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The base size of the symmetric group
acting on subsets

Coen del Valle & Colva M. Roney-Dougal

Abstract A base for a permutation group G acting on a set Ω is a subset B of Ω such that
the pointwise stabiliser G(B) is trivial. Let n and r be positive integers with n > 2r. The
symmetric and alternating groups Sn and An admit natural primitive actions on the set of r-
element subsets of {1, 2, . . . , n}. Building on work of Halasi [8], we provide explicit expressions
for the base sizes of all of these actions, and hence determine the base size of all primitive
actions of Sn and An.

1. Introduction
A base for a permutation group G acting on a set Ω is a subset {α1, α2, . . . , αk} ⊆ Ω
with trivial pointwise stabiliser in G. Bases have proved to be tremendously useful in
permutation group algorithms (see e.g. [12]); for many computations the complexity
is a function of the size of the base used, so it is of interest to find a smallest possible
base. The size b(G) of a smallest base for G is called the base size of G. Blaha [2]
shows that for any positive integer l, and any permutation group G, the problem of
determining whether G admits a base of size at most l is NP-complete. On the other
hand, there are many different estimates known for b(G) — for example we can derive
elementary upper and lower bounds as follows. If {αi}k

i=1 is a base for G then any
group element g ∈ G is uniquely determined by the tuple (αg

i )k
i=1 and so |G| ⩽ |Ω|k.

If k = b(G) then |G(α1,α2,...,αi) : G(α1,α2,...,αi+1)| ⩾ 2 for all 1 ⩽ i < k, so 2b(G) ⩽ |G|,
and hence (log |G|)/(log |Ω|) ⩽ b(G) ⩽ log |G|.

In this paper we consider the primitive faithful actions of the symmetric and alter-
nating groups. A result of Liebeck and Shalev [9] states that there is some absolute
constant c such that for G ∈ {Sn, An} acting primitively, either b(G) ⩽ c or up to
equivalence G is acting on either

(i) r-subsets of [n] := {1, 2, . . . , n} with 2r < n; or
(ii) partitions of [kl] into k parts of size l with kl = n.
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Such actions are called standard, and most other primitive actions of Sn and An

are non-standard; we denote the permutation groups in case (i) by Sn,r and An,r,
respectively.

In fact, Liebeck and Shalev prove in [9] a stronger result known as the Cameron–
Kantor conjecture [7]: any almost simple primitive group either has a base of size
at most c (it has since been shown that c = 7 is best possible [5, Corollary 1]) or
falls into one of three classes of exceptions including the two standard actions of Sn

and An. In recent years, Burness, Guralnick, and Saxl [4, Corollaries 4 and 5] showed
that all non-standard actions of Sn and An have base size two or three, and Morris
and Spiga [11, Theorems 1.1 and 1.2] gave explicit formulae for all k, l pairs in the
actions on partitions, leaving only the actions on subsets to consider.

A 2012 paper of Halasi [8] made progress on the subset action, showing that
b(Sn,r) ⩾

⌈
2n−2
r+1

⌉
with equality when n ⩾ r2 — later improved in [6] to n ⩾ (r2 +r)/2

— leaving only small n and the action of the alternating group to consider. It is also
shown in [8] that b(Sn,r) ⩾ ⌈log2 n⌉ for all n ⩾ 2r with equality if n = 2r (at which
point the action is imprimitive).

In this paper we completely determine b(Sn,r) and b(An,r). Given l, k, r ∈ N set
mr(l, k) := 1

k

(
lr −

∑k−1
i=1 i

(
l
i

))
. Our main result is the following.

Theorem 1.1. Let n ⩾ 2r be fixed and let l be minimal such that there exists some
k ⩽ l + 1 satisfying 0 ⩽ mr(l, k) ⩽

(
l
k

)
and

∑k−1
i=0

(
l
i

)
+ mr(l, k) ⩾ n. Then b(Sn,r) =

b(An+1,r) = l.

