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The structure of exceptional sequences on
toric varieties of Picard rank two

Klaus Altmann & Frederik Witt

Abstract For a smooth projective toric variety of Picard rank two we classify all exceptional
sequences of invertible sheaves which have maximal length. In particular, we prove that unlike
non-maximal sequences, they (a) remain exceptional under lexicographical reordering, (b) sat-
isfy strong spatial constraints in the Picard lattice, and (c) are full, that is, they generate the
derived category of the variety.

1. Introduction
1.1. Fullness of exceptional sequences. Let X be a smooth projective variety
over an algebraically closed field K and D(X) the bounded category of coherent
sheaves on X. In his ICM talk [19], Kuznetsov posed the following

Fullness Conjecture. If D(X) is generated by an exceptional sequence, then any
exceptional sequence of the same length is full.

Though a counterexample to Kuznetsov’s conjecture was recently given on a ra-
tional surface [18], this question is still of interest. For instance, the fullness property
for X implies the absence of so-called phantom categories appearing in [12] and [7].

In this paper we shall address the question of fullness in the case of exceptional
sequences of line bundles on a toric variety of Picard rank 2 defined over an alge-
braically closed field K. Let us first explain the general setting before we comment
on our assumptions. A sequence of elements E1, . . . , EN in D(X) is called exceptional
if the derived homomorphisms satisfy

RHom(Ei, Ei) = K and RHom(Ej , Ei) = 0 for all j > i.

For instance, if the Ei are given by invertible sheaves and X satisfies RΓ(X, OX) = K,
the first condition holds automatically. Further, the second condition becomes
Ext•(Ej , Ei) = 0.

An exceptional sequence is full if it generates the derived category. This means that
⟨E1, . . . , EN ⟩, the smallest triangulated full subcategory of D(X) containing the Ei,
is D(X) itself. The length N equals the rank of the K-group K0(X). Any other
exceptional sequence has at most N elements; it is called maximal if it attains this
bound. In particular, full sequences are maximal.

The simplest example is Beilinson’s full exceptional sequence on Pd [6], namely
D(Pd) = ⟨OPn(0), . . . , OPd(d)⟩.
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More generally, Kawamata proved existence of full exceptional sequences consisting
of complexes of coherent sheaves on any smooth projective toric variety X (or even a
smooth toric DM-stack for that matter) [14, 15, 16]. Note that, for dim X = d, the rank
of K0(X) equals the number of d-dimensional cones #Σ(d) of the underlying fan Σ.
Equivalently, this coincides with the number of vertices of any polytope associated
with an ample divisor on X.

In view of Beilinson’s example one could even hope of finding full exceptional
sequences consisting of invertible sheaves Li instead of general complexes Ei, but
this fails even for toric Fano varieties [10]. However, existence of such sequences was
established in [9] if Σ is a splitting fan. Geometrically, this means that the toric
variety X = TV(Σ) arises as the total space of a sequence of successive fibrations
via X0 = Pn, X1, . . . , Xr = X with Xi = P(Ei−1) for a sum of invertible sheaves Ei−1
on Xi−1.

1.2. Exceptional sequences of line bundles on toric varieties of Picard
rank two. From now on we solely consider exceptional sequences of line bundles
on smooth projective toric varieties of Picard rank 2, the easiest examples after Pd

among toric varieties X = TV(Σ) with splitting fan Σ. The basic invariant of X is
the pair (ℓ1, ℓ2) of integers ℓ1, ℓ2 ⩾ 2

which indicates that X fibres over Pℓ1−1 with fibre Pℓ2−1. Moreover,

d = dim X = ℓ1 + ℓ2 − 2,

and the defining fan Σ contains exactly two rays more than d; see Subsection 3.1
for further details. In particular, #Σ(d) = ℓ1ℓ2. We refer to the trivial fibration
Pℓ1−1 ×Pℓ2−1 as the product case and to a nontrivial fibration as the twisted case. For
the latter, the order of the two numbers ℓ1, ℓ2 ⩾ 2 really matters. In dimension two
where ℓ1 = ℓ2 = 2, we just find the family of Hirzebruch surfaces but the complexity
quickly increases with dimension. The fibration structure also implies that we have a
canonical identification

Pic(X) ∼= Z2

given by the primitive generators of the nef cone, see Subsection 3.1.3. Geometrically,
these generators are given by the pullback of OPℓ1−1(1) and a relative hyperplane
section of the fibration.

Since Ext•(Lj , Li) = H•(X, L−1
j ⊗ Li) a sequence of line bundles L0, . . . , LN is

exceptional if and only if L−1
j ⊗ Li, i < j, lies in the locus of cohomologically trivial

line bundles inside the Picard group. This locus is explicitly known for toric varieties
given by a splitting fan [2]. Second, we also understand the extensions provided by
nontrivial cohomology, cf. [5] and [3].

1.3. Maximal exceptional sequences are lexicographic. Since properties of
exceptional sequences such as fullness only depend on their underlying set, it is nat-
ural to look for a canonical order. We call an exceptional sequence vertically respec-
tively horizontally orderable if it remains exceptional for the lexicographic order on
Pic(X) ∼= Z2 where priority is given either to the “vertical” or “horizontal” direc-
tion. In general, lexicographic reordering destroys exceptionality of the sequence, but
remarkably, this does not happen for maximal exceptional sequences.

Theorem A (see Theorems 6.4 and 8.2). Let s ⊆ Z2 be a maximal exceptional se-
quence of invertible sheaves on a smooth projective toric variety X of Picard rank
two. In the product case, s is either vertically or horizontally orderable. In the twisted
case, s is vertically orderable.

Algebraic Combinatorics, Vol. 7 #4 (2024) 1040



Exceptional sequences on toric varieties

In contrast, it was shown in [1, Example 3.5] that there are maximal exceptional
sequences on P1 ×P1 ×P1 that are not orderable with respect to any of the six possible
lexicographic orders on Pic(P1 × P1 × P1) ∼= Z3.

1.4. Maximal exceptional sequences are densely packed. It is well-known
that the shape of exceptional sequences also impacts on the derived category, see
for instance [20], [21] or [24]. Our next structure result concerns the spatial size of
maximal exceptional sequences.

Theorem B (see Theorems 6.1 and 9.8). Let s ⊆ Z2 = Pic(X) be a maximal excep-
tional sequence of invertible sheaves on a projective toric variety X of Picard rank
two. In the twisted case, the height, which is the minimal number of rows of a hori-
zontal strip containing s, is bounded by 2ℓ2. In the product case, either the height or
the width (the minimal number of columns of a vertical strip containing s) is bounded
by 2ℓ2 − 1 or 2ℓ1 − 1, respectively.

Again, it is easy to construct counterexamples for non maximal sequences. What is
striking about this result is that it is false for higher Picard rank. In [1, Example 3.4] it
was shown that maximal exceptional sequences on P1 ×P1 ×P1 can spread arbitrarily
far and simultaneously in all three directions.

1.5. The classification of maximal exceptional sequences. Let
Rℓ1,ℓ2 := {(a, b) ∈ Z2 | 0 ⩽ a < ℓ1, 0 ⩽ b < ℓ2}

be the standard rectangle associated with the pair (ℓ1, ℓ2). The sequence given by
sa+bℓ1 := (a, b) ∈ Rℓ1,ℓ2

is maximal exceptional with respect to the vertical lexicographical order, and so is
any sequence obtained by a global shift, or by shifting each row of points (•, b) in-
dependently by some (ab, 0). We refer to these maximal exceptional sequences as
vertically trivial, see also Subsection 5.4. Similarly, there are also horizontally trivial
sequences in the product case. Composing the well-known helix operator (e.g. [25])
with lexicographical reordering yields the heLex operator ℏlex, see Subsection 7.1.

Theorem C (see Theorems 7.2 and 10.1). Any vertically orderable maximal excep-
tional sequence can be transformed into a vertically trivial maximal exceptional se-
quence by applying ℏlex at most ℓ1ℓ2 times. Mutatis mutandis, the statement holds for
horizontally maximal exceptional sequences in the product case.

Theorem C can be recast into a more constructive version:

Theorem D (see Theorems 7.7 and 10.2). Any maximal exceptional sequence is de-
termined and explicitly described by a so-called admissible set X ⊆ (−β, ℓ2) + Rℓ1,ℓ2

and a complementing partner Y which consist either of horizontal or vertical lines of
consecutive points.

The precise definition of admissible sets and complementing partners is given in
Definition 7.3 and 10.2. In this way we can classify the totality of maximal exceptional
sequences.

1.6. Fullness of maximal exceptional sequences. Finally, we show that max-
imality is sufficient for fullness. Viewing exceptionality as an orthogonality condition
in the derived category, this is comparable to the fact that in a finitely generated
vector space any linearly independent set of maximal cardinality generates the space.
This follows either directly from Theorem A (admitting that the helix (!) operator
preserves fullness from the general theory), or from a combinatorial argument building
on Theorems A, B and D.
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Theorem E (see Theorems 7.9 and 11.2). An exceptional sequence of invertible
sheaves on a smooth projective toric variety of Picard rank two is full if and only if
it is maximal.

For toric Fano varieties of Picard rank two and dimension less than five this was
shown in [22] by direct calculations in a case-by-case analysis (special cases were
already considered in [23]). In contrast, [1] required aid of a computer to prove the
same result for P1 ×P1 ×P1, the easiest example of Picard rank three. In [8], the claim
that maximality implies fullness was proven (with completely different methods) for
toric DM stacks X with Picard rank two under the additional assumptions that X
is Fano and that the sequence is even strongly exceptional. See also [13] for a much
more general approach.

In [4, Theorem 5.3] one can find a precise characterization of strongly exceptional
sequences among all maximal exceptional sequences in terms of the building pairs
(X, Y ) consisting of an admissible set and a complementing partners in the sense of
Subsection 7.2 and (10.2) of the present paper.

On the other hand, the structural Theorems A-E go beyond this fullness issue as
they provide a completely general and conceptional treatment of maximal exceptional
sequences for Picard rank two – including a complete classification of all maximal
exceptional sequences. As a final comment we note that our arguments are purely
combinatorial (at the expense of possible shortcuts, cf. for instance Remark 4.6). A
more geometrical approach is given in the sequel [4].

1.7. The example P1 × P1. As an illustration of our theorems we consider the case
of P1 × P1 and show how we generate the whole lattice Pic(X) = Z2 out of the
maximal exceptional sequence

s = (s0, s1, s2, s3, ) =
(
0, (−3, 1), (−2, 1), (1, 2)

)
,

see also (a) of Figure 1. It is vertically ordered and of height 3 in accordance with
Theorems A and B (for horizontally ordered examples of unbounded height see Ex-
ample 4.2).

The main tool is the Beilinson sequence

0 → OP1 → OP1(1) ⊕ OP1(1) → OP1(2) → 0

on P1. As we explain in Example 4.5 it allows us to generate or “fill” the whole
(horizontal or vertical) line whenever it carries two consecutive points of ⟨s⟩.

(a) (b) (c) (d) (e)

Figure 1. Filling Pic(P1 × P1) = Z2 from s. The green dot in (a) –
(e) marks the origin 0 ∈ Z2.

Here and in the sequel, let
[x = a] and [y = b] denote the lines {(a, j) | j ∈ Z} and {(i, b) | i ∈ Z} in Z2.

Right from the beginning in (a), we have a consecutive pair of elements in s on [y = 1]
so that we can generate or “fill” the entire line [y = 1], cf. (b). Hence [y = 1] ⊆ ⟨s⟩.
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Next, we fill the vertical line [x = 1] using the consecutive pair (1, 1), (1, 2) in (c)
– we showed in (b) that (1, 1) ∈ ⟨s⟩. Similarly, we can fill the line [x = 0] since
(0, 1) ∈ ⟨s⟩, cf. (d).

It follows that we can fill any horizontal line [y = b] for (0, b), (1, b) ∈ ⟨s⟩, b ∈ Z,
see (e). Hence Pic(P1 × P1) ⊆ ⟨s⟩. As Pic(P1 × P1) generates D(P1 × P1), s is full.

The proof of Theorem E for Pℓ1−1 ×Pℓ2−1 is a direct generalisation of this example.
The key step consists in proving existence of sufficiently many “horizontal” and “ver-
tical” consecutive points inside the sequence, see Section 6. The twisted case works
differently. In particular, it requires a suitable “vertical” Beilinson sequence which
reflects the fine structure of the twist, see Subsection 3.2.

1.8. Plan of the paper. The first Sections 2 to 5 provide the necessary background
and establish the main technical tools. Though large parts of the proofs in the product
and the twisted case are similar and equally technical we found it more perspicuous
to treat them separately with the product case serving as guideline. Consequently,
Sections 6 and 7 prove Theorems A-E for the product case, while the remaining
Sections 8 to 11 are devoted to proving the twisted versions.

2. Some background on toric geometry
We briefly review some features of toric geometry which we shall use in the paper.
For a short introduction to toric geometry, see [11].

2.1. Torus invariant divisors. Let X = TV(Σ) be a smooth toric variety with
underlying fan Σ. The r-dimensional cones in Σ form the subset Σ(r). Similarly, for
any σ ∈ Σ, the set σ(r) ⊆ Σ(r) denotes the set of its r-dimensional faces. All these
cones live in the real vector spaces NR = N ⊗Z R, where N is the lattice of one-
parameter groups of rank equal to d = dim X. It is dual to the character lattice M
of T , the torus of X.

These lattices link to the group of torus invariant Weil divisors DivT (X) and the
class group Cl(X) of X as follows. First, any ray, that is, an element ρ ∈ Σ(1),
corresponds to a unique torus orbit orb(ρ) of codimension one. Let Dρ = orb(ρ) be
its closure. For m ∈ M we define ρ∗(m) = div(χm) =

∑
ρ⟨m, ρ⟩Dρ, where ρ denotes

both the ray and its primitive generator in N .
Moreover, let ∇ be a lattice polytope in M which is compatible with Σ, i.e., Σ is a

refinement of the normal fan N (∇) of ∇. This comes with an associated Weil divisor

D∇ = −
∑

ρ

min⟨∇, ρ⟩ · Dρ.

