ ·(µ−1)+ν1 ·(ν1 −1)+ν2 ·(ν2 −1) = (µ2 +ν2

1 +ν2
2)−(µ+ν1 +ν2),

a polynomial with two homogeneous parts, one of degree two and one of degree one,
as expected by Proposition 6.6.

The following statement will be used in the next Proposition:

Corollary 6.8 (Corollary 1.2, [15]). The piecewise polynomial function which as-
sociates to µ, ν the double Hurwitz number counting branched covers of P1 with two
special ramification profiles µ, ν and only simple ramification else as in [9, 3] is, when
restricted to a chamber of polynomiality, a sum of homogeneous polynomials of even
degrees ranging from 4g − 3 + ℓ(µ) + ℓ(ν) to 2g − 3 + ℓ(µ) + ℓ(ν).

Proposition 6.9. Consider the genus one twisted double Hurwitz numbers as a piece-
wise polynomial function

h̃1(µ, ν) :
{

(µ, ν) |
∑

µi =
∑

νj

}
−→ Q.

In each chamber, the polynomial h̃1(µ, ν) has three homogeneous components, rang-
ing from degree ℓ(µ) + ℓ(ν) − 1 to degree ℓ(µ) + ℓ(ν) + 1.

Moreover, each monodromy graph contributing to the count of h̃1(µ, ν) has either
none or two 4-valent vertices.

Proof. The monodromy graph Γ has 2(ℓ(µ) + ℓ(ν)) + 3g − 3 − c = 2(ℓ(µ) + ℓ(ν)) − c
bounded edges, where c is the number of 4-valent vertices. By Lemma 6.5 and as this
number has to be even because of the existence of an involution, Γ has no or two
4-valent vertices.
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µ
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Figure 3. The computation of the polynomial h̃0((µ), (ν1, ν2)).

If Γ has no 4-valent vertex, the quotient Γ/ι has genus one. The multiplicity with
which Γ contributes to the count of twisted Hurwitz number equals (up to multiplica-
tion with the constant 2b which does not depend on the choice of Γ) the multiplicity
with which Γ/ι would contribute to the count of the double Hurwitz number count-
ing branched covers of P1 with two special ramification profiles µ and ν and only
simple ramification else. We can thus view the piecewise polynomial of the twisted
double Hurwitz number as a sum of (a constant times) the piecewise polynomial
of the corresponding double Hurwitz number, plus a summand corresponding to the
monodromy graphs which have two 4-valent vertices. By [15], Corollary 1.2 (see Corol-
lary 6.8 above), the first summand is a polynomial whose homogeneous parts range
from degree ℓ(µ) + ℓ(ν) − 1 to ℓ(µ) + ℓ(ν) + 1. Note that this result is non trivial and
cannot be deduced immediately from the expression of the piecewise polynomial as a
sum of polynomials for each monodromy graph: a single monodromy graph can have
parts of lower degree, but in the total sum the parts of lower degree cancel, see [3,
Example 3.12].

Now assume that Γ has two 4-valent vertices. Then Γ/ι is of genus 0, and its
multiplicity is computed (up to constant) as

∏
e ω(e) times (ωV1 −1) · (ωV2 −1), where

V1 and V2 denote the two 4-valent vertices, ωVi the weight of their adjacent edges and
ω(e) the weight of the edge e. As Γ/ι has (ℓ(µ) + ℓ(ν)) − 1 bounded edges, the first
factor yields a homogeneous polynomial of degree (ℓ(µ) + ℓ(ν)) − 1. Multiplying with
(ωV1 − 1) · (ωV2 − 1), we obtain a polynomial whose homogeneous parts range from
degree ℓ(µ) + ℓ(ν) − 1 to ℓ(µ) + ℓ(ν) + 1.

