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Tree expansions of some Lie idempotents

Frédéric Menous, Jean-Christophe Novelli
& Jean-Yves Thibon

Abstract We prove that the Catalan Lie idempotent Dn(a, b), introduced in [Menous et al.,
Adv. Appl. Math. 51 (2013), 177] can be refined by introducing n independent parame-
ters a0, . . . , an−1 and that the coefficient of each monomial is itself a Lie idempotent in
the descent algebra. These new idempotents are multiplicity-free sums of subsets of the
Poincaré-Birkhoff-Witt basis of the Lie module. These results are obtained by embedding
noncommutative symmetric functions into the dual noncommutative Connes-Kreimer algebra,
which also allows us to interpret, and rederive in a simpler way, Chapoton’s results on a
two-parameter tree expanded series.

1. Introduction
Lie idempotents are idempotents of the symmetric group algebra which act on words
as projectors onto the free Lie algebra. Thus, they are in particular elements of
the Lie module Lie(n), spanned by complete bracketing of standard words, such
as [[1, 3], [2, 4]], which can be represented as complete binary trees with leaves la-
belled 1, 2, . . . , n.

Of course, these elements are not linearly independent, but the trees such that for
each internal node, the smallest label is in the left subtree, and the greatest label is in
the right subtree do form a basis, called the Poincaré-Birkhoff-Witt basis [19]. Such
labellings are said to be admissible. These basis elements are denoted by t(σ), where t
is a complete binary tree, and σ the permutation obtained by reading its leaves from
left to right.

The direct sum Lie =
⊕

n⩾0 Lie(n) can be interpreted as the operad Lie. It is also
a Lie algebra for the Malvenuto–Reutenauer convolution product of permutations,
which allows us to regard it as contained into FQSym, a permutation σ being inter-
preted as the basis element Gσ. Then, it is (strictly) contained in the primitive Lie
algebra of FQSym.

It turns out that the elements ct, defined for complete binary trees t by the sum
over admissible labellings

(1) ct =
∑

σ admissible
t(σ)
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span a Lie subalgebra C of Lie, which might be called the Catalan Lie algebra.
It has proved convenient to label its basis elements by plane trees instead of binary

trees: we set CT = ct where the plane tree T is the right-branch rotation of the
incomplete binary tree t′ obtained by removing the leaves of t (so that the maximal
element of the Tamari order is the corolla).

This provides us with elements CT of FQSym, labelled by plane trees. The non-
commutative Connes-Kreimer algebra HNCK [8, 9] is the free associative algebra
generated by variables YT indexed by plane trees, endowed with the coproduct of
admissible cuts. Its basis YF is therefore indexed by plane forests F . Its dual H∗NCK

admits a natural embedding into FQSym, and if XF denotes the dual basis of YF ,
it turns out that

(2) CT =
∑

T ′⩽T

XT ′

where the sum is over the Tamari order. Moreover, if one denotes by τ = T̄ the
underlying non-plane rooted tree of T the sums

(3) xτ = |Aut(τ)|
∑
T̄ =τ

XT

span a sub-preLie algebra, which is free on the generator x•, and xτ coincides with
the element indexed by τ in the Chapoton–Livernet basis.

The aim of this paper is to investigate the expansions in the X and C bases of vari-
ous noncommutative symmetric functions, regarded as elements of FQSym. Our first
result concerns the family of Catalan idempotents Dn(a, b). Originally introduced as
noncommutative symmetric functions on the ribbon basis in [15], these elements were
identified in [11] as simple weighted sums of the basis CT . However, the calculations
of [11] are rather tricky, and it is by no means obvious that such sums belong to the
descent algebra. We present here a new approach, relying on the Birkhoff factorisa-
tion of a simple character of QSym with values in an algebra of Laurent series. This
approach produces immediately the expansion on XF of a grouplike series σ+

a(z) which
by definition belongs to the descent algebra. It is then relatively straightforward to
check that the original Catalan idempotents are obtained by choosing a(z) = a

z + b
1−z

and taking the residue, the general case giving rise to new refined idempotents indexed
by partitions of n − 1.

Finally, we show how the embedding of H∗NCK into FQSym can be used to de-
termine the X-expansion of various noncommutative symmetric functions, including
the Eulerian idempotents and the two-parameter series of Chapoton [4]

This paper is a continuation of [11], to which the reader is referred for background
and notation.

2. The noncommutative Connes-Kreimer Hopf algebra HNCK

The noncommutative Connes-Kreimer Hopf algebra HNCK , introduced by Foissy [8,
9], is as a graded vector space spanned by plane forests, the degree being the number
of nodes. We denote by YF its natural basis indexed by forests:

(4) F = {∅, •, , ••, , , • , •, • • •, . . . }

It is then freely generated by variables YT indexed by plane trees. The product is con-
catenation, and the coproduct is given by admissible cuts, which can be conveniently
defined directly for the iterated coproducts in terms of labellings.

Algebraic Combinatorics, Vol. 7 #5 (2024) 1262



Tree expansions of some Lie idempotents

Trees will be drawn with the root at the top in this paper. The canonical labelling
of a tree is obtained by visiting it in postorder, so that the labels of each subtree form
an interval, with the maximum at its root.

For instance, for the tree , we get the labelling

4

2 3

1

A forest F is similarly labelled, by first grafting it on a common root – that is con-
sidering the tree T = B+(F ) – labelling T and removing this labelled root afterwards.

Such a labelled forest is regarded as the Hasse diagram of a poset.
With this labelling the r-iterated coproduct of an element YF of degree n can be

described as follows:
(5) ∆rYF =

∑
u∈C(F )∩[r]n

YF(1) ⊗ YF(2) · · · ⊗ YF(r)

where C(F ) is the set of words such that i <F j ⇒ ui ⩽ uj , and F(i) is the restriction
of F to vertices labelled i.

For instance, for the previous tree T = and r = 2,
(6) C(T ) ∩ {1, 2}4 = {2222, 2212, 1222, 1122, 1212, 1112, 1111}

give the coproduct:

(7) ∆ = 1 ⊗ + • ⊗ + • ⊗ + ⊗ + • • ⊗ + • ⊗ • + ⊗ 1

As it will be useful in the following sections, let us also recall here the polish code
of a plane forest is obtained by labelling each node by the number of its descendants,
and traversing it in prefix order. For the previous tree T we get the polish code 2100
and also its reverse polish code 0012.

It has been shown in [12, 3.5] that HNCK admits an embedding π into WQSym.
It is actually an embedding into FQSym, given by F 7→ ΓF (A), where ΓP (A) denotes
the free generating function of a poset [6], that is, the sum of its linear extensions

(8) ΓP (A) =
∑

σ∈L(P )

Fσ ∈ FQSym =
∑

u∈C(F )

Mu,

where C(F ) is the set of packed words u such that i <F j ⇒ ui ⩽ uj . Indeed, the
linear extensions of a poset are precisely those permutations σ such that i <P j ⇒
σ−1(i) < σ−1(j).