Remarks 1.2. A pair (l, k) satisfying the conditions of Theorem 1.1 can be seen to
exist by setting l = n and k = 2. We give a natural description of the quantity mr(l, k)
at the beginning of Section 3. In the case of the symmetric group, a similar result to
Theorem 1.1 was very recently determined independently by Mecenero and Spiga [10]
— both their formula and proof take a markedly different form from ours.

Putting together Theorem 1.1, [4, Corollaries 4 and 5, and Remark 7], and [11,
Theorems 1.1 and 1.2] the base size of all primitive actions of Sn and An are now
known.

Corollary 1.3. All almost simple primitive groups with alternating socle have known
base size.

The complicated statement of Theorem 1.1 is unsurprising, as it needs to interpo-
late between ⌈log2 n⌉ and

⌈
2n−2
r+1

⌉
. However, when restricting to specific functions n

of r, the result can be greatly simplified. Indeed, we deduce Corollary 3.3, which states
that b(Sn,r) =

⌈
2n−2
r+1

⌉
whenever n ⩾ (r2 + r)/2 — recovering the result from [6]. Fur-

thermore, Corollary 3.4 gives an explicit formula for n at least roughly r3/2.
As well as the implications in permutation group theory, our results are also of

combinatorial interest. Define the determining number, Det(Γ), of a graph Γ = (V, E)
to be the minimum cardinality of a set S ⊆ V such that Aut(Γ)(S) = 1. Given positive
integers n ⩾ 2r, the Kneser graph, Kn:r, has vertex set V = {A ⊆ [n] : |A| = r},
where sets are adjacent if and only if they are disjoint. Hence, the determining number
for Kn:r is precisely b(Sn,r).

There have been many results in the literature taking this equivalent combinatorial
perspective. Indeed, the determining number for Kneser graphs was studied exten-
sively by Boutin [3], dating back to 2006 when she gave early bounds on Det(Kn:r),
and classified all Kneser graphs with determining number 2, 3, and 4. Additional
results, and improvements to these first bounds have been obtained gradually over
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the following two decades (see [6], for example). In the remainder of this paper we
state results only in terms of the group-theoretic formulation, although the results
are easily translated.

The structure of the paper is as follows. In Section 2 we set up some general
combinatorial machinery, establishing a connection between bases for Sn,r and a class
of hypergraphs. In Section 3 we use the tools from Section 2 to prove Theorem 1.1,
which we then use to obtain explicit formulae precisely determining the base size for
specific functions n of r.

2. Bases and hypergraphs
In this section we translate our problem into the language of hypergraphs. Define Sn,⩽r

to be the symmetric group Sn acting in the natural way on the set of subsets of [n]
of size at most r. Halasi [8] shows that to determine b(Sn,r) one may construct a
minimum base for Sn,⩽r.

Lemma 2.1 ([8]). Fix n ⩾ 2r. Then b(Sn,r) = b(Sn,⩽r).

To construct a minimum base for Sn,⩽r we start with a correspondence lemma
which translates our bases into hypergraphs. A hypergraph is a pair (V, E) where V is
a set of points called vertices, and E is a set of subsets of V called hyperedges. Given
a hypergraph H = (V, E) and v ∈ V , define the H-neighbourhood (or neighbourhood,
when clear from context) of v to be the set

NH(v) := {e ∈ E(H) : v ∈ e},

and the degree of v to be |NH(V )|.
Suppose A is a collection of subsets of [n], each of size at most r. If there are two

points x, y ∈ [n] which are contained in all of the same sets in A, then each element
of A is fixed by the transposition (x y), hence A is not a base for Sn,⩽r. Similarly if no
two such points exist then A is a base. We call a hypergraph irrepeating if all vertices
have distinct neighbourhoods. Therefore, a collection B of distinct subsets of [n] each
of size at most r is a base for Sn,r if and only if the pair ([n], B) forms an irrepeating
hypergraph. We will often take the view that bases are hypergraphs, and hence refer
to the hypergraph ([n], B) simply as B.

