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Smallest posets with given cyclic
automorphism group

Jonathan Ariel Barmak & Agustín Nicolás Barreto

Abstract For each n ⩾ 1 we determine the minimum number of points in a poset with cyclic
automorphism group of order n.

1. Introduction
In 1938 R. Frucht [7] proved that any finite group can be realized as the automorphism
group of a graph. Moreover, the graph can be taken with 3d|G| vertices, where d is the
cardinality of any generator set of G ([8, Theorems 3.2, 4.2]). In 1959 G. Sabidussi [11]
showed that in fact O(|G|log(d)) vertices suffice. In 1974 L. Babai [3] proved that
the number of generators is not relevant, and with exception of the cyclic groups
Z3,Z4 and Z5, the graph can be taken with just 2|G| vertices. Sabbidussi claims
in [11] that he was able to compute the smallest number of vertices α(G) in a graph
with automorphism group G in the case that G is cyclic of prime power order. Also,

he asserts that for n = pr1
1 pr2

2 . . . prk

k , α(Zn) =
k∑

i=1
α(Zp

ri
i

). Unfortunately both his

computations for Zpr and the assertion are wrong. In [10] R.L. Meriwether rectifies
these errors and correctly determines α(Zn) for any n ⩾ 1. However, he commits
similar mistakes when trying to extend this computation to arbitrary finite abelian
groups. In [1, 2] W. Arlinghaus provides a complete calculation of α(G) for G finite
abelian. The proof follows these steps. First compute α(G) for G cyclic of prime power
order, then for arbitrary finite cyclic groups, then for abelian p-groups and finally, the
general case.

In parallel, the analogous problem was studied for partially ordered sets. In 1946
G. Birkhoff [6] proved that for any finite group G there is a poset of |G|(|G| + 1)
points and automorphism group isomorphic to G. Then Frucht [9] improved this to
(d + 2)|G| points. In 1980 Babai [4] proved that 3|G| points are enough. However, the
smallest number β(G) of points of a poset with an arbitrary finite abelian group G
of automorphisms has not yet been determined. In this paper we compute β(G) for
every finite cyclic group G.
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Corollary 4.2. Let n = pr1
1 pr2

2 . . . prk

k , where the pi are pairwise different primes
and ri ⩾ 1 for every i. Then the minimum number β(Zn) of points in a poset with

cyclic automorphism group of order n is
k∑

i=1
b(pri

i )pri
i − 1 if 3|n, 4|n, 9 ∤ n and 8 ∤ n,

and it is
k∑

i=1
b(pri

i )pri
i otherwise. Here b(2) = 1, b(3) = b(4) = b(5) = b(7) = 3, and

b(pr) = 2 for any other prime power.

This result was first announced in [5]. In [5] we computed first β(G) for G cyclic of
prime power order, then for arbitrary finite cyclic and for finite abelian p-groups with
p ⩾ 11, following the steps of the proof of the graph case exposed by Arlinghaus. The
calculation of β(Zn) in this paper is more direct than the original we gave in [5]. Just

as in graphs, the bound β(Zn) ⩽
k∑

i=1
β(Zp

ri
i

) holds for n = pr1
1 pr2

2 . . . prk

k , but not the

equality, in general. For instance β(Z12) = β(Z3) + β(Z4) − 1. The case of p-groups
will not be addressed in this article.

In Section 2 we construct explicit examples which provide an upper bound
for β(Zn). In Section 3 we prove some lemmas concerning the cyclic structure of
a generator of Aut(P ) for a poset P with cyclic automorphism group. In the last
section we introduce the notion of weight of a prime power in a cycle, which we use
in the proof of the lower bound.

2. Construction of the examples
A poset is a set with a partial order ⩽. The elements of the underlying set of a poset are
called points. All posets are assumed to be finite, that is, their underlying set is finite.
A subposet of a poset P is a subset of the underlying set with the inherited order.
A chain in a poset is a subset of pairwise comparable points. The height of a poset
is the maximum cardinality of its chains minus one. A poset, or a subset of a poset,
is said to be discrete if no two points are comparable. If P is a poset and x, y ∈ P ,
we write x < y if x ⩽ y and x ̸= y. We say that y covers x if x < y and there is no
x < z < y. The edges of P are the pairs (x, y) such that y covers x. The Hasse diagram
of P is the digraph whose vertices are the points of P and the edges are the edges
of P . If the orientation of an arrow is not indicated in the graphical representation
of the Hasse diagram, we assume it points upwards. A morphism P → Q of posets
is an order-preserving map, i.e. a function f between the underlying sets such that
for every pair x, y ∈ P with x ⩽ y we have f(x) ⩽ f(y). If P is a poset, since it is
finite, an automorphism of P is just a permutation of the underlying set which is a
morphism. Given an automorphism g of a poset P , we say that a subset A of the
underlying set of P is invariant or g-invariant if g(A) = A. In this case, g induces an
automorphism on the subposet with underlying set A.

Definition 2.1. Define b(1) = 0, b(2) = 1, b(3) = b(4) = b(5) = b(7) = 3. For any
other prime power pr, define b(pr) = 2.

