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Existence of elementwise invariant vectors in
representations of symmetric groups

Amrutha P., Amritanshu Prasad & Velmurugan S.

Abstract We determine when a permutation with cycle type µ admits a non-zero invariant
vector in the irreducible representation Vλ of the symmetric group. We find that a majority of
pairs (λ, µ) have this property, with only a few simple exceptions.

1. Introduction
Let (ρλ, Vλ) denote the irreducible representation of Sn associated with a partition λ
of n. Let wµ ∈ Sn denote a permutation with cycle type µ for a partition µ of n. A
vector v ∈ Vλ is said to be an invariant vector for w ∈ Sn if ρλ(w)v = v.

Main Theorem. The only pairs of partitions (λ, µ) of a given integer n such that wµ

does not admit a nonzero invariant vector in Vλ are the following:
(1) λ = (1n), µ is any partition of n for which wµ is odd,
(2) λ = (n− 1, 1), µ = (n), n ⩾ 2,
(3) λ = (2, 1n−2), µ = (n), n ⩾ 3 is odd,
(4) λ = (22, 1n−4), µ = (n− 2, 2), n ⩾ 5 is odd,
(5) λ = (2, 2), µ = (3, 1),
(6) λ = (23), µ = (3, 2, 1),
(7) λ = (24), µ = (5, 3),
(8) λ = (4, 4), µ = (5, 3),
(9) λ = (25), µ = (5, 3, 2).

In the special case where µ = (n), the following characterisation, restated in terms
of invariant vectors, was obtained by Joshua Swanson [5] (see also [7]), proving a
conjecture of Sheila Sundaram [3, Remark 4.8].

Theorem 1.1. For every positive integer n and partition λ of n, w(n) admits a non-
zero invariant vector in Vλ except in the following cases:

(1) λ = (n− 1, 1),
(2) λ = (1n) when n is even,
(3) λ = (2, 1n−2) when n ⩾ 3 is odd.
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We use the above result and the Littlewood–Richardson rule to obtain our main
theorem.

For each partition µ of n, let Cµ denote the cyclic group generated by wµ. The
permutation wµ admits a non-zero invariant vector in Vλ if and only if the trivial
representation of Cµ occurs in the restriction of Vλ to Cµ. By Frobenius reciprocity,
this is equivalent to Vλ occurring in the induced representation IndSn

Cµ
1.

A closely related problem was considered by Sheila Sundaram who proved the
following result [4, Theorem 5.1].
Theorem 1.2. Let µ be a partition of an integer n ̸= 4, 8. Let Zµ denote the centralizer
of wµ in Sn. Then Vλ occurs in IndSn

Zµ
1 for every partition λ of n if and only if µ has

at least two parts, and all its parts are odd and distinct.
A conjugacy class in a group G whose permutation representation for the conju-

gation action contains every irreducible representation of G is called a global class.
Thus her theorem characterizes the global classes of symmetric groups.

Since Cµ is a subgroup of Zµ, IndSn

Zµ
1 is a subrepresentation of IndSn

Cµ
1. Hence if Vλ

occurs in IndSn

Zµ
1, it also occurs in IndSn

Cµ
1. If the parts of µ are distinct and pairwise

relatively prime, then Zµ = Cµ. In this case our result is consistent with hers. Our
proof strategy is also quite similar to hers.

Dipendra Prasad and Ravi Raghunathan [2] proposed a partial order on automor-
phic representations called immersion. Adapted to finite groups, it may be defined as
follows.
Definition 1.3. Given representations (ρ, V ) and (σ, W ) of G, say that V is immersed
in W , denoted V ≼ W , if for every g ∈ G and every λ ∈ C, the multiplicity of λ as
an eigenvalue of ρ(g) does not exceed the multiplicity of λ as an eigenvalue of σ(g).

