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Alternating sign matrices and totally

symmetric plane partitions

Ilse Fischer & Florian Schreier-Aigner

ABSTRACT We introduce a new family A,,  of Schur positive symmetric functions, which are
defined as sums over totally symmetric plane partitions. In the first part, we show that, for
k = 1, this family is equal to a multivariate generating function involving n + 3 variables of
objects that extend alternating sign matrices (ASMs), which have recently been introduced by
the authors. This establishes a new connection between ASMs and a class of plane partitions,
thereby complementing the fact that ASMs are equinumerous with totally symmetric self-
complementary plane partitions as well as with descending plane partitions. The proof is based
on a new antisymmetrizer-to-determinant formula for which we also provide a combinatorial
proof, and, although this proof is complicated, it is an important step forward as it is very hard
to find combinatorial proofs in this field. In the second part, we relate three specialisations
of A, 1 to weighted enumerations of certain well-known classes of column strict shifted plane
partitions that generalise descending plane partitions.

1. INTRODUCTION

Plane partitions were first studied by MacMahon [17] at the end of the 19th century,
however found broader interest in the combinatorial community starting in the second
half of the last century. Alternating sign matrices (ASMs) on the other hand were
introduced by Robbins and Rumsey [20] in the early 1980s. Together with Mills [18],

— s !
fa ((?Ziil))!"
then pointed out that these numbers had appeared before in the work of Andrews [3]
as the enumeration formula for a certain class of plane partitions, called descending
plane partitions (DPPs). Soon after that Mills, Robbins and Rumsey [19] observed
(conjecturally) that this formula also counts another class of plane partitions, namely
totally symmetric self-complementary plane partitions (TSSCPPs). Although these
conjectures have all been proved since then, see among others [4, 24], it is mostly
agreed that there is no good combinatorial understanding of this relation between
ASMs and certain classes of plane partitions since we lack transparent combinatorial
proofs of these results. However, Konvalinka and the first author [11, 12] have recently
established complicated bijective proofs (involving a generalisation of the involution

they conjectured that the number of n x n ASMs is given by [] Stanley
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FIGURE 1. Totally symmetric plane partitions inside a (2, 2, 2)-box,
their associated weight w(T') and the partitions g (7T').

principle) for two non-trivial alternating sign matrix result. On the one hand, they
have provided a bijective proof for the fact that nxn ASMs are counted by the product
formula given above and, on the other hand, they have constructed a bijective proof
for an identity that implies the equinumerosity of ASMs and DPPs.

One purpose of this paper is to relate ASMs to yet another class of plane parti-
tions, namely totally symmetric plane partitions (TSPPs), in a new way. This relation
is via a certain Schur polynomial expansion. Other known relations between ASMs
and TSPPs are the fact that the number of symmetric plane partitions inside an
(n,n,n — 1)-box is the product of the number of TSPPs inside an (n —1,n—1,n—1)-
box and the number of ASMs of size n, see [7], and via posets, see [23, Section 8.

The following symmetric functions are studied in this paper

An,k(rauvv7w;x> = Z W(T)Sﬂ'k(T)(X)?

TETSPP,,_1

where s, (7)(x) are Schur functions, the sum is over totally symmetric plane partitions
inside an (n — 1,n — 1,n — 1)-box, 7, (T) is a slight modification of the diagonal
of T and w(T) is a monomial in 7 u,v,w that depends on the parameters in the
Frobenius notation of mo(7T). All notations in the introduction are defined in the
following sections. For n = 3, the function As (7, u, v, w,x) is a sum over all TSPPs
inside a (2,2, 2)-box, see Figure 1, and it is equal to

v3 4 ruvzs(lkﬂ) (X) + ruvws(gri2y(x) + TU2’US(2711<3+1)(X) + r2u3$(2k+2)(x).

Our first main result states that in the special case k = 1, the above functions give
the Schur polynomial expansion of a weighted generating function for ASMs, which
has recently been introduced by the authors in [13].

THEOREM 1.1. For all positive integers n, the weighted generating function for ASMs
with respect to the weight w4 is equal to

(1) Z wa(u, v, w;x) = Ap 1 (1, u, v, w; x).

A€ASM,

The relevant definitions for this theorem can be found in Section 3. In particular,
wa(u,v,w;x) is defined in (9).

Our proof of this result is (mostly) non-combinatorially, and thus it adds another
problem to the growing zoo of (obviously challenging) bijective proof problems related
to ASMs and plane partitions. More specifically, it suggests that there is a bijection
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between the down-arrowed monotone triangles(!) from [13], and pairs of totally sym-
metric plane partitions and semistandard Young tableaux. Moreover, (1) involves
n + 3 parameters, and, therefore, we have a considerable number of equidistributed
statistics that could help in finding such a bijection. These n + 3 statistics are the
exponents of u,v,w,x1,...,x,, and it is interesting to note that, on the alternating
sign matrix side, the exponent of z; is closely related to the difference of the i-th
and (i — 1)-st row sum of the monotone triangles, while the exponent of z; on the
plane partition side is precisely the difference of the i-th and (i — 1)-st row sum in the
Gelfand—Tsetlin pattern when interpreting the Schur polynomial as the generating
function of Gelfand—Tsetlin patterns.