Definition 2.2. Let P be a poset of height 1 and let A be the set of minimal points
and A′ the set of maximal points. Given a ∈ A we define its double neighborhood B(a)
as the set of those b ∈ A such that #(P>a ∩ P>b) ⩾ 2, that is, there are at least two
points in A′ greater than both, a and b. The reduced double neighborhood of a ∈ A
is B̂(a) = B(a) ∖ {a}. Given k ⩾ 1, we say that two points a, b ∈ A are k-adjacent
if #(B(a) ∩ B(b)) = k, and they are reduced k-adjacent if #(B̂(a) ∩ B̂(b)) = k.

We denote by Zn = {0, 1, . . . , n − 1} the additive group of integers modulo n.
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Proposition 2.3. Let n = pr, where p ⩾ 2 is a prime and r ⩾ 0. Then there exists a
poset P with b(n)n points and automorphism group Aut(P ) isomorphic to Zn.

Proof. For n = 1 we take the empty poset and for n = 2 we take the discrete poset
on 2 points. If n = 3, 4, 5, 7 we use the following well-known general construction [9]:
P = Zn × {0, 1, 2} with the order (i, 2) > (i, 1) > (i, 0) < (i + 1, 2) for every i ∈ Zn.
It is easy to see that such poset satisfies Aut(P ) ≃ Zn. Suppose then that n ⩾ 8.
We take two copies of Zn: A = Zn = {0, 1, . . . , n − 1} and A′ = {0′, 1′, . . . , (n − 1)′}.
Let S = {0, 1, 2, 4} ⊆ Zn. For i ∈ A and j′ ∈ A′ we set i < j′ if j − i ∈ S. Any two
elements in the same copy of Zn are not comparable (see Figure 1). We will prove that
the automorphism group of this poset P is Zn. It is clear that G = Zn acts regularly
on each copy of Zn by addition, and this gives a faithful action G → Aut(P ) on P .
So G can be seen as a subgroup of Aut(P ). Since each automorphism of P maps 0 ∈ A
to another minimal element of P , the order of the Aut(P )-orbit of 0 ∈ P is n. If we
prove that the Aut(P )-stabilizer of 0 ∈ P is trivial, then |Aut(P )| = n, so Aut(P ) is
isomorphic to G. Let h ∈ Aut(P ) be such that h(0) = 0.

Figure 1. The Hasse diagram of P for n = 8.

Since h is an automorphism, for every i ∈ A one has B(h(i)) = h(B(i)) and
B̂(h(i)) = h(B̂(i)). Thus, h preserves k-adjacency and reduced k-adjacency. Suppose
first that n ⩾ 9. Then for each i ∈ A, B(i) = {i − 2, i − 1, i, i + 1, i + 2}. It is easy to
see that i, j are 4-adjacent if and only if i−j = ±1. Thus, h induces an automorphism
of the cyclic graph on A with edges given by 4-adjacency. Since h(0) = 0, h is either
the identity 1Zn or −1Zn (i.e. the map i 7→ −i). The second case cannot occur as
{0, 2, 3, 4} has an upper bound while {0, −2, −3, −4} does not. Thus every point of A
is fixed by h. If j′ ∈ A′, then j′ is the unique upper bound of {j, j − 1, j − 2, j − 4}.
Thus h(j′) = j′. This proves that h = 1P .

Finally, suppose n = 8. Given i ∈ A, we have now B̂(i) = {i−2, i−1, i+1, i+2, i+4}
and i, j ∈ A are reduced 4-adjacent if and only if i − j = ±3. Thus, h induces an
automorphism in the cyclic graph on A with edges given by reduced 4-adjacency.
Then h = 1Zn

or −1Zn
. The second case cannot occur for the same reason as before.

Since each point in A′ is determined by the set of smaller points, h = 1P . □

Example 2.4. There exists a poset P with 20 points and automorphism group iso-
morphic to Z12.

Take two copies A = {0, 1, 2, 3, 4, 5}, A′ = {0′, 1′, 2′, 3′, 4′, 5′} of Z6 and two copies
B = {0′′, 1′′, 2′′, 3′′}, B′ = {0′′′, 1′′′, 2′′′, 3′′′} of Z4. The underlying set of P is the
union of these four sets. Let S = {0, 1, 3} ⊆ Z6, T = {0, 1} ⊆ Z4. Define the following
order in P : i < j′ if j − i ∈ S, i′′ < j′′′ if j − i ∈ T , i′′′ < j′ if j − i is even, i′′ < j if
j − i is even, i′′ < j′ for every i, j (see Figure 2).