If a hypergraph H is irrepeating and has l vertices, n hyperedges (including possibly
the empty edge), and maximum vertex degree at most r then we call H an (l, n, r)-
hypergraph. We call two bases B1, B2 for Sn,⩽r equivalent if there exists some σ ∈ Sn,⩽r

with Bσ
1 = B2.

Proposition 2.2. Fix positive integers l, n, and r, and let L be the set of isomorphism
classes of (l, n, r)-hypergraphs and S be the set of all equivalence classes of bases
of Sn,⩽r of size l. Then there exists a one-to-one correspondence ρ : L → S.

The correspondence ρ is via a combinatorial construction known as the dual hy-
pergraph. Let H be an irrepeating hypergraph. The dual of H, denoted H⊥, is the
hypergraph with vertex set identified with the hyperedges of H, and hyperedges iden-
tified with vertices of H, where the incidence relations of H⊥ are the reverse of those
of H. That is

V (H⊥) := {vf : f ∈ E(H)},

and
E(H⊥) := {eu : u ∈ V (H), vf ∈ eu ⇐⇒ f ∈ NH(u)}.

The proof of Proposition 2.2 requires a couple of easy facts on the operation ·⊥ given
in the following lemma, which follows directly from the definition.
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Lemma 2.3. Let H be the space of isomorphism classes of irrepeating hypergraphs.
Then ·⊥ is an involution in Sym(H). Moreover,

|V (H⊥)| = |E(H)| and |E(H⊥)| = |V (H)|

for all H ∈ H.

Proof of Proposition 2.2. Let B be a base for Sn,⩽r of size l. By Lemma 2.3, since B
is irrepeating as a hypergraph it has an irrepeating dual, H, say, with l vertices, n
edges, and maximum vertex degree at most r. That is, H is an (l, n, r)-hypergraph.

On the other hand, given an (l, n, r)-hypergraph, K, we deduce from Lemma 2.3
that |V (K⊥)| = n, |E(K⊥)| = l, and the largest edge of K⊥ has size at most r.
Moreover, Lemma 2.3 establishes that K⊥ is irrepeating and so after relabelling the
vertices of K⊥ as 1, 2, . . . , n, the edges of the resulting hypergraph are indeed a base
for Sn,⩽r of size l. Therefore, by Lemma 2.3 if we define ρ to return the edge set of the
composition of the dual operation, ·⊥, together with any such relabelling of vertices,
then ρ : L → S is a bijection. □

It now follows that to determine the base size of Sn,⩽r — and hence, by
Lemma 2.1, Sn,r — it suffices to determine the minimum number of vertices of an
irrepeating hypergraph with n edges and maximum degree at most r.

A hypergraph is called k-uniform if its edge set consists only of edges of size k. A
k-uniform hypergraph is called nearly-regular if its degree sequence a1 ⩾ a2 ⩾ · · · ⩾ al

satisfies a1 − al ⩽ 1. We use a result of Behrens et al. [1] to prove the final lemma of
this section.

Lemma 2.4. Let k, l, and s be positive integers with s ⩽
(

l
k

)
. Then there exists a nearly-

regular k-uniform hypergraph on l vertices with s edges and highest degree
⌈

k
l s
⌉
.

Proof. If l divides ks then set d = l, otherwise let d be the unique non-negative integer
such that d

⌈
k
l s
⌉

+ (l − d)
⌊

k
l s
⌋

= ks. Consider the sequence (a1, a2, . . . , al) where

ai =
{⌈

k
l s
⌉

for 1 ⩽ i ⩽ d⌊
k
l s
⌋

for d + 1 ⩽ i ⩽ l.

From
(

l
k

)
⩾ s, we deduce

(
l−1
k−1
)

= k
l

(
l
k

)
⩾ k

l s, and hence(
l − 1
k − 1

)
=
⌈(

l − 1
k − 1

)⌉
⩾

⌈
k

l
s

⌉
= a1.