In particular, if V is a subrepresentation of W , then V ≼ W . In the context of
immersion, our main theorem implies the following result.
Theorem 1.4. For every positive integer n, V(n) ≼ Vλ unless λ is one of the partitions
of n that occur in the statement of the main theorem. Similarly V(1n) ≼ Vλ unless the
conjugate of λ is one of the partitions that occurs in the statement of the main theorem.
Proof. The first assertion is a direct consequence of our main theorem. The second
follows from the first using the observation that if γ : G → C∗ is a multiplicative
character, then V ≼ W if and only if V ⊗ γ ≼ W ⊗ γ. Taking γ to be the sign
character of Sn, we get V(n) ≼ Wλ if and only if V(1n) ≼ Wλ′ , where λ′ is the partition
conjugate to λ. □

Supporting Code. Some steps in the proof involve direct calculations using the
Sage Mathematical Software system [6]. Code for carrying out these calculations can
be downloaded from: https://www.imsc.res.in/˜amri/invariant_vectors/

2. Proof of the Main Theorem
Following [1, Section I.2], let Λ denote the ring of symmetric functions in infinitely
many variables x1, x2, . . . with integer coefficients. For each partition λ, let sλ denote
the Schur function corresponding to λ. Given f, g ∈ Λ, we say that f ⩾ g if f − g is
a non-negative integer combination of Schur functions.

For each representation V of Sn, let ch V denote the Frobenius characteristic of V ,
which is a homogeneous symmetric function of degree n [1, Section I.7]. Since we have
ch Vλ = sλ, Vλ occurs in IndSn

Cµ
1 if and only if

(1) ch IndSn

Cµ
1 ⩾ sλ.
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Elementwise invariant vectors

Define
fµ = ch IndSn

Cµ
1.

Let Sµ = Sµ1 × · · · × Sµk
be the Young subgroup corresponding to µ. Let Dµ denote

the subgroup of Sµ generated by the cycles of wµ. Thus Dµ is a product of cyclic
groups of orders µ1, µ2, . . . , µk. Using induction in stages,

fµ = ch IndSn

Sµ
IndSµ

Dµ
IndDµ

Cµ
1.

Therefore

(2) fµ ⩾ ch IndSn

Sµ
IndSµ

Dµ
1 =

k∏
i=1

f(µi).

Swanson’s theorem (Theorem 1.1) tells us that f(n) ⩾ sλ for most partitions λ of n. We
will use this fact, together with the inequality (2), to establish (1) in most cases. This
will be carried out by using the Littlewood–Richardson rule. Recall that Littlewood–
Richardson coefficients are defined by

sαsβ =
∑

λ

cλ
αβsλ.

The Littlewood–Richardson rule [1, Section I.9] asserts that cλ
αβ is the number of

LR-tableaux of shape λ/α and weight β. Recall that an LR-tableau is a semistandard
skew-tableau whose reverse row reading word is a lattice permutation.

Lemma 2.1. For every partition λ of p+q, and every partition α of p that is contained
in λ, there exists a partition β of q such that sαsβ ⩾ sλ.

Proof. Let Tλα denote the skew-tableau obtained by putting i in the ith cell (from the
top) of each column of λ/α. Let β be the weight of Tλα. For example, if λ = (5, 4, 4, 1)
and α = (3, 2, 1) then

Tλα = 1 1
1 2

1 2 3
1

,

and β is (5, 2, 1). Since every i + 1 occurs below an i in the same column, Tλα is an
LR-tableau. The Littlewood–Richardson rule implies that sαsβ ⩾ sλ. □

Remark 2.2. Given α ⊂ λ (i.e., α is contained in λ), the construction of β in the
proof of the above lemma has the following property: if γ ⊢ q also satisfies sαsγ ⩾ sλ,
then β ⩾ γ in the dominance order. This is because, in a skew tableau of shape λ/α,
the maximum number of cells with entry i cannot exceed the number of columns of
length at least i.

Lemma 2.3. Given integers p ⩾ 2, q ⩾ 1, and a partition λ ⊢ (p + q) different from
(1(p+q)), there exists a partition β ⊢ q such that f(q) ⩾ sβ and β ⊂ λ.

Proof. We need to show that there exists β ⊢ q with β ⊂ λ that is not among the
exceptions listed in Theorem 1.1. We consider the following cases:

Case 1: λ ⊃ (q−1, 1). Since p ⩾ 2, the skew shape λ/(q−1, 1) has at least two cells. If
at least one of these cells lies in the first row of λ, then choose β = (q). If at least one
of these cells lies in the first column of λ, then choose β = (q−2, 1, 1) If neither of the
above happens, then λ/(q − 1, 1) has at least two cells in its second row. In this case
q − 1 ⩾ 3. Choose β = (q − 2, 2). The possible placements of the cells of λ/(q − 1, 1)
are shown in Figure 1. In all these cases, Theorem 1.1 implies that f(q) ⩾ sβ .
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Figure 1. Possible placements of two cells of λ/(q − 1, 1)

Case 2: λ ⊃ (1q) and q is even. Since λ ̸= (1p+q), the skew-shape λ/(1q) must contain
at least one cell in the first row. Take β = (2, 1q−2). By Theorem 1.1, f(q) ⩾ sβ , since
q is even.