The linear extensions of such a labelled forest form an initial interval of the right
weak order [1].

For example,
(9) Γ = F3124 + F1324 + F1234 = S2314 = Š3124

where [7, (6.4), (6.12)]

(10) Sσ =
∑

τ⩽Lσ

Gτ =: Šσ−1
.
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Then, YF can be identified with ΓF = ŠσF , where σF is the maximal linear extension of F . For
example

(11) Γ Γ• = S12S1 = S231 = Š312 = Γ

•

.

As for the coproduct, Γ = Š3124, and

(12) ∆Š3124 = 1⊗Š3124 +Š1 ⊗Š123 +Š1 ⊗Š213 +Š12 ⊗Š12 +Š21 ⊗Š12 +Š312 ⊗Š1 +Š3124 ⊗1,

which corresponds term by term to

(13) ∆ = 1 ⊗ + • ⊗ + • ⊗ + ⊗ + • • ⊗ + • ⊗ • + ⊗ 1

Indeed, the coproduct formula [7, (6.13)]

(14) ∆Šσ =
∑

u·v⩽σ

⟨σ|u v⟩Šstd(u) ⊗ Šstd(v) ,

(sum over pairs of complementary subwords whose concatenation is smaller than σ in
the right weak order) implies that if a value σi goes into v, all greater values on its
right must also go into v, so as not to create new inversions. Thus, the word u and v
encode admissible cuts.

3. Dual noncommutative Connes-Kreimer algebra H∗
NCK

3.1. An embedding of Sym, and its dual. Let XF be the dual basis of YF .
According to our description of the coproduct of YF , the coefficient of XF in the
product XF ′XF ′′ is equal to the number of labellings of F by words over {1, 2},
nondecreasing from bottom to top, and such that F(1) = F ′ and F(2) = F ′′.

The coproduct of XF is deconcatenation, so that trees XT are primitive. The
elements
(15) Λn := X••···• (n vertices) and Sn :=

∑
|F |=n

XF

form sequences of divided powers, and both define the same embedding of Sym into
H∗NCK . One easily checks that, indeed,

(16)

∑
n⩾0

(−1)nX••···•

−1

=
∑
n⩾0

∑
|F |=n

XF .

Representing trees by their Polish codes, we have:

R11 = X00

R2 = X00 + X10

R3 = X000 + X100 + X010 + X200 + X110

R21 = 2X000 + X100 + X010

R12 = 2X000 + X100 + X010 + X200

R111 = X000

R4 = X0000 + X0010 + X0100 + X1000 + X1010 + X0200 + X2000

+ X1100 + X0110 + X1110 + X1200 + X2100 + X2010 + X3000

R31 = (X1100 + X0110) + 2(X1000 + X0100 + X0010)
+ (X2000 + X0200) + X1010 + 3X0000

Algebraic Combinatorics, Vol. 7 #5 (2024) 1264
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R22 = (X1100 + X0110) + 3(X1000 + X0100 + X0010)
+ 2(X2000 + X0200) + 2X1010 + 2X3000 + (X2100 + X2010) + 5X0000

R13 = (X1100 + X0110) + 2(X1000 + X0100 + X0010)
+ 2(X2000 + X0200) + X1010 + 2X3000 + (X2100 + X2010) + X1200 + 3X0000

R211 = (X1000 + X0100 + X0010) + 3X0000

R121 = 2(X1000 + X0100 + X0010) + (X2000 + X0200) + X1010 + 5X0000

R112 = (X1000 + X0100 + X0010) + (X2000 + X0200) + X3000 + 3X0000

R1111 = X0000

Proposition 3.1. The coefficient of XF in RI is equal to the number of linear exten-
sions of F which are of ribbon shape I.

Proof. The product rule of the X-basis implies immediately that the coefficient
⟨YF , SI⟩ of XF in SI is the number of nondecreasing labellings of F by words of
evaluation I, which is also the coefficient of MI in ΓF (X). The dual map of the
embedding of Sym into H∗NCK is an epimorphism π : HNCK → QSym, and ⟨YF , SI⟩
is also the coefficient of MI in π(YF ).

Thus, π is the restriction of the canonical projection (commutative image) of
FQSym onto QSym, so that the coefficient of XF in RI is equal to the coefficient
of FI in π(ΓF ), which is by definition the number of linear extensions of F of ribbon
shape I. □

For instance, if T = = 2100, we have ΓT = F3124 + F1324 + F1234 and (3124), (1324), (1234)
have respective ribbon shape 13, 22 and 4, so that X2100 appears with a coefficient 1 in R13, R22

and R4.

The product rule of the X-basis also implies that the coefficient of XF in ΛI is the
number of strictly decreasing labellings of F by words of evaluation I.

We have therefore proved:

Theorem 3.2. The coefficient of XF in σ1(XA) is

(17)
∑

I

⟨YF , SI⟩MI(X) = ΓF (X)

and that of XF in λ1(XA) is

(18)
∑

I

⟨YF , ΛI⟩MI(X) = (−1)|F |ΓF (−X) =: χF (X).

□
Recall from [13] that the involution X 7→ −X of QSym is the adjoint of A 7→ −A

in Sym, so that

(19) MI(−X) = (−1)ℓ(I)
∑
J⩽I

MJ(X) et FI(−X) = (−1)|I|FĪ∼(X).

3.2. Dendriform structure. One can also describe the product XF1XF2 in the
following way. Endow F1 with its canonical labelling, and F2 with its canonical la-
belling shifted by the number n1 of vertices of F1. Then, the coefficient of XF in
the product is equal to the number of standard decreasing (from the roots towards
the leaves) labellings of F whose restriction to [1, n1] is F1, and whose restriction
to [n1 + 1, n1 + n2] is F2.

Algebraic Combinatorics, Vol. 7 #5 (2024) 1265
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This allows to define dendriform half-products: XF1 ≺ XF2 consists of the forests
whose first label in the postfix order is n1 + 1, and XF1 ≻ XF2 of those whose first
label is 1. In particular,

(20) XT ≺ XF = XF T ,

Actually, H∗NCK can be identified with the Loday–Ronco Hopf algebra PBT [8, 9].
It is easily seen that its dendriform product are induced by those of FQSym, so that
the coefficient of XF in Pt is equal to the number of linear extensions of F whose
decreasing tree has shape t.