The induced line bundle O(∇) := O(D∇) is globally generated by the monomials χm

with m ∈ ∇∩M . Further, for any σ ∈ Σ(d) we have an associated vertex v(σ) ∈ ∇∩M
which is characterised by

⟨v(σ), ρ⟩ = min⟨∇, ρ⟩ for ρ ∈ σ(1).
It gives rise to a local generator of O(∇) on Uσ, the affine subset determined by σ,
namely

O(∇)|Uσ = χv(σ) · GX |Uσ .

For non-maximal cones σ ∈ Σ this works similarly. However, the vertices v(σ) are
only determined up to σ⊥.

Finally, we have the exact sequence

(1) 0 // M
ρ∗
//
[
DivT (X) ∼=

⊕
ρ∈Σ(1)

ZDρ

]
π // Cl(X) // 0
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if the primitive generators span NR (for instance if X is complete). In particular,
rk Cl(X) = #Σ(1) − dim X.

2.2. Exact sequences reflecting polyhedral covers. We recall a method
from [3] to transform polyhedral inclusion / exclusion sequences as in Example 2.2
below into exact sequences of sheaves on toric varieties X = TV(Σ).

We start with a so-called Σ-family of lattice polytopes S = {∇i | i = 1, . . . , n}
in MR. This means that for all I ⊆ [n] := {1, . . . , n} the intersections

∇I :=
⋂

i∈I ∇i for I ̸= ∅

as well as
∇∅ :=

⋃
i∈[n] ∇i

are compatible with Σ, i.e., Σ ⩽ N (∇I).
The second ingredient is the standard Koszul complex (Λ•Kn, d) where

d : Λp+1Kn → ΛpKn, eI 7→
∑
i∈I

(−1)ieI∖{i}

for any I ⊆ [n] with #I = p + 1, and eI := ∧i∈Iei for the standard basis vectors
e1, . . . , en ∈ Kn. Tensoring with K[M ] yields the exact complex

0 // K[M ] · e[n] // ⊕I⊆[n]
#I=n−1

K[M ] · eI
// . . . // ⊕i∈[n]K[M ] · ei

// K[M ] · e∅ // 0.

For each I ⊆ [n] the vector space K[M ] · eI appears as a direct summand inside this
complex and contains the finite-dimensional subspace

S(I) := K[∇I ∩ M ] · eI := ⊕m∈∇I ∩M K · χm · eI .

It follows from [3, Section 3] that these subvector spaces define an exact subcomplex
S• ⊆ K[M ] ⊗ Λ•Kn. Moreover, we have the

Theorem 2.1. [3, Theorem 12] S• is the complex of global sections of the equivariant,
exact complex S• given by the globally generated sheaves

Sk =
⊕

I⊆[n], #I=k

OX(∇I)

on X = TV(Σ), namely

0 // OX(∇[n]) // ⊕n
i=1OX(∇[n]∖{i}) // . . . // ⊕n

i=1OX(∇i) // OX(∇∅) // 0.

Example 2.2. Let X = H1 be the first Hirzebruch surface, see also the picture on
the left hand side of Figure 2. We consider the Σ-family S = {∇1, ∇2} provided by
the triangle and the quadrangle in the middle box of the polyhedral exact sequence

0 → → ⊕ → → 0.

Here, the green dots indicate the position of the origin in each of the polyhedra. Using
the notation from Subsection 3.1.2 below, the leftmost polyhedron ∇1 ∩ ∇2 equals U ,
and the triangle ∇1 itself is just V . The sequence may be therefore rephrased by
(2) 0 → OH1(U) → OH1(V ) ⊕ OH1(U + V ) → OH1(2V ) → 0.

Let us translate this sequence into classical language. The right hand side of Figure 2
displays the fan of the blow-up b : H1 → P1.

The labeling of the rays in Σ(H1) is concordant with the notation of Subsec-
tion 3.1.2. In particular, the closed orbit orb(v2) equals the exceptional divisor E ⊆

Algebraic Combinatorics, Vol. 7 #4 (2024) 1044



Exceptional sequences on toric varieties

u1

u2

v1

v2

b−→
ρ1

ρ0

ρ2

Figure 2.

H1. Since the blow-up b contracts E to the point orb(ρ0, ρ1) = 0 ∈ P2, the re-
maining ray ρ2 encodes the line L∞ ⊂ P2 at infinity. Moreover, the restriction
b : orb(v1) → orb(ρ2) = L∞ is an isomorphism.

Therefore, the exact sequence (2) is obtained from

0 → OH1 → OH1(E) ⊕ OH1(L∞) → OH1(E + L∞) → 0.

after replacing the polyhedra with toric Weil divisors and twisting by OH1(U) =
OH1(orb(u2)). This the Koszul complex of the exceptional line and the line at infinity.

2.3. Dealing with non-faces. Next we apply the formalism of Subsection 2.2 and
fix an arbitrary subset S ⊆ Σ(1). Let n = #S and choose an order on S. We think of
S as a sequence ρ1, . . . , ρn and identify ρi ∈ S with i ∈ [n].

For subsets I ⊆ S we define integral tuples kI ∈ ZΣ(1) by

(kI)ρ :=
{

1 if ρ ∈ S ∖ I
0 if otherwise, i.e., ρ ∈ I ∪ (Σ(1) ∖ S).

Interpreting kI ∈ ZΣ(1) as a T -invariant, effective and reduced Weil divisor on X =
TV(Σ) we denote by OX(kI) the associated sheaf. Since X is smooth, these divisors
are automatically Cartier. In particular, the sheaves OX(kI) are invertible albeit not
nef in general.

Proposition 2.3. Assume that S ⊆ Σ(1) is a non-face, that is, S does not define a
cone in Σ. Then, with I running through the subsets of S, the following complex C•

S

of invertible sheaves with the usual Koszul-like differentials is exact:

0 → OX(kS) → ⊕#I=k−1OX(kI) → . . . → ⊕#I=1OX(kI) → OX(k∅) → 0.

Here, OX(kS) = OX and OX(k∅) = OX(1S) which is the sheaf associated with the
effective and reduced divisor

∑
ρ∈S Dρ.

Proof. We choose a sufficiently ample polytope ∆ such that all polytopes

∇I := ∆(kI) := {m ∈ MR | ⟨m, ρ⟩ ⩾ min⟨∆, ρ⟩ − (kI)p}

are at least nef. It follows immediately that

∇I ∩ ∇J = ∆(kI) ∩ ∆(kJ) = ∆(kI∪J) = ∇I∪J

for all subsets I, J ⊆ [n]. In particular, ∇I =
⋂

i∈I ∇i if I ̸= ∅. We assert that⋃
i∈[n] ∇i = ∇∅ whence {∇i} is a Σ-family. This immediately implies the claim of the

proposition by tensoring the sequence in Theorem 2.1 with O(∆)−1.
We claim that for sufficiently ample ∆,

⋃
i∈[n] ∆(ki) = ∆(k∅) if and only if S is a

non-face.
Let

⋃
i∈[n] ∆(ki) = ∆(k∅). Further, assume that S ⊆ σ(1) for some (smooth) and

full-dimensional cone σ ∈ Σ with set of rays σ(1). The vertex v∅(σ) of ∇∅ = ∆(k∅)
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associated with σ satisfies

⟨v∅(σ), ρ⟩ =
{

min⟨∆, ρ⟩ − 1 if ρ ∈ S ⊆ σ(1)
min⟨∆, ρ⟩ if ρ ∈ σ(1) ∖ S.

However, this contradicts the inequality ⟨v∅(σ), ρi⟩ ⩾ min⟨∆, ρi⟩ of ∆(ki) for ρi ∈ S.
Conversely, assume that S /∈ Σ. For each ρ ∈ Σ(1) we consider the associated facet

face(∆, ρ) := {r ∈ ∆ | ⟨r, ρ⟩ = min⟨∆, ρ⟩}

and define the “thickened ρ-facet” by

F (∆, ρ) := {r ∈ ∆ | ⟨r, ρ⟩ ⩽ min⟨∆, ρ⟩ + 1}.

More generally, these definitions work for all cones σ ∈ Σ ∖ {0}: The face associated
to σ is

face(∆, σ) :=
⋂

ρ∈σ(1)
face(∆, ρ)

and the corresponding “thickened σ-face” is

F (∆, σ) :=
⋂

ρ∈σ(1)
F (∆, ρ).

The usual one-to-one correspondence between faces of ∆ and cones of Σ = N (∆)
implies that σ, σ′ ∈ Σ∖{0} are not contained in some common cone σ̃ ∈ Σ if and only
if the face(∆, σ) and face(∆, σ′) are disjoint. Therefore, the thickened faces F (∆, σ)
and F (∆, σ′) are also disjoint for sufficiently ample ∆.

Applying this to the polytope ∇∅ = ∆(k∅) shows that for a non-face S ⊆ Σ(1)
the corresponding thickened facets are disjoint, that is,

⋂
ρ∈S F

(
∇∅, ρ

)
= ∅. On the

other hand,
∇∅ ∖ F

(
∇∅, ρ

)
⊆ ∇ρ

implies ⋃
ρ∈S ∇ρ ⊇

⋃
ρ∈S

[
∇∅ ∖ F (∇∅, ρ)

]
= ∇∅ ∖

⋂
ρ∈S F (∇∅, ρ) = ∇∅. □

Remark 2.4. (i) Though we we will not use this observation in our later arguments, we
note in passing that for a primitive collection S the exact sequence of Proposition 2.3
represents the unique extension arising from Extn−1 (

OX(k∅), OX

)
= K.

(ii) Proposition 2.3 is the homological counterpart to the multiplicative Stanley–
Reisner presentation of the equivariant K-theory ring of a smooth toric variety,
see [26].

3. Toric varieties of Picard rank two
3.1. Kleinschmidt’s classification. Let X = TV(Σ) be a complete and smooth
toric variety of dimension d and Picard rank two. These varieties are characterised by
the following data [17]:

(i) Natural numbers ℓ1, ℓ2 ⩾ 2 with ℓ1 + ℓ2 = d + 2.

(ii) An integer vector c ∈ Zℓ2 with nonpositive components

0 = c1 ⩾ c2 ⩾ . . . ⩾ cℓ2 .

We write the corresponding variety

X = (ℓ1, ℓ2; c).

Here are some key properties.
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3.1.1. The class map. The varieties (ℓ1, ℓ2; c) arise as fibre bundles over Pℓ1−1 with
typical fibre Pℓ2−1. Actually, we have

(ℓ1, ℓ2; c) = P
(
⊕ℓ2

j=1 OPℓ1−1(−cj)
)

→ Pℓ1−1.

The best known instance is the Hirzebruch surface Hα =
(
2, 2; (0, −α)

)
, cf. Exam-

ple 3.4 or Subsection 8.1. The fibration is trivial (product case) if and only if c = 0.
Identifying DivT (ℓ1, ℓ2; c) with Zℓ1+ℓ2 we can rearrange this data in terms of the
2 × (ℓ1 + ℓ2)-matrix

πc :=
(

1 . . . 1 0 c2 . . . cℓ2

0 . . . 0 1 1 . . . 1

)
: Zℓ1+ℓ2 →→ Z2.

For X = (ℓ1, ℓ2; c) this provides the map π : DivT (X) → Cl(X) in the exact
sequence (1) on page 1043. In particular, M ∼= ker πc and N ∼= coker π∗

c where
π∗

c : Z2 ↪→ Zℓ1+ℓ2 is the transpose.

3.1.2. The fan. Let {e1, . . . , eℓ1 , f1, . . . , fℓ2} and {e1, . . . , eℓ1 , f1, . . . , f ℓ2} be the mu-
tually dual bases of DivT (ℓ1, ℓ2; c) and DivT (ℓ1, ℓ2; c)∗, respectively. Under ρc from
the exact sequence

0 // Cl(X)∗ π∗
c //

[
DivT (X)∗ ∼= ZΣ(1)

]
ρc // N // 0

dual to (1) the latter vectors are mapped to {u1, . . . , uℓ1 , v1, . . . , vℓ2}. These images
define the rays of the fan Σ = Σ(ℓ1, ℓ2; c) generated by the d-dimensional smooth
cones

σij := ⟨Σ(1) ∖ {ui, vj}⟩, i = 1, . . . , ℓ1 and j = 1, . . . , ℓ2.

In particular, #Σ(d) = ℓ1ℓ2 as stated before. Note that
∑ℓ2

j=1 vj = 0, but
∑ℓ1

i=1 ui =∑ℓ2
j=1(−cj) · vj .

3.1.3. The nef divisors. Regarded as a map DivT (X) → Cl(X), πc sends the equivari-
ant prime divisors orb(ui) and orb(vj) to their classes. The effective cone Eff ⊆ Cl(X)
is generated by [orb(u1)] and [orb(vℓ2)]. The nef cone Nef ⊆ Eff is generated by
[orb(u1)] and [orb(v1)]. This provides a natural identification Cl(X) ∼= Z2 by sending
[orb(u1)] to (1, 0) and [orb(v1)] to (0, 1). In particular, [orb(vℓ2)] is sent to (cℓ2 , 1).
These classes are also represented by the lattice polytopes

U := ∆(u1) = conv{ei − e1 | i = 1, . . . , ℓ1}

and
V := ∆(v1) = conv{fj − f1 − cjei | i = 1, . . . , ℓ1; j = 1, . . . , ℓ2}

in MR ⊆ Rℓ1+ℓ2 . Note that U equals the (ℓ1 −1)-dimensional standard simplex ∆ℓ1−1

while V can be understood as the Caley product

V = (−c1 · ∆ℓ1−1) ∗ . . . ∗ (−cℓ2 · ∆ℓ1−1).