Case 3: λ ⊃ (2, 1q−2) and q is odd. If λ/(2, 1q−2) has a cell in its first row, take β =
(3, 1q−3). If λ/(2, 1q−2) has a cell in its first column, take β = (1q). By Theorem 1.1,
f(q) ⩾ sβ , since q is odd. Otherwise the second column of λ/(2, 1q−2) must have at
least two cells. In this case q ⩾ 4. Take β = (2, 2, 1q−4). The possible placements of

Figure 2. Possible placements of cells of λ/(2, 1q−2).

the cells of λ/(2, 1q−2) are shown in Figure 2.

All remaining λ: Take β to be any partition of q that is contained in λ. Since λ does
not contain any of the exceptions of Theorem 1.1, f(q) ⩾ sβ . □

Definition 2.4 (Persistent partition). A partition µ of n is said to be persistent if
every irreducible representation of Sn, with the possible exception of the sign repre-
sentation, admits a non-zero wµ-invariant vector.

When µ is persistent,

fµ ⩾ sα for every α ⊢ n, α ̸= (1n).

The main step in proving the main theorem is to show that µ is persistent for every
integer partition µ except µ = (n) for all n and µ = (n−2, 2) for n odd and sufficiently
large. We accomplish this in Lemmas 2.5–2.8. We first consider the case where µ has
two parts.

Lemma 2.5. If µ = (p, q) where p ⩾ q ⩾ 4, then µ is persistent.

Proof. We will assume that p ⩾ 6. For p = 4 and 5, direct computation (using Sage [6])
establishes the lemma. By (2), to show that f(p,q) ⩾ sλ it suffices to find partitions α
and β of p and q respectively, such that f(p) ⩾ sα, f(q) ⩾ sβ and sαsβ ⩾ sλ.

By Lemma 2.3, choose β ⊂ λ such that f(q) ⩾ sβ . Using Lemma 2.1 (with the roles
of α and β reversed) we may choose α ⊢ p such that sαsβ ⩾ sλ. If f(p) ⩾ sα we are
done. Otherwise, by Theorem 1.1, one of the following cases must occur:

Case 1: α = (p− 1, 1).
• Suppose λ2 ⩾ 2. Replace α by (p − 2, 2) and choose β as in the proof of

Lemma 2.1. If f(q) ⩾ sβ we are done, otherwise by Theorem 1.1, one of the
following must occur.
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– β = (q − 1, 1). Since each column of Tλα in the proof of Lemma 2.1 is
filled with integers 1, 2, · · · in increasing order, λ/α has q − 2 columns
with one cell and one column with two cells. Either the first column, the
third column, or the (p− 1)st column can have two cells.
If the first column of λ/α has two cells, then we may change β to (q −
2, 1, 1) by constructing a skew-tableau as shown in the example below.

1 1
1 1 1

1
3
2

Note that the reverse reading word will be a lattice permutation because
λ ⊃ (p− 1, 1), so there will be at least one cell in the first row of λ/α.
If the third column of λ/α has two cells, then we may change β to (q−2, 2)
as shown in the example below.

2

1 1
1 1 1

1 2
1

Note that the reverse reading word will be a lattice permutation because
at least one 1 occurs in the first row (since λ ⊃ (p − 1, 1)) and at least
one 1 occurs in the second row of this tableau (in the third column).
If the (p−1)st column of λ/α has two cells, we may change α to (p−3, 3)
(note that p ⩾ 6, so α is a partition). We may then take β = (q − 2, 2)
as shown in the example below.