In the second part of our paper, we consider the case of general k and connect
the family A, ;, of symmetric functions to another family of plane partitions, namely
column strict shifted plane partitions (CSSPPs) of class k. CSSPPs of class k form a
family of plane partitions, generalising cyclically symmetric plane partitions (CSPPs)
and DPPs in the sense that they are in bijection to CSPPs for £k = 0 and to DPPs
for k = 2. Let CSSPP,, i (r,t) denote a certain generating function of CSSPPs of
class k with at most n entries in the first row; for the definitions see Section 6. Then
our second main theorem states the following.

THEOREM 1.2. Let n be a positive integer and let 1 = (1,...,1). Then,

(2) Ant1,0(r,1,1,t,1) = CSSPP,, o(r, t + 2),
(3) AnJrl,k(T; ]-v ]-v _17 1) = CSSPPn,Zk(Tv ]-)a
(4) An+1,k(r7 1,1,0; 1) = CSSPPn’k(T, 2)

For k = 1, the identity (3) is closely related a special case of [13, Theorem 2.6].
The choice of the parameters (u,v,w) = (1,1, —1) in (3) corresponds to the straight
enumeration of ASMs, while the choice (u,v,w) = (1,1,0) in (4) corresponds to the
2-enumeration of ASMs, which is related to the straight enumeration of the Aztec
diamond.

The structure of the paper is as follows. In Section 2, we recall some basics of plane
partitions and introduce the family A, ; of symmetric functions in detail. In Section 3,
we provide the definition of the symmetric generating function for ASMs and relate
the weight for ASMs to the six-vertex model. Section 4 contains Lemma 4.1, which
allows us to express certain antisymmetrizer as determinants. We provide two proofs
of this lemma: one is very short and uses linear algebra. The second is complicated and
combinatorial in nature and based on directed graphs. The latter can be found in the
appendix. While this combinatorial proof does not seem to be insightful at first glance,
its complexity might serve as an explanation why it is so hard to come up with bijective
proofs in this field, see [11] for more discussion of this point. Section 5 contains the
proof of Theorem 1.1. In Section 6, we recall CSSPPs and provide in Lemma 6.2 a
determinantal description of A, j closely related to the Giambelli identity for Schur
functions. The proof of Theorem 1.2 is presented in Section 7.

An extended abstract containing parts of Section 2-5 was published in the pro-
ceedings of FPSAC 2020 [2].

2. A FAMILY OF SYMMETRIC FUNCTIONS RELATED TO TSPPs

A partition A = (A1, ..., \,) is a weakly decreasing sequence of non-negative integers
(we deviate from the more usual definition where parts have to be positive). We
identify a partition A with its Young diagram, which is a collection of left-justified

(DThese are certain decorated monotone triangles. Monotone triangles are in easy bijective cor-
respondence with ASMs.
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(Olk + 1) (1k +1) (1,00k 4+ 1, k)

FIGURE 2. All k-tall partitions of size 3 in Frobenius notation to-
gether with their associated Dyck paths.

4331
421

FIGURE 3. A plane partition inside a (3,4,4)-box, with 0 entries
omitted, and its graphical representation as stacks of cubes.

boxes with \; boxes in the i-th row from the bottom (using French notation). The
conjugate X' of \ is the partition obtained by reflecting the Young diagram along the
y = x axis, i.e., A, = |{j : \; > i}|. The Durfee square of a partition X is the largest
square which fits into the Young diagram. The Frobenius notation of a partition A
is (M —1,..., 0 = IA] —1,...,A\] = 1), where [ = max;{\; > ¢} is the length of the
Durfee square of A.

Let k be a non-negative integer. A k-tall partition® X of size n is a partition
A= (A1, Apgk—1) with Ay < n — 1 that satisfies A\; + k < A, whenever \; > i. See
Figure 2 for an example. If A has Frobenius notation (ai,...,a|by +k,...,b + k),
then A is a k-tall partition iff a; < b; for all 1 <7 < [. Let N denote a unit north-step
and E a unit east-step. The map

(al,...,al|b1Jrk,...,lerk) —
Nbl+1Eal+1Nbl_1fbl Eal_lfal . Nb17b2Ea17a2anb171E’nfa171

and (|) — N"E™ is a bijection from k-tall partitions of size n to Dyck paths of
length 2n.

A plane partition m inside an (a,b,c)-box is an array (m; ;)igi<a,1<j<p Of non-
negative integers less than or equal to ¢, with weakly decreasing rows and columns,
ie., m; = mjy1 and m;; = w1 ;. We can visualise a plane partition 7 as stacks
of unit cubes by putting m; ; cubes at position (3, ), see Figure 3. The visualisation
allows an equivalent definition of plane partitions as follows. A plane partition 7 inside
an (a, b, c¢)-box is a subset of [a] x [b] x [¢], where [n] = {1,...,n}, such that (¢,5,k) € 7w
implies (i',5',k") € 7 for all ' < 4,5 < j,k" < k. A plane partition is called totally
symmetric if for every (i,j,k) € m, all permutations of (i,j, k) are also elements
of m. We denote by TSPP,, the set of totally symmetric plane partitions (TSPPs)
inside an (n,n,n)-box. Let T = (T} j)1<i,j<n be a totally symmetric plane partition,
diag(T) = (T3,:)} <;<n its diagonal (note that we conjugate) and (ay,...,ailb,...,b)
the Frobenius notation of diag(T"). The partition diag(7T") describes the shape which

DFor k = 0, these objects were defined in [21, Ex 6.16(bb), p.223] without a name, and for k = 1
in [2] as modified balanced partitions.
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FIGURE 4. Running example in the proof of Proposition 2.1 (left)
and its diagonal diag(T") (right), with the corresponding edges also
coloured in green.

is obtained by intersecting the visualisation of T as stacks of cubes with the z = y
plane. See Figure 4 right for an example. We associate with T the partition 7 (T") =
(a1,...,a1lby + k,...,by + k) of size n+ 1. As a consequence of the next proposition,
we obtain that 7 (T) is a k-tall partition of size n + 1.