Therefore, by [1, Theorem 2.1], there exists a k-uniform hypergraph H with degree
sequence (a1, a2, . . . , al), so H is nearly-regular with s edges. □

With duality in mind, to construct a small base for Sn,⩽r it suffices to build an
irrepeating hypergraph with some fixed number of edges, but neighbourhoods as
small as possible. A natural way to do this is to successively add a smallest pos-
sible edge (in terms of set size), whilst ensuring no two vertices end up with the same
neighbourhood. This is precisely how the main result of this section works. Recall
mr(l, k) = 1

k

(
lr −

∑k−1
i=1 i

(
l
i

))
— when clear from context, we omit the subscript r.

Proposition 2.5. Fix positive integers l, n, and r with n ⩾ 2r. Suppose there exists
some k ⩽ l + 1 such that 0 ⩽ m(l, k) ⩽

(
l
k

)
, and

∑k−1
i=0

(
l
i

)
+ m(l, k) ⩾ n. Then there

exists an (l, n, r)-hypergraph.

Proof. We construct such a hypergraph. Let H1 be the unique irrepeating hypergraph
on l vertices with all possible edges of size at most k − 1. By Lemma 2.4, since
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⌊m(l, k)⌋ ⩽
(

l
k

)
there exists some k-uniform hypergraph H2 on l vertices with exactly

⌊m(l, k)⌋ edges, and highest degree at most⌈
k

l

⌊
1
k

(
lr −

k−1∑
i=1

i

(
l

i

))⌋⌉
⩽

⌈
k

l

(
1
k

(
lr −

k−1∑
i=1

i

(
l

i

)))⌉
= r −

k−1∑
i=1

(
l − 1
i − 1

)
.

Let H be the irrepeating hypergraph obtained by adding the edges of H2 to H1.
Then H has l vertices, exactly

∑k−1
i=0

(
l
i

)
+ m(l, k) ⩾ n edges, and highest degree at

most
k−1∑
i=1

(
l − 1
i − 1

)
+
(

r −
k−1∑
i=1

(
l − 1
i − 1

))
= r.

By arbitrarily deleting edges of size k until exactly n edges remain we do not increase
the degree of any vertex, hence we obtain an (l, n, r)-hypergraph. □

3. Base size of Sn,r and An,r

In this section we use the tools developed in Section 2 to deduce Theorem 1.1. We
then illustrate how the construction works in practice with a brief example, before
proving a couple of corollaries.

We first give a description of the quantity mr(l, k) in terms of bases for Sn,r — it
is useful to start by stating the following lemma.

Lemma 3.1. Let n and r be positive integers with n ⩾ 2r, and B a base for Sn,r

with |B| = l. Then lr =
∑

x∈[n] |NB(x)|.

Proof. Count pairs (B, x) where x ∈ B ∈ B in two ways. □

Given a base B as in the statement of Lemma 3.1 and some positive integer k, set
A1 := {x ∈ [n] : |NB(x)| < k} and A2 := {x ∈ [n] : |NB(x)| ⩾ k}.

We can rewrite the sum in Lemma 3.1 as lr =
(∑

x∈A1
|NB(x)|

)
+
(∑

x∈A2
|NB(x)|

)
,

hence ∑
x∈A2

|NB(x)| = lr −

(∑
x∈A1

|NB(x)|
)

.

Since bases are irrepeating, it follows that there are at most
(

l
i

)
distinct neighbour-

hoods of size i, hence lr −
(∑

x∈A1
|NB(x)|

)
is minimally

lr −
k−1∑
i=1

i

(
l

i

)
= kmr(l, k).

On the other hand k|A2| ⩽
∑

x∈A2
|NB(x)|. Therefore mr(l, k) estimates the minimum

number of points of [n] which have B-neighbourhoods of size at least k.
We now proceed with the proof of the symmetric group case of Theorem 1.1.

Proof of Theorem 1.1 for Sn. Let B be a minimum base for Sn,r so that b := b(Sn,r) =
|B|. Let l be minimal satisfying the conditions of Proposition 2.5. Then there exists an
(l, n, r)-hypergraph, H, say, and by Proposition 2.2, ρ(H) is a base of size l for Sn,⩽r.
By the minimality of b and Lemma 2.1 we deduce l ⩾ b.