1 1
1 1 1

1
2
1 −→ 1

2
1 1

1
1

2
1

– β = (2, 1q−2) with q odd. This would mean that λ/α has two columns,
having 1 and q−1 cells respectively. But since λ ⊃ (p−1, 1) the (p−1)st
cell in the first row lies in a column of length one. Since q ⩾ 4, the other
column of λ/α has to be the first one. In particular, λ/α is a vertical
strip, so we can replace beta with (1q).

– β = (1q) with q even. In this case, λ/α has only one column. But λ/α
contains the cell (1, p− 1) whose column cannot contain any other cells.
It follows that this case cannot occur.

• Suppose λ2 = 1 and λ1 ⩾ p. Replace α by (p) to make f(p) ⩾ sα, and choose
β using the proof of Lemma 2.1. By Theorem 1.1 f(q) ⩾ sβ unless one of the
following cases occurs.

– β = (q− 1, 1). In this case, λ/α has q− 1 columns, of which one column
has exactly two cells (and the others have only one cell). The column
with two cells has to be the first column of λ/α, since λ is a hook.
Incrementing its entries by 1 allows us to replace β by (q − 2, 1, 1).

– β = (2, 1q−2) with q odd. Then λ/α has two columns, having 1 and q−1
cells respectively. Since λ is a hook, the column with one cell must lie in
the first row and the column with q − 1 cells has to be the first column.
Incrementing the entries of the first column by 1 allows us to replace β
by (1q).

– β = (1q) with q even. All the cells of λ/α must lie in the first column.
We may replace α by (p − 2, 1, 1) and β by (2, 1q−2) as shown in the

Algebraic Combinatorics, Vol. 7 #4 (2024) 919



Amrutha P., A. Prasad & Velmurugan S.

following example.

1
2
3
4

−→ 1 1

2
3

• Suppose λ2 = 1 and λ1 = p− 1. In other words, λ = (p− 1, 1q+1). Replace α
by (p−2, 1, 1). Replace β by (3, 1q−3) if q > 4 as shown in the example below.

1
2
3
4

−→ 1 1

1
2

In case q = 4, replace β by (2, 1, 1)

Case 2: α = (2, 1p−2) with p odd.
• Suppose λ2 ⩾ 2. Change α to (2, 2, 1p−4) so that f(p) ⩾ sα. Choose β as in

the proof of Lemma 2.1. If f(q) ⩾ sβ we are done. Otherwise, by Theorem 1.1,
one of the following cases must occur.

– β = (q − 1, 1). In this case, λ/α has q − 1 columns, with one column
having two cells. The column with two cells has to be one of the first
three columns.
If the first or second column of λ/α has two cells, increment the entries
of those two cells by 1 to replace β by (q − 2, 1, 1). Since q ⩾ 4, λ/α
has at least one cell in the first row, so the resulting skew-tableau is an
LR-tableau.
Suppose the third column of λ/α has two cells. Since λ ⊃ (2, 1p−2), the
first column of λ/α must have exactly one cell. Changing the entry of
this cell from 1 to 3 gives us an LR-tableau of weight (q − 2, 1, 1).

– β = (2, 1q−2) with q odd. In this case, λ/α has exactly two columns,
having 1 and q− 1 cells respectively. Again, since λ ⊃ (2, 1p−2), λ/α has
at least one cell in the first column.
If the first column has q − 1 cells, then λ/α has to be a vertical strip,
and we can take β = (1q).
If the first column has one cell and the second has q − 1 cells, then
the other column, which has at least three cells must be the second
column. Replace α by (23, 1p−6) and take β = (2, 2, 1q−4) as shown in
the following example.

3 3
2
1

1

−→

2 22 2
1 1

– β = (1q) with q even. In this case, λ/α is a single column, which has to
be the first column since q ⩾ 4. Replace α by (1p) and β by (2, 1q−2) as
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shown in the following example.

4
3
2
1

−→
3

3

2
1

1

• Suppose λ2 = 1 (so that λ is a hook) and λ1 ⩾ 3. Replace α by (3, 1p−3) and
choose β according to Lemma 2.1. If f(q) ⩾ sβ we are done. Otherwise by
Theorem 1.1 one of the following must occur.

– β = (q−1, 1). In this case, λ has q−1 columns, one having two cells and
the other having only one cell. Since λ is a hook, only the first column
of λ/α can have two cells. Incrementing the entries in these cells by one
will allow us to change β to (q − 2, 1, 1).