3.3. PreLie and brace structures. The product rule shows that for two trees,
XT1T2 et XT2T1 have the same coefficient in XT1XT2 . Thus, [XT1 , XT2 ] is a linear
combination of trees, and the primitive Lie algebra admits the XT as basis.

The commutator [XT1 , XT2 ] is the difference between the sum of the XT obtained
by grafting T1 on a node of T2 and that of those obtained by grafting T2 on a node
of T1. If one denotes by XT1 ▷XT2 the first sum, ▷ defines then a right preLie product.
There is also a left preLie product. a ◁ b = b ▷ a.

For example,

(21) [X•, X ] = 2X = X• ▷ X − X ▷ X•.

The preLie algebra generated by X• is free. For a non-plane rooted tree τ , we set

(22) xτ = |Aut(τ)|
∑
T̄ =τ

XT

(where T̄ means that the rooted tree obtained by forgetting the planar structure of T
is τ) gets identified with the Chapoton-Livernet basis of the free preLie algebra on
one generator.

The brace product which extends the preLie product and induces the associative
product is [10]

(23) ⟨XT1···Tr
, XT ⟩▷ =

∑
T ′

XT ′

where the sum runs over all trees T ′ obtained by grafting T1, . . . , Tr on nodes of T ,
respecting their order. One has then, writing B(XF ) for XB+(F ), B(XF XF ′) =
⟨XF , B(XF ′)⟩ and

(24) ⟨XF , ⟨XF ′ , XT ⟩⟩ = ⟨XF XF ′ , XT ⟩.

The primitive Lie algebra of H∗NCK is the free brace algebra on one generator.
In terms of the dendriform operations, the preLie product is x ▷ y = a ≻ b − b ≺ a,

and one has then as usual Λn = X• ≺ Λn−1 and Sn = Sn−1 ≻ X•.

3.4. A quotient of FQSym. Let Mσ be the dual basis of Sσ. The above embedding
of HNCK into FQSym allows to identify XF with the image of Mσ−1

F
in the quotient

of FQSym by the relations Mσ ≡ 0 if σ contains the pattern 132.

For example,

(25) X X = 2X + X + X + X
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and

(26)

M12M12 = M1234 + 2M1324 + M1342 + M1423

+ M2314 + M2413 + M3124 + M3142 + 2M3412

≡ 2M3412 + M3124 + M2314 + M1234

= 2M
σ−1 + M

σ−1 + M
σ−1 + M

σ−1

To reconstruct the forest F from its maximal linear extension σF , one must con-
struct the binary search tree of its mirror image σF and take its right branch.rotation

For example, the tree 3100200

7

2 3 6

1 4 5

has σT = 5463127, and the binary search tree of σT is

7

2

1 3

6

4

5

4. A multivariate version of the Catalan family
4.1. A generic factorisation of σa. The derivation of the Catalan idempotents
presented in [15, Sec. 10] can be interpreted as a Birkhoff factorisation of the character
of QSym defined by

(27) φ(MI) =
{

an if I = (n)
0 otherwise,

for a certain choice of a in a Rota-Baxter algebra of functions on the real line R, the
Rota-Baxter map being the the multiplication by the indicatrix of R+.

Let us now look at the generic factorisation of this character, for an arbitrary Rota-
Baxter algebra A = A+ ⊕A−, with projectors P+ and P−. Under the embedding (15)
of Sym into H∗NCK , we have

(28) σa =
∑
n⩾0

anSn =
∑
F∈F

φ(YF )XF .

Writing the Birkhoff factorization φ+ = φ− ⋆ φ as

(29) σ+
a = σ−a σa, σ±a =

∑
F∈F

φ±(YF )XF ,
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we can easily calculate φ± by remarking that

(30) λ−a =
∑
n⩾0

(−a)nX• • · · · •︸ ︷︷ ︸
n

=:
∑
F∈F

α(YF )XF

where the character α is defined on trees by

(31) α(YT ) =
{

−a if T = •
0 otherwise.

Since σ+
a λ−a = σ−a , we have φ+ ⋆ α = φ−, which gives, for T = B+(F ),

(32) φ+(YT ) + φ+(YF )α(Y•) = φ+(YT ) − φ+(YF )a = φ−(YT )

an applying P+ and P−, we obtain the recursive formulas

φ+(YT ) = P+(φ+(YF )a),(33)
φ−(YT ) = −P−(φ+(YF )a).(34)

4.2. Example: polar part of a Laurent series. Let us now take A = C[z−1, z]]
with A+ = z−1 C[z−1] and A− = C[[z]], and let

(35) a = a(z) =
∑
n⩾0

anzn−1.

Here, P+(f) is defined as the polar part.

We have, writing ai1···ir for ai1 · · · air ,

φ+(Y•) = P+(a) =
a0

z

φ+(Y••) = P+(a)2 =
a00

z2

φ+(Y ) = P+

(
a0

z

(
a0

z
+ a1 + · · ·

))
=

a00

z2 +
a01

z

φ+(Y ) = P+

(
a00

z2

(
a0

z
+ a1 + a2z · · ·

))
=

a000

z3 +
a010

z2 +
a002

z

φ+(Y ) =
a000

z3 +
a010

z2 +
a001

z2 +
a011

z
+

a002

z
.

On these examples, we can observe the following explicit description:

Theorem 4.1. For any tree T , the value of the character φ+ on a tree YT is given by

(36) φ+(YT ) =
∑
F⩾T

aF z−r(F )

where the sum is over the Tamari order on plane forests, r(F ) denotes the number of
roots of F and aF = ac1 · · · acn

if c1 · · · cn is the reverse Polish code of F .

Proof. This is an immediate consequence of the recursive description of Tamari inter-
vals given below. □
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4.3. A recursive description of the Tamari order.

Theorem 4.2. For a forest F , let f(F ) be the formal sum

(37) f(F ) =
∑

G⩾F

G.

Then for a tree T = B+(F ),

(38) f(T ) =
∑

F =F1F2

f(F1)B+(f(F2)).

In other words, the formal sum of the reverse Polish codes of the forests G ⩾ B+(F )
is obtained by the following process: for each tree T ′ = B+(F ′) ⩾ T , write down the
reverse Polish code aF ′ = ac1 · · · acn−1 , and take the sum of the words aF ′ai for
i = 0, . . . , r, where r is the number of connected components of F ′. This amounts to
encoding F ′ by aF ′

zr and taking the polar part of aF ′
zr a(z), which implies Theorem 4.1.

For example with T = , the codes of the trees T ′ ⩾ T are 0021, 0102, 0003. The above process
gives for each of them

0021 → 0020 + 0021,

0102 → 0100 + 0101 + 0102,

0003 → 0000 + 0001 + 0002 + 0003,

which are indeed the codes of the 9 forests G ⩾ T .