It is clear that G = Z12 acts in each copy of Z6 and of Z4 by addition. This induces
a faithful action of G on P . If h ∈ Aut(P ), h(0′′) must be a minimal point i′′ and h(0′)
must be a maximal point j′. However i, j cannot have different parity. Indeed, among
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0'' 1'' 2'' 3''

0''' 1''' 2''' 3'''

Figure 2. A poset P of 20 points and Aut(P ) ≃ Z12.

the points 0, 2, 4, 0′′′, 1′′′ which cover 0′′, there are just two 0, 0′′′ smaller than 0′.
However, if i ∈ Z4 and j ∈ Z6 have different parity, among the points covering i′′

(k ∈ A with k ≡ i(2) and i′′′, (i+1)′′′) there are three smaller than j′: both j −1, j −3,
and one of i′′′, (i + 1)′′′. Thus i ≡ j(2), which implies that the Aut(P )-orbit of the
set {0′, 0′′} has at most 12 elements. If we prove that the Aut(P )-stabilizer of {0′, 0′′}
is trivial, then |Aut(P )| ⩽ 12 = |G|, so Aut(P ) is isomorphic to G. Let h be an
automorphism of P which fixes 0′ and 0′′.

Note that 2′′ is the unique minimal point different from 0′′ which is covered by
three points that cover 0′′. Thus h(2′′) = 2′′. Now, the points of B′ are the unique
points of P which cover exactly one of 0′′, 2′′. Thus B′ is invariant. This implies that
h restricts to an automorphism of the subposet R with underlying set B ∪ B′ and of
the subposet Q with set A ∪ A′. Since R is a cycle, there are only two automorphisms
of R fixing 0′′. One is the identity and the other maps 0′′′ to 1′′′. However, 0′′′ < 0′

while 1′′′ ≮ 0′. Thus 0′′′ is fixed by h and then h is the identity of R.
Suppose that i′ ∈ A′ is a fixed point. Among the points i, i − 1, i − 3 in A covered

by i′, only i − 1 and i − 3 share a lower bound. Thus h(i) = i. Similarly, among the
points (i − 4)′, (i − 2)′, (i − 1)′ of A′ not covering i, only (i − 4)′ and (i − 2)′ share a
lower bound in B′. Thus (i−1)′ is fixed. In conclusion, we showed that i′ fixed implies
that both i and (i − 1)′ are fixed. Since 0′ is fixed, this implies that every point of A
and of A′ is fixed. Thus h = 1P .

We say that a prime power pr (r ⩾ 1) exactly divides an integer n, and write
pr ∥ n, if pr|n and pr+1 ∤ n.

Theorem 2.5. Let n = pr1
1 pr2

2 . . . prk

k where the pi are pairwise different primes
and ri ⩾ 1 for every i. Then there exists a poset with automorphism group isomorphic

to Zn and
k∑

i=1
b(pri

i )pri
i − 1 points if 3 ∥ n and 4 ∥ n, and with

k∑
i=1

b(pri
i )pri

i points

otherwise.

Proof. By Proposition 2.3, for each 1 ⩽ i ⩽ k there exists a poset Pi with b(pri
i )pri

i

points and Aut(Pi) ≃ Zp
ri
i

. The non-Hausdorff join or ordinal sum P = P1 ⊕ P2 ⊕
. . . ⊕ Pk is constructed by taking a copy of each poset and keeping the given or-
dering in each copy, while setting x < y for each x ∈ Pi and y ∈ Pj if i < j.
Since each automorphism of P preserves heights (the maximum length of a chain
with a given maximum element), it restricts to automorphisms of each Pi. Thus
Aut(P ) = Aut(P1) ⊕ Aut(P2) ⊕ . . . ⊕ Aut(Pk) = Zn. If pri

i = 3 and p
rj

j = 4, instead
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of Pi and Pj we take the poset in Example 2.4 of 20 = b(3)3 + b(4)4 − 1 points and
automorphism group Z12. □

3. Lemmas
Let X be a finite set, n ⩾ 1 and x0, x1, . . . , xn−1 pairwise different elements of X.
The cycle α = (x0, x1, . . . , xn−1) is the permutation which maps xi to xi+1 (indices
considered modulo n) and fixes every other point of X. The number n is the order
or length of the cycle, which we denote by |α|. A cycle of order n is also called an
n-cycle. A cycle α is non-trivial if |α| ⩾ 2. The representation (x0, x1, . . . , xn−1) of a
non-trivial n-cycle is unique up to cyclic permutation of the n-tuple x0, x1, . . . , xn−1.
The underlying set of a non-trivial cycle (x0, x1, . . . , xn−1) is {x0, x1, . . . , xn−1}. Many
times we will identify a non-trivial cycle with its underlying set. Two non-trivial cycles
are disjoint if their underlying sets are. Any permutation g of X can be written as
a composition α1α2 . . . αk of pairwise disjoint non-trivial cycles. This representation
is unique up to reordering of the cycles. If a cycle α appears in the factorization
of g, we say that α is contained in g and write α ∈ g. The orbits of g, or of the
action of the cyclic group ⟨g⟩ on X, are the underlying sets of the cycles in g and the
singletons consisting of fixed points. Disjoint non-trivial cycles commute. Thus, if g
is a composition α1α2 . . . αk of pairwise disjoint non-trivial cycles and m ∈ Z, then
gm = αm

1 αm
2 . . . αm

k . If α is a cycle of length n and m ∈ Z, the permutation αm is a
composition of (n, m) =gcd{n, m} cycles of length n

(n,m) . In particular, αm is a cycle
with the same underlying set as α if n and m are coprime. Moreover, the order of g is
the least common multiple of the lengths of its cycles and if a cycle of g has order n,
and m ∈ Z, then gm fixes every point of the cycle if n|m, and fixes no point of the
cycle otherwise.