– β = (2, 1q−2) with q odd. In this case, λ/α has two columns. Since
λ ⊃ (2, 1p−2), λ/α has cells in the first column. Since λ is a hook, the
fourth column must have exactly one cell. Incrementing the entries of
the first column by 1 will allow us to replace β by (1q).

3
2

1

1

−→

4
3
2

1

– β = (1q), with q even. In this case, λ/α is contained in the first column.
We can replace α by (1p) (since p is odd) and β by (2, 1q−2) as shown in
the example below.

4
3
2
1

−→

3
2

1 1
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• Suppose λ2 = 1 and λ1 = 2. In this case λ must be (2, 1p+q−2). So we may
replace α by (1p) and β by (2, 1q−2) or (1q) depending on the parity of q.

4
3
2
1

−→

43
2

1

1

or

4
3
2

1

Case 3: α = (1p) with p even. Since we have assumed that λ ̸= (1p+q), λ1 > 1.
Replace α by (2, 1p−2) and choose β using the proof of Lemma 2.1. If f(q) ⩾ sβ we
are done. Otherwise, by Theorem 1.1, one of the following cases must occur.

• β = (q − 1, 1). Then λ/α has q − 1 columns, one of which has two cells and
the others have one cell each. The column with two cells has to be one of
the first three. If the column with two cells is one of the first two columns,
then incrementing its entries by 1 will give an LR-tableau of shape λ/α and
weight (q − 2, 1, 1). If the column with two cells is the third, then changing
the entry in the first column (which exists since λ ⊃ (1p)) from 1 to 2, we get
an LR-tableau of shape λ/α and weight (q − 2, 2).

• β = (2, 1q−2) with q odd. In this case, λ/α has exactly two columns having
q − 1 and 1 cells respectively.

If the first column of λ/α has q − 1 cells, then λ/α will be a vertical strip,
so we can change β to (1q).

If the second column of λ/α has q− 1 cells, replace α by (2, 2, 1p−4) and β
by (2, 2, 1q−4) as shown in the following example.

4
3
2
1

1

−→

43
2

2

1
1

• β = (1q) with q even. In this case, λ/α has only one column, which has to
be the first column. So λ = (2, 1p+q−2). In this case it will not be true that
f(p)f(q) ⩾ sλ. Instead, we will show that f(p,q) ⩾ s(2,1p+q−2) using a different
strategy.

The restriction of the sign representation of Sp × Sq to C(p,q) is the trivial
representation (w(p,q) is an even permutation, since both p and q are even).
Therefore, IndSp×Sq

C(p,q) 1 contains the sign representation of Sp × Sq. It follows
that

f(p,q) = ch IndSp+q

C(p,q)
1 ⩾ s(1p)s(1q) ⩾ s(2,1p+q−2).

This completes the proof of the lemma. □

Lemma 2.6. We have
(1) The partition (p, 1) is persistent except when p = 3.
(2) The partition (p, 2) is persistent when p is even. When p is odd, f(p,2) ⩾ sλ

for all partitions λ of p + 2, except λ = (2, 2, 1p−2) and (1p+2).
(3) The partition (p, 3) is persistent if p ⩾ 6.

Algebraic Combinatorics, Vol. 7 #4 (2024) 922
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1
1 1

α← (p) α← (p− 2, 2) α← (p− 2, 1, 1)
β ← (1) β ← (1) β ← (1)

Figure 3. Cases for λ ⊃ (p− 1, 1)

Proof. In order to prove (1), assume p > 3 (for p ⩽ 3 use direct calculation) and choose
α ⊢ p such that sαsβ ⩾ sλ using Lemma 2.1 with the roles of α and β interchanged.
If f(p) ⩾ sα then we are done since f(1) ⩾ (1). Otherwise one of the following cases
occurs.

Case 1: α = (p− 1, 1). Given p, there are exactly three possibilities for λ, depending
on where the single cell of λ/α is added to α. These possibilities are shown in Figure 3.
In this figure the cells of α = (p− 1, 1) are shown in white, while the cells of λ/α are
shown in green.

Case 2: α = (2, 1p−2), with p odd. Once again, given p, there are finitely many
possibilities for λ, as shown in Figure 4 along with the replacement for α.