Proof. Recall the cover relation of the Tamari order on plane trees: starting from a
tree T and a vertex x that is neither its root or a leaf, the trees T ′ > T covering T
are obtained by cutting off the leftmost subtree of x and grafting it back on the left
of the parent of x.

So all elements in the Tamari order above a given element are obtained by a
sequence of such moves which can be encoded by a sequence of numbers recording on
which node each cut is done.

We shall prove the result for a forest containing a single tree since the proof works
in the same way with a general forest. We shall actually prove a stronger result: all
trees above a given tree can be obtained by a sequence of cuts where no cut is done
inside a subtree that was already cut.

To see that, number the internal nodes of a tree in prefix order, so that any node
has a label smaller than its descendants. Now, the path from a tree to a tree above
it corresponds to a word on these labels recording in which order the nodes were cut.
Assume that there is somewhere a factor 1i where i > 1. Then we shall see that this
factor can be rewritten either as i1 if i is not the leftmost child of 1 at this step or
as i11 if it is.

First, if i is the leftmost child of the root, applying 1 then i leads to a forest
containing three trees: the left subtree of i, the remaining part of the tree of root i
without its left child and the remaining part of the whole tree without its left child.
One easily checks that we get the same result by applying i11 to the tree.

Moreover, if i is not the left-most child of the root, then 1 and i commute since
they work in separate parts of the tree.

So by induction, any word sending a tree T to a tree T ′ below it can be rewritten
as a word where its 1s are at the end. The same applies to any element of the tree,
whence the result. □
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4.4. Grouplikes and primitives in Sym. By definition, the series
(39) C := σ+

a |z=1 and D = Resz=0 σ+
a

are in Sym. We shall see that D is a multiparameter version of the Catalan idempotent
of [15, 11], which is obtained by the choice a(z) = a

z + b
1−z .

Indeed, recall that the basis CF of H∗NCK is defined by

(40) CF =
∑

G⩽F

XG.

Thus,

(41) C =
∑

F

 ∑
G⩾F

aG

 XF =
∑

G

aG

∑
F⩽G

XF =
∑

G

aGCG,

where aG is the (commutative) product of the code of G, and since taking the residue
amounts to restricting the sum to trees,

(42) D =
∑

T

aT CT

which gives back the expression obtained in [11] for a(z) = a
z + b

1−z .
The possible values of aT correspond to partitions λ of n − 1. The sums

(43) Dλ :=
∑

aT =aλ

CT

are therefore Lie quasi-idempotents of the descent algebra.
For example,

D(3) = C3000 = Ψ̄4,

D(21) = C2100 + C2010 + C1200 = R4 − R22 + R121 − R111 + Ψ4 + Ψ̄4,

D(111) = Ψ4.

4.5. Expansions in Sym. To compute the expansions of C and D on the usual bases
of Sym, we start with the Birkhoff recurrence [14]

φ−(x) = −P−
(
φ(x) +

∑
(x)

φ−(x′)φ(x′′)
)

(44)

φ+(x) = P+
(
φ(x) +

∑
(x)

φ−(x′)φ(x′′)
)
.(45)

This gives immediately
φ−(Mn) = −P−(an), φ+(Mn) = P+(an),(46)

φ−(Mij) = P−(P−(ai)aj), φ+(Mij) = −P+(P−(ai)aj), . . .(47)
and by induction, we arrive at the proposition below.

Let a an element of a Rota-Baxter algebra A. We set P∅
∅ (a) = 1K and for I =

(i1, . . . , in), ε = (ε1, . . . , εn) ∈ {+, −}n,

(48) P I
ε (a) = Pεn

(
P I′

ε′ (a)ain

)
where I ′ = (i1, . . . , in−1) and ε′ = (ε1, . . . , εn−1). We also write for short Pε(a) =
Pε1,...,εn(a) the element of Aεn equal to P I

ε (a) where i1 = i2 = · · · = in = 1.

For instance,

P 1,2,3
+,−,− = P−(P−(P+(a)a2)a3) and P+,+,−(a) = P−(P+(P+(a)a)a).
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Proposition 4.3. Let a an element of a Rota-Baxter algebra A. Then,

σ+
a =

∑
I

(−1)l(I)−1P I
(−)l(I)−1,+(a)SI(49)

=
∑

I

(−1)|I|+l(I)P I
(+)l(I)(a)ΛI(50)

= 1 +
∑
ε∈E

Pε,+(a)Rε,•(51)

and
σ−a =

∑
I

(−1)l(I)P I
(−)l(I)(a)SI(52)

=
∑

I

(−1)|I|+l(I)−1P I
(+)l(I)−1,−(a)ΛI(53)

= 1 −
∑
ε∈E

Pε,−(a)Rε,•(54)

We use in the last equation the signed ribbon basis of Sym (see [15]), which is a
slight modification of the noncommutative ribbon Schur functions: for any sequence
of signs ε = (ε1, . . . , εn−1

(55) Rε• = (−1)l(I)−1RI (R∅ = 1, R• = R1)
where I = (i1, . . . , ir) is the composition of n such that
(56) D(I) := {i1, i1 + i2, . . . , i1 + · · · + ir−1} = {1 ⩽ i ⩽ n − 1 ; εi = −}.

Proof. The expansions on the SI follow immediately from the recurrence (44)-(45).
The other ones admit an interesting explanation in terms of the free Rota-Baxter al-
gebra on one generator, which can be realized a subalgebra of the algebra of sequences
of multivariate polynomials, with pointwise addition and product.

Let x be a sequence of variables x = (x1, x2, x3, . . .) and for a sequence z, define
(57) R(z) = (0, z1, z1 + z2, z1 + z2 + z3, . . .)
This is a Rota-Baxter operator of weight 1. It generates from x the free Rota-Baxter
algebra A(x) [17, 18]. Define
(58) P+ = −R, P− = I − P+,

which are now of weight −1. Set also V (z) = (z2, z3, . . .).
The subalgebra generated by the R(xn) is isomorphic to Sym:

(59) R(xn) = (pn(0), pn(x1), pn(x1, x2), . . .) := p̃n

but there is also an embedding of QSym in A(x)+ := P+(A(x)) given by the same
rule
(60) f 7→ f̃ := (f(0), f(x1), f(x1, x2), . . .)
Its image under V gives an embedding of QSym+ into A(x)−.

It is now easy to show by induction that for I = (i1, . . . , ir),

(61) M̃I = R(M̃i1···ir−1xir ).
If we number the applications of R in the above expression of MI ,
for example

(62) M̃i1i2i3i4 = R4(R3(R2(R1(ai1 )xi2 )xi3 )xi4 )
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and replace some Rj by R′ = I + R = P−, the result is now M̃I + M̃I′ , where
I ′ = (i1, . . . , ij + ij+1, ij+2, . . .).