If g is an automorphism of a poset P , then each orbit of g is discrete, as a < b would
imply that a < gk(a) for some k ∈ Z and then {gnk(a)}n⩾0 would be an infinite chain.
If A and B are two different orbits of g we cannot have an element a ∈ A smaller than
another b ∈ B and at the same time an element b′ ∈ B smaller than another a′ ∈ A,
as this would imply that a < b = gk(b′) < gk(a′) for some k ∈ Z, contradicting the
fact that A is discrete, or the antisymmetry of the order.

Remark 3.1. Let P be a poset and let g be an automorphism of P . Let Q be the
subposet of points which are not fixed by g. Let A0, A1, . . . , Ak be the orbits of the
automorphism induced by g on Q. If h is an automorphism of Q such that h(Ai) = Ai

for every i, then it extends to an automorphism of P which fixes every element not
in Q.

Indeed, if x ∈ P ∖ Q, y ∈ Ai and x < y, then h(y) ∈ Ai, so there exists r ⩾ 0 such
that gr(y) = h(y). Then x = gr(x) < gr(y) = h(y). Similarly, if x > y, then x > h(y).

Lemma 3.2. Let n ⩾ 1 and let pr ̸= 2 be a prime power which exactly divides n. Let P
be a poset with Aut(P ) cyclic of order n, and let g be a generator of Aut(P ). Then g
contains at least two cycles of length divisible by pr.

Proof. Since g has order n, it contains at least one cycle α of length divisible by pr.
Assume there is no other cycle of length divisible by pr. The automorphism g

n
p fixes

then every point not in α. Let x be an element of α and let τ be the transposition
of the underlying set of α which permutes x and g

n
p (x) ̸= x. By Remark 3.1, τ

extends to an automorphism h of P which is a transposition. But any power of g
either fixes each point in α or fixes no point of α. Since the order of α is at least
pr > 2, h /∈ ⟨g⟩ = Aut(P ), a contradiction. □
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If a group G acts on a poset P , an automorphism of P is said to be induced by the
action if it is in the image of the homomorphism G → Aut(P ).

Let P be a poset of height 1. Let A be the set of minimal points and let B be the
set of maximal points. Suppose that for every a ∈ A there exist b, b′ ∈ B such that
a < b and a ≮ b′, and dually for every b ∈ B there exist a, a′ ∈ A with a < b and
a′ ≮ b. We define the complement P c of P to be the height 1 poset with the same
sets of minimal and maximal points and where a < b for a ∈ A, b ∈ B if and only if
a ≮ b in P . Note that in this case P and P c have the same automorphisms.
Lemma 3.3. Let p = 3, 5 or 7. Let P be a poset on which Zp acts with exactly two
orbits, both of order p. Then there exists an automorphism of P not induced by the
action for which each orbit of the action is invariant.
Proof. Let g = αβ ∈ Aut(P ) be the automorphism induced by a generator of Zp,
where α = (0, 1, . . . , p−1) and β = (0′, 1′, . . . , (p−1)′). If no element of α is comparable
with an element of β, then the transposition (0, 1) is an automorphism which is
different to gk for any k ∈ Z, that is, not induced by the action.

Without loss of generality we can assume then that 0 and 0′ are comparable, and
moreover, that 0 < 0′. Then no element in β can be smaller than another in α. Since g
is an automorphism, i < i′ for every 0 ⩽ i ⩽ p − 1. If no other pair of elements are
comparable, then (0, 1)(0′, 1′) is an automorphism not induced by the action (it has
order 2, for example). If i < j′ for every 0 ⩽ i, j ⩽ p−1, then (0, 1) satisfies the desired
property. This completes the proof of the case p = 3 by the following argument. The
case we did not analyze is when P has exactly 6 edges. In that case the complement
P c has only 3 edges, so there is an automorphism of P c not induced by the action,
and this is the required automorphism of P .

For p = 5 we need to consider the case that P has 10 edges. By the complement
argument, this will complete the p = 5 case. So, suppose 0 < k′ for some 1 ⩽ k ⩽ 4
(and then i < (i + k)′ for every i, where i + k is considered modulo 5). Note that gk

is induced by another generator of Zp and it maps i′ to (i + k)′. Thus, for each
0 ⩽ i ⩽ 4, i < i′ and i < gk(i′). Therefore we can assume that k = 1. We have
then the “symmetry about the axis 03′”, which maps i to −i and j′ to (1 − j)′ (see
Figure 3). This is an automorphism of P which is different to any power of g (it has
order 2).

0' 1'

2'

3'

4'

1

23

4

Figure 3. The underlying undirected graph of a poset with 10 points
and edges i′ > i < (i + 1)′, and the axis 03′.

For p = 7, if P has 14 edges, then by the argument above we can assume i′ >
i < (i + 1)′ for every 0 ⩽ i ⩽ 6 and there is then a symmetry about 04′. By the
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complement argument it only remains to analyze the case that P has exactly 21
edges. Here i < i′, (i + k)′, (i + l)′ for certain 1 ⩽ k ̸= l ⩽ 6 and again we can assume
k = 1 by replacing g by gk. Finally, by replacing g by g−1, it suffices to consider the
cases l = 2, 3 and 4 (Figure 4).