1 1

1

α← (3, 1p−3) α← (2, 2, 1p−4) α← (1p)
β ← (1) β ← (1) β ← (1)

Figure 4. Cases for λ ⊃ (2, 1p−2)

Case 3: α = (1p) with p even. As before, given p, there is only one possibility for
λ ̸= (1p+1) which contains (1p), as shown in Figure 5 along with the replacements for
α and β.

In order to prove (2), choose β ⊢ 2 such that β ⊂ λ and f(2) ⩾ sβ using Lemma 2.3.
Choose α ⊢ p such that sαsβ ⩾ sλ using Lemma 2.1 with the roles of α and β
interchanged. If f(p) ⩾ sα then we are done. Otherwise, one of the following cases
occurs.

Case 1: α = (p− 1, 1). Given p, there are finitely many possibilities for λ, depending
on how the two cells of λ/α are placed. These possibilities are shown in Figure 6, the
coloured cells having the same significance as before.
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1
α← (2, 1p−2)
β ← (1)

Figure 5. Cases for λ ⊃ (1p)

1
1 1 1

1 1

α← (p) α← (p) α← (p− 2, 1, 1)
β ← (2) β ← (2) β ← (2)

1
1

1
1

1

1

α← (p− 2, 2) α← (p− 2, 1, 1) α← (p− 2, 1, 1)
β ← (2) β ← (2) β ← (2)

Figure 6. Cases for λ ⊃ (p− 1, 1)

Case 2: α = (2, 1p−2), with p odd. Once again, given p, there are finitely many
possibilities for λ, as shown in Figure 7 along with the replacements for α and β
except for the fifth diagram, where λ = (2, 2, 1p−2).

When λ = (2, 2, 1p−2), it turns out that f(p,2) ≱ sλ. Indeed, since p is odd, C(p,2) =
D(p,2) and so f(p,2) = f(p)f(2). We will show that f(p)f(2) ̸⩾ fλ by contradiction.

If f(p)f(2) ⩾ fλ, there exist α ⊢ p and β ⊢ 2 such that f(p) ⩾ sα, f(2) ⩾ sβ and
sαsβ ⩾ sλ. The latter condition implies that α ⊂ λ. This gives us three possibilities
for α, namely (22, 1p−4), (2, 1p−2) and (1p). Since p is odd, f(p) ̸⩾ (2, 1p−2). But for the
remaining two possibilities, λ/α is a single column, forcing β = (1, 1), but f(2) ̸⩾ sβ ,
contradicting our assumptions on α and β.

Hence, we have f(p,2) ≱ s(2,2,1p−2), if p is odd. This is indicated by the question
marks in Figure 7.

Case 3: α = (1p), with p even. Similarly, for each α of this type, there are only finitely
many possibilities for λ which contains (1p), as shown in Figure 8 along with the
replacements for α and β, except for the third diagram (where λ = (2, 1p)) in which
case we have to use a different strategy. The restriction of the sign representation of
Sp × S2 to C(p,2) is the trivial representation (since w(p,2) is an even permutation).
Therefore, IndSp×S2

C(p,2) 1 contains the sign representation of Sp × S2. It follows that

f(p,2) = ch IndSp+2
C(p,2)

⩾ s(1p)s(12) ⩾ s(2,2,1p−2)

Hence f(p,2) ⩾ s(2,2,1p−2).
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1

1

1

1

1 1

α← (3, 1p−3) α← (3, 1p−3) α← (1p)
β ← (2) β ← (2) β ← (2)

1

1

1

1
α← (22, 1p−4) α←? α← (3, 1p−2)
β ← (2) β ←? β ← (2)

Figure 7. Cases for λ ⊃ (2, 1p−2)

1

1

1

1

α← (2, 1p−2) α← (2, 1p−2) α←?
β ← (2) β ← (2) β ←?

Figure 8. Cases for λ ⊃ (1p)

In order to prove (3), choose β ⊢ 3 such that β ⊂ λ and f(3) ⩾ sβ using Lemma 2.3.
Choose α ⊢ p such that sαsβ ⩾ sλ using Lemma 2.1 with the roles of α and β
interchanged. If f(p) ⩾ sα then we are done. Otherwise, one of the following cases
occurs.