For example,

(63) M̃i1i2i3i4 7→ R4(R3((I + R2)(R1(xi1 )xi2 )xi3 )xi4 ) = M̃i1i2i3i4 + M̃i1,i2+i3,i4 .

Applying this to M1n , the replacement of Ri by R′i has the effect of removing i from
the descent set of 1n. Iterating, we see that replacing Rd1 , . . . , Rdk

by R′ yields all
compositions whose descent set contains the complement of {d1, . . . , dk}. The result
is therefore F̃Ī∼

Let us now look at the coefficient of SI in σ+
x . For example, for I = (i, j, k), this is

(−1)3P ijk
−−+(x) = R(((I + R)((I + R)xi)xj)xk)

= R(xi+j+k + R(R(xi)xj+k + R(xi+j)xk + R(R(xi)xj)xk)
= M̃i+j+k + M̃i,j+k + M̃i+j,k + M̃ijk

=
∑
J⩽I

M̃J

= (−1)3 ˜Mijk(−X).

Thus, the Birkhoff factorisation of the character (27) of QSym is given by

(64) φ+(MI) = M̃I(−X), φ−(MI) = V M̃I(−X),

and

(65) φ+(FI) = F̃I(−X) = (−1)|I|F̃Ī∼ , φ−(FI) = V φ+(F̃I).

Now, the coefficient of ΛI in σ+
x is M̃I(X), whence the second equalities in Prop. 4.3,

and that of RI is, up to sign, F̃Ī∼(X), which can be expressed as ±Pε,+(x). □

4.6. Combinatorial interpretation of the coefficients. Evaluating the
above expression for φ+(MI) on x = a(z), but without assuming that the ai com-
mute yields a set of words which can be characterized by certain inequalities involving
partial sums of the subscripts. Recall that

(66) σ+
a =

∑
I

φ+(MI)SI ,

where φ+(Mn) = P+(an), and for I = (I ′, ip).

(67)
{

φ+(MI) = P+(φ−(MI′)aip)
φ−(MI) = −P−(φ−(MI′)aip).

So if I = (i1, . . . , ip), the evaluation of φ+(MI) amounts to computing P−(Mi1), then
multiply by ai2 , then apply P−, then multiply the result by ai3 , and so on, up to the
last step where one applies a P+ instead of P−.

Thus, up to a global sign (−1)ℓ(I)−1, φ+(MI) is a sum of monomials in z−1 and
the ai. Such a monomial is a product of n terms of the series a which survive the
sequence of P− and the final P+. Writing this product as a word, considering that
the ai do not commute, and replacing ai with i (ignoring the power of z that can be
reconstituted in the end), we obtain a word w = w1 . . . wn over the integers such that

(68)
{

w1 + · · · + wdk
⩾ dk, for all k < p,

w1 + · · · + wi1+···+ip
< i1 + · · · + ip,
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where {d1 = i1, d2 = i1 + i2, . . . , dp−1 = i1 + · · · + ip−1} is the descent set D(I) of I.
Denote this set of words by S(I).

Let us check this observation on φ+(M112), which is

(69)
a3a3

0
z

+
4a2a1a2

0
z

+
2a3

1a0

z
+

a2a3
0

z2 +
a2

1a2
0

z2 .

It is indeed obtained from the 9 words w = w1w2w3w4 satisfying

(70) w1 ⩾ 1, w1 + w2 ⩾ 2, w1 + · · · + w4 < 4,

that are

(71) 3000, 2100, 2010, 2001, 1200, 1110, 1101, 2000, 1100,

by sending each value i to aiz
i−1.

For a word over the integers, define

(72) w1:k :=
k∑

i=1
wi

and let
(73) W (I) = {w|w1:k ⩾ k if k ∈ D(I) and w1:k < k otherwise},

so that
(74) S(I) =

⊔
J⩾I

W (J).

Thus, if one writes as an intermediate expression for φ+(MI) the sum∑
I

(−1)ℓ(I)−1SI
∑

w∈S(I)

w =
∑

I

(−1)ℓ(I)−1SI
∑
J⩾I

∑
w∈W (J)

w

=
∑

J

∑
w∈W (J)

w
∑
I⩽J

(−1)ℓ(I)−1SI
(75)

one can see that the coefficient of a word w ∈ W (J) is, up to a sign (−1)ℓ(J)−1, the
ribbon RJ .

So the expansion of σ+
a in the ribbon basis is obtained by listing the words w =

w1 . . . wn satisfying w1 + · · · + wn < n (counted by the binomial
(2n−1

n

)
). Each such w

belongs to a unique W (I), which determines its coefficient (−1)ℓ(I)−1RI , and a fac-
tor zw1:n−n

For example, here are all possible words for n = 3 with the corresponding compositions:

(76) 000 001 010 100 002 020 200 011 101 110
3 3 3 12 3 21 111 3 12 111

For n = 4, here is the complete list of all words contributing to each RI :

(77)

4 0000, 0100, 0010, 0001, 0110, 0101, 0020, 0011, 0002,
0111, 0102, 0021, 0012, 0003,

31 0120, 0030,

22 0200, 0201,
13 1000, 1010, 1001, 1011, 1002,
211 0300, 0210,

121 1020,
112 2000, 1100, 2001, 1101,

1111 3000, 2100, 2010, 1200, 1110.

We already know from previous works [15, 11] that if a0 = a, ai = b for i > 0, the
coefficient of a RI is (up to a global sign) a product of Narayana polynomials. Since
the coefficients in the general case are sums of monomials with the same sign, this
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implies that the cardinalities of the sets W (I) are products of Catalan numbers. This
can be seen directly as follows.

Recall the correspondence between Łukasiewicz words (Polish codes of plane trees)
and Dyck paths. The code of a plane tree is obtained by labelling each node by the
number of its descendants, and traversing it in prefix order.

An example would be

(78) w = 40201200010

These codes are characterized by the following property: if one forms a word u by
subtracting 1 to each entry of w, the partial sums u1:i are all nonnegative, except for
the last one which is −1.

On our example,

(79)
4 0 2 0 1 2 0 0 0 1 0
3 −1 1 −1 0 1 −1 −1 −1 0 −1
3 2 3 2 2 3 2 1 0 0 −1

This characterization means that if one replaces each integer i by the word aib,
one obtains a word wb, where w is a Dyck word(1).

On our example, this yields

(80) aaaab.b.aab.b.ab.aab.b.b.b.ab · b

The partial sums u1:i give the height of the corresponding Dyck path after the
ith b.