Now, let h ⩽ b+1 be maximal such that 0 ⩽
(

br −
∑h−1

i=1 i
(

b
i

))
(note h exists since

the inequality holds with h = 1 < b + 1). It follows from the maximality of h that

0 ⩽
1
h

(
br −

h−1∑
i=1

i

(
b

i

))
⩽

(
b

h

)
.
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From Lemma 3.1 and the subsequent discussion we deduce that

br ⩾

(
h−1∑
i=0

i

(
b

i

))
+ h

(
n −

h−1∑
i=0

(
b

i

))
,

where the second summand describes the fact that any point not contributing to the
first summand has neighbourhood of size at least h. Rearranging gives

1
h

(
br −

h−1∑
i=0

i

(
b

i

))
⩾ n −

h−1∑
i=0

(
b

i

)
and so

∑h−1
i=0

(
b
i

)
+m(b, h) ⩾ n. Thus all conditions of Proposition 2.5 are satisfied. By

definition l is the smallest positive integer satisfying the conditions of Proposition 2.5
and so l ⩽ b, hence l = b as desired. □

We now consider the alternating case.

Proof of Theorem 1.1 for An. We prove the result by showing that b(An+1,r) is equal
to b(Sn,r). Let B be a base for Sn,r of size b(Sn,r). Consider B as a collection of r-
subsets of [n+1], with n+1 having empty neighbourhood. Since B is a base for Sn,r, at
most one element of [n] has an empty B-neighbourhood, hence at most two elements
of [n + 1] do, with all others distinct. But being a base for An+1,r is equivalent to
having at most two points with equal neighbourhoods, hence B is a base for An+1,r

of size b(Sn,r). This shows that b(An+1,r) ⩽ b(Sn,r).
On the other hand, let C be a base for An+1,r. If there are two points x and y

with the same C-neighbourhood, then assume without loss of generality that x is
n + 1. Let C′ be obtained from C by deleting n + 1 from all r-sets in C. Then C′ is a
collection of subsets of [n] of size at most r such that each element of [n] has a distinct
neighbourhood, that is, a base for Sn,⩽r. Thus b(An+1,r) ⩾ b(Sn,⩽r), and the result
follows from Lemma 2.1. □

One can use the proof of the Sn case of Theorem 1.1, together with the proof of [8,
Theorem 2.1] to construct a minimum base for Sn,r.

Example 3.2. Suppose we wish to construct a minimum base for S18,7. The
pair (l, k) = (5, 3) satisfies the conditions of Theorem 2.5 with l minimal. Therefore
we start by taking the complete graph K5 adorned with all loops and the empty
edge. Following the procedure of the proof we then add the edges of some nearly-
regular 3-uniform hypergraph on five points with highest degree at most 2, and
exactly two edges. In this case any simple 3-uniform hypergraph with exactly two
edges will work, so we may pick one arbitrarily. At this point we have obtained
the (5, 18, 7)-hypergraph in Figure 1.

Figure 1. The (5, 18, 7)-hypergraph constructed in Example 3.2,
with vertices labelled arbitrarily.
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Taking the dual and relabelling the vertices as 1, 2, . . . , 18 using the simplicial
ordering gives

{{2, 7, 8, 9, 10, 17}, {3, 7, 11, 12, 13, 17}, {4, 8, 11, 14, 15, 18},
{5, 9, 12, 14, 16, 18}, {6, 10, 13, 15, 16, 17, 18}}

as a minimum base for S18,⩽7 — one can now use Halasi’s algorithm in [8] to transform
this into a minimum base for S18,7.

In [6] it is shown that b(Sn,r) =
⌈

2n−2
r+1

⌉
whenever n ⩾ (r2 +r)/2. As a consequence

of Theorem 1.1, we can easily obtain an alternate proof of this result.

Corollary 3.3. Let n and r be positive integers with n ⩾ (r2 + r)/2. Then

b(Sn,r) =
⌈

2n − 2
r + 1

⌉
.