Case 1: α = (p− 1, 1). Given p, there are finitely many possibilities for λ, depending
on how the three cells of λ/α are placed. These possibilities are shown in Figure 9. The
empty cells denote the replacement for α and the cells filled by entries in {1, 2, 3} give
a skew tableau whose weight is the replacement for β such that f(p) ⩾ sα, f(q) ⩾ sβ

and sαsβ ⩾ sλ.
For example, in the left-most figure of the first row, λ = (p + 2, 1). In this case α

is replaced by (p) and β is replaced by (3).

Case 2: α = (2, 1p−2), with p odd. Once again, for each α of this type, there are
finitely many possibilities for λ, as shown in Figure 10 along with the replacements
for α and β.
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1 1
1

1
1 1

1
2
3

α← (p) α← (p) α← (p)
β ← (3) β ← (3) β ← (13)

1 1 1
1 1

1
1 1

1
α← (p) α← (p− 2, 1, 1) α← (p− 2, 1, 1)
β ← (3) β ← (3) β ← (3)

1
1 1

1
1

1

1

1 1
α← (p− 2, 2) α← (p− 2, 2) α← (p− 2, 2)
β ← (3) β ← (3) β ← (3)

1

2
3

1

2
3

α← (p) α← (p)
β ← (13) β ← (13)

Figure 9. Cases for λ ⊃ (p− 1, 1)

Case 3: α = (1p) with p even. Similarly, for each α of this type, there are only finitely
many possibilities for λ which contains (1p), as shown in Figure 11 along with the
replacements for α and β. □

Lemma 2.7. The partitions (1, 1), (2, 2) and (3, 3) are persistent.

Proof. We compute the following by hand or using SageMath [6].
• f(1,1) = s(2) + s(1,1)
• f(2,2) = s(4) + s(3,1) + 2s(2,2) + s(2,1,1) + s(1,1,1,1)
• f(3,3) = s(6) +s(5,1) +3s(4,2) +4s(4,1,1) +s(3,3) +4s(3,2,1) +4s(3,1,1,1) +s(2,2,2) +

3s(2,2,1,1) + s(2,1,1,1,1) + s(1,1,1,1,1,1)

Evidently, the partitions (1, 1), (2, 2) and (3, 3) are persistent. □

Now consider partitions with three or more parts.

Lemma 2.8. A partition µ = (µ1, . . . , µk) ⊢ n is persistent if the partition µ̃ obtained
by removing a part µi from µ is persistent and n− µi ⩾ 4.
Proof. Since Cµ̃ × C(µi) ⩽ Cµ and Dµ̃ ×D(µi) = Dµ, we have

IndDµ

Cµ
1 ⩾ IndDµ̃

Cµ̃
1⊗ IndD(µi)

C(µi)
1

Inducing to Sp1 × · · · × Spk
, and then to Sp1+···+pk

gives
fµ ⩾ fµ̃f(µi).
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1 1

1

1 1

1

1 1 1 1

1

1

1

2
3

α← (3, 1p−3) α← (22, 1p−4) α← (1p) α← (22, 1p−4) α← (3, 1p−3)
β ← (3) β ← (3) β ← (3) β ← (3) β ← (13)

1
2
3

1
2

3

1

2
3

1
2
3

1

2
3

α← (3, 1p−3) α← (22, 1p−4) α← (22, 1p−4) α← (22, 1p−4) α← (1p)
β ← (13) β ← (13) β ← (13) β ← (13) β ← (13)

Figure 10. Cases for λ ⊃ (2, 1p−2)

1 1

1

1
1

1

1

2
3

α← (2, 1p−2) α← (2, 1p−2) α← (2, 1p−2)
β ← (3) β ← (3) β ← (13)

1
2

3

1

2
3

1
2
3

α← (2, 1p−2) α← (2, 1p−2) α← (2, 1p−2)
β ← (13) β ← (13) β ← (13)

Figure 11. Cases for λ ⊃ (1p)

Consider λ ⊢ n, λ ̸= (1n). To show fµ ⩾ sλ, it suffices to show that there exist
α ⊢ n − µi, β ⊢ µi such that α ̸= (1n−µi) and sαsβ ⩾ sλ. Using Lemma 2.3, choose
β ⊢ µi such that β ⊂ λ and f(µi) ⩾ sβ . Choose α using Lemma 2.1 with the roles of
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α and β reversed. If fµ̃ ⩾ sα, we are done. Otherwise, since µ̃ is persistent, we must
have α = (1n−µi).