Figure 4. Posets with two Z7-regular orbits and S = {0, 1, l} for l = 2, 3, 4.

For l = 2 we have the involution that maps i to −i and j′ to (2 − j)′. For l = 3 we
have the following automorphism of order 3: (142)(356)(0′3′1′)(2′4′5′) (see Figure 5).
For l = 4, there is again the symmetry about 04′. □

Figure 5. The underlying graph of the poset P of 14 points and
edges i < i′, (i + 1)′, (i + 3)′. An automorphism of order 3 is given by
a rotation of angle 2π

3 .

Lemma 3.4. Let P be a poset on which Z4 acts with exactly two orbits of order 4 or
exactly three orbits: two of order 4 and one of order 2. Then there exists an automor-
phism of P not induced by the action for which each orbit of the action is invariant.

Proof. Let g be an automorphism induced by a generator of the action and suppose
first that g = (0, 1, 2, 3)(0′, 1′, 2′, 3′). If P is discrete or has 16 edges, (0, 1) satisfies
the required conditions. If P has exactly 4 edges, then as in the proof of Lemma 3.3
we can assume i < i′ for every 0 ⩽ i ⩽ 3, and (0, 1)(0′, 1′) works. By the complement
argument we can assume P has exactly 8 edges and that it is determined by the
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relations i′ > i < (i + k)′ for some 1 ⩽ k ⩽ 3. The case k = 3 reduces to the case
k = 1 by replacing g by g3. If k = 1, the symmetry (1, 3)(0′, 1′)(2′, 3′) about 02
satisfies the required conditions. If k = 2, then (0, 2) works.

Suppose then that g = αβγ with α = (0, 1, 2, 3), β = (0′, 1′, 2′, 3′), γ = (0′′, 1′′).
Let Q be the subposet of points in α and β. Since g2 = (0, 2)(1, 3)(0′, 2′)(1′, 3′), every
automorphism of the poset Q which has {0, 2}, {1, 3}, {0′, 2′}, {1′, 3′} as invariant
sets, extends to P by Remark 3.1. If Q is discrete or if Q has 16 edges, then (0, 2)
is an automorphism of Q which extends to P and this extension is not induced by
the action. If Q has exactly 4 edges, we may assume i < i′ for every i and then
(0, 2)(0′, 2′) extends to an automorphism of P different to any power of g. If Q has
exactly 12 edges, the complement argument can be used. Suppose then Q has exactly
8 edges. By relabelling we can assume the relations are (a) i < j′ for i ≡ j(2) or (b)
i′ > i < (i + 1)′ for every i. In case (a), (0, 2) is again an automorphism which has
every nontrivial orbit of g2 as an invariant set. In the rest of the proof we assume we
are in case (b).

If the points of γ are not comparable with any point of Q, then the symmetry
about 02 which maps i to −i and j′ to (1 − j)′, is an automorphism of Q which
extends to P , and this extension satisfies the required conditions.

By considering the opposite order, we can assume a point of γ is comparable with a
point of α. Moreover, by relabelling if needed we can assume 0′′ is comparable with 0.
Suppose first that 0′′ < 0. Since g is an automorphism, then 0′′ < 2 and 1′′ < 1, 3.
If 0′′ ≮ 1, then 0′′ ≮ 3 and 1′′ ≮ 0, 2. If 0′′ < 1, then 0′′ < 3 and 1′′ < 0, 2. In either
case, the symmetry of Q about 02 extends by the identity to an automorphim of P
which is not induced by the action, even though this automorphism of Q does not
have the orbits of g2 as invariant sets. Finally suppose 0′′ > 0. Then 0′′ > 2 and
1′′ > 1, 3. We can assume no element in β is smaller than an element in γ, by the
previous case and the duality argument. Also, we cannot have an element of γ being
smaller than another j′ of β, since this would imply that i < j′ > i + 2, modulo 4, for
certain 0 ⩽ i ⩽ 3, which is absurd. In any case, if 0′′ ≯ 1 or if 0′′ > 1, we have that
the symmetry of Q about 02 extends to an automorphism of P . □

Lemma 3.5. Let p = 3, 5 or 7. Let P be a poset with cyclic automorphism group of
order n ⩾ 1, and let g ∈ Aut(P ) be a generator. Suppose g contains a p-cycle α and
a pk-cycle β ̸= α for some p ∤ k ⩾ 1. Then it contains a third cycle whose length is
divisible by p.

Proof. Suppose β = (0, 1, . . . , pk − 1). Let Q be the subposet of P whose points are
those of α and β. Assume that there is no other cycle in g whose length is divisible
by p. In particular p ∥ n. Since the order of any cycle of g different from α and β

divides n
p , the automorphism g

n
p fixes every point not in Q. Moreover g

n
p has k + 1

orbits of order p, which are the underlying set of α and Ai = {0 ⩽ j ⩽ pk−1| j ≡ i(k)}
for 0 ⩽ i ⩽ k − 1. In particular, by Remark 3.1 every automorphism of Q for which
these sets are invariant extends to an automorphism of P .