The two summands together, i.e. the contribution of graphs with no and with two
4-valent vertices, then again yields a polynomial whose homogeneous parts range from
degree ℓ(µ) + ℓ(ν) − 1 to ℓ(µ) + ℓ(ν) + 1. □

Example 6.10. In the following, we compute the polynomial h̃1((µ), (µ)). As the par-
tition (µ) consists of just one entry, there are no walls and there is no piecewise
structure, but there is only one polynomial. The two monodromy graphs which con-
tribute to the count of h̃1((µ), (µ)) are depicted in Figure 4. The polynomial with
which they contribute is written next to the picture.
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µ

µ

i

i

µ − i

Figure 4. The computation of h̃1((µ), (µ)).

Altogether, we obtain

h̃1((µ), (µ)) = 1
2µ(µ − 1)2 + µ ·

µ−1∑
i=1

i −
µ−1∑
i=1

i2

= 1
2µ(µ − 1)2 + 1

2µ2 · (µ − 1) − 1
6µ · (µ − 1) · (2µ − 1)

= 2
3µ3 − µ2 + 1

3µ,

which is a polynomial whose homogeneous parts range from degree one to three, as
expected by Proposition 6.9.

Example 6.11. We now consider the polynomial h̃1(µ, (ν1, ν2, ν3)). By the same rea-
soning as in the previous example, there are no walls and no piecewise structure. We
demonstrate that the lower bound on the degree given in Proposition 6.9 involves
nontrivial cancellations. For the Hurwitz number at hand, we obtain via Proposi-
tion 6.6 that all monomials in the polynomial expression have degree at least 2. In
the following, we show that h̃1(µ, (ν1, ν2, ν3)) does not have any linear terms.

For any graph contributing to h̃1(µ, (ν1, ν2, ν3)), the polynomial weight is given as
a sum of products of µ, νi and Faulhaber sums

∑
i ik for some fixed positive integer

k and bounds given by linear forms in µ and the νi. Therefore, in order to obtain a
linear term, we would need a summand of h̃1(µ, (ν1, ν2, ν3)) to be of the form

∑
i ik

for k ⩾ 4. The quotients by involution of the only four graphs (up to permutation of
the νi) contributing to h̃1(µ, (ν1, ν2, ν3)) are illustrated in Figure 5. We note that the
vertices are ordered from left to right, which distinguishes the top two graphs from
each other.

The weight of the top left graph is given by
16(µ − i)i(ν1 + ν2 − i)(i − ν1),

where i lies in the interval [ν1, ν1 +ν2]. Since, we are only interested in the linear part,
we will focus on the contribution of i4 and we obtain

linear part of
ν1+ν2∑
i=ν1

i4 = − ν2

30 .

Thus, the graph on the top left contributes a linear term of −16 ν2
30 . The same calcu-

lation for the top right graphs yields a contribution to the linear term of −16 ν2
30 as

well.
The weight of the bottom left graph is given by

16(µ − i)i(i − ν1)(i − ν1 − ν2),
where i lies in the interval [ν1 +ν2, µ]. For the linear part, we focus on the contribution
of −i4 which yields a total contribution to the linear term of 16 ν3

30 .
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Figure 5. Quotients of monodromy graphs contributing to
h̃1(µ, (ν1, ν2, ν3)), see Example 6.11.

Finally, the graph on the bottom right has weight
16(µ − i)i(ν1 − i)(ν1 + ν2 − i)

where i lies in the interval [1, ν1]. Here, the sum over −i4 yields a total contribution
of 16 ν1

30 to the linear term.
Thus, we obtain a linear term of

16(ν1 + ν3

30 − ν2

15)

summing over all four graphs. Note that the four graphs in Figure 5 all have ν2 as
the middle strand. Permuting the last strands, such that ν1 and ν3 replace ν2 yields
a total linear term of

16(ν1 + ν3

30 − ν2

15) + 16(ν2 + ν3

30 − ν1

15) + 16(ν1 + ν2

30 − ν3

15) = 0.

Thus, all linear contributions cancel and indeed the polynomial h̃1(µ, (ν1, ν2, ν3))
has no linear monomials.