PROPOSITION 2.1. Let A = (a1,...,a1lby + k,..., by + k) be a k-tall partition. The
number of totally symmetric plane partitions T with 7 (T) = X is given by

det <(b>) |
1<i,5<1 a;

Proof. This is a classical application of the Lindstrom—Gessel-Viennot theorem [15,
16], see also [22]. We sketch the proof on the example in Figure 4.

TSPPs of order n clearly correspond to lozenge tilings of a regular hexagon with
side lengths n that are symmetric with respect to the vertical symmetry axis as well
as rotation of 120°. By this symmetry, it suffices to know a sixth of the lozenge tiling.
In our example, we choose the sixth that is in the wedge of the red dotted rays.
Now observe that the positions of the horizontal lozenges in the upper half of the
vertical symmetry axis are prescribed by the b;’s, while the positions of the vertical
segments in the lower part of the vertical symmetry axis are prescribed by the a;’s.
Both are indicated in green in Figure 4. By the cyclic symmetry, these green segments
have corresponding segments on the red dotted ray that is not contained on the
vertical symmetry axis, again indicated in green in the figure. Now the lozenge tiling is
determined by the family of non-intersecting lattice paths that connect these segments
with the horizontal lozenges in the upper half of the vertical symmetry axis, indicated
in blue in the figure. O

Let A = (A1,...,An) C (n™) be a partition with Frobenius notation (aq,...,q|
bi,...,b;) and define A\® = (A{)1<i<n by A 1_; = n— A;. Then A° is the complement
of A inside the partition (n™) in the sense that we can fill a square of side length n
by the Young diagrams of A and A¢ without overlap, see Figure 5 for an example.
Let (a§,...,a$|b5,...,b%) be the Frobenius notation of A\°. Every box of the z = y
diagonal of the n x n square is either in the Durfee square of A or of A\°. Hence we

have [ 4+ L = n. Using induction on n, one can show the equality of the following sets.

(5) {ay,...,a;,bf,...,b5} ={af,...,a%,b1,...,0;} ={0,...,n— 1}

Algebraic Combinatorics, Vol. 7 #5 (2024) 1323
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FIGURE 5. The partition A = (6,6,5,5,3,1) in the bottom left and
its complement A\¢ = (5,3,1,1) in the top right. Their corresponding
Durfee squares are coloured in blue or red respectively.

For a totally symmetric plane partition T' = (7} j)1<i,j<n inside an (n,n,n)-box de-
note by 7°° the complement of 7', defined by

T¢ = (n = Tht1-in+1-5)1<i j<n

The map T — T° is an involution on totally symmetric plane partitions inside an
(n,n,n)-box which satisfies mo(T¢) = mo(T)¢. Together with Proposition 2.1, this
implies

b; b¢
(©) det (( )); det (())
1<, i<t \ \ a; 1<i,j<n—1 aj

Denote by A, x(r,u,v, w;x) the symmetric polynomials in x = (z1,...,Tnir—1)
defined by
(7) An,k(rau»vvw;x) = Z w(T)Sﬂ'k(T) (X)’
TETSPP, _,
where

! 1
Z(a,+1) (g)_Z(bH‘l) Z(bi—ai)
(8) OJ(T) = T u=1 i=1 wi=1 ,

if diag(T") has Frobenius notation (aq,...,a|b1,...,b;). We list this family of sym-
metric functions for n < 4.

A g (r,u,v,w, %) =1,

Az 1 (7, u, v, w, tX) = v+ ru s (X),
Az g (r,u, v, w0, 1x) = 02 + ruv? 5001k (X) + ruvw s(o|p41)(X) + rulv S5(1]1+k) (%)
x),

+ ruvtw 3(0\k+1)( x) + ru*vt s gy (%)

)
(x

+ru? S(1,0|1+k,k)

Ay g (r,u,v,w, %) = 08 + run® S(0/k) (X

+ ruvdw? S(0k+2) (X) + 2ru?vdw 8(1\k+2)( x) + ruded 5(2/k+2)(X)
)+ 2r2udv? ws(l olk+2,k) (X)

2.4 2 3
+ 17U 52, 01k12,k) (X x) + r*ulvw? 5(1,0/k+2,k+1)(X)

2,33
+ UV S(1,01k+1,k) (X

2,4
+ rfuTvw 8(2,0|k+2,k+1)(x) +7‘ u® U S(2,1|k+2,k+1) (X)

3,6
+ 17U 8(2,1,0)k+2,k+1,k) (X)-

Algebraic Combinatorics, Vol. 7 #5 (2024) 1324
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000100 J
010000 2 4
001-110 2 3 5
1-10001 1 8 5 6
010000 1 2 3 5 ¢
000100 1 2 3 4 5 6

FIGURE 6. An ASM of size 6 and its corresponding monotone tri-
angle, where the special entries are written in bold and red, and the
right-leaning entries are in italic and blue.