Since λ ̸= (1n), we may replace α by (2, 1n−µi−2). Since µ̃ is persistent, fµ̃ ⩾ sα.
Choose β using Lemma 2.1. If f(µi) ⩾ sβ we are done. Otherwise, by Theorem 1.1,
if µi ⩾ 3, β must be one of (µi − 1, 1), (2, 1µi−2) with µi odd, or (1µi) with µi even.
We may proceed as in Case 3 of Lemma 2.5 and the third part of Lemma 2.6 for
β = (µi − 1, 1) or β = (2, 1µi−2). If µi = 2, then β = (1, 1) which we will consider
below. If µi = 1, f(1) ⩾ sβ trivially.

It remains to consider β = (1µi) with µi ⩾ 2 and even. In this case, λ/α has just
one column, so λ must be (2, 1n−2). Since fµ̃ ≱ s(1n−µi ), the permutation wµ̃ has
to be an odd permutation, i.e., an odd number of the parts µj , j ̸= i is even. In
particular, µj is even for some j ̸= i. Let µ̂ denote the composition obtained from µ̃
by deleting µj . We have:

fµ ⩾ fµ̂f(µj ,µi).

But both wµ̂ and w(µj ,µi) are even permutations, so

fµ̂ ⩾ s(1n−µi−µj ) and f(µj ,µi) ⩾ s(1µj +µi ).

So fµ ⩾ s(1n−µi−µj )s(1µj +µi ) ⩾ s(2,1n−2) = sλ. □

Proof of the Main Theorem. For λ = (1n) we know that fµ ⩾ sλ if and only if wµ is
an even permutation. If λ ̸= (1n), consider the following cases.

Case 1: µ has only one part. Theorem 1.1 tells us that wµ has an invariant vector in
Vλ if and only if λ is not of the form (n− 1, 1), (1n), or (2, 1n−2) with n odd, which
are cases 2 and 3 of the main theorem.

Case 2: µ has two parts. By Lemmas 2.5 and 2.6 f(p,q) ⩾ sλ unless one of the following
happens.

• λ = (2, 2, 1n−4) and (p, q) = (n− 2, 2) with n (corresponding to case 4 of the
main theorem).
• (p, q) ∈ {(4, 3), (5, 3), (3, 1)}. Checking by direct calculation will imply that

f(p,q) ⩾ sλ unless (p, q) = (3, 1) and λ = (2, 2) or (p, q) = (5, 3) and λ = (24)
or (4, 4) corresponding to cases 5, 7, and 8 of the main theorem.

Case 3: µ has at least three parts. Assume that n ⩾ 11.
If µ2 ⩾ 4 then (µ1, µ2) is persistent by Lemma 2.5. Using Lemma 2.8 repeatedly,

we can show that µ is persistent.
If µ1 ⩾ 4 and µ2 < 4 and either 2 or 3 occurs at least twice in µ, then using

Lemmas 2.7 and 2.8 repeatedly, µ is persistent.
Otherwise µi ∈ {1, 2, 3} for i ⩾ 2, with 2 and 3 not repeated. If 1 occurs in µ,

since µ1 ⩾ 4, (µ1, 1) is persistent by Lemma 2.6, so µ is persistent by repeated use
of Lemma 2.8. If 1 does not occur in µ, then µ1 ⩾ 6 and µ = (µ1, 3, 2) (since µ has
at least three parts). By Lemma 2.6 (µ1, 3) is persistent. Hence µ is persistent by
repeated use of Lemma 2.8.

Finally, suppose µ1 ⩽ 3. Once again, if either 2 or 3 occurs at least twice then µ
is persistent by Lemmas 2.7 and 2.8. Otherwise, 1 occurs 6 times. Since f(16) is the
Frobenius characteristic of the regular representation of S6, (16) is persistent. Hence
µ is persistent by Lemma 2.8.

If n < 11, a direct computation using SageMath [6] tells us that µ = (3, 2, 1) and
λ = (23) (corresponding to case 6) and µ = (5, 3, 2) and λ = (25) (corresponding to
case 9) are the only pairs which violate fµ ⩾ sλ.

This completes the proof of the main theorem. □
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