7. Towards wall crossing formulae for twisted double Hurwitz
numbers in genus zero

We investigate how the polynomials computing twisted Hurwitz numbers vary from
chamber to chamber. We build on the techniques to prove wall-crossing formulae in
genus 0 for double Hurwitz numbers developed in [2] (see also [19]).

Definition 7.1 (Wall-crossing). Fix a wall δ =
∑

i∈I µi −
∑

j∈J νj = 0 and two
adjacent chambers C1 and C2. Let P1 denote the polynomial that equals h̃0(µ, ν) in
C1, P2 the polynomial that equals h̃0(µ, ν) in C2. Then the wall crossing for this wall
and the two adjacent chambers C1 and C2 is defined to be the difference of the two
polynomials:

WCδ(µ, ν) := P1(µ, ν) − P2(µ, ν).

Since we are only concerned with the difference of the polynomials across a wall
δ = 0, we need to consider only the contributions from graphs that contribute to the
twisted Hurwitz number in exactly one of the two chambers in questions. These are
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precisely the graphs that contain an edge with weight δ that switches direction across
the wall (see Lemma 6.9 [2]).

We cut this edge. In this way, we obtain two connected components, each con-
tributing to a “smaller” Hurwitz number.

Vice versa, two graphs that contribute to these “smaller” Hurwitz numbers can be
glued to produce one contributing to the wall crossing.

Compared to the case of double Hurwitz numbers studied in [2], the only difference
is that for twisted Hurwitz numbers of genus zero, our quotient graphs Γ/ι contain
precisely one 2-valent vertex. This vertex, adjacent to an edge of weight m, contributes
an additional factor of m(m − 1) to the weight of the graph compared to the weight
that this graph would have without the 2-valent vertex and contributing to a usual
double Hurwitz number.

Accordingly, we obtain three summands in our wall-crossing formula, which corre-
spond to the following three cases:

• The 2-valent vertex is in the first part of the cut graph.
• The 2-valent vertex is in the second part of the cut graph.
• The 2-valent vertex is on the edge which we cut.

Due the weight contributed by a 2-valent vertex, the techniques from [2] do not
carry over completely and therefore our description of wall crossings involves a cor-
rection term that cannot be described in terms of (twisted) Hurwitz numbers. Thus,
we will need the following definition.

Definition 7.2. We fix a wall δ =
∑

i∈I µi −
∑

j∈J νj = 0 and fix an adjacent cham-
ber C. Then, we define

hC,δ
0 (µ, ν) =

∑
Γ

o(Γ) · 2b ·
∏
V

(ωV − 1)
∏

e

ω(e) · 1
| Aut(π)| ,

where the sum goes over all twisted monodromy graphs contributing to h̃0(µ, ν) in
the chamber C without a fixed vertex ordering containing an edge of weight δ that is
adjacent to a 2-valent vertex. Furthermore, the number of vertex orderings which are
compatible with the edge directions is denoted by o(Γ).

By the same arguments as used in the proof of Theorem 6.1, we have that hC,δ
0 (µ, ν)

is a polynomial in the entries of µ and ν.

Proposition 7.3 (Wall-crossing for twisted double Hurwitz numbers in genus zero).
Fix a wall δ =

∑
i∈I µi −

∑
j∈J νj = 0. Then the wall crossing for this wall and the

two adjacent chambers C1 and C2 equals a sum of products of “smaller”, traditional
and twisted, Hurwitz numbers with an additional correction term:

WCδ(µ, ν) =
(
hC1,δ

0 (µ, ν) − hC2,δ
0 (µ, ν)

)
+ δ·(

2|Ic|+|Jc|−1 ·
(

ℓ(µ) + ℓ(ν) − 1
ℓ(µI) + ℓ(νJ)

)
· h̃0

(
µI , (νJ , δ)

)
· h0

(
(µIc , δ), νJc

)
+ 2|I|+|J|−1 ·

(
ℓ(µ) + ℓ(ν) − 1

ℓ(µI) + ℓ(νJ) − 1

)
· h0

(
µI , (νJ , δ)

)
· h̃0

(
(µIc , δ), νJc

))
.