Let Q′ be the subposet of Q whose points are those of α and A0. Since gk induces
an automorphism of Q′ with two orbits of order p, by Lemma 3.3 there is an auto-
morphism h of Q′ not induced by a power of gk for which the underlying set of α
and A0 are invariant. We extend h to an automorphism h of Q as follows. Let j be a
point of β, 0 ⩽ j ⩽ kp − 1. Let 0 ⩽ i ⩽ k − 1 be such that j ∈ Ai. Since p ∤ k, there
exists a unique 0 ⩽ t ⩽ k − 1 such that k|j + tp, in other words j + tp, considered
modulo kp, lies in A0. Then h(j + tp) ∈ A0. Define h(j) = h(j + tp) − tp ∈ Ai. We
claim that h is an automorphism of Q. It is clearly bijective. Two different points
of β cannot be comparable as they are in the same orbit. Suppose j in β and a
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in α are comparable, say a < j. Let 0 ⩽ t ⩽ k − 1 be such that k|j + tp. Then
a = gtp(a) < gtp(j) = j + tp. Since h is a morphism, h(a) < h(j + tp). Thus
h(a) = h(a) = g−tp(h(a)) < g−tp(h(j + tp)) = h(j + tp) − tp = h(j). Since the under-
lying set of α and each Ai are h-invariant, h extends to an automorphism of P , which
must be a power gr of g. Since gr leaves A0 invariant, in particular r = gr(0) ∈ A0,
so k|r and h is then induced by a power of gk, a contradiction. □

Lemma 3.6. Let P be a poset with cyclic automorphism group of order n ⩾ 1, and
let g ∈ Aut(P ) be a generator. Suppose that g contains two 4-cycles α, β. Then it
contains a third cycle of length divisible by 4 or two more cycles of even length.

Proof. The proof is very similar to that of Lemma 3.5, so we omit details. If α and β
are the unique two cycles of even length in g, then by Lemma 3.4 there is an auto-
morphism h of the poset of points of these two cycles which is not induced by a power
of g, and moreover has the underlying sets of α and β as invariant sets. Since the
non-trivial orbits of g

n
4 ∈ Aut(P ) are the underlying sets of α and β, h extends to an

automorphism of P , a contradiction.
Suppose then there exists a third cycle γ = (1, 2, . . . , 2k) in g with k odd, and that

there is no other cycle of even length. We define Q to be the subposet whose points
are those of α, β and γ. Then g

n
4 fixes every point not in Q. The other orbits of g

n
4

are the underlying sets of α and β, and Ai = {i, k + i} for 0 ⩽ i ⩽ k −1. Let Q′ be the
subposet whose points are those of α, β and A0. Then gk induces an automorphism
of Q′ and by Lemma 3.4 there is an automorphism h of Q′ which is not induced by
a power of gk, and for which the underlying sets of α, β and A0 are invariant. We
extend it to an automorphism h of Q by defining h(j) = h(j + 4t) − 4t, where t is
such that k|j + 4t. Then h is bijective, it is a morphism and leaves each Ai invariant.
It extends to an automorphism of P , say gr. Since gr leaves A0 invariant, then k|r,
which implies that h is induced by a power of gk, a contradiction. □

4. Weights and the lower bound
Let g be a permutation of order n of a finite set X. Let α be a cycle in g of length
l = pr1

1 pr2
2 . . . prk

k , where the pi are pairwise distinct prime integers, ri ⩾ 1 for every i.
For each prime power pr we will define a weight wpr (α) ∈ R⩾0 which depends on pr, l
and n, in such a way that

∑
pr

wpr (α)pr = l, where the sum is taken over all prime

powers dividing n. In particular #X ⩾
∑

pr∥n

(
∑

α∈g
wpr (α))pr. For each l ⩾ 2 we will

assign the weight of every prime power pr in a cycle α of length |α| = l according to
a series of rules. In every case, if the weight wpr (α) is not explicitly defined for some
prime power, we assume it is 0.
Exception 6. Suppose l = 6. If 3 ∥ n then w3(α) = 2. If 3 ∦ n and 2 ∥ n, then
w2(α) = 3. If 3 ∦ n and 2 ∦ n, then w4(α) = 3

2 .
Exception 12. Suppose l = 12. If 3 ∥ n then w3(α) = 4. If 3 ∦ n, then w4(α) = 3.
Exception 10-14. Suppose l = 2p for p = 5 or 7. If 2 ∥ n, w2(α) = 1. Otherwise
w4(α) = 1

2 . In any case wp(α) = 2(p−1)
p .