Proof. First let n ⩾ (r2 + r + 2)/2. Then
⌈

2n−2
r+1

⌉
⩾ 2n−2

r+1 ⩾ r. Setting k = 2 and

l =
⌈

2n−2
r+1

⌉
gives

(1) m(l, k) = 1
2 (lr − l) = 1

2

(⌈
2n − 2
r + 1

⌉
(r − 1)

)
and

0 ⩽
1
2

(⌈
2n − 2
r + 1

⌉
(r − 1)

)
⩽

1
2

(⌈
2n − 2
r + 1

⌉(⌈
2n − 2
r + 1

⌉
− 1
))

=
(

l

k

)
.

Moreover,
k−1∑
i=0

(
l

i

)
+ m(l, k) = 1 +

⌈
2n − 2
r + 1

⌉
+ 1

2

(⌈
2n − 2
r + 1

⌉
(r − 1)

)
by (1)

⩾ 1 + 2
r + 1(n − 1) + r − 1

r + 1(n − 1)

= n.

Therefore, l satisfies the conditions of Theorem 1.1, and hence

b(Sn,r) ⩽
⌈

2n − 2
r + 1

⌉
.

Finally, one can construct a base for n = (r2 + r)/2 as follows. Our construction
yields a base for Sn+1,⩽r with exactly one point with empty neighbourhood — by
deleting this point and relabelling if necessary we get a base for Sn,⩽r of the desired
size. We deduce equality from Halasi’s lower bound [8, Theorem 3.2]. □

We can continue to use Theorem 1.1 to push even further down, into a range in
which no formulae were previously known, although the formula is less pleasant.

Corollary 3.4. Let n and r be positive integers satisfying r2+r
2 > n ⩾ r3/2 + r

2 + 1.
Then

b(Sn,r) =
⌈(

3
(

2n + r − 5
4

)
+ r2

) 1
2

− r − 3
2

⌉
.

Proof. Suppose first that there is some base B = {B1, . . . , Bk} for Sn,r with largest
vertex neighbourhood of size at most 2. Then B2 has at least r − 1 points not in B1,
B3 has at least r − 2 points not in B1 ∪ B2, and so on. Thus

n ⩾ r + (r − 1) + · · · + 1 = (r2 + r)/2,
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a contradiction. Therefore, there is no base for Sn,r with largest neighbourhood size at
most 2. Therefore if B is any base for Sn,r then at least one point has a neighbourhood
of size at least three, thus by the discussion following Lemma 3.1, 1+b+

(
b
2
)
+m(b, 3) ⩾

n. That is,

n ⩽ 1 + b +
(

b

2

)
+ 1

3(br − b − b(b − 1)) = b2 + (2r + 3)b
6 + 1,

solving for b (e.g. via the quadratic formula) gives

b ⩾

(
3
(

2n + r − 5
4

)
+ r2

) 1
2

− r − 3
2 .

The above also shows that if we set l to be (the ceiling of) the quantity above and k

to be 3, then l is the minimum positive integer satisfying 1 + l +
(

l
2
)

+ m(l, k) ⩾ n.
Therefore, by Theorem 1.1 if we can show that 0 ⩽ m(l, k) = 1

3 (lr − l2) ⩽
(

l
3
)
, or

equivalently that l ⩽ r ⩽ (l2 − l)/2 + 1, then b(Sn,r) = l.
First, l > r implies (24n + 4r2 + 12r − 15)1/2 > 4r + 3. Rearranging gives

n > (r2 + r + 2)/2, a contradiction, so l ⩽ r. Finally, since n ⩾ r3/2 + r
2 + 1, a

straightforward calculation shows that r ⩽ (l2 − l)/2 + 1, hence the result. □

Remark 3.5. In fact, the result holds for (r2+r)/2 > n ⩾ (8r3+25r2+4r−28)
1
2

6 + r
2 +1 —

the lower bound of n ⩾ r3/2 + r
2 + 1 is used in the statement simply for presentation.

One could continue to play this game, obtaining explicit formulae for different
ranges of n, however the calculations quickly become increasingly complicated.
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