3. THE SYMMETRIC GENERATING FUNCTION FOR ASMS

An alternating sign matriz, or ASM for short, of size n is an n X n matrix with
entries —1,0, 1 such that all row- and column-sums are equal to 1 and in all rows and
columns the non-zero entries alternate. See Figure 6 (left) for an example of an ASM
of size 6. We denote by ASM,, the set of ASMs of size n. Following the convention
of [20, Eq. 18] and [9], we define the inversion number inv and the complementary
inversion number inv’' of an ASM A = (a; ;j)1<i,j<n Of size n as

inv(A) = Z Qi 5 Q5 and inv’(A) = Z Qi Qg g7y
1</ <i<n 1<’ <ign
1< <<n 1<<y'<n
and denote by N'(A) the number of —1’s of A. The number of —1 entries, the inversion
number and the complementary inversion number of an ASM A of size n are connected
by
N(A) + inv(A) + inv’(A) = <Z>
which follows immediately by relating these statistics with the corresponding statistics
on monotone triangles; this is described after Theorem 3.2. It is easy to see that there
is a unique 1 entry in the top (resp. bottom) row of A. We denote by pr(A) the
number of 0 entries left of the unique 1 in the top row, and by pg(A) the number of 0
entries right of the unique 1 in the bottom row. For the example given in Figure 6,
the five statistics are (N (A),inv(A),inv'(A), pr(A), ps(A)) = (2,6,7,3,2).
A monotone triangle with n rows is a triangular array (m; ;)i1<j<i<n of integers of
the following form,

Mnp—-1,1 mMnp—1,2 te T Mp—1,n—1
Mn,1 Mn,2 Mnp,3 ce ce Mp,n

)

such that the entries are weakly increasing along northeast and southeast diagonals,
ie., miy1; < my; < Myt j+1, and strictly increasing along rows. Given an ASM A
of size n, we obtain a monotone triangle by recording in the i-th row from top the
indices of the columns with a positive partial column sum of the top i rows of A.
For an example see Figure 6. It is well-known that this map is a bijection between
ASMs of size n and monotone triangles with bottom row 1,2,...,n. Each entry of a

Algebraic Combinatorics, Vol. 7 #5 (2024) 1325
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monotone triangle M = (m; j)1gj<i<n Dot in the bottom row is exactly of one of the
following three types.

o An entry m; ; is called special iff m; 1 ; < my; < mipr jy1-
o An entry m; ; is called left-leaning iff m; ; = miy1 ;.
o An entry m; ; is called right-leaning iff m; ; = mit1 j41.
For 1 < i < n —1, we define the following statistics,
(M) = # of special entries in row i, s(M) = # of all special entries,

[;(M) = # of left-leaning entries in row ¢,  I[(M) = # of all left-leaning entries,
r;(M) = # of right-leaning entries in row i, (M) = # of all right-leaning entries,

and set so(M) = lo(M) = ro(M) = 0. In our running example in Figure 6, these
statistics are

(si(M))1<ics = (0,1,1,0,0), s(M) =2,
(li(M))1§1<5 = (07 1,2, 173)7 l(M) =T,
(T‘i(M))1<1'<5 = (1,0,0,3,2), T(M) = 6

Finally, we set for 1 <i < n

1—1
dZ(M) = me — Zmi_m —+ Ti_l(M) — ll_l(M) — ].,
- =1

Jj=1

~

and define the weight wys(u, v, w;x) of a monotone triangle as

(9) war (u, v, w; x) = u" Myl M) Hm?i(M) (uz; +w + vy L)1 (D)

3

where x = (1, ...,%,). In our running example in Figure 6, the weight way (u, v, w;x)
is given by

wir (u, v, w; x) = o wdrdeieladal (urs +w + vrg ) (uay +w + vyt
REMARK 3.1. The weight wps(u, v, w;x) is related to the weight Wy(M), which is
defined in [13, p. 17], by the relation

w (u, v, w;x) = Wo(M'),
where M’ is the monotone triangle obtained by subtracting 1 from all entries in M.

For an ASM A, we set w (u, v, w;X) = wpr(u, v, w;x), where M is the correspond-
ing monotone triangle. We call the generating function of ASMs with respect to the
weight wa (u, v, w;x) the symmetric generating function for ASMs since, as a conse-
quence of the next theorem, it turns out to be a symmetric polynomial in x. Namely,
as a special case of [13, Theorem 3.1], we have the following explicit formula for the
generating function.

THEOREM 3.2. Let E, denote the shift operator which is defined as E, f(x) = f(x+1).
The symmetric generating function for ASMs of size n is
(10)

Z wa(u, v, w;x) = H (uEAi + wEAiE;jl + vE;jl) 5 yehr) (X)

A€eASM,, 1<i<j<n =il

Algebraic Combinatorics, Vol. 7 #5 (2024) 1326
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(1) (2) 3) (4) (5) (6)

F1GURE 7. The six possible configurations at a vertex.