3.1.4. The anti-canonical divisor. The divisor class of −KX is

[−KX ] = πc(1, . . . , 1) = (ℓ1 − β, ℓ2)

with
β := −

∑
j

cj ⩾ 0.

Hence, (ℓ1, ℓ2; c) is Fano if and only if β < ℓ1.
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Remark 3.1. Rather than the full vector c the non-negative parameters

α := −cℓ2 and β = −
∑ℓ2

j=1 cj

are the most important ones for our purposes. Almost by definition we get the in-
equalities
(3) 0 ⩽ α ⩽ β ⩽ α(ℓ2 − 1).
The latter will be referred to as the basic inequality. For further simplification we
also introduce

γ := αℓ2 − β

which satisfies γ ⩾ α ⩾ 0.

3.2. Application of Subsection 2.3 to the situation of Picard rank two.
Next we apply Proposition 2.3 to the toric varieties X = (ℓ1, ℓ2; c). From the descrip-
tion of their fan in Subsection 3.1.2 we derive that there are exactly two primitive
collections, namely

pu = {u1, . . . , uℓ1} and pv = {v1, . . . , vℓ2}.

Corollary 3.2. The primitive collections pu and pv give rise to the “U -sequence”
0 → OX → . . . → OX(U)⊗ℓ1 → 0

and the “V -sequence”
0 → OX → F1 → . . . → Fℓ2−1 → OX(U)⊗(−β) ⊗ OX(V )⊗ℓ2 → 0

where the sheaves Fk are direct sums indexed by subsets I ⊆ {1, . . . , ℓ2}, namely
Fk = ⊕#I=k OX(cI U + k V ) with cI :=

∑
i∈I ci ⩽ 0.

Remark 3.3. Setting F0 := OX and Fℓ2 := OX(−βU + ℓ2V ) we can extend this
notation to k ∈ {0, . . . , ℓ2}. Moreover, using the identification Pic X ∼= Z2 with U =
(1, 0) and V = (0, 1) from Subsection 3.1.3 we usually write Fk = ⊕#I=k OX(cI , k).

Proof. We deal with the primitive collection S = {v1, . . . , vℓ2} giving rise to the V -
sequence; the case of the U -sequence works similarly.

By Proposition 2.3 we obtain an exact sequence for Fk = ⊕#J=ℓ2−k OX(kJ) with
kJ = 1S∖J . Renaming I := S ∖ J this becomes Fk = ⊕#I=k OX(1I). On the other
hand, assigning the Weil divisor 1I =

∑
ρ∈I Dρ to its class means applying the map

πc from Subsection 3.1.1. Therefore, 1I becomes (cI , k) since πc(fi) = (ci, 1). □

Example 3.4. One of the very first examples one comes across when computing the
cohomology of invertible sheaves on toric varieties is Ext1(2V, U) = K on the Hirze-
bruch surface X = H1 = (2, 2; (0, 1)). This is represented by the exact sequence from
Example 2.2. After twisting with O(−U) this becomes the V -sequence of Corollary 3.2.

3.3. The co-immaculate locus. From now on we will work with toric varieties of
the form X = (ℓ1, ℓ2; c) and identify Pic(X) with Z2 via the map πc from Subsec-
tion 3.1.1.

As pointed out in the introduction the locus of invertible sheaves with vanishing
cohomology plays a crucial rôle in this paper. We call

I(X) := {L ∈ Pic(X) | Hj(X, L−1) = 0, j ∈ Z⩾0}.

the co-immaculate locus of Pic(X). This distinguished subset was referred to as the
negative immaculate locus in [2] and [1]. In passing we remark that here and in
the sequel we shall not distinguish between invertible sheaves and their isomorphism
classes in the Picard group.
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Rewriting [2, Theorem VI.2] in terms of the co-immaculate locus, we can describe
I(ℓ1, ℓ2; α, β) = H ∪ P as the union of the horizontal strip

H := {(a, b) ∈ Z2 | 0 < b < ℓ2}
and the parallelogram

P = {(a, b) ∈ Z2 | −β < a < ℓ1 and 0 < ⟨(a, b), (1, α)⟩ < ℓ1 + γ}.

The co-immaculate locus is point symmetric with respect to (ℓ1 − β, ℓ2)/2. In par-
ticular, the origin is point symmetric to the anti-canonical class [−K] = (ℓ1 − β, ℓ2).
Figure 3 illustrates the typical shape of the co-immaculate locus for ℓ1 = 7 and ℓ2 = 4.
The parallelogram is indicated by the shaded area; lattice points in H are in grey while
lattice points in P but not in H are blue.

0

−[K]=(ℓ1, ℓ2)

1

ℓ2−1...

0

ℓ2

0 ℓ1ℓ1−1...1

−K/2

0

−K/2
1

ℓ2−1...

0

ℓ2
−[K]=(ℓ1−β, ℓ2)

0 ℓ1...1

Figure 3. The co-immaculate locus of (7, 4; 0) (left hand side) and(
7, 4; (0, 0, −1, −2)

)
(right hand side).

Remark 3.5.
(i) The sequel of this article entirely depends on the combinatorics of the co-

immaculate locus, not the underlying fan. The former depends solely on ℓ1,
ℓ2, α = −cℓ2 and β = −

∑
j cj . The co-immaculate locus will be therefore

written as I(ℓ1, ℓ2; α, β) (or simply I depending on the context).
(ii) The co-immaculate locus is horizontally integral convex, that is, if s, t ∈ I ∩ℓ

for any horizontal line ℓ ⊆ Z2, then the segment [s, t] ⊆ ℓ is contained in I,
too.
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(iii) Since [−K] = (ℓ1 − β, ℓ2) the anti-canonical class sits always to the left of the
line [x = ℓ1 + 1]. By Subsection 3.1.4 it sits to the right of [x = 0] if and only
if (ℓ1, ℓ2; c) is Fano.

3.4. The associated lattice. The outer “boundary points” (ℓ1, 0) and (−β, ℓ2) of
the co-immaculate locus I(ℓ1, ℓ2; α, β) define the associated lattice

L := Z(ℓ1, 0) ⊕ Z(−β, ℓ2).

We denote T = Z2/L the induced quotient and Φ : Z2 → T the projection map which
sends (a, b) to its class [a, b] in T , cf. also [1, Section 4].

Lemma 3.6. We have L ∩ I(ℓ1, ℓ2; α, β) = ∅.

Proof. This is obvious for c = 0 so assume that c ̸= 0.
Suppose we could pick (a, b) ∈ L ∩ I so that (a, b) = (nℓ1 − mβ, mℓ2) ∈ I for some

n, m ∈ Z. In particular, we necessarily have (a, b) ∈ P. If m ⩽ 0, then we exploit the
inequalities ⟨(a, b), (1, 0)⟩ < ℓ1 and 0 < ⟨(a, b), (1, α)⟩; they imply

0 ⩽ −mαℓ2 < nℓ1 − mβ < ℓ1

and therefore, by adding mβ,

mβ ⩽
[
−mγ =m(β − αℓ2)

]
< nℓ1 < ℓ1 + mβ ⩽ ℓ1.

By the basic inequality (3) on page 1048 we have even 0 ⩽ −mγ whence a contra-
diction for both cases n ⩾ 1 and n ⩽ 0. On the other hand, for m ⩾ 1 the remaining
two inequalities of P, namely −β < ⟨(a, b), (1, 0)⟩ and ⟨(a, b), (1, α)⟩ < ℓ1 + γ imply

0 ⩽ (m − 1)β < nℓ1 < ℓ1 − (m − 1)γ ⩽ ℓ1.

Again, this leads to a contradiction. □

4. Exceptional sequences of invertible sheaves
4.1. The exceptionality condition. Recall from the introduction that a sequence
L0, . . . , LN of invertible sheaves on a variety X is said to be exceptional if all backward
Ext-groups vanish. Equivalently,

Hk(X, Li ⊗ L−1
j ) = 0 if i < j.

Consequently, we can rephrase the exceptionality condition as follows. Denoting the
isomorphism classes in Pic(X) by si := Li, the sequence s0, s1, . . . , sN ∈ Pic(X) is
exceptional on X if and only if

−−→si sj = sj − si ∈ I(X)

for all i < j, or equivalently,

sj ∈
⋂

i<j

(
si + I(X)

)
for all j ⩾ 1.

This condition persists under a simultaneous shift so that we may replace the
original sequence by L′

i := Li ⊗ L−1
0 . Therefore, we may assume that L0 = OX is

trivial whenever this is convenient. In particular, s0 = 0 which implies si ∈ I(X) for
all i ⩾ 1.

Example 4.1. For X = Pℓ−1, Serre duality and the well-known vanishing theorems
for invertible sheaves on projective space yield

I(Pℓ−1) = {OPℓ−1(1), . . . , OPℓ−1(ℓ − 1)} =̂ {1, 2, . . . , ℓ − 1} ⊆ Z.
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Example 4.2. The previous example behaves well under products. Figure 4 visu-
alises the case of X = P1 × P1. Let us determine on P1 × P1 all possible types of
exceptional sequences of maximal length which is 4. The shape of the co-immaculate
locus immediately implies that we have at most two elements on the lines [x = 1]
and [y = 1], and any two elements on the same line must be consecutive. Computing
the sets I ∩

(
(a, 1) + I

)
and I ∩

(
(1, b) + I

)
for a, b ∈ Z shows that we have four

families s1, . . . , s4 of maximal exceptional sequences given by
s1 =

(
(0, 0), (1, 0), (a, 1), (a + 1, 1)

)
, s2 =

(
(0, 0), (0, 1), (1, b), (1, b + 1)

)
s3 =

(
(0, 0), (a, 1), (a + 1, 1), (1, 2)

)
, s4 =

(
(0, 0), (1, b), (1, b + 1), (2, 1)

)
.

Examples are displayed in Figure 5.

0

. . .. . .

...

...

Figure 4. The co-immaculate locus of P1 × P1 is given by the grey
points. Note that the origin does not belong to I(P1 × P1).

Figure 5. s1, s2, s3, s4 for a = b = −3.

4.2. The maximality condition. Using the identification Pic(TV(Σ)) ∼= Z2 we
think of exceptional sequences as subsets of Z2 together with a certain ordering.

Definition 4.3. Consider the smooth toric variety of Picard rank two (ℓ1, ℓ2; c) which
is of dimension d := dim X = ℓ1 + ℓ2 − 2, cf. Subsection 3.1. The subset inside Z2

underlying an exceptional sequence s = (s0, s1, . . . , sN ) is called
(i) non-extendable if it is not strictly contained in some other subset of Z2 un-

derlying an exceptional sequence.
(ii) maximal if N + 1 equals #Σ(d) = ℓ1ℓ2.

By abuse of language, we refer to the sequence s itself as non-extendable or maximal
if the underlying set is non-extendable or maximal.

Note that “maximal” implies “non-extendable”, the converse being false, see Ex-
ample 8.1. A crucial property of maximal exceptional sequences is this.

Lemma 4.4. If s is a maximal exceptional sequence, then the restriction of Φ : Z2 → T
from Subsection 3.4 defines a bijection.
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Proof. If Φ(si) = Φ(sj) for some pair si < sj in s, then sj − si ∈ I(ℓ1, ℓ2; α, β) ∩ L
which is empty by Lemma 3.6. Hence Φ|s is injective.

Since s and T have the same cardinality, Φ|s is also surjective. □

4.3. The fullness condition. Recall from the introduction that an exceptional
sequence s is said to be full if the underlying set {s0, . . . , sN } generates D(X). Since X
is smooth, D(X) is generated by Pic(X). Regarding s as a subset of Pic(X) it is
therefore sufficient to show that we can generate any invertible sheaf.

Example 4.5. The celebrated Beilinson exact sequence [6] yields

(4) 0 → ΛℓKℓ ⊗ OPℓ−1(0) → Λℓ−1Kℓ ⊗ OPℓ−1(1) → . . . → Λ0Kℓ ⊗ OPℓ−1(ℓ) → 0.

In our language, this is just the exact sequence from Theorem 2.1 for the standard
(ℓ − 1)-simplex in Rℓ.

At any rate, given the sequence OPℓ−1(1), . . . , OPℓ−1(ℓ−1) the bundle OPℓ−1(0) gen-
erates OPℓ−1(ℓ) in D(Pℓ−1) and vice versa. Therefore, any sequence of ℓ consecutive
classes of invertible sheaves generates Pic(Pℓ−1) ∼= Z and thus the derived category
D(Pℓ−1). Note that any such sequence actually defines a maximal exceptional se-
quence.

4.4. The helix operator. Let s = (s0, s1, . . . , sN ) be a maximal exceptional se-
quence on (ℓ1, ℓ2; c). We define

ℏ(s) := (s1, s2, . . . , sN , −[K] + s0) = (s1, s2, . . . , sN , (ℓ1 − β, ℓ2) + s0)
and call ℏ the helix operator. It preserves exceptionality as follows directly from the
point symmetry of I with respect to −[K]/2, cf. Subsection 3.3.

Remark 4.6. Helixing is a standard operation in the theory of exceptional sequences,
cf. for instance [25], and it is well-known that the helix operator also preserves fullness.
From our combinatorial point of view, this follows as a corollary to Theorem E;
assuming the general theory, Theorem E is a simple corollary of Theorem C.

5. Lexicographical order and chains
5.1. Lexicographically orderable exceptional sequences. We consider an
exceptional sequence s = (s0, . . . , sN ) on X = (ℓ1, ℓ2; c), that is, sj − si ∈ I =
I(ℓ1, ℓ2; α, β) for all 0 ⩽ i < j ⩽ N . The underlying set {s0, . . . , sN } can give rise to
exceptional sequences for various orders. Still, we necessarily have the

Lemma 5.1. Let s = (s0, . . . , sN ) be an exceptional sequence on (ℓ1, ℓ2; c). Then for
any si = (ai, b) and sj = (aj , b) in s ∩ [y = b] we have ai < aj if and only if i < j.
Moreover, |aj − ai| ⩽ ℓ1 − 1.