General case. Suppose l = pr1
1 pr2

2 . . . prk

k ̸= 6, 12, 10, 14, where the pi are pairwise

different primes and each ri ⩾ 1. For each 1 ⩽ i ⩽ k, we define wp
ri
i

(α) =

∏
j ̸=i

p
rj
j

k ,

unless pri
i = 2 and 2 ∦ n. In that case, w2(α) = 0, while w4(α) =

∏
j ̸=i

p
rj
j

2k . In particular,
if l = pr ⩾ 3 is a prime power, wpr (α) = 1.
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Note that, as we required, the sum
∑

pr|n
wpr (α) over all the prime powers dividing n

is the length l of α. Note also that if l = pr1
1 pr2

2 . . . prk

k , then wpr (α) ̸= 0 only if pr = pri
i

for some 1 ⩽ i ⩽ k or pr = 4.
Theorem 4.1. Let n ⩾ 1. Let P be a poset with Aut(P ) cyclic of order n gen-
erated by g. Let pr be a prime power which exactly divides n. If pr ̸= 2, 4 then∑
α∈g

wpr (α) ⩾ b(pr). If 3 ∦ n and pr = 2 or pr = 4,
∑

α∈g
wpr (α) ⩾ b(pr) as well.

If 3 ∥ n and 2 ∥ n,
∑

α∈g
(2w2(α) + 3w3(α)) ⩾ 2b(2) + 3b(3) = 11. Finally, if 3 ∥ n

and 4 ∥ n,
∑

α∈g
(4w4(α) + 3w3(α)) ⩾ 4b(4) + 3b(3) − 1 = 20.

Proof. If pr ̸= 2, 3, 4, 5, 7, by Lemma 3.2, there are at least two cycles of length
divisible by pr. By hypothesis their lengths are not multiples of pr+1. But if α is a cycle
of g whose length is a multiple of pr, then wpr (α) ⩾ 1. Indeed, the weights in α are
assigned according to the General case. If the length of α is l = pr1

1 pr2
2 . . . prk

k , we can

assume pr = pr1
1 and then wpr (α) =

k∏
j=2

p
rj
j

k ⩾ 2k−1

k ⩾ 1. Thus,
∑

α∈g
wpr (α) ⩾ 2 = b(pr).

Suppose now pr = 5. If α is a cycle of g of length l = 5, then w5(α) = 1. If l = 10,
then w5(α) = 8

5 ⩾ 3
2 (Exception 10-14). If l = 5s with s = pr2

2 pr3
3 . . . prk

k ⩾ 3 not
divisible by 5, then either k = 2, or k ⩾ 3. In the first case w5(α) = s

2 ⩾ 3
2 , and in

the second case w5(α) =

k∏
j=2

p
rj
j

k ⩾ 2k−2.3
k ⩾ 2 ⩾ 3

2 .
By Lemma 3.2, there are at least two cycles of length divisible by 5 (and not by 52).

Suppose first there are exactly two such cycles, α and α′. None of them can be of
length 5 by Lemma 3.5. Thus w5(α) + w5(α′) ⩾ 2. 3

2 = 3 = b(5). Finally, if there are
at least three cycles in g of length divisible by 5, then

∑
α∈g

w5(α) ⩾ 3 = b(5).

The case pr = 7 is similar to the previous one, with the observation that for length
l = 14, w7(α) = 12

7 ⩾ 3
2 (Exception 10-14). So, also in this case

∑
α∈g

w7(α) ⩾ 3 = b(7).

Let pr = 3. If the length of a cycle α in g is l = 3, w3(α) = 1. If l = 6, w3(α) = 2
(Exception 6). If l = 12, w3(α) = 4 (Exception 12). If l = 3s with s = pr2

2 pr3
3 . . . prk

k ⩾
5, then either k = 2, or k ⩾ 3. In the first case w3(α) = s

2 ⩾ 5
2 , and in the second

case w3(α) =

k∏
j=2

p
rj
j

k ⩾ 2k−2.3
k ⩾ 2.

By Lemma 3.2 there are at least two cycles in g of length divisible by 3 (and not
by 32). Suppose first there are exactly two such cycles α and α′. None of them can
have length 3 by Lemma 3.5. Then w3(α) + w3(α′) ⩾ 2.2 = 4 ⩾ 3 = b(3). Finally, if
there are at least three cycles in g of length divisible by 3, then

∑
α∈g

w3(α) ⩾ 3 = b(3).

Note that
∑

α∈g
w3(α) ⩾ 4 unless there are exactly three cycles of length 3 and no other

cycle of length divisible by 3.
We analyze now the case that 3 ∦ n and pr = 2 or 4. In the first situation, there

is at least one cycle α of even length l (not divisible by 4). If l = 2, w2(α) = 1
(General case). If l = 6, w2(α) = 3 (Exception 6). If l = 10 or l = 14, then w2(α) = 1
(Exception 10-14). If l = 2s with s = pr2

2 pr3
3 . . . prk

k ̸= 1, 3, 5, 7 (odd), then w2(α) =
k∏

j=2

p
rj
j

k ⩾ 3k−1

k ⩾ 3
2 . Thus

∑
α∈g

w2(α) ⩾ 1 = b(2). We consider the second situation,
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pr = 4. If α has length l = 4, then w4(α) = 1. If l = 12, w4(α) = 3 (Exception 12).
If l = 4s with s = pr2