Let A be an ASM of size n and M its corresponding monotone triangle. By com-
paring the statistics for ASMs and monotone triangles, we have

inv(4) = r(M),
inv'(A) = I[(M),
N(A) = s(M),
pr(A) = di(M),
pp(A) = du(M),

where the last two identities follow directly from the definitions and the first three are
proven in [13]. Since the bottom row of M is 1,2,...,n, there are no special entries in
row n — 1. Further there are no special entries in row 0, since this row has no entries.
Therefore, the symmetric generating function specialises to

(11) Z wa(u,v,w;x)

A€EASM,, To=... =, 1=l

- Z (u+v+ w)N(A)uinv(A)Uinv’(A)xfT(A)xZB(A).
A€ASM,

Theorem 10 arose naturally from a constant term formulation of the operator
formula in [8] for monotone triangles with bottom row 1,2, ... n (it is generalised to
arbitrary bottom rows in [13, Theorem 3.1]). The purpose of the following digression
is to relate it to a function that appeared in connection with the six-vertex model.
This interesting relation was brought to our attention by a referee of the FPSAC
submission, and we wish to thank her/him for sharing this insight.

A configuration of the siz-vertex model of size n is an orientation of the n x n grid
with n external edges® on each side such that for each vertex the indegree equals
the outdegree. We restrict ourselves to configurations in which the external edges on
the top and bottom are oriented outwards, and on the left and right are oriented
inwards; this is called the domain wall boundary condition (DWBC). It is well known
that configurations of the six-vertex model with DWBC are mapped bijectively to
ASMs by replacing the fifth vertex configurations in Figure 7 by a 1 entry, the sixth
configuration by a —1 entry and the other configurations by 0 entries. For an example
see Figure 8. For an ASM A, we denote by v;(A) the number of configurations of
type (1) and (2) in the i-th row of the corresponding six-vertex configuration and by
i (A) the number of configurations of type (6) in row 4. In [6], Behrend considered

(3)An external edge is an edge with only one incident vertex.

Algebraic Combinatorics, Vol. 7 #5 (2024) 1327
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FIGURE 8. A configuration of the six-vertex model with DWBC and
its corresponding ASM.

the following generating function of ASMs

Xn(u,wy 1, ..., 2p)
= Zi’Q’A."n(U,w;.’IIh e ,,Tn;ul% + (w —u-—= 1)56'1 + 17 e ,U.’L’Z + (w —u- 1)$n + 1)
= Z umv(4) H xfi(A) (uz? + (w —u — 1)z; + 1)‘“(’4).
AEASM,, i=1

For the definitions of X,, and Z,, see [6, Eqs. 67, 70, 73] and, for the statistics v; and
w; compare also to [6, Eqs. 113, 2]. In the following, we show that the function X,
satisfies

(12) Z wa(u, 1,w;x) = X, (u, 1 + u 4+ w;x).
A€eASM,

For an ASM A, let M = (m; ;) be the monotone triangle associated to A. The
equation (12) is an easy consequence of the identities s;_1 (M) = u;(A) and v;(A4) =
ci(M )—s;—1(M). The first identity follows directly from the bijections between mono-
tone triangles, ASMs and configurations of the six-vertex model. In the remainder of
this section, we prove the second identity.

Let ag, . ..,a; (resp. by, ...,b;) be the positions of the 1 (resp. —1) entries in row i.
By the definition of the bijection between monotone triangles and ASMs, we have

{ao, ey al} = {mm, . ,mm} AN {mi_l,l, e ,mi_17i_1},

{br, ..., by ={mi_11,...,mi—r i1} N {maa, ... ma}

Note that the second equality implies [ = s;_1(M). In the corresponding six-vertex
configuration, the vertex configurations of type (1) correspond to 0 entries in the ASM
that satisfy the following two conditions: (a) they are left of the first 1 or between
a —1 and the following 1, and (b) the entries in the same column and above the 0
sum to 0. There are (ag — 1) + Z;:l(a]— — b; — 1) entries satisfying condition (a).
On the other hand, it is not difficult to see that the 0 entries which satisfy (a) but
not (b) are exactly in the columns corresponding to a left-leaning entry of M in row
i —1, i.e., there are [;_1 (M) such entries. Configurations of type (2) correspond to 0
entries between a 1 and the following —1 entry with the property that the entries
in the same column and above the 0 sum to 1. These positions correspond to the
right-leaning entries in M in row ¢ — 1, hence there are r;_1 (M) such entries. Putting
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this all together, we have
l
vi(A) = (a0 — 1) + Y _(a; —b; — 1) = Li_a (M) + ri_1 (M)
Jj=1

= me — Zmi_m — Si_l(M) —1- ll_l(M) +7’i_1(M) = (Z(M) — Si_l(M).

4. AN ANTISYMMETRIZER TO DETERMINANT FORMULA

In this section we provide a fundamental tool for the proof of Theorem 1.1. We present
both a non-combinatorial proof next and a combinatorial proof for it in the appendix.
The first application of the lemma is indeed the proof of the Theorem 1.1, however
more applications are given in [10, 13].

LEMMA 4.1. Let n > 1, and X = (X1,...,X,),Y = (Y1,...,Y,,) be indeterminants.
Then
ASyn x| = i_ xd
s ] 1 0] - (7).
1<i<j<n

where @n is the antisymmetrizer with respect to two sets of variables which is

defined as

ASym|f Z sgn o f(Xo(1)s -+ s Xo(n)i Yo(1)s -« s Yo(n)):
ocES,
Proof. Since we aim that proving the equality of two polynomials in Xi,..., X,,
Y1,...,Y,, standard arguments imply that it suffices to consider the case when
X1,..., X, Y1,...,Y, are algebraically independent. In particularly, we may assume

detrcijan (V7 = X7 ) # 0, which will be useful below.