Proof. By definition of exceptionality, i < j implies
sj − si = (aj − ai, 0) ∈ I

which holds if and only if 0 < aj − ai < ℓ1. □

Definition 5.2. The subset underlying an exceptional sequence s is called vertically
orderable if it also defines an exceptional sequence with respect to the vertical (lexi-
cographical) order

(a1, b1) < (a2, b2) ⇔ b1 < b2 or
(
b1 = b2 and a1 < a2

)
.

Similarly, it is called horizontally orderable if it defines an exceptional sequence with
respect to the horizontal (lexicographical) order

(a1, b1) < (a2, b2) ⇔ a1 < a2 or
(
a1 = a2 and b1 < b2

)
.
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In general, exceptionality cannot be expected to be preserved under lexicographic
reordering. For instance, the sequence s = (s0, s1, s2) on (ℓ1, ℓ2; c) with c ̸= 0 and
αℓ2 + 1 < ℓ1 which is given by

s0 = (0, 0), s1 = (αℓ2 + 1, −ℓ2), s2 = (αℓ2 + 2 − β, 0) = (γ + 2, 0)

is certainly exceptional, but neither the horizontally ordered sequence (s0, s2, s1) nor
the vertically ordered sequence (s1, s0, s2) are as β < αℓ2 in virtue of the basic in-
equality (3). However, these big “downward jumps” are the only obstruction against
vertical order.

Proposition 5.3. An exceptional sequence s = (s0, . . . , sN ) on (ℓ1, ℓ2; c) with si =
(ai, bi) is vertically orderable if and only if

(5) bj − bi > −ℓ2

for all 0 ⩽ i < j ⩽ N .

Proof. Assume that s is vertically orderable and that we have a pair si < sj with

−ℓ2 ⩾ b := bj − bi.

In particular, sj − si must lie in the parallelogram P, hence

−αb < a := aj − ai.

On the other hand, we also have si − sj ∈ I. Since −b ⩾ ℓ2, the difference si − sj =
(−a, −b) must be in the parallelogram P as well whence −β < −a. By the basic
inequality (3), a > −αb > β and thus −a < −β, contradiction.

Conversely, assume that the bound (5) holds. We show that a permutation
σ : {0, . . . , N} → {0, . . . , N} exists such that sσ(0), . . . , sσ(N) is lexicographically
ordered and still exceptional.

From Lemma 5.1, i < j implies ai < aj if si = (ai, b) and sj = (aj , b). In addition,
we show that we can interchange the order of two adjacent sequence elements si =
(ai, bi) and si+1 = (ai+1, bi+1) with bi > bi+1 while keeping the sequence exceptional.

Indeed, the difference −−−−→si si+1 = (ai+1 − ai, bi+1 − bi) lies in I. The assumptions
imply

0 < bi − bi+1 ⩽ ℓ2 − 1.

Hence −−−−→si+1 si = −−−−−→si si+1 belongs to the horizontal strip and therefore lies in I, too.
Replacing in the sequence the pair si, si+1 by si+1, si does not affect the remaining

difference vectors of {si, si+1} with elements from {s0, . . . , si−1} and {si+2, . . . , sN }
so that s0, . . . , si−1, si+1, si, si+2, . . . , sN is still exceptional. Furthermore, it still sat-
isfies (5) since bi+1 − bi ⩽ 0. After a finite number of pairwise permutations which
preserve (5) and exceptionality, we obtain the desired permutation. □

Corollary 5.4 (“no horizontal gaps”). Let s = (s0, s1, . . . , sN ) define an exceptional
sequence which is not extendable. If s is vertically orderable, then the restriction s ∩
[y = b] to any horizontal line has no gaps. Namely, if (a, b) and (a′, b) ∈ s with a < a′,
then (a′′, b) ∈ s ∩ [y = b] for all a ⩽ a′′ ⩽ a′.

Proof. Reordering if necessary we may assume that s is vertically ordered. Suppose
we have si = (ai, b), si+1 = (ai+1, b) with ai + 2 ⩽ ai+1. Then we can choose a point
(a, b) ∈ Z2 and ai < a < aj . We define a new sequence s′ by

s′
k :=

 sk if k ⩽ i
(a, b) if k = i + 1
sk−1 if k ⩾ i + 2

.
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We show that s′ is exceptional, contradicting the nonextendability of s. Consider
the vectors

−−−−→
s′

ks′
k+r = s′

k+r − s′
k for k ⩾ 1. If none of the indices k or k + r equals i + 1,

then s′
k and s′

k+r belong to the original sequence s, whence
−−−−→
s′

ks′
k+r ∈ I.

If k ⩽ i, consider s′
i+1 − s′

k = (a, b) − sk which sits between si − sk and si+1 − sk

on the same horizontal line. Hence (a, b) − sk ∈ I by horizontal integral convexity, cf.
Subsection 3.3.

Finally, if k ⩾ i + 1, we can reason as before and conclude that the difference
s′

k − s′
i+1 belongs to I. □

Since by Proposition 5.3 any pair of adjacent elements with bi − bi+1 < ℓ2 can be
switched we obtain the following

Lemma 5.5. Let s = (s0, . . . , sN ) be an exceptional sequence on (ℓ1, ℓ2; c) which is not
vertically orderable. Then we can reorder s in such a way that the new sequence is
still exceptional and there is a consecutive pair si < si+1 with bi − bi+1 ⩾ ℓ2.

Remark 5.6. For c = 0 the Z2-involution (a, b) 7→ (b, a) maps any (ℓ1, ℓ2; 0)-
exceptional sequence to an (ℓ2, ℓ1; 0)-exceptional sequence. In particular, it follows
that s is horizontally orderable if and only if

(6) aj − ai > −ℓ1

for all 0 ⩽ i < j ⩽ N . Similarly, Lemma 5.1, 5.5 and Corollary 5.4 hold mutatis
mutandis.

5.2. Orderable varieties. For c ̸= 0 we define the integral depth of I as the
smallest integer dint such that the line [y = dint] meets I, namely

(7) dint = −
⌊ℓ1 − 2

α

⌋
.

Proposition 5.3 immediately implies the

Corollary 5.7. If dint ⩾ 1 − ℓ2, then any exceptional sequence on (ℓ1, ℓ2; c) with
c ̸= 0 can be vertically ordered.

We call the toric variety (ℓ1, ℓ2; c) itself vertically orderable if every exceptional
sequence is vertically orderable. Subsection 3.1.4 and the basic inequality (3) imme-
diately imply the

Proposition 5.8. A toric variety (ℓ1, ℓ2; c) with c ̸= 0 and β ⩾ ℓ1 − 2 is vertically
orderable.

This holds, for instance, for varieties of dimension less than or equal to three as
well as for all non-Fano varieties.

5.3. Existence. To generalise the generation strategy from Subsection 1.7 we make
the following

Definition 5.9. A horizontal chain in Z2 is a subset of the form

(a, b) + {(0, 0), . . . , (ℓ1 − 1, 0)}.

Similarly, a vertical chain is a subset of the form (a, b) + {(0, 0), . . . , (0, ℓ2 − 1)}.

Remark 5.10. Thinking of Z2 as the Picard group Pic(ℓ1, ℓ2; c) we can fill, that is,
generate in the derived category any line [y = b] which contains a horizontal chain via
the Beilinson sequence (4) in Subsection 4.3. The product case also requires vertical
chains.
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Given an exceptional sequence s we quantify its “spatial size” as follows. We let

a := a(s) := min{a | (a, b) ∈ s}, b := b(s) := min{b | (a, b) ∈ s}

and
a := a(s) := max{a | (a, b) ∈ s}, b := b(s) := max{b | (a, b) ∈ s},

The height and the width of s are then defined by

H(s) := b − b + 1 and W (s) := a − a + 1.

Proposition 5.11. Let s be a maximal exceptional sequence on (ℓ1, ℓ2; c) and H(s) ⩽
2ℓ2. For all integers b with 0 ⩽ b − b < ℓ2, the sets

Yb+ℓ2 := (−β, ℓ2) + ([y = b] ∩ s) and Xb+ℓ2 := [y = b + ℓ2] ∩ s

define the horizontal chain

Sb+ℓ2 := Yb+ℓ2 ∪ Xb+ℓ2 ⊆ Z2.

In particular, Yb+ℓ2 ∩ Xb+ℓ2 = ∅ and #Sb+ℓ2 = ℓ1.

Proof. Consider the lattice L with associated map Φ : Z2 → T from Subsection 3.4.
By Lemma 4.4 its restriction to s is bijective. We denote by [a, b] = Φ(a, b) the
equivalence class of (a, b) ∈ s in T .

To ease notation we assume that b = 0. Since H(s) ⩽ 2ℓ2, 0 ⩽ b ⩽ 2ℓ2 −1 whenever
(a, b) ∈ s. Hence, the ℓ1 classes [a1, b], . . . , [aℓ1 , b] come either from [y = b] ∩ s or
[y = b + ℓ2] ∩ s. In particular, the union Yb+ℓ2 ∪ Xb+ℓ2 is disjoint and has precisely ℓ1
elements.

Let Y ′
b := {y ∈ Z | (y, b + ℓ2) ∈ Yb+ℓ2} and X ′

b := {x ∈ Z | (x, b + ℓ2) ∈ Xb+ℓ2}.
Since both sets are disjoint, we can define

s(z) :=
{

(y + β, b) if z = y ∈ Y ′
b

(x, b + ℓ2) if z = x ∈ X ′
b

which is just the element of s giving rise to z. By Lemma 5.1, x, x′ ∈ X ′
b satisfy s(x) <

s(x′) if and only if x < x′, and similarly for Y ′
b . A more involved characterisation holds

for mixed pairs (x, y) ∈ X ′
b × Y ′

b , namely

s(y) < s(x) ⇐⇒ 0 < x − y < ℓ1 and s(x) < s(y) ⇐⇒ γ < y − x < ℓ1 − β.

Indeed, s(y) < s(x) if and only if (x − y − β, ℓ2) ∈ I(ℓ1, ℓ2; α, β). Further, s(x) < s(y)
if and only if (y + β − x, −ℓ2) ∈ I(ℓ1, ℓ2; α, β). The claim follows from the inequalities
defining the co-immaculate locus as well as γ ⩾ 0, cf. Remark 3.1. In particular,
Y ′

b ∪ X ′
b forms a sequence of ℓ1 consecutive integers. □

Remark 5.12. If in addition c ̸= 0, the proof of Proposition 5.11 also yields a horizon-
tal no-gap lemma for Yb+ℓ2 ∪ Xb+ℓ2 without assuming that the maximal exceptional
sequence s is orderable, compare Corollary 5.4. Moreover, it implies for this case that
Yb+ℓ2 lies to the left of Xb+ℓ2 . Indeed, if there exists x ∈ X ′

b with y = x + 1 ∈ Y ′
b ,

then 1 = y − x > γ ⩾ 1, contradiction.

In the sequel we say that an element si of s is at level h, if si = (a, b + h).

Corollary 5.13. Let s be a maximal exceptional sequence with l := 2ℓ2 − H(s) > 0.
Then there exist horizontal chains in s at level ℓ2 − l, . . . , ℓ2 − 1.

Proof. The assertion is invariant under shifts so we may assume that b = b(s) = 0.
If (a, b) ∈ s, then b = 0 ⩽ b ⩽ b = 2ℓ2 − l − 1. Therefore, [y = 2ℓ2 − l] ∩ s,
. . ., [y = 2ℓ2 − 1] ∩ s = ∅. By Proposition 5.11 we must have horizontal chains in
[y = ℓ2 − l] ∩ s, . . . , [y = ℓ2 − 1] ∩ s. □
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The converse statement also holds. For this, let
∆up := {(a, b) ∈ P | b ⩾ ℓ2} = {(a, b) ∈ Z2 | b ⩾ ℓ2, −β < a and a + bα < ℓ1 + γ}.

Note that the inequalities b ⩾ ℓ2 and −β < a alone already imply that a + bα > γ.
The subsequent lemma states, roughly speaking, that a point of s at sufficiently high
level prevents horizontal chains in s.

Lemma 5.14. Let s be an exceptional sequence on (ℓ1, ℓ2; c) which is vertically or-
derable. If (a′′, b′′) ∈ s, then for all pairs (a, b) < (a′, b) with b′′ − b ⩾ ℓ2 we have
a′ − a < ℓ1 − 1 (instead of ⩽ ℓ1 − 1 as asserted in Lemma 5.1).

Proof. From the definition of the co-immaculate locus it follows that
∆up ⊆ {(a, b) ∈ Z2 | −β < a < ℓ1 − β}.

Reordering vertically if necessary we have (a, b) < (a′′, b′′) for any (a, b) ∈ s hence
[y = b] ∩ s is contained in

(a′′, b′′) − ∆up ⊆ {(a, b) ∈ P | β + a′′ − ℓ1 < a < β + a′′}.

Consequently, a′ − a < ℓ1 − 1. □

If an exceptional sequence s starts at s0 = 0, any horizontal chain in s must be
necessarily located at level h with 0 ⩽ h ⩽ ℓ2 − 1. We therefore immediately deduce
the

Corollary 5.15. Let s be an exceptional sequence on (ℓ1, ℓ2; c) which is vertically
orderable. If there exists a horizontal chain in s at level h, then H(s) ⩽ ℓ2+h ⩽ 2ℓ2−1.

Corollary 5.16. Let s be a maximal exceptional sequence on (ℓ1, ℓ2; c) which is ver-
tically orderable. If H(s) ⩽ 2ℓ2, then [y = b] ∩ s ̸= ∅ for all b ⩽ b ⩽ b. In particular,
H(s) = # of rows occupied by s.