This description can be extended to the sets W (I). The word obtained by replacing
each entry k by akb in w encodes a lattice path starting at the origin, and ending
at (2n + 1, −1). Applying the transformation ui = wi − 1 to W (I) results into the set
of words

(81) U(I) = {u|u1:k ⩾ 0 if k ∈ D(I) and u1:k < 0 otherwise}.

Again, the partial sums u1:i of such words record the heights attained by the lattice
path associated with w after the ith b.

Represent a composition I = (i1, . . . , ip) of n as a sequence of n symbols + and −
with a − in position k if k is a descent of I, and a + otherwise.

For example, 312 is represented as + + − − ++ and 3111 as + + − − −+.

Then, the cardinality of W (I) is
∏

i Ci where i runs over the lengths of blocks of
identical signs.

For example, W (312) contains C3
2 = 8 words and W (3111) has C2C3 = 10 elements.

Indeed, the blocks of symbols + correspond to sections of the path associated
with w lying under the horizontal axis, and the blocks of − to sections where it
remains above the axis. The sections of the path determined by these blocks are
alternatively Dyck paths or negative of Dyck paths, whence the product of Catalan
numbers. Counting them by number of peaks gives back the products of Narayana
polynomials already mentioned.

(1)Here, the letter a stands for an upstep and b for a downstep.
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For example, let us decompose W (4111). The corresponding signed word is ++ + −− − +. There
should be 25 such words. Let us write these as a 5 × 5 square where words on the same column have
same first three values.

(82)

0006000 0015000 0105000 0024000 0114000
0005100 0014100 0104100 0023100 0113100
0005010 0014010 0104010 0023010 0113010
0004200 0013200 0103200 0022200 0112200
0004110 0013110 0103100 0022110 0112110

The path corresponding to 0004200 is bbbaaa.abaabb.b, and that corresponding to 0112200 is
bababa.abaabb.b. One can check that all pairs of Dyck paths are obtained. Note that in each row,
the values (w4, w5, w6) are the same if one replaces the fourth one by w4 + (w1 + w2 + w3) − 3. The
sequence of these values becomes
(83) 300, 210, 201, 120, 111,

which is indeed the set of the first three values associated with the composition 1111, and the Polish
codes of plane trees with 4 nodes except for their final 0.

5. Lie idempotents of the descent algebra
We shall now describe the expansions of several Lie idempotents of the descent algebra
on the X-basis. To this aim, we shall need several versions of the (1 − q)-transform.

Recall that in the context of ordinary symmetric functions, the alphabet X
1−q is

the set {qixj | i ⩾ 0, xj ∈ X}. It can be extended to noncommutative symmetric
functions by choosing a total order of the products qiaj , which can of course be done
in an infinity of ways, but only four of them are natural: take the lexicographic order
on the pairs (qi, aj) or (aj , qi), keeping the original order on A and ordering the qi in
ascending or descending order of the exponents. This leads to four possible definitions
of the (1−q)-transform as the respective inverses of the above transforms. In the sequel
we shall define them directly by specifying the image of the Sn.

5.1. Dynkin.
Proposition 5.1. The right Dynkin Ψ̄n = [1, [2, [3, . . . [n − 1, n] . . .]]] is the sum of all
trees
(84) Ψ̄n =

∑
|T |=n

XT .

and the left Dynkin Ψn = [. . . [[1, 2], 3], . . . , n] is the linear tree XLn

(85) Ψn = ((X• ▷ X•) · · · ) ▷ X•.

Proof. We first apply Theorem 3.2 to X = 1 − q, defined by

(86) Sn((1 − q)A) = (1 − q)
n∑

k=0
(−q)kR1k,n−k(A),

so that Ψn(A) = 1
1−q Sn((1 − q)A) |q=1, and FI(1 − q) is nonzero only for I of the

type (1k, n − k).
Every forest with k + 1 leaves has a unique maximal linear extension of this shape,

obtained by reading its leaves from right to left and then taking the postorder reading
of the remaining nodes. It has therefore

(
k
i

)
linear extensions of shape (1i, n − i) for

0 ⩽ i ⩽ k, so that ΓF (1 − q) = (1 − q)k is divisible by (1 − q)2 except for k = 1, which
means that F = Ln is a linear tree.

To deal with Ψ̄n, we need another version of the 1−q transform, denoted by 1+(−q),
and defined(2) by FI(1 + (−q)) = (1 − q)(−q)k if I = (n − k, 1k) and 0 otherwise,

(2)This strange notation is justified by the fact that addition of alphabets is not commutative,
and that X − Y is defined as (−Y ) + X, cf. [13].
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so that Ψ̄n(A) = 1
1−q Sn((1 + (−q))A) |q=1. A permutation of shape I = (n − k, 1k)

cannot be a linear extension of a tree, unless k = 0, in which case it is the identity,
the common linear extension of all trees. Thus, Ψ̄n is the sum of all trees with n
nodes. □

5.2. Eulerian idempotents. Take the binomial alphabet α defined by σ1(αA) =
σα

1 , so that MI(α) =
(

α
ℓ(I)

)
, and FI(α) =

(
α+n−r

n

)
where n = |I| and r = ℓ(I). Then,

the Solomon idempotent φ (often denoted by Ω, and also known as the first Eulerian
idempotent) is given by

(87) φ := log σ1 = d

dα

∣∣∣∣
α=0

exp αφ = d

dα

∣∣∣∣
α=0

σ1(αA),

so that the coefficient of XT in φ is

(88) d

dα

∣∣∣∣
α=0

ΓT (α).

Equivalently, with the notation of Theorem 3.2

(89)
∑

F

χF (α)XF = λ1(A)α = exp

α
∑
n⩾1

(−1)n−1φn


and for a forest of degree n,

(90) d

dα

∣∣∣∣
α=0

χF (α) = (−1)n−1(YF , φn)

so that

(91) φn = (−1)n−1 d

dα

∣∣∣∣
α=0

∑
|T |=n

χT (α)XT

which contains only trees, since φ is a Lie series.
The polynomial χT (t) is the evaluation of the tree T obtained by putting t in each

leaf, the operator “discrete integral of the product of the subtrees”

(92) Σ : tp 7→ Σt
0spδs = Bp+1(t) − Bp+1(0)

p + 1

in each internal node, and multiplying the result by (−1)n−1 (the Bk are the Bernoulli
polynomials).

Indeed, if T = B+(T1 · · · Tk), χT (t) satisfies the difference equation

(93) ∆χT (t) = χT1(t) · · · χTk
(t)

which can bee seen as follows. First, χT (t) = ⟨YT , λt
1⟩, so that

∆χT (t) = ⟨YT , λt
1(λ1 − 1)⟩ = ⟨∆YT , λt

1 ⊗ (λ1 − 1)⟩

=
∑
(T )

⟨YT (1) ⊗ YT (2), λt
1 ⊗ (X• + X•• + · · · )⟩

= ⟨YT1 · · · YTk
, λt

1⟩ since the only nonzero term is obtained for T (2) = •
= χT1(t) · · · χTk

(t).