The proof is by induction with respect to m. The result is obvious for n = 1.
Let L,(X;Y), R,(X;Y) denote the left- and right-hand side of the identity
in the statement, respectively. By the induction hypothesis, we can assume
that Ln—l(Yl; ey Yn—l;Xla ‘e aXn—l) = Rn—l(Yh PN ,Yn_l;Xl, SR ;Xn—1)~ We
show that both L,(X;Y) and R,(X;Y) can be computed recursively using
Lnfl(Xl, e 7Xn71; Yl, ey Ynfl) and Rnfl(Xl, e 7Xn71; Yl, ey Ynfl), respec-
tively, with the same recursion. For the left-hand side, we have

(13)  La(X3Y)

=> (-1 (H(y,c — X,-)) Lo (X1, Xay o X V1, YY),
i=1

k=1
where 5(\1 and }Z means that X; and Y; are omitted. In order to deal with the right-
hand side, we first observe

n

(14) SV = XDen—j(-Y1,...,=Y5) H Yy —

=0

where e;(Y1,...,Y,,) denotes the j-th elementary symmetric function. Note that the
summand for j = 0 on the left-hand side is actually 0, and can therefore be omitted.
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Now consider the following system of linear equations with n unknowns ¢;(X;Y),
1<j<n.

n n
> (= X))ei(X5Y) H Vi — X;), 1<i<n.
j=1 k=1
The determinant of this system of equations is obviously R,,(X;Y) and can be assumed
to be non-zero. By (14), we know that the unique solution of this system is given by

¢ (X;Y) = e,—;(=Y1,...,-Y,). On the other hand, by Cramer’s rule,
Y/ - X7, if j <n
det B o
1<i,j<n ()" 'V —Xy), ifj=n
(XY) = k=1
W) Ra(7)
The assertion now follows from ¢, (X;Y) = eg(—Y1,...,—Y,,) = 1, since expanding the
determinant in the numerator with respect to the last column yields the recursion (13)
with L, _1 replaced by R,_1. O

5. THE SCHUR EXPANSION OF THE SYMMETRIC GENERATING FUNCTION

In order to prove Theorem 1.1, we first derive an explicit expansion of the symmetric
generating function into Schur polynomials. Second, we prove that the coefficients of
each Schur polynomial satisfy the same recursion as the right hand side of (1). Let
ASym denote the antisymmetrizer, i.e.,

ASym, f(x) = Z sgn(o) - f(To(1)s- - To(n))-
ocES,,

We can rewrite the classical bialternant formula for Schur polynomials using the
antisymmetrizer and obtain for the operator formula in (10)

H (uEAl. + wE,\z.E;j1 + vE;jl) 5(Amyehr) (X)

,,,,,

1<i<j<n N1
P W |
ASym, | [ =}
_ — =1
- H (uEAi + wEAiE/\1 + vEl\vl) !
o 7 g I (zj—)
Isi<jsn 1<i<j<n
=il
1 1 T Atiel
ASym, 11 (uE,\i +wEy\E " +vE, ) NI EA
1<i<j<n ! / i=1
IT (zj—)
1<i<jsn

Ai=i—1

Since applying Ey, to :rj’ has the same effect as multiplication by z;, we obtain further

ASym, [ T (ux+ wxixj_l + vzj_l) 11 z?(i_l)]

1<i<j<n i=1

(15)
(zj — ;)
1<i<j<n

Algebraic Combinatorics, Vol. 7 #5 (2024) 1330



Alternating sign matrices and totally symmetric plane partitions

By multiplying the (4,)-th factor in the product with z;*
—(n—1)

%

z; and multiplying the

antisymmetrizer by the symmetric function ], x (va; !4 w4 ux;), we arrive at

n ) .
H Z; SUYAY o
; =+ w + um; (x5 — @)
i=1 \ % AL J
1<i<j<n
. . ASym, I1 (I +w + uxl)
H .’E,L- 1<i<jsn
)
S\ ot wtuw (x; — ;)
= : 1<i<j<n

where we replaced z; by z,41—; for all ¢ in both the numerator and denominator. We
apply Lemma 4.1 for X; = —w — uz; and Y; = vx;l, and obtain

deti<i, j<n (f?fjpj(ffi))

H1<i<j<n($i - mj)

(16)

)

where

joJ1

vz — (—w — ux) »
() =2/t = E 2k (—w — ux)koI kL
p;(@) (ve=! +w + ux) P ( )

To emphasise the general principle used to express the determinantal expression
in (16) as a sum of Schur polynomials, we consider ¢;(x) to be a family of poly-
nomials g;(z) :== >, ajrz¥. Using the linearity of the determinant in the columns,
we have

det (27 7q;(z) n
1<ij<n 8
(17) 0 = > 1T @ik | S0k (),

(zi — z5) i
I<ivien Kok >0 \j=1

where we used the well known extension of Schur polynomials to arbitrary sequences

L= (Ly,...,Ly,) of non-negative integers via
Lj+n—j
det (371 i ])
1<i,5<n
sp(x) = .
(i — ;)
1<i<j<n

It can be checked that the generalised Schur polynomial s (x) is either equal to 0
or sp(x) = sgn(o)sx(x) where A = (A1,...,\,) is a partition and o € S, is a
permutation such that L; = A,;) +j — o(j) for all 1 < j < n. It follows that (17) is
equal to