Proof. Since the assertion concerns only the underlying set we may suppose that s
is vertically ordered and s0 = 0. Assume that [y = b] ∩ s = ∅. If 0 ⩽ b < ℓ2, then
[y = b + ℓ2] ∩ s must have ℓ1 elements by Proposition 5.11. But ℓ2 ⩽ b + ℓ2 whence
([y = b + ℓ2] ∩ s) ⊆ ∆up which is impossible.

On the other hand, b ⩾ ℓ2 implies that [y = b − ℓ2] ∩ s has ℓ1 elements. By
Corollary 5.15, H(s) ⩽ b which contradicts b ⩽ H(s) − 1. □

Remark 5.17. For c = 0 Proposition 5.11 and Corollaries 5.4 5.13, 5.15 and 5.16 hold
mutatis mutandis for the horizontal case.

5.4. The trivial maximal exceptional sequences. In Subsection 1.5 we intro-
duced the standard rectangle

Rℓ1,ℓ2 = {(a, b) ∈ Z2 | 0 ⩽ a < ℓ1, 0 ⩽ b < ℓ2}.

If the pair (ℓ1, ℓ2) is clear from the context we simply write R. With respect to the
vertical lexicographical order there is the maximal exceptional sequence given by

sa+bℓ1 := (a, b) ∈ R.

Indeed, #R = ℓ1ℓ2, and the difference of si and si+k sitting in a common
row is (k, 0) ∈ I. In all other cases, the difference is of the form (·, b) with
b ∈ {1, 2, . . . , ℓ2 − 1}. It is thus contained in I(ℓ1, ℓ2; α, β), too.

Furthermore, we obtain maximal exceptional sequences by
(i) applying an overall shift (a, b) to the entire sequence.
(ii) shifting any of the rows at level b = 1, 2, . . . , ℓ1 − 1 by some (ab, 0) ∈ Z2

depending on the level b.
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The resulting maximal exceptional sequences will be referred to as vertically trivial.
They are always vertically orderable and have the maximal number z = ℓ2 of hori-
zontal chains. In particular, a maximal exceptional sequence s is vertically trivial if
and only if H(s) = ℓ2.

Mutatis mutandis we also have horizontally trivial maximal exceptional sequences
in the product case c = 0.

6. The dichotomy of the product case
Choose two integers ℓ1, ℓ2 ⩾ 2. We set out to tackle the Theorems A-E from the
introduction for the product case (ℓ1, ℓ2; 0) = Pℓ1−1 × Pℓ2−1. The reader which is
solely interested in the twisted case can continue with Section 8. For the remainder
of this section let I := I(ℓ1, ℓ2; 0, 0).

6.1. Exceptional sequences are semi-bounded.

Theorem 6.1 (Theorem B, product version). An exceptional sequence s on (ℓ1, ℓ2; 0)
is semi-bounded, that is, we have either H(s) ⩽ 2ℓ2 − 1 or W (s) ⩽ 2ℓ1 − 1.

Proof. Suppose to the contrary that both H(s) ⩾ 2ℓ2 and W (s) ⩾ 2ℓ1.
We consider (a priori not necessarily distinct points) A = (a, bA), B = (aB , b),

C = (a, bC), D = (aD, b) ∈ s, see Figure 6. We decompose

R := {(a, b) ∈ Z2 | a ⩽ a ⩽ a, b ⩽ b ⩽ b}

into pairs of horizontal and vertical strips, namely

Hdown := {(a, b) ∈ R | b < b + ℓ2}, Hup := {(a, b) ∈ R | b ⩾ b + ℓ2}

and

V left := {(a, b) ∈ R | a < a + ℓ1}, V right := {(a, b) ∈ R | a ⩾ a + ℓ1}.

see Figure 6. In particular, A ∈ V left and B ∈ Hdown. We distinguish two cases.

A

B

C

D

Hup

Hdown

A

B

C

D

V rightV left

Figure 6. The horizontal and the vertical subdivision of R.

Case 1: A ∈ Hup. Then A ̸= B and the exceptionality condition imply that either
A − B or B − A lies in I. However, A − B = (a − aB , bA − b) ∈ I is impossible for
bA − b ⩾ ℓ2 and a − aB ⩽ 0. Hence A < B and in particular B ∈ V left as b − bA < 0,
so aB − a < ℓ1. We conclude in a similar way that necessarily B < C and C ∈ Hdown.
It follows that A < C, but this is impossible since a − a ⩾ W (s) − 1 ⩾ ℓ1 while
bC − bA < 0.

Case 2: A ∈ Hdown. Since a − aD ⩽ 0 and bA − b < 0 we necessarily have A < D
and D ∈ V left. We conclude in a similar way that C < D and C ∈ Hup, thus
B < C and B ∈ V right. But then B < D which is impossible for aD − aB < 0 and
b − b ⩾ H(s) − 1 ⩾ ℓ2. □
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6.2. An inductive argument. Our mainstream development for proving fullness
will pursue a rather algorithmic approach based on the lexicographical order from
Subsection 6.3 and the classification of maximal exceptional sequences in Subsec-
tion 7.2. As an aside, we briefly sketch an inductive approach to Theorem E which is
based on the following collapsing procedure.

Lemma 6.2. For ℓ2 ⩾ 3 let s be an exceptional sequence on (ℓ1, ℓ2; 0) with s0 = 0 and
H(s) ⩽ 2ℓ2 − 1. Then we obtain a sequence s′ on

(ℓ′
1, ℓ′

2; 0) = (ℓ1, ℓ2 − 1; 0)

via the following procedure:
(i) Remove the horizontal line at level ℓ2 − 1 from s.
(ii) For every si = (ai, bi) with bi ⩾ ℓ2 put s′

i := si − (0, 1).
(iii) For all remaining si put s′

i := si.
If we endow s′ with the order induced by s, then s′ defines an exceptional sequence,
too.

Proof. Consider si = (ai, bi) < sj = (aj , bj) and assume that bi, bj ̸= ℓ2 − 1. We
denote the co-immaculate locus of (ℓ′

1, ℓ′
2; 0) by I ′.

Case 1. If bi ⩾ bj or bi + 2 ⩽ bj ⩽ bi + ℓ2 − 2, then s′
1 < s′

2 is immediate.
Case 2. If bj = bi + 1, then both si and sj belong to the same side either above or

below the removed line. Hence, s′
j − s′

i = sj − si = (aj − ai, 1) ∈ I ′.
Case 3. If bj ⩾ bi + ℓ2 − 1, then si sits below and sj sits above the line at level

ℓ2 − 1. Thus, s′
j − s′

i = sj − si − (0, 1) ∈ I ′. □

We say that s′ is obtained from s by collapsing along ℓ2. Similarly, we can collapse
along ℓ1 if W (s) ⩽ 2ℓ1 − 1, cf. also Theorem 6.7 and Lemma 9.7.

As an immediate consequence of the collapsing procedure we obtain that for a
maximal exceptional sequence where #s = ℓ1ℓ2, the inequalities #s′ ⩽ ℓ1(ℓ2 − 1) and
#([y = ℓ2 − 1] ∩ s) ⩽ ℓ1 imply that

#s′ = ℓ1(ℓ2 − 1) and #(s ∩ [y = ℓ2 − 1]) = ℓ1.

Therefore, s′ is maximal, too, and we actually removed a horizontal chain in the sense
of Definition 5.9.

This allows to prove fullness in a rather implicit way:

Corollary 6.3 (Theorem E, product version). On (ℓ1, ℓ2; 0) every maximal excep-
tional sequence s with H(s) ⩽ 2ℓ2 − 1 is full.

Of course, the same result holds for W (s) ⩽ 2ℓ1 − 1.

Sketch of the proof. Proceeding by induction we may assume that the collapsed se-
quence s′ generates Z2 by filling horizontal and vertical lines whenever there are ℓ1
or ℓ2 consecutive points, respectively.

Given s we begin by using the horizontal chain at level ℓ2 − 1 to fill the entire
horizontal line on which it lies. Afterwards, we may lift all line fillings from s′ to s
since any vertical chain of s′ must reach height ℓ2 − 1. □

6.3. Maximal exceptional sequences are orderable.

Theorem 6.4 (Theorem A, product version). Let s = (s0, . . . , sN ) be a maximal
exceptional sequence on (ℓ1, ℓ2; 0). Then s is vertically or horizontally orderable.
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Proof. Assume that s is a maximal exceptional sequence which is not vertically or-
derable.

Reordering if necessary, Lemma 5.5 implies that there exists a pair si < si+1 with
bi − bi+1 ⩾ ℓ2. Upon applying i-times the helix operator from Subsection 4.4 we may
replace s by a sequence where i = 0. Choosing suitable coordinates we may therefore
suppose without loss of generality that

s0 = (0, 0), s1 = (κ, λ)
for λ ⩽ −ℓ2 and 0 < κ < ℓ1.

Next, there exists precisely one i0 > 0 such that Φ(si0) = [1, 0] by Lemma 4.4.
Hence, si0 ∈

(
(1, 0) + L

)
∩ I, where we recall that

L = Z(ℓ1, 0) ⊕ Z(0, ℓ2).
Consequently,

si0 = (1, mℓ2) ∈ P
for some m ∈ Z, where P is the parallelogram of the co-immaculate locus, cf. Subsec-
tion 3.3.

On the other hand, si0 is equal to or a successor of s1 = (κ, λ), hence
si0 ∈

(
(κ, λ) + I

)
∪ {(κ, λ)}.

But λ ⩽ −ℓ2 implies P ∩
(
(κ, λ) + P

)
= ∅, so that si0 ∈ I yields the contradiction

0 < κ < 1 unless i0 = 1, that is, κ = 1 and m ⩽ −1.
Now any point sj = (aj , bj), j ⩾ 2 must be in

I ∩
(
(1, mℓ2) + I

)
= {(a, b) ∈ Z2 | 1 < a < ℓ1}.

By Remark 5.6 it follows that s must be horizontally orderable. □

Remark 6.5. As s1 and s2 in Example 4.2 show for suitable a and b, a maximal
exceptional sequence is not necessarily both vertically and horizontally orderable. In
particular, there are maximal exceptional sequences examples of height equal to or
less than 2ℓ2 − 1 which are either vertically or horizontally orderable, but not both.
Similarly for constrained width.

6.4. The dichotomy of maximal exceptional sequences. As a first step to-
wards the classification of maximal exceptional sequence we want to combine a lexi-
cographical order with a spatial constraint.

Lemma 6.6. Let s be a maximal exceptional sequence with H(s) ⩾ 2ℓ2. Then s is
horizontally orderable.

Proof. By Theorem 6.4, it is enough to show that vertical orderability implies horizon-
tal orderability. So if < denotes the vertical order on s, we will show that aj −ai > −ℓ1
whenever si < sj , and appeal again to Remark 5.6.

By definition, sN − si = (aN − ai, bN − bi) is in the co-immaculate locus for all
i < N . If bN − bi ⩾ ℓ2, then

0 < aN − ai < ℓ1

by the equations defining I. If bN − bi < ℓ2, then H(s) ⩾ 2ℓ2 implies that bi is at
least at level ℓ2 whence

0 < ai − a0, aN − a0 < ℓ1.

At any rate, −ℓ1 < aN − ai < ℓ1.
Next consider si = (ai, bi) < sj = (aj , bj) for j < N . By the above, aj − aN > −ℓ1.

Since bi ⩽ bj , bN −bi < ℓ2 implies bN −bj < ℓ2 and therefore 0 < ai −a0, aj −a0 < ℓ1.
In particular, aj − ai > −ℓ1. On the other hand, bN − bi ⩾ ℓ2 yields also

aj − ai = aj − aN + aN − ai > −ℓ1.
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□

This gives rise to the following dichotomy. If s satisfies H(s) ⩾ 2ℓ2, then Lemma 6.6
and Theorem 6.1 imply horizontal orderability and W (s) ⩽ 2ℓ1 −1. Similarly, W (s) ⩾
2ℓ1 implies vertical orderability and H(s) ⩽ 2ℓ2 −1. Moreover, independently on H(s)
or W (s), s is either vertically or horizontally orderable by Theorem 6.4. This implies
the

Theorem 6.7 (Dichotomy of maximal exceptional sequences). To any maximal ex-
ceptional sequence s on (ℓ1, ℓ2; 0) at least one of the following two items applies:

(i) s is vertically orderable with H(s) ⩽ 2ℓ2 − 1
(ii) s is horizontally orderable with W (s) ⩽ 2ℓ1 − 1.

For sake of concreteness we will concentrate on the first case for the remainder
of this paper since this fits into the twisted case; mutatis mutandis everything which
follows also applies to the second case.

7. The classification for the product case
7.1. HeLexing. Recall from Subsection 4.4 the definition of the helix operator ℏ
which sends a maximal exceptional sequence s on (ℓ1, ℓ2; 0) to

ℏ(s) =
(
s1, . . . , sN , s0 + (ℓ1, ℓ2)

)
.

Lemma 7.1. Let s be a vertically ordered maximal exceptional sequence on (ℓ1, ℓ2; 0)
with s0 = 0 and ℓ2 < H(s) ⩽ 2ℓ2 −1. Then ℏ(s) is vertically orderable with H(ℏ(s)) ⩽
2ℓ2 − 1.

Proof. Let
s′ = (s′

0, . . . , s′
N ) := ℏ(s).

Since H(s) > ℓ2 there is a point si = (ai, bi) with bi ⩾ ℓ2 for some i = 1, . . . , N .
Therefore, H(ℏ(s)) ⩽ H(s) ⩽ 2ℓ2 − 1.

Next assume that s′ = ℏ(s) is not vertically orderable. By Proposition 5.3, there
exists a pair s′

i < s′
j with b′

i − b′
j ⩾ ℓ2. Since s′

i = si+1 and s′
j = sj+1 if j < N , vertical

orderability of s implies that j = N . However, bi+1 − ℓ2 ⩾ ℓ2 implies bi+1 ⩾ 2ℓ2,
contradicting H(s) ⩽ 2ℓ2 − 1. □

It follows that we can vertically reorder ℏ(s). Shifting yields an exceptional sequence
ℏlex(s) starting at the origin. We call ℏlex the heLex operator.