Here, h0(µ, ν) denotes the double Hurwitz number counting covers of the projective
line with fixed ramification profile µ over 0, ν over ∞ and simple ramification over r
additional fixed branch points.

Before we start with the proof, we collect the following necessary statements:
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Lemma 7.4. Let Γ be a twisted monodromy graph of type (0, µ, ν) and let p denote the
weight with which it contributes to h̃0(µ, ν). Then the graph Γ̃ we obtain from Γ/ι by
forgetting the 2-valent vertex contributes to the Hurwitz number h0(µ, ν) with weight

1
m · (m − 1) · 1

2b−2 · p,

where m denotes the weight of the edges adjacent to the 4-valent vertex of Γ.

Proof. By Proposition 6.6, Γ has precisely one 4-valent vertex. Accordingly, Γ/ι has
precisely one 2-valent vertex and thus Γ̃ is well-defined. Assume the 4-valent vertex is
adjacent to edges of weight m. The graph Γ̃ is 3-valent and has in-ends labeled by the
µi and out-ends labeled by the νj . By Corollary 4.4 in [2], it contributes the product
of the weights of its bounded edges towards the Hurwitz number h0(µ, ν). Notice that
a 3-valent tropical cover of genus 0 with different branch points cannot have non-
trivial automorphisms if the weights of the ends are viewed as variable, as balanced
forks (i.e. adjacent ends of the same weight) are the only source of automorphism. By
Corollary 5.2, the weight p with which Γ contributes of h̃0(µ, ν) equals

2b · (m − 1) ·
∏

e

ω(e) · 1
| Aut(π)| .

Here, b is the number of branch points, and the product goes over all bounded edges
of Γ/ι. The involution ι of Γ provides a non-trivial automorphism. By Proposition 6.6,
Γ has precisely one 4-valent vertex. This provides an additional automorphism. As
the quotient with respect to i does not have further automorphisms, we conclude that
| Aut(π)| = 4. The graph Γ/ι has an additional bounded edge of weight m compared
to Γ̃, this edge gets lost when we forget the 2-valent vertex. It follows that p equals
2b−2 · m · (m − 1) times the weight with which Γ̃ contributes to h0(µ, ν). □

Remark 7.5. As a vertex ordering of Γ/ι implies a vertex ordering of Γ and vice versa,
Lemma 7.4 can be extended to monodromy graphs without a fixed vertex ordering.
If we fix a vertex ordering on Γ̃ and a position for the 2-valent vertex, the vertex
ordering on Γ is given.

Proof of Proposition 7.3: By Lemma 6.9 of [2], only graphs that have an edge of
weight δ contribute to the wall-crossing.

Let Γ be a twisted monodromy graph of type (0, µ, ν) without a vertex ordering
with a pair of bounded edges of weight δ. We can express the weight with which Γ
contributes in terms of the weight m of the edge adjacent to the 2-valent vertex and
the weight of Γ̃, as in Lemma 7.4. The graph Γ̃ has precisely one edge of weight δ.
This holds true, since in genus 0, the weight of each edge is given, by the balancing
condition, as the sum of the (signed) weights of the ends which get separated by
cutting an edge. On the other side of the wall, the graph but with the direction of
the edge reversed contributes. The first term corresponds to the contribution of those
graphs where the edge of weight δ is adjacent to a 2-valent vertex.

We now assume that the edge of weight δ of the graph Γ̃ is not adjacent to a 2-valent
vertex. We express the difference of those two contributions (i.e. the contribution to
the wall-crossing governed by Γ) in terms of cut graphs.