(18) > sn(x) [ D sen(0) [T @i tiot) | = D_sa(x) det (ajx4-4),
i=1 X

1<i,5<n
h\ oS, SXYAS

where the sum is over all partitions A. By applying (18) to the family of polynomials

j—1 j—1
j k )
pi(z) = Z ¥ (—w — uz)Fl R = Z Z(_l)k <l>xk+lulvgk1wkl7
k=0 k=0 [>0
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we obtain
Z WA(uavaw;X)
AEASM,,
:ZS)\X det Z Z (—=1)* F uly? ~R Lyl
1<i,5<n l
A k=0 1>0
kA-l=Xi4j—i
Jj—1 k
= sx(x) det —1)k itk k=l 2kt A=y )
Z A )1<i,j<n kz:%( ) (/\i—l-j—i—k‘)

We denote by m; ;(A;) the (¢, j)-th entry of the matrix in the above determinant.
An entry m;1(\;) = (/\1--;-01—1‘)“)\ itl=igyi=Ai=1 in the first column is 1 iff \; = i — 1
and 0 otherwise. Let [ be the side length of the Durfee square of A. The only possible
part of A satisfying A; = ¢ — 1 is the (I + 1)-st. Hence we assume for the rest of the
proof A\;41 = . By expanding the determinant along the first column, we obtain

) = (=1)42 L
1<(liejt n (mlﬂ ()‘l)) ( 1) 1@92&—1 (mz,j) )
where (m; ;)1,<.i,j<n—1 denotes the matrix obtained by deleting the first column and
the (I + 1)-st row of (m; ;(\;))1<i,j<n- For 1 < i < [, in which case we have \; > i,

we can rewrite m i, 8s

J
m/ L= k )\i+(j+1)717kv(j+1)7k71w2k+27)\i7(j+1)
" kZ:O( Y Ait(j+1) —i—k
7j—1
:Z k+1 )\+g i—k g k—1 2k+1+i7)\ifj
k=0

<<A ik )*(ij-i—k—l))

= —wm; j(Ai) —um; (A —1).

For 7 > [ on the other hand, i.e., A\;11 < %, we can express m analogously as

;o _ k
=2 1)k(Ai+l+<j+1>—<z'+1>—k)

w gt =) =k, G+ D) =k =1, 2k+(i4+1) = Aip1—(G+1) — Umi7j(/\i+1)’

where the sum has been extended, which is allowed since ( )\*jl_i) = 0. Summaris-
ing, we denote by ¢, » the coefficient of s)(x) in the symmetric generating function
> acasm, wa(u,v,w;x). Then

Cn\ =

(1) det ) (m/_ ) — (1)} det ({—wmi,j(/\i) —um; j(A — 1), i< l)

1<ij<n=1 \ | vm; ;(Nit1), i>1
D S VTSRS S
(f1,es f1)€{0,1}

with c'”f*l’()\l*flpu,)\l7fl’)\1+2’~~~,)\n) =0 if (/\1 — fl, ceey )\l - fh )‘l-‘r?a ey )\n) is not a
partition, where the equality follows from the linearity of the determinant in the rows

Cn—1,(A1=f1, s A= f1, M 0425-,An) 0
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and choosing f; = 0 iff we select the first term in row 4. Using Frobenius notation for
A= (a1,...,qb1,...,b;), the above recursion can be rewritten as

Cn,(at,...,ar|b1,...,br)
1 l
— } : wiy Fign =11, 1= fi

(f1sef1)€{0,1}

Cn—1,(a1—f1,;a—filbi—1,...b—1)>

Where Cnfl,(al,‘..,a,_l,71\b1,‘..,bl_1,0) iS deﬁned as c’ﬂ*l’(alpuaal—lIblguwbl—l) N
Denote by dy x the coefficient of sy(x) in Ay 1(1,u,v,w;x). For A = (a1,...,q]
b1,...,b;), Proposition 2.1 implies

T b — 1
dn,(a1,...,az|b1,...,bz):Uzizl(al+1)v(2)izi:1blwzizl(blfliai) det <(]a‘ >)

1<i,j<l
= uZi:l(ai+1)v(g)_Zi=1 bi’wZi‘:l(b"’_l_ai) det ((b] B 2) + (b] B 2))
1<i,5<! a; a; — 1
= Z uZi:l f'ivn_l_lwl_Zizl fid
(fl,...,fl)G{O,l}l

where we used the linearity of the determinant in the last step. The assertion follows
by induction on n since both ¢, x and d,  satisfy the same recursion and the induction
base can be checked easily. This proves Theorem 1.1.

nfl,(alffl,...,alffl|b171,...,b171)7

6. A, AND COLUMN STRICT SHIFTED PLANE PARTITIONS

Recall that a strict partition is a sequence A = (\1,...,\,) of strictly decreasing
positive integers. The shifted Young diagram of shape A has A; cells in row ¢ and each
row is indented by one cell to the right with respect to the previous row. The shifted
Young diagram of the strict partition (6,5,2) is as follows.

|

A column strict shifted plane partition (CSSPP) is a filling of a shifted Young diagram
with positive integers such that rows decrease weakly and columns decrease strictly.
Let k be an integer, then a CSSPP is said to be of class k if the first part of each row
exceeds the length of its row by precisely k. The following is a CSSPP of class 2.
887632
75211
41