Theorem 7.2 (Theorem C, product version). On (ℓ1, ℓ2; 0) every vertically orderable
maximal exceptional sequence s of height H(s) ⩽ 2ℓ2 − 1 can be transformed into
a vertically trivial sequence by vertically reordering and successively applying ℏlex at
most ℓ1ℓ2 times.

Proof. If s is vertically ordered with s0 = 0, the helix operator ℏ sends s0 to (ℓ1, ℓ2).
Unless H(s) ⩽ ℓ2, that is, s is vertically trivial, either

(i) the lowest row becomes empty, whence H(s) decreases at least by one, or
(ii) the height H(s) remains unchanged, so that we are reducing the number of

elements in [y = 0] ∩ s by one.
By induction we eventually arrive at a maximal exceptional sequence of height H(s) ⩽
ℓ2, i.e., a vertically trivial one. □
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7.2. The classification of maximal exceptional sequences. Next we discuss
the classification of the sets underlying a maximal exceptional sequence on (ℓ1, ℓ2; 0)
by giving an explicit algorithm for their construction. We recall that we tacitly assume
to work with vertically orderable sequences s of height H(s) ⩽ 2ℓ2 − 1.

For any subset X ⊆ ∆up = {(a, b) ∈ Z2 | b ⩾ ℓ2, 0 < a < ℓ1} or, more generally,
for any X ⊆ Z2 we let

Xk := [y = k] ∩ X = {(a, b) ∈ X | b = k}.

Definition 7.3. We call a non-empty set X ⊆ ∆up admissible if
(Ai) Xk = ∅ for k ⩾ 2ℓ2 − 1.
(Aii) the layers Xk ̸= ∅ consist of successive points (x, k), (x+1, k), . . . , (x+qk, k).

(Aiii) for each k ⩾ ℓ2 we have
(0, −1) + Xk+1 ⊆ Xk.

(Aiv) the bottom layer Xℓ2 is right-aligned, i.e., (ℓ1 − 1, ℓ2) ∈ Xℓ2 .
By convention, the empty set will be admissible, too.

In addition to an admissible set X ⊆ ∆up we need a further set to completely
classify maximal exceptional sequences.

Definition 7.4. Let ∅ ̸= X ⊆ ∆up be admissible. Then Y ⊆ Z2 is called a comple-
menting partner of X if

(Cv) Yk = ∅ for k ⩾ 2ℓ2.
(Cvi) Yk < Xk, meaning that (y, k) ∈ Yk and (x, k) ∈ Xk imply y < x.
(Cvii) for each k ∈ {ℓ2, . . . , 2ℓ2 − 1}, the union Yk ∪ Xk forms a horizontal chain.

For X = ∅ a complementing partner will be any set Y consisting of ℓ2 horizontal
chains Yℓ2 , . . . , Y2ℓ2−1 such that Yℓ2 starts at (0, ℓ2).

Remark 7.5. Whenever Xk ̸= ∅, the complementary set Yk is uniquely determined.
In contrast, Xk = ∅ for k ∈ {ℓ2, . . . , 2ℓ2 − 1} implies that Yk defines a horizontal
chain whose horizontal position is unrestricted unless k = ℓ2.

Example 7.6. Figure 7 displays a typical maximal exceptional sequence together with
its admissible set and complementing partner.

Figure 7. A maximal exceptional sequence on (5, 4; 0) with starting
point at the origin in green. The right hand side displays its corre-
sponding admissible set X in red with complementing partner Y in
blue.
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Theorem 7.7 (Theorem D, product version). Let X ⊆ ∆up be admissible and Y ⊆ Z2

a complementing partner. Then the union of
s↓ := Y + (0, −ℓ2) ⊆ H ∪ [y = 0] and s↑ := X ⊆ ∆up

together with vertical order yields a maximal exceptional sequence s with H(s) ⩽
2ℓ2 − 1 and s0 = 0. Moreover, any vertically ordered maximal exceptional sequence
starting at the origin arises this way.

Proof. If X = ∅, then Y consists of ℓ2 consecutive horizontal chains. Shifting down
by (0, −ℓ2) yields a vertically trivial sequence starting at the origin.

We therefore assume that X ̸= ∅. We order the set s↓ ∪ s↑ vertically to obtain the
sequence s. From Definition 5.9, Definition 7.3 (iv), and Definition 7.4 (Cvii), it is
clear that Yℓ2 ∪ Xℓ2 forms a horizontal chain which ends at (ℓ1 − 1, ℓ2). Consequently,
Yℓ2 starts at (0, ℓ2) and s0 = 0.

For si < sj we have to show that sj − si ∈ I. If si, sj ∈ [y = b], then this follows
from si, sj ∈ Yb+ℓ2 + (0, −ℓ2) or si, sj ∈ Xb, (Cvi) and (Cvii). If they are at different
levels 0 ⩽ bi < bj ⩽ 2ℓ2 − 1, the only critical case arises from bj − bi ⩾ ℓ2 which
implies 0 ⩽ bi ⩽ ℓ2 − 1 and ℓ2 ⩽ bj ⩽ 2ℓ2 − 1. This means

si ∈ [y = bi] ∩ s↓ = Ybi+ℓ2 + (0, −ℓ2) and sj ∈ [y = bj ] ∩ s↑ = Xbj
.

We proceed via induction over m := bj − bi − ℓ2 ⩾ 0.
If m = 0, then si ∈ Ybj

+ (0, −ℓ2) whence

sj −
(
si + (0, ℓ2)

)
∈ Xbj

− Ybj
⊆ {(1, 0), . . . , (ℓ1 − 1, 0)}.

In particular, sj − si ∈ (0, ℓ2) + {(1, 0), . . . , (ℓ1 − 1, 0)} ⊆ ∆up ⊆ I.
Next let m ⩾ 1. By (Aiii) we know that sj − (0, 1) ∈ s↑. On the other hand, the

induction hypothesis implies sj − (0, 1) − si ∈ I, and since bj − 1 − bi − ℓ2 ⩾ 0 we
even have sj − (0, 1) − si ∈ ∆up. Further, sj − si ∈ ∆up by definition of ∆up whence
sj − si ∈ I.

Finally, we want to show that any vertically ordered maximal exceptional se-
quence s with s0 = 0 and H(s) ⩽ 2ℓ2 − 1 arises this way. For this, we let

Y := (0, ℓ2) +
(
s ∩ (H ∪ [y = 0])

)
and X := s ∩ ∆up

where we identify the sequence s with its underlying set.
If s is vertically trivial, then Y = (0, ℓ2) + s and X = ∅. We therefore assume

that s is not trivial and check that X is admissible with complementing partner Y .
Properties (Ai) and (Cv) follow from H(s) ⩽ 2ℓ2 − 1 and the definition of Y , respec-
tively. Furthermore, (Aii) follows from Corollary 5.4, while (Cvii) is a consequence of
Proposition 5.11.

By Corollary 5.16, [y = b] ∩ s ̸= ∅ for 0 ⩽ b ⩽ H(s) − 1. Furthermore, we have
l = 2ℓ2 − H(s) horizontal lines by Corollary 5.13. For b = 0, . . . , ℓ2 − l − 1, we put
here and in the sequel
(8) 0 ⩽ rb := #[y = b] ∩ s − 1 < ℓ1 − 1
so that [y = b] ∩ s = {(ab, b), . . . , (ab + rb, b)}.

In particular, we have {(r0 + 1, ℓ2), . . . , (ℓ1 − 1, ℓ2)} = [y = ℓ2] ∩ s which implies
(Aiv). For all other 0 < b < ℓ2 − l − 1, Yb+ℓ2 = (0, ℓ2) + [y = b] ∩ s is either to the left
or to the right of Xb+ℓ2 . If Yb+ℓ2 is to the right, then (ab − 1, b + ℓ2) ∈ Xb+ℓ2 whence

(ab − 1, b + ℓ2) − (ab + rb, b) = (−1 − rb, ℓ2) ∈ I,

contradiction. This implies (Cvi).
Finally, Proposition 5.11 implies (ab + rb + 1, b + ℓ2) ∈ X = s ∩ ∆up. It follows that

(ab +rb +1, b+ℓ2)−(ab−1 +rb−1, b−1) ∈ I whence ab +rb ⩾ ab−1 +rb−1. Similarly, we
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have ab ⩽ ab−1. In particular, (0, 1) + Yb+ℓ2 ⊆ Yb+ℓ2+1 and thus (0, −1) + Xb+ℓ2+1 ⊆
Xb+ℓ2 which yields (Aiii). □

7.3. Generating the derived category. We can use Theorem 7.7 to prove full-
ness of any maximal exceptional sequence on (ℓ1, ℓ2; 0). By the dichotomy princi-
ple, it suffices to consider the case of a vertically orderable sequence s of height
H(s) ⩽ 2ℓ2 − 1. The case of horizontally orderable sequences of width W (s) ⩽ 2ℓ1 − 1
follows analogously.

Let s be a maximal exceptional sequence. Since the standard rectangle Rℓ1,ℓ2 gen-
erates the Picard group via the horizontal and vertical Beilinson sequence it suffices
to show that Rℓ1,ℓ2 ⊆ ⟨s⟩.

Example 7.8. We consider again the sequence s from Example 7.6. Figure 8 displays
our strategy to fill all of Z2 starting from s. After filling horizontal and vertical lines
in Steps (a)-(e) we see that R5,4 ⊆ ⟨s⟩.

(a) (b) (c) (d) (e)

Figure 8. Filling Pic(5, 4; 0, 0) from s. The green dot marks the
origin. The red dots are generated by s and are used to fill further
lines.

Theorem 7.9 (Theorem E, product version). On (ℓ1, ℓ2; 0) every maximal exceptional
sequence s is full.

Proof. We are indebted to the referee for pointing out to us the following much more
elegant version of the proof.

We may assume that s is of the form given in Theorem 7.7 and proceed by induction
on #X. If the admissible set X ⊆ ∆up is empty, we have already observed in the proof
of Theorem 7.7 that s is vertically trivial.

Next consider #X > 0. First, we fill the lines [y = b] for b ∈ {0, . . . , ℓ2 − 1} with
Xb+ℓ2 = ∅, that is, (s↓)b = Yb+ℓ2 + (0, −ℓ2) is a horizontal chain. Second, we pick
the left-most element (A, B) of the top row of X. Because of (Aiii), the vertical line
[x = A] contains a vertical chain built from the elements of X and the horizontal lines
just filled. In particular, filling this vertical line yields (A, B − ℓ2) ∈ ⟨s⟩.

Now we may consider s′ built from X ′ := X∖{(A, B)}. This is still an admissible set
with #X ′ = #X−1. Moreover, s′ ⊆ s∪{(A, B−ℓ2)} ⊆ ⟨s⟩, hence Z2 = ⟨s′⟩ ⊆ ⟨s⟩. □

8. Maximal exceptional sequences in the twisted case
For the rest of this article we assume c ̸= 0 and set out to prove the main Theo-
rems A-E in the subsequent sections. We start with some examples.

8.1. Maximal exceptional sequences with ℓ1 = 2. The integral depth was de-
fined as

dint = −
⌊ℓ1 − 2

α

⌋
,
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0
0 0

Figure 9. The Hirzebruch surfaces H1, H2 and H3.

cf. Subsection 5.2. If ℓ1 = 2, then dint = 0. Therefore, the co-immaculate locus
of (2, ℓ2; c) is given by

I(2, ℓ2; α, β) = H ∪ {0, (1, 0), (−β + 1, ℓ2)}
and the variety is orderable. Hence, the only nontrivial family of maximal exceptional
sequences up to shifts is given by

s = {0, (a1, 1), (a1 + 1, 1), . . . , (aℓ2−1, ℓ2 − 1), (aℓ2−1 + 1, ℓ2 − 1), (−β + 1, ℓ2)}
with ai ∈ Z. We have H(s) = ℓ2 + 1. In the language of admissible sets and comple-
menting partners which will be developed for the twisted case in Subsection 10.2, we
have
X = {(−β + 1, ℓ2)} and Y = {(−β, ℓ2), (a1 − β, 1 + ℓ2), . . . , (aℓ2−1 + 1 − β, 2ℓ2 − 1)}.

For instance, we obtain the family of Hirzebruch surfaces Hα =
(
2, 2; (0, −α)

)
by

setting ℓ2 = 2. Among these, H1 = P
(
OP1 ⊕OP1(1)

)
is the only Fano variety. Figure 9

represents I(Hα) = I(2, 2; α, α) for α = 1, 2 and 3.

8.2. Maximal exceptional sequences with ℓ1 = ℓ2 = 3. Since dint ⩾ −1 any
variety (3, 3; c) is necessarily vertically orderable. In order to determine the nontriv-
ial maximal exceptional sequences s up to shift we may therefore assume that s is
vertically lexicographically ordered. We distinguish two cases:

Case 1: α ⩾ 2. Then dint = 0. As in Subsection 8.1 we find the maximal exceptional
sequences

s1 =
(
0, (1, 0), (a1, 1), (a1 + 1, 1), (a1 + 2, 1),
(a2, 2), (a2 + 1, 2), (a2 + 2, 2), (−β + 2, 3)

)
s2 =

(
0, (a1, 1), (a1 + 1, 1), (a1 + 2, 1),
(a2, 2), (a2 + 1, 2), (a2 + 2, 2), (−β + 1, 3), (−β + 2, 3)

)
for a1, a2 ∈ Z. We have H(s1) = H(s2) = 4.