This formula has been first obtained in [21] by a more complicated argument.
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The coefficients of the polynomial (−1)|T |χT (t) are given by the expansion of the
other Eulerian idempotents is the forests basis. This is equivalent to the description
of the “formal flow” given in [21]. The coefficient of αk in σα

1 is

(94) 1
k!

∑
ℓ(I)=k

φI

hence the coefficient of XF in

(95) e(k)
n = 1

k!
∑
I⊨n

φI

is (cf. Eq. (18))

(96) [αk]ΓF (α) = (−1)|F |[αk]χF (α).

5.3. q-idempotents and a two-parameter series. In [13], it is proved that, for
the usual definition of A

1−q

(97) φn(q) = 1 − qn

n
Ψn

(
A

1 − q

)
= 1

n

∑
|I|=n

(−1)ℓ(I)−1[
n − 1

ℓ(I) − 1

] qmaj(I)−(ℓ(I)
2 ) RI(A)

is a Lie idempotent, interpolating between the Solomon idempotent φn (for q = 1),
the two Dynkin (for q = 0, ∞) and Klyachko (q = e2iπ/n). Its expansion on the preLie
basis xτ (hence also on XT ) is obtained by Chapoton in [3].

One way to recover this result is to apply Theorem 3.2 to the virtual alphabet

(98) 1 − qt|
|1 − q

= (1 − qt) × 1
1 − q

defined by [13]

(99) Sn

(
1 − qt|
|1 − q

A

)
= (1 − qt)

n∑
k=0

(−qt)kR1k,n−k

(
A

1 − q

)
so that

(100) Ψn

(
A

1 − q

)
= 1

1 − qt
Sn

(
1 − qt|
|1 − q

A

)∣∣∣∣
t= 1

q

.

The series denoted by p in [4] is essentially σ1

(
1−qt|
|1−q A

)
. Actually, Chapoton takes

the opposite order on the alphabet of powers of q, and to recover the same coefficients,
we have to define p as

(101) p = σ1(Xq,tA) :=
→∏

i⩾0
σqi(A)

←∏
j⩾0

λ−qjt(A).

The functional equation satisfied by f(t) := σ1(Xq,tA) is then
(102) f(qt) = f(t)σqt(A)
which is equivalent to [4, (8)] after setting t = 1 + (q − 1)x.

The coefficient of τ
|Aut(τ)| in p is thus obtained by setting t = 1 + (q − 1)x

in ΓT (Xq,t).
For example, with T = 10, ΓT (A) = M12 + M11, hence ΓT (X) = M2 + M11 = h2

is a symmetric function, and

(103) h2

(
1 − qt

1 − q

)
= (1 − qt)(1 − q2t)

(1 − q)(1 − q2) = (1 + qx)(1 + q + q2x)
1 + q

.

Algebraic Combinatorics, Vol. 7 #5 (2024) 1277



F. Menous, J.-C. Novelli & J.-Y. Thibon

Dividing by 1+qx, and setting x = −1/q, one finds 1
1+q , which is indeed the coefficient

of X10 in the series Ω̄q defined in [4, (45)].

5.4. Examples. One can easily compute ΓT (A) by the recurrence (obvious from the
definition in terms of linear extensions)

(104) ΓB+(T1···Tk)(A) = B(ΓT1 · · · ΓTk
),

where B(Fσ) := Fσn = Fσ ≻ F1 (n = |T1|+ · · ·+ |Tk|+1), which yields by projection
onto QSym

(105) ΓB+(T1···Tk)(X) = B(ΓT1 · · · ΓTk
), where B(Fi1i2...ir ) := Fi1,i2...,ir+1

For example,

Γ (X) = F2 →
(α + 1

2
)

(106)

Γ (X) = F3 →
(α + 2

3
)

(107)

Γ (X) = F12 + F3 →
(α + 2

3
)

+
(α + 1

3
)

(108)

Γ (X) = F4 →
(α + 3

4
)

(109)

Γ (X) = F13 + F4 →
(α + 3

4
)

+
(α + 2

4
)

(110)

Γ (X) = F22 + F13 + F4 →
(α + 3

4
)

+ 2
(α + 2

4
)

(111)

Γ (X) = F22 + F13 + F4 →
(α + 3

4
)

+ 2
(α + 2

4
)

(112)

Γ (X) = F112 + 2F22 + 2F13 + F4 →
(α + 3

4
)

+ 4
(α + 2

4
)

+
(α + 1

4
)

(113)

which gives for the Eulerian idempotents

e
(1)
4 =

1
4!

(6X1110 + 4X1200 + 2X2010 + 2X2100) = φ4(114)

e
(2)
4 =

1
4!

(9X2100 + 6X1010 + 6X3000 + 10X1200 + 9X2010

+ 4X2000 + 4X0200 + 8X1100 + 11X1110 + 8X0110)(115)

e
(3)
4 =

1
4!

(10X2010 + 12X0200 + 6X1110 + 12X0010 + 8X1200 + 12X0110

+ 12X3000 + 12X1100 + 12X2000 + 12X1010 + 12X0100 + 10X2100 + 12X1000)(116)

e
(4)
4 =

1
4!

(3X2100 + 8X0200 + 8X2000 + 2X1200 + 4X0110 + 4X1100

+3X2010 + 12X1000 + 12X0100 + 6X1010 + 6X3000 + 24X0000 + 12X0010 + X1110)(117)

To recover Chapoton’s coefficients for the two-parameter series, one has to use the
other version of the X-basis, defined by duality with the opposite coproduct on HNCK .
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This amounts to replacing Γ(X) by Γ′(X) = ω(Γ(X)), that is,

(118) ΓT (Xq,t) = ω(ΓT )
(

1 − qt|
|1 − q

)
.