We cut the edge δ of Γ̃. Then we obtain two connected components, one containing
the in-ends with weights µi where i ∈ I and the out-ends with weights νj , j ∈ J ,
plus an additional new end that we view as an out-end of weight δ, and the other one
containing the in-ends µi for i /∈ I, with an additional in-end of weight δ, and the
out-ends νj for j /∈ J .
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These graphs contribute to “smaller” Hurwitz numbers h0
(
µI , (νJ , δ)

)
and

h0
(
(µIc , δ), νJc

)
.

But we still need to take the 4-valent vertex into account. That is, we now mark
the 2-valent vertex in the cut graph Γ̃ again and distinguish two cases according to
its position:

• either the 2-valent vertex belongs to the component contributing to
h0

(
µI , (νJ , δ)

)
,

• or to h0
(
(µIc , δ), νJc

)
.

In both cases, we can interpret the piece with the 2-valent vertex as a contribution
to a twisted Hurwitz number.

Vice versa, if two pieces are given, we can re-glue to obtain Γ/ι. The piece with ends
(µI , (νJ , δ)) (we call it the first piece) has ℓ(µI)+ℓ(νJ)+1 ends, and thus, by an Euler
characteristics computation, ℓ(µI)+ ℓ(νJ)−1 3-valent vertices. In the first summand,
it also has the 2-valent vertex in addition. The whole graph has ℓ(µ)+ℓ(ν)−1 vertices,
and the second piece (with ends ((µIc , δ), νJc)) has ℓ(µIc) + ℓ(νJc) − 1 vertices. The
binomial factor

(
ℓ(µ)+ℓ(ν)−1
ℓ(µI )+ℓ(νJ )

)
in the first summand accounts for the possibilities to

pick positions for the ℓ(µI) + ℓ(νJ) vertices of the first piece among the total number
of ℓ(µ) + ℓ(ν) − 1 branch points. Since the vertices in both pieces are ordered among
themselves, each such choice yields an ordering of all the vertices. Some of these
choices correspond to orderings for which the edge with weight δ is oriented in one
way, and some to orderings for which it is oriented in the other way. Accordingly, the
glued picture can belong to one side of the wall or to the other. But as δ changes sign
as we cross the wall (and as we subtract the contribution on one side from the other),
the sign is taken care of automatically and the glued graph contributes correctly to
the wall-crossing. In the second summand, the binomial factor has to be changed to(

ℓ(µ)+ℓ(ν)−1
ℓ(µI )+ℓ(νJ )−1

)
, as there the 2-valent vertex is in the second piece. □

To end with, we demonstrate in an example why we excluded the case of the edge
of weight δ being adjacent to a 2-valent vertex in the discussion on cut-graphs in the
proof of Proposition 7.3.

Example 7.6. We consider the twisted Hurwitz number h̃0((µ, ν), (λ, κ)) and fix δ =
µ − λ = κ − ν. Moreover, we consider the graph Γ in the top of Figure 6 contributing
to it. In the bottom, the graph Γ̃ illustrates its quotient by the indicated involution.
We observe that there are only two possible vertex orderings of Γ̃, the first being the
one illustrated and the second being the inverse one. First, we observe that in the
chamber δ > 0 the given graph is counted with the weight

23 · (δ − 1)δ2.

However, in the chamber δ < 0, the graph contributes a weight of

23 · (−δ − 1)δ2.

Therefore, factoring out the edge weights is not possible in this situation, which
represents the first obstacle for the tropical approach of [3].

The second obstacle arises from the possible number of orientations after gluing
together the cut-graphs. This is illustrated in Figure 7. In particular, we observe that
the 2-valent vertex imposes the condition that it lies between the upper and the lower
vertex of the respective cut-graphs. The enumeration of possible orderings is therefore
not a simple binomial coefficient and depends on the graph at hand.
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Figure 6. The graph on the top contributes to h̃0((µ, ν), (λ, κ)).
The graph on the bottom is the quotient by the involution.

µ λ
δ

ν κ

δ

Figure 7. The graph at the bottom of Figure 6 cut along the edge δ.
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