Case 2: α = 1. By the basic inequality (3), β = 1 or 2. In addition to the maximal
exceptional sequences from the previous case we find

s3 =
(
0, (−1, 1), (0, 1), (a2, 2), (a2 + 1, 2), (a2 + 2, 2),
(−β + 1, 3), (−β + 2, 3), (−β + 1, 4)

)
for a2 ∈ Z. We have H(s3) = 5.

Figure 10 displays the admissible sets and complementing partners for β = 2.

8.3. Maximal exceptional sequences are always vertically orderable.
General non-extendable sequences might not be vertically orderable.

Example 8.1. On (4, 2; (0, 1)) consider the exceptional sequence
s =

(
0, (3, −2), (2, −1), (3, −1), (3, 0), (3, 1), (4, 1)

)
,

cf. Figure 11. Since s1 − s0 = (3, −2) the order of these two elements cannot be
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(a) (b) (c)

Figure 10. The admissible sets (red) and complementing partners
(blue) for (a) s1 (b) s2 and (c) s3 with a1 = −1, a2 = 2 and β = 2.
The origin is marked in green.

0

s1

Figure 11. The points encircled in red define the sequence s in
I(4, 2; 1, 1).

switched, cf. Proposition 5.3.
On the other hand, the sequence s is not maximal for #s = 7 < 8 = ℓ1ℓ2 and

eventually not extendable. An easy computation shows that I ∩
(
(3, −2) + I

)
, the set

of possible common successors of s0 and s1, is

{(2, −1), (3, −1), (3, 0), (3, 1), (4, 1)}.

Alternatively, one may apply Theorem 8.2 below to show that s is the largest choice
for extending

(
0, (3, −2)

)
to an exceptional sequence.

Theorem 8.2 (Theorem A, twisted version). Let s = (s0, . . . , sℓ1ℓ2−1) be a maximal
exceptional sequence on (ℓ1, ℓ2; c), c ̸= 0. Then s is vertically orderable.

Proof. Assume to the contrary that s is a maximal exceptional sequence which is not
vertically orderable.

By Lemma 5.5 we may assume that there exists a pair si < si+1 with bi −bi+1 ⩾ ℓ2.
Furthermore, upon applying i-times the helix operator from Subsection 4.4 we may
replace s by a sequence where i = 0. Choosing suitable coordinates we therefore
suppose without loss of generality that

s0 = (0, 0), s1 = (κ, λ)

for λ ⩽ −ℓ2 and 0 < −λα < κ < ℓ1.
By Lemma 4.4, there exists precisely one i0 > 0 such that Φ(si0) = [1, 0]. Hence,

si0 ∈
(
(1, 0) + L

)
∩ I. Reasoning as in the proof of Lemma 3.6 shows that

si0 = (nℓ1 − mβ + 1, mℓ2) ∈ P.
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Comparing with the proof of Lemma 3.6 we have added 1 in the first argument.
Instead of a contradiction, we now obtain a unique solution: m = n = 0 providing
si0 = (1, 0) for m ⩽ 0 and m = 1, n = 0 providing si0 = (−β + 1, ℓ2) for m ⩾ 1.

On the other hand, si0 is equal to or a successor of s1 = (κ, λ), hence

(9) si0 ∈
(
(κ, λ) + I

)
∪ {(κ, λ)}.

However, (1, 0), (−β + 1, ℓ2) ̸∈ (κ, λ) + I, contradicting (9). Indeed, we have κ >
−λα ⩾ αℓ2 > β. Therefore, a point (a, b) ∈ Z2 with a ⩽ 1 and b ⩾ 0 cannot lie in
(κ, λ) + I as

a − κ ⩽ 1 − κ ⩽ −αℓ2 < −β,

while b − λ ⩾ ℓ2 implies −β < a − κ. □

9. Vertical ensembles
We continue with the twisted case c ̸= 0. In particular, α, β, γ ⩾ 1.

9.1. Replacing vertical chains by ensembles. Rather than to vertical chains,
the V -sequence from Corollary 3.2 gives rise to a complicated shape for the involved
locus in Pic X = Z2. The sheaves Fk occurring in Subsection 3.2 suggest the following

Definition 9.1. We denote by

V = V (ℓ2; α, β) ⊆ Z2

the set of lattice points
∑

j∈J(f j , 1) = (
∑

j∈J f j , #J) where J ⊆ {1, . . . , ℓ2} is an
arbitrary subset of cardinality 1 ⩽ #J ⩽ ℓ2 −1 and f = (f1, f2, . . . , f ℓ2) runs through
all integral ℓ2-tuples satisfying

0 = f1 ⩾ f2 ⩾ . . . ⩾ f ℓ2−1 ⩾ f ℓ2 = −α and
ℓ2∑

j=1
f j = −β.

We call the subset V + (a, b) the V-ensemble based at (a, b).

Note that V fits into the rectangular box bounded by −β ⩽ x ⩽ 0 and 0 ⩽ y ⩽ ℓ2
and whose diagonal of negative slope ends in (0, 0) and (−β, ℓ2). In particular, V ⊆ H.
Further, in the extreme case α = β which necessarily implies c1 = c2 = . . . = cℓ2−1 =
0, the V-ensemble degenerates to

V (ℓ2; β, β) = {(−β, b), (0, b) | b = 1, . . . , ℓ2 − 1}.

See also Figure 12 for an illustration.

0

(−β, ℓ2)

0

(−β, ℓ2)

Figure 12. The sets V (4; 2, 4) and V (4; 4, 4). On the left hand side
the dark red points come from the vector c = (0, −1 − 1, −2). Addi-
tional points from c = (0, 0, −2, −2) which are not dark red yet are
marked in light red.
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We turn to existence of V-ensembles inside exceptional sequences next. To simplify
the shape we introduce the larger W -ensemble of (ℓ1, ℓ2; c) by

W = W (ℓ2; α) := {(a, b) ∈ Z2 | 0 < b < ℓ2, −bα ⩽ a ⩽ 0}.

Lemma 9.2. V (ℓ2; α, β) is symmetric under the transformation (x, y) 7→ (−β, ℓ2) −
(x, y). Moreover, V (ℓ2; α, β) ⊆ W (ℓ2; α).

Proof. For the symmetry note that
∑ℓ2

j=1(f j , 1) = (−β, ℓ2). Therefore,

(−β, ℓ2) −
∑
j∈J

(f j , 1) =
∑
i∈I

(f i, 1)

with I = {1, . . . , ℓ2} ∖ J .
Further, (a, b) ∈ V implies (a, b) = (

∑
j∈Jb

f j , b) for some suitable 0 ⩾ f j ⩾ −α
and #Jb = b. Hence a ⩾ −bα. □

Let us define

PV = {(a, b) ∈ Z2 | −β ⩽ a ⩽ 0 and 0 ⩽ ⟨(a, b), (1, α)⟩ ⩽ γ}

as a smaller (and closed) version of the co-immaculate parallelogram P from Subsec-
tion 3.3, cf. Figure 13. The (−β, ℓ2)-symmetry of V implies the following observation.

0

(−β, ℓ2)
(ℓ1 − β, ℓ2)

(ℓ1, 0)

(2ℓ2 − 1)-line

P

PV

W

(−β, ℓ2) − W

H

Figure 13. PV and P and H for I(ℓ1, ℓ2, α, β) = I(16, 7; 2, 6)

Lemma 9.3. We have
(i) W (ℓ2; α) ∩

(
(−β, ℓ2) − W (ℓ2; α)

)
= PV ∖

{
0, (−β, ℓ2)

}
.

(ii) V (ℓ2; α, β) ⊆ PV ∖
{

0, (−β, ℓ2)
}

.

Remark 9.4. The fact that f1 = 0 and f ℓ2 = −α for the sequences defining V allows
actually an even more refined description. It turns out that V ∪

{
0, (−β, ℓ2)

}
equals

the union of four smaller PV -like parallelograms located at the four corners of the
ambient PV . However, the rather coarse relationship V ⊆ W from Lemma 9.2 will be
sufficient for our purposes.
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9.2. Finding V - and W -ensembles inside maximal exceptional sequences.
Our goal is to locate sufficiently many V -ensembles inside any given maximal excep-
tional sequence s.
Lemma 9.5. Let s be a vertically ordered exceptional sequence on (ℓ1, ℓ2; c) with s0 = 0
and H(s) ⩾ 2ℓ2. Then s∪W (ℓ2; α) is also exceptional with respect to the vertical order.
Proof. As suggested by Figure 14, (a, b) − W ⊆ I for all (a, b) ∈ ∆up. Indeed,
let (a′, b′) ∈ W . By Subsection 3.3,

ℓ2 ⩽ b, −β < a < ℓ1 + γ − bα.

Since b′ < ℓ2 it follows that 0 < b − b′. If b − b′ < ℓ2, then (a − a′, b − b′) ∈ H, and we
are done. If ℓ2 ⩽ b − b′, then 0 ⩽ −a′ ⩽ b′α implies

−β < a − a′ < ℓ1 + γ − (b − b′)α = ℓ1 − β − (b − b′ − ℓ2)α < ℓ1

whence (a − a′, b − b′) ∈ I.

0

Figure 14. I(4, 3; 1, 1) with the W -ensemble in light red and the
set (1, 4) − W in red.

Furthermore, H(s) ⩾ 2ℓ2 implies existence of a point (a, b) ∈ s with b ⩾ 2ℓ2 − 1.
Therefore, (a, b)−W and (a, b)−(s∩H) are contained in ∆up. In virtue of Lemma 5.14
it follows that |a′ − a′′| ⩽ ℓ1 − 2 for any (a′, b′) ∈ W and (a′′, b′) ∈ (s ∩ H) ∪ W . Hence
s ∪ W is exceptional. □

Corollary 9.6. Let s be a vertically ordered maximal exceptional sequence with
H(s) ⩾ 2ℓ2. Then s0 + W ⊆ s. In particular, s0 + (V ∪ {(0, b) | 0 ⩽ b < ℓ2}) is
contained in s.
Proof. Since s ∪ (s0 + W ) is an exceptional extension of s, maximality of s implies
s ∪ (s0 + W ) ⊆ s. The second claim follows from

s0 + {(0, b) | 0 ⩽ b < ℓ2} ⊆ (s0 + W ) ∪ {s0}
and Lemma 9.2 which asserts that V ⊆ W . □

9.3. Bounding the height. Our final goal in this section is to establish Theorem B
in the twisted case. We first define

H− := {(a, b) ∈ Z2 | a < 0, 0 < b < ℓ2} ⊆ H.

Lemma 9.7. Let s be a maximal exceptional sequence on (ℓ1, ℓ2; c) with c ̸= 0, ℓ1 ⩾ 3
and H(s) ⩾ 2ℓ2. If s is vertically ordered with s0 = 0, then we obtain a sequence s′

on
(ℓ′

1, ℓ′
2; c′) = (ℓ1 − 1, ℓ2; c)

via the following procedure:
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(i) Remove the set {(0, b) | 0 ⩽ b < ℓ2} from s.
(ii) For every si = (ai, bi) ∈ H− put s′

i := si + (1, 0).
(iii) For all remaining si put s′

i := si.
If we endow s′ with the order induced by s, then s′ defines a maximal exceptional
sequence. We say that s′ is obtained from s by collapsing along ℓ1.

Proof. We denote the co-immaculate locus of (ℓ′
1, ℓ′

2; c′) by I ′. Let s′
i < s′

j be a pair
of elements in s′ coming from si = (ai, bi) < sj = (aj , bj) in s. We need to show that
s′

j −s′
i ∈ I ′. Figure 15 sketches how the co-immaculate locus adjusts I ′ under passing

from (ℓ1, ℓ2; c) to (ℓ1 − 1, ℓ2; c).

0

Figure 15. I(5, 3; 1, 1) and I ′ = I(4, 3; 1, 1). The additional points
in I(5, 3; 1, 1) are marked in light blue. The upper left boundary and
the upper right boundary are marked in red.

Case 1: si, sj ̸∈ H−. Then s′
j − s′

i = sj − si. If ℓ2 > bj − bi, then s′
j − s′

i ∈ H = H′

or bj = bi. In the latter case we have aj − ai < ℓ1 − 1 for otherwise, s would have a
horizontal chain and thus H(s) ⩽ 2ℓ2 − 1 by Corollary 5.15.

If, on the other hand, bj − bi ⩾ ℓ2, then s′
j − s′

i ∈ I ′ unless

aj − ai + (bj − bi)α = ℓ1 − 1 − β + ℓ2α = ℓ′
1 − β + ℓ2α,

that is, sj − si sits in the upper right boundary of P ′, cf. Figure 15. Since ℓ2 ⩽ bj

we have aj + bjα ⩽ ℓ1 − 1 − β + ℓ2α. But 0 < ai + biα – this is clear for si ∈ H and
follows from the defining inequalities of the parallelogram if si ∈ P. Hence

aj − ai + (bj − bi)α < aj + bjα ⩽ ℓ1 − 1 − β + ℓ2α,

contradiction.
Case 2: si, sj ∈ H−. Again s′

j − s′
i = sj − si, and sj − si ∈ H or bj = bi. As for

Case 1 we find that s′
j − s′

i ∈ H′ ⊆ I ′.
Case 3: si ∈ H−, sj ̸∈ H−. Then s′

j − s′
i = sj − si − (1, 0). If ℓ2 > bj − bi, we

conclude as in Case 1.
If, on the other hand, bj − bi ⩾ ℓ2, then s′

j − s′
i ∈ I ′ unless

sj − si = (aj − ai, bj − bi) = (−β + 1, bj − bi),

that is, sj −si sits in the upper left boundary of P ′, cf. Figure 15. Now ℓ2 < bj implies
aj − ai = −β + 1 ⩽ aj , but ai < 0.

Case 4: si ̸∈ H−, sj ∈ H−. Then s′
j − s′

i = sj + (1, 0) − si and ℓ2 > bj > bi ⩾ 0,
where the middle inequality follows from aj < ai. We conclude again as in Case 1. □
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Corollary 9.8 (Theorem B, twisted version). Let s be a maximal exceptional se-
quence. Then H(s) ⩽ 2ℓ2.
Proof. We assume that s is vertically ordered and starts at s0 = 0. We proceed by
induction on ℓ1 ⩾ 2.