Γ′
(1 − qt|

|1 − q

)
=

(
q2x + q + 1

)
(qx + 1)

q + 1

(119)

Γ′
(1 − qt|

|1 − q

)
=

(
q3x + q2 + q + 1

)(
q2x + q + 1

)
(qx + 1)

(q2 + q + 1)(q + 1)

(120)

Γ′
(1 − qt|

|1 − q

)
=

(
q3x + q2x + q2 + q + 1

)(
q2x + q + 1

)
(qx + 1)

(q2 + q + 1)(q + 1)

(121)

Γ′
(1 − qt|

|1 − q

)
=

(
q4x + q3 + q2 + q + 1

)(
q3x + q2 + q + 1

)(
q2x + q + 1

)
(qx + 1)

(q2 + q + 1)(q2 + 1)(q + 1)2

(122)

Γ′
(1 − qt|

|1 − q

)
=

(
q3x + q2 + q + 1

)(
q3x + q2 + 1

)(
q2x + q + 1

)
(qx + 1)

(q2 + q + 1)(q2 + 1)(q + 1)

(123)

Γ′
(1 − qt|

|1 − q

)
=

(
q4x + q3x + q3 + q2x + q2 + q + 1

)(
q3x + q2 + q + 1

)(
q2x + q + 1

)
(qx + 1)

(q2 + q + 1)(q2 + 1)(q + 1)2

(124)

(125)

Γ′
(

1 − qt|
|1 − q

)
=

(
q4x + q3x + q3 + q2x + q2 + q + 1

)(
q3x + q2 + q + 1

)(
q2x + q + 1

)
(qx + 1)(

q2 + q + 1
)(

q2 + 1
)

(q + 1)2

(126)

Γ′
(

1 − qt|
|1 − q

)
=

(
q6x2 +q5x2 +2 q5x+q4x2 +2 q4x+q4 +3 q3x+q3 +2 q2x+2 q2 +q+1

)(
q2x+q+1

)
(qx+1)(

q2 + q + 1
)(

q2 + 1
)

(q + 1)

(127)

5.5. Appendix: noncommutative Ehrhart polynomials. In the introduction
of [4], Chapoton mentions that the coefficients of the series p are q-analogues of
Ehrhart polynomials (according to his definition given in [5]). These are actually spe-
cialisations of the noncommutative Ehrhart polynomials, which are defined only for
the order polytopes of posets on [n] [2, 20].

Recall the definition of the free generating function of a poset P

(128) ΓP (A) =
∑

σ∈L(P )

Fσ ∈ FQSym
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where L(P ) ⊆ Sn is the set of linear extensions of P . It is a morphism from the
Malvenuto–Reutenauer Hopf algebra of special posets towards FQSym. In the sequel,
we will only consider posets satisfying i <P j ⇒ i < j.

The order polytope QP of P is defined by the inequalities 0 ⩽ xi ⩽ 1 for i ∈ P
and i <P j ⇒ xi ⩽ xj .

The Ehrhart polynomial EQ(t) computes the number of integral points of nQ
for t = n. Moreover, (−1)nET (−n) is the number of interior integral points.

Since nQP is the intersection of the cone CP defined by xi ⩾ 0 and i <P j ⇒
xi ⩽ xj , and of a hypercube, one can form in WQSym the sum of the packed words
of its integer points. The noncommutative Ehrhart polynomial of QP is

(129)
∑

u∈C(P )

Mu = ΓP (A)

where C(P ) is the set of packed words satisfying i <P j ⇒ ui ⩽ uj , if one embeds
FQSym into WQSym by

(130) Gσ(A) =
∑

std(u)=σ

Mu.

Indeed, the linear extensions of P are precisely the permutations such that i <P j ⇒
σ−1(i) < σ−1(j).

If one specializes A to the alphabet An+1 = {a0, a1 . . . , an}, ΓP (An+1) becomes
the sum of the integral points of QP . Their number is therefore EQP

(n) = ΓP (n + 1).
The change of sign A 7→ −A of the alphabet is defined on symmetric functions by

means of the λ-ring structure: pn(−X) = −pn(X), and one defines more generally,
the multiplication of the alphabet by an element of binomial type pn(αX) = αpn(X).

These transformations can be naturally extended to quasi-symmetric functions.
One first defines them on Sym by setting σt(αA) = σt(A)α, then one extends to
QSym by defining σt(Xα · A) = σt(XA) ∗ σ1(αA). These transformations can then
be extended to WQSym by means of the internal product of WQSym∗ [16]. One
obtains

(131) Mu(−A) = (−1)max(u)
∑
v⩽u

Mv(A)

where the sum runs over the refinement order on packed words(3).
If one sets A = {a0, a1, a2 . . .} et A′ = {a1, a2, . . .}, one has

(132) (−1)nΓP (−A′) =
∑

v∈Ċ(P )

Mv(A′)

where Ċ(P ) is the set of packed words satisfying i <P j ⇒ ui < uj , otherwise said, of
the packed words of the interior points of the cone. The interior points of the polytope
nQP are obtained by evaluating on the alphabet {a1, . . . , an−1}.

The number of interior points is thus (−1)nΓP (1−n) = EQP
(−n), we have therefore

in this particular case a noncommutative lift of the Ehrhart reciprocity formula.
For example,

Γ (A) = F123 + F213 = G123 + G213

= M123 + M122 + M112 + M111 + M213 + M212

(133)

(3)v ⩽ u iff the set composition encoded by v is obtained by merging adjacent blocks of that
encoded by u.
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has as commutative image F12 + F3 and as evaluation on a scalar
(

α+2
3

)
+

(
α+1

3
)

so
that the Ehrhart polynomial of the order polytope Q = {0 ⩽ x1, x2 ⩽ x3} is

(134) EQ(x) =
(

x + 3
3

)
+

(
x + 2

3

)
= (x + 1)(x + 2)(2x + 3)

6
which is indeed the specialization q = 1 of

(135) Γ (Xq,t) =
(
q3x + q2x + q2 + q + 1

)(
q2x + q + 1

)
(qx + 1)

(q2 + q + 1)(q + 1)

The specialization x = [n]q gives the q-counting of the integral points of nQ by sum
of the coordinates. Indeed, this amounts to setting t = qn in (101), so that by [13,
Prop. 8.4]

(136) p 7→ σ1(Xq,qnA) :=
→∏

0⩽i⩽n

σqi(A) =
∑

I

MI(1, q, . . . , qn)SI ,

that is,

(137) ΓP (Xq,qn) =
∑

(x1,...,xd)∈nQ∩Zd

qx1+x2+···+xd .

For example, the 14 integral points of 2Q are

000, 001, 011, 101, 022, 111, 012, 102, 112, 022, 202, 122, 212, 222

and Γ (Xq,q2) = 1 + q + 3q2 + 3q3 + 3q4 + 2q5 + q6, as expected.

Now,

(138) (−1)3Γ (−A) = M123 + M213 + M112

which predicts correctly that for n = 3 the only interior point of 3Q is (1, 1, 2).
Setting t = q−n in (101) results into

(139) p 7→ σ1(Xq,q−nA) :=
→∏

1⩽i⩽n−1
λ−q−i(A)

so that ΓP (Xq,q−n) is obtained, in accordance with [5, Theorem 2.5], by evaluat-
ing ΓP (−A) on the alphabet {xi = q−i | i = 1, . . . , n − 1}. On our example, set-
ting x = [−3]q yields −q−4, corresponding to the interior point (1, 1, 2).
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