2 pr3
3 . . . prk

k ⩾ 5 (odd), then k = 2 or k ⩾ 3. For k = 2 we have
w4(α) = s

2 ⩾ 5
2 . For k ⩾ 3, w4(α) ⩾ 3k−1

k ⩾ 3. By Lemma 3.2, g contains at least two
cycles of lengths divisible by 4 (and not by 8). Suppose first there are exactly two
such cycles, α and α′, of lengths l, l′. If l = l′ = 4, then by Lemma 3.6, there exists a
third and a fourth cycle β, β′ of lengths 2m and 2m′ for some odd m, m′. The weights
w4(β) that we obtain for each m are the halves of the weights that we obtained for 2
in cycles of the same length when 2 ∥ n. Namely, if m = 1, w4(β) = 1

2 (General case);
if m = 3, w4(β) = 3

2 (Exception 6); if m = 5, 7, w4(β) = 1
2 (Exception 10-14); if

m = pr2
2 pr3

3 . . . prk

k ̸= 1, 3, 5, 7 then w4(β) ⩾ 3k−1

2k ⩾ 3
4 (General case).

The same happens with β′. Thus w4(α)+w4(α′)+w4(β)+w4(β′) ⩾ 1+1+ 1
2 + 1

2 =
3 = b(4). If instead l = 4 and l′ = 12, then w4(α)+w4(α′) = 1+3 = 4 > 3. If l = 4 and
l′ = 4s for some odd s ⩾ 5, then w4(α)+w4(α′) ⩾ 1+ 5

2 > 3. If both l and l′ are greater
than 4, then w4(α) + w4(α′) ⩾ 5

2 + 5
2 > 3. Finally, if there are at least three cycles of

length divisible by 4, then
∑

α∈g
w4(α) ⩾ 3. Thus, in any case

∑
α∈g

w4(α) ⩾ 3 = b(4).

It only remains to analyze the case 3 ∥ n and 2 ∥ n and the case 3 ∥ n and 4 ∥ n.
If 3 ∥ n and 2 ∥ n, recall that we have already proved that

∑
α∈g

w3(α) ⩾ 4 or there are

exactly three cycles of length 3 and no other cycle of length divisible by 3. In the first
case

∑
α∈g

(2w2(α)+3w3(α)) ⩾
∑

α∈g
3w3(α) ⩾ 12. In the second case, there exists a cycle

β in g of even length m ̸= 6, so w2(β) ⩾ 1. Thus
∑

α∈g
(2w2(α)+3w3(α)) ⩾ 2.1+3.3 = 11.

The last case is 3 ∥ n and 4 ∥ n. Note that if there are no cycles of length 6 nor 12
in g, then the computation

∑
α∈g

w4(α) ⩾ 3 remains valid as Exceptions 6 and 12 do

not occur. Thus
∑

α∈g
(3w3(α) + 4w4(α)) ⩾ 3.3 + 4.3 = 21 > 20. If there are at least

two 12-cycles, then
∑

α∈g
(3w3(α) + 4w4(α)) ⩾ 2.3.4 = 24 > 20. If there is no 12-cycle

in g and
∑

α∈g
w4(α) < 3, then we must be in the case that there is a 6-cycle. This

already implies
∑

α∈g
w3(α) ⩾ 4, while the existence of two cycles of length divisible

by 4 implies
∑

α∈g
w4(α) ⩾ 2. Thus

∑
α∈g

(3w3(α) + 4w4(α)) ⩾ 3.4 + 4.2 = 20.

Thus we may assume g has a unique 12-cycle. By Lemma 3.2 there is another cycle
of length divisible by 4, so

∑
α∈g

w4(α) ⩾ 1. On the other hand,
∑

α∈g
w3(α) ⩾ 4 + 2 = 6,

as the weight of 3 in a 12-cycle is 4 and by Lemmas 3.2 and 3.5 there are either
two more cycles of lengths divisible by 3 or just one, but of length not 3. Thus∑
α∈g

(3w3(α) + 4w4(α)) ⩾ 3.6 + 4.1 = 22 > 20. □

Corollary 4.2. Let n = pr1
1 pr2

2 . . . prk

k , where the pi are pairwise different primes
and ri ⩾ 1 for every i. Then the minimum number β(Zn) of points in a poset with

cyclic automorphism group of order n is
k∑

i=1
b(pri

i )pri
i − 1 if 3 ∥ n and 4 ∥ n, and

k∑
i=1

b(pri
i )pri

i otherwise.

Proof. If P is a poset with Aut(P ) ≃ Zn generated by g, then the number of points in

P is at least
∑

α∈g
|α| =

∑
α∈g

∑
pr|n

wpr (α)pr ⩾
k∑

i=1
(

∑
α∈g

wp
ri
i

(α))pri
i . If both 3 and 4 exactly
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divide n, by Theorem 4.1 this is
∑

p
ri
i

̸=3,4
(

∑
α∈g

wp
ri
i

(α))pri
i +

∑
α∈g

(3w3(α) + 4w4(α)) ⩾

∑
p

ri
i

̸=3,4
b(pri

i )pri
i + 3b(3) + 4b(4) − 1 =

k∑
i=1

b(pri
i )pri

i − 1. Otherwise, the bound is one

more than this number. The bound is attained by Theorem 2.5. □
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