If ℓ1 = 2, then H(s) ⩽ ℓ2 + 1 < 2ℓ2, cf. Subsection 8.1.
Next assume that ℓ1 ⩾ 3. Let s be a maximal exceptional sequence with H(s) > 2ℓ2.

By Lemma 9.7 we can collapse s along ℓ1 and obtain the maximal exceptional sequence
s′ on (ℓ1 − 1, ℓ2; c) with 2ℓ2 ⩽ H(s) − 1 ⩽ H(s′). Here, the latter inequality is
a consequence of W ⊆ s from Corollary 9.6. Further, H(s′) ⩽ 2ℓ2 by induction
hypothesis so that H(s′) = 2ℓ2 < H(s). In particular, the collapsed sequence s′ starts
at s′

0 = (a, 1) with a ⩽ 0.
By Corollary 9.6, s′

0 + W = (a, 1) + W ⊆ s′. Therefore
(a, 1) +

(
− (ℓ2 − 1)α, ℓ2 − 1

)
=

(
− (ℓ2 − 1)α + a, ℓ2

)
∈ s′.

By design of the collapsing procedure, (−(ℓ2 − 1)α + a, ℓ2) is also in s whence
−β < −(ℓ2 − 1)α + a ⩽ −(ℓ2 − 1)α.

But this contradicts the basic inequality (3). □

10. The classification for the twisted case
We now discuss the twisted analogues of heLexing (cf. Subsection 7.1) and the struc-
ture of maximal exceptional sequences (cf. Subsection 7.2).

10.1. HeLexing. Let s be a maximal exceptional sequence starting at the origin
which by Theorem 8.2 we may take to be vertically ordered. The helix operator ℏ
sends s0, the leftmost element of the lowest row, to the point (ℓ1 − β, ℓ2) at level ℓ2,
using the terminology of Subsection 5.3.

In Subsection 7.1 we considered ℏlex which was the helix operator ℏ followed by
vertically lexicographic reordering and a shift sending the resulting s0 back to the
origin. The proof of Proposition 7.2 applies verbatim and yields the
Theorem 10.1 (Theorem C, twisted version). Every maximal exceptional sequence
on (ℓ1, ℓ2; c), c ̸= 0, can be transformed into a trivial sequence by successively apply-
ing ℏlex at most ℓ1ℓ2 times.
10.2. The classification. Again we can establish an algorithmic recipe for the
construction of maximal exceptional sequences.

The definition of admissible sets and complementing partners carries over from
Subsection 7.2 except for the modified shape of ∆up, namely

∆up = {(a, b) ∈ P | b ⩾ ℓ2} = {(a, b) ∈ Z2 | b ⩾ ℓ2, −β < a and a + bα < ℓ1 + γ}
and (Aiii) which gets replaced by
(Aiii’) for each k ⩾ ℓ2 and (x, k+1) ∈ Xk+1 the points (x, k), (x+1, k), . . . , (x+α, k)

belong to Xk.
See Subsections 8.1 and 8.2 for examples. Note that Xℓ2 being right-aligned means
now that (ℓ1 − 1 − β, ℓ2) ∈ Xℓ2 . Then we obtain the
Theorem 10.2 (Theorem D, twisted version). If X ⊆ ∆up is admissible and Y ⊆ Z2

a complementing partner, then the union of
s↓ := Y + (β, −ℓ2) ⊆ H ∪ [y = 0] and s↑ := X ⊆ ∆up

together with vertical order yields a maximal exceptional sequence s with s0 = 0.
Moreover, any vertically ordered maximal exceptional sequence starting at the origin
arises this way.
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Proof. The proof goes along the lines of the proof of Theorem 7.7.
If X = ∅, then Y consists of ℓ2 consecutive horizontal chains. Shifting down by

(β, −ℓ2) yields a vertically trivial sequence starting at the origin.
We therefore assume that X ̸= ∅. We order the set s↓ ∪ s↑ vertically to obtain

the sequence s. From Definition 5.9, Definition 7.3 (iv), and Definition 7.4 (Cvii),
it is clear that Yℓ2 ∪ Xℓ2 forms a horizontal chain which ends at (ℓ1 − 1 − β, ℓ2).
Consequently, Yℓ2 starts at (−β, ℓ2) and s0 = 0.

For si < sj we have to show that sj − si ∈ I. If si, sj ∈ [y = b], this follows from
si, sj ∈ Yb+ℓ2 + (β, −ℓ2) or si, sj ∈ Xb, (Cvi) and (Cvii). If they are at different levels
0 ⩽ bi < bj ⩽ 2ℓ2 − 1, the only critical case arises from bj − bi ⩾ ℓ2 which implies
0 ⩽ bi ⩽ ℓ2 − 1 and ℓ2 ⩽ bj ⩽ 2ℓ2 − 1. This means that

si ∈ [y = bi] ∩ s↓ = Ybi+ℓ2 + (β, −ℓ2) and sj ∈ [y = bj ] ∩ s↑ = Xbj .

We proceed via induction over m := bj − bi − ℓ2 ⩾ 0.
If m = 0, then si ∈ Ybj + (β, −ℓ2) whence

sj −
(
si + (−β, ℓ2)

)
∈ Xbj

− Ybj
⊆ {(1, 0), . . . , (ℓ1 − 1, 0)}.

In particular, sj − si ∈ (−β, ℓ2) + {(1, 0), . . . , (ℓ1 − 1, 0)} ⊆ ∆up.
Next let m ⩾ 1. Writing B := {(0, −1), (1, −1), . . . , (α, −1)}, (Aiii’) implies that

sj + B ∈ s↑. On the other hand, the induction hypothesis implies sj − si + B ∈ I,
and since bj − 1 − bi − ℓ2 ⩾ 0 we even have sj − si + B ∈ ∆up. By definition of ∆up

we also have sj − si ∈ ∆up, whence sj − si ∈ I.
Finally, we want to show that any vertically ordered maximal exceptional se-

quence s with s0 = 0 arises this way. For this, we let
Y := (−β, ℓ2) +

(
s ∩ (H ∪ [y = 0])

)
and X := s ∩ ∆up,

where we identify the sequence s with its underlying set.
If s is vertically trivial, then Y = (−β, ℓ2) + s and X = ∅. We therefore assume

that s is not trivial and check that X is admissible with complementing partner Y . By
Lemma 5.14, H(s) ⩽ 2ℓ2. From this and the definition of Y , Properties (Ai) and (Cv)
follow. Furthermore, (Aii) follows from Corollary 5.4, while (Cvii) is a consequence of
Proposition 5.11.

By Corollary 5.16, [y = b] ∩ s ̸= ∅ for 0 ⩽ b ⩽ H(s) − 1. Furthermore, we have
l = 2ℓ2 − H(s) horizontal lines by Corollary 5.13.

From Subsection 7.2 and in particular Inequality (8) on Page 1062 we recall the
following notation: For b = 0, . . . , ℓ2−l−1, we let (ab, b) and (ab+rb, b) ∈ s be the min-
imal and maximal element of [y = b]∩s, that is, [y = b] ∩ s = {(ab, b), . . . , (ab + rb, b)}
for some 0 ⩽ rb < ℓ1 −1. It follows that (r0 +1−β, ℓ2), . . . , (ℓ1 −1−β, ℓ2) = [y = ℓ2]∩s
which implies (Aiv).

For all other 0 < b < ℓ2 − l − 1, Yb+ℓ2 = (−β, ℓ2) + [y = b] ∩ s is to the left, cf.
Remark 5.12. This implies (Cvi).

It remains to check (Aiii’). Let (x, b + ℓ2 + 1) ∈ Xb+ℓ2+1 for some 0 ⩽ b. We need
to show that (x, b + ℓ2) and (x + α, b + ℓ2) belong to s. We first note that Xb+ℓ2 ̸= ∅
for otherwise, Yb+ℓ2 and thus [y = b] ∩ s would consist of ℓ1 consecutive points.
Hence Xb+ℓ2+1 would be empty by Corollary 5.15, which is absurd.

Next, we show that (x+α, b+ℓ2) ∈ Xb+ℓ2 . Assume otherwise. Since Xb+ℓ2 ̸= ∅ and
#(Yb+ℓ2 ∪ Xb+ℓ2) = ℓ1 this would imply (x + α − ℓ1, b + ℓ2) ∈ Yb+ℓ2 , or equivalently,
(x + α − ℓ1 + β, b) ∈ s. This implies that

(x, b + ℓ2 + 1) − (x + α − ℓ1 + β, b) = (ℓ1 − α − β, ℓ2 + 1) ∈ ∆up.

However, the rightmost element of ∆up is (ℓ1 − α − 1 − β, ℓ2 + 1) whence again a
contradiction.
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Finally, we show that (x, b + ℓ2) ∈ Xb+ℓ2 . Again, assume otherwise. Since
(x + α, b + ℓ2) ∈ Xb+ℓ2 and #(Yb+ℓ2 ∪Xb+ℓ2) = ℓ1, this would imply (x, b+ℓ2) ∈ Yb+ℓ2

whence (x + β, b) ∈ s. However, this means that

(x, b + ℓ2 + 1) − (x + β, b) = (−β, ℓ2 + 1) ∈ ∆up.

But [x = −β] ∩ ∆up lies in the boundary of ∆up, which gives a contradiction. □

As (x, k + 1) ∈ Xk+1 implies (x, k) ∈ Xk by (Aiii’), Theorem 10.2 immediately
yields the following

Corollary 10.3. On (ℓ1, ℓ2; c) let s be a vertically ordered maximal exceptional se-
quence with s0 = 0, and let l = 2ℓ2 − H(s). Then

ai−1 + ri−1 ⩽ ai + ri and ai + α ⩽ ai−1

for i = 1, . . . , ℓ2 − 1 − l.

Proof. By (Cvi) and (Cvii) it follows for i = 0, . . . , ℓ2 − 1 − l that

Xi+ℓ2 = {(ai + ri + 1 − β, i + ℓ2), . . . , (ai + ℓ1 − 1 − β, i + ℓ2)}.

Now if i > 0, then

{(ai + ri + 1 − β, i + ℓ2 − 1), . . . , (ai + ℓ1 − 1 − β + α, i + ℓ2 − 1)} ⊆ Xi+ℓ2−1

by (Aiii’). In particular, ai−1 + ri−1 ⩽ ai + ri and ai + α ⩽ ai−1. □

11. Generating the derived category
Finally, we set out to prove fullness of any nontrivial maximal exceptional sequence s
on (ℓ1, ℓ2; c) with c ̸= 0.

Since V ⊆ W , a W -ensemble based at (a, b) ∈ s generates the point (a − β, b + ℓ2)
in D(ℓ1, ℓ2; c) by Corollary 3.2. In particular, the standard rectangle Rℓ1,ℓ2 generates
the Picard group in the twisted case, too.

Furthermore, Corollary 10.3 implies that s contains the set

(10)
l⋃

i=1
Ci ∪ {(a, b) ∈ Z2 | 0 < b < ℓ2 − l, −bα ⩽ a ⩽ ab + rb}

where again l = 2ℓ2 − H(s), Ci is a horizontal chain in [y = ℓ2 − 1 − i] ∩ s if l ⩾ 1,
and rb was defined in Inequality (8) on Page 1062. Filling these lines via the Ci shows
that s contains the W -ensembles centered at [y = 0] ∩ s.

Example 11.1. We illustrate our generation procedure on (ℓ1, ℓ2; α, β) = (3, 3; 1, 1)
for the maximal exceptional sequence

s =
(
0, (−1, 1), (0, 1), (1, 2), (2, 2), (3, 2), (0, 3), (1, 3), (0, 4)

)
.

First,
W = W (3; 1) = {(−1, 1), (0, 1), (−2, 2), (−1, 2), (0, 2)}.

Filling the line [y = 2] in (a) shows that ⟨s⟩ contains W based at the origin. Hence
we can generate in (b) the point (−1, 3) which we use to fill the line [y = 3] in (c).
Therefore, the W -boxes based at [y = 1] ∩ s are contained in ⟨s⟩. They generate the
points (−2, 4) and (−1, 4) in (d) so that together with (0, 4) ∈ s we fill the line [y = 4]
in (e), too. It follows that (−2, 2) + R3,3 ⊆ ⟨s⟩ whence s is full.

Theorem 11.2 (Theorem E, twisted version). On (ℓ1, ℓ2; c), c ̸= 0, any maximal
exceptional sequence is full.
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(a) (b) (c) (d) (e)

Figure 16. Filling Pic(3, 3; 1, 1) from s. The green point marks
s0 = 0. The shaded area in (a) is the W -ensemble centered at
[y = 0] ∩ s = {0}.

Proof. We may assume that s is vertically ordered and starts at the origin. We con-
tinue to use the notation from Corollary 10.3.

First, we fill all lines containing a horizontal chain in s (if any). Consequently, the
lines [y = ℓ2 − 1], . . . , [y = ℓ2 − l] belong to ⟨s⟩. From Equation (10) on Page 1072 we
conclude that ⟨s⟩ contains all the W -boxes centered at the points in [y = 0]∩s. Hence
we can generate the points (−β, ℓ2) + ([y = 0] ∩ s) and fill the line [y = ℓ2] which
therefore also belongs to ⟨s⟩. We can again appeal to Equation (10) to infer that the
W -boxes based at [y = 1] ∩ s are contained in ⟨s⟩. Thus we can generate the points
(−β, ℓ2) + ([y = 1] ∩ s) and fill the line [y = ℓ2 + 1]. After at most ℓ2 − l repetitions
we conclude that (0, ℓ2 − l) + Rℓ1,ℓ2 ⊆ ⟨s⟩. Hence s is full. □
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