For a CSSPP 7 of class k, we define p(m) as the number of rows of 7 and pu(7) as
the number of entries 7; ; < k + j — 4. In the above example, the two statistics are
p(m) = 3 and u(w) = 6, where the entries contributing to u(m) are coloured blue. We
define the function CSSPP,, (r,t) as the generating function

CSSPP,, 4 (r,t) = Y rPmpn(m),
where the sum is over all CSSPP « of class k whose first row has at most n entries.
Using a lattice path description for CSSPPs and the Lindstréom—Gessel-Viennot the-

orem, we obtain the following determinantal formula for CSSPP,, ;(r,t). A detailed
proof can be found in [1, Lemma 5.1].
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PROPOSITION 6.1. Let n be a positive integer and k a non-negative integer. Then

CSSPPnyk(T, t) = 0<i%e<tn—1 67,] + TZ ( ) (; IZ) !

120

It is crucial for the proof of Theorem 1.2 to express A, x(r,1,1,%x) as a de-
terminant. The next lemma gives a determinantal expression for the more general
Ay g (r,u, v, w3 x).

LEMMA 6.2. Let n > 2 be an integer, then

. _ 1,.7+1 3
(19)  App(ru,v,w;x) = 0@7(}4%‘5”_2 (( 1)J ! (]) + rutt i 5(i|j+k)(x)> .
Proof. We denote by [0,n] = {0,1,...,n}. Expanding the determinant by the Leibniz
formula yields

n—2

o(2)—t,0(t)+1 i 41, o(i)—12
) 3 sl [T (-0 w0 () O s )
0€S0,n—2] =0
= sen(o) [ [ (WHIWJU)*Z—S@\U@)M)(X))
[0 ] S[ —2] €A
_qye—ige1( _
« T (coromwon (g
1€[0,n—2]\A
For A = {ay,...,a;} € [0,n — 2] with a; > ... > a; denote®™ by B¢ =

{65,...,65_1_;} =[0,n—2] \ A the complement of A where b{ >...>bS_, ,. Fora
permutation o € Sjg,,_g) denote by by > ... > b the elements of the image of A and
by af > ... > af_;_; the elements of the image of B°. Define m € S; and 7 € S,_;—1
via o(a;) = by and o(b§) = a ;- It is not complicated to see that the sign of o is
given by
sgn(o) = sgn(m) sgn(7) H (—1)”(i)*i.
i€[0,n—2]~ A

For a given set A C [n — 1], the permutation o is uniquely determined by {b1,...,b;}
and the permutations 7, 7. Note that A = (ay,...,a|b1,...,b) yields a partition
inside (n — 1)"~!. Hence we can rewrite (20) as

Z Z Z sgn(m) sgn(r)

A=(a1,...,ar|b1,... bl)C(n—l)"*1 mES, TESn—_1-1

n—I{—1 be
b a a1 @
XHW D78 (1 by ) (X H o ( >

"'( )
= Z rluZizl ai+1)v(2)_2i:1(bi+1)wZi:l(bi_ai)

A=(a1,...,a;|b1,....b)C(n—1)"—1
Be
x det b x det ¢
1<¢,j<l(s(a‘|bﬂ+k)( ))1<i,j<n—l—l <a§> ’

where we used Y .| - Yag +1) + Zézl(bi +1) = (3) in the last step. Using (6) and
the Giambelli 1dent1ty which states
S(ay,.arlbytk, bk (X) = 1<%t<l (S(as b+ (X)) 5

(4)The notation is used in a similar way as in (5).
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we can rewrite the above as

> P )y (1) i), S (bima)

)\——(al,...,al\bl,...,bl)C(n—l) =1
X 8 (X) det ‘
(al,...,a1|b1 k,..., bl k‘) 1<l,]<l J i

which is equal to A, (7, u,v,w;x) by Proposition 2.1. O

7. PROOF OF THEOREM 1.2

Using the hook-content formula, we can express the evaluation of the Schur polynomial
S(alp) (%) at (z1,...,2,) = (1,...,1) as

n+k—1+a\/a+b
S(alp) (T1, -+ s Tnk1)|_q = atbil . )

Together with Lemma 6.2 we obtain

(21) App(r,u,v,w;1)

= det ((—1)'j_ivj+1 (2) + rut (n i 1) (z it k)) :
0<i,j<n—2 j i+i+k+1 1

We also need the following transformation identity for a binomial sum for the proof
of Theorem 1.2.

LEMMA 7.1. Let a, b, c be non-negative integers with a,c < b and x a variable, then
b c
N (z+1 c+b+s+1\[/z+a+s\[z+c
22 = _1 C—S.
@ ()05 =) C) e

Proof. Using hypergeometric notation, we can rewrite the left-hand side as

c—b71,a—b1 b\ /fz+b
c)\x+a/)’

F:
° 2[ —b, —b—=x
We apply the 3Fy-series transformation [14, (3.1.1)]

a, b, —n d—a, b, —n (e—0)n
F: 1| = 3F: 1| —
s 2[ d, e } 3 2[d71+b—e—n } (€)n
and obtain
—c, 1, a—b b\ [z+b+1
3Fy 1 )
b, 24+a+=x c/\xr+a+1

By further applying the terminating form of the 3Fy-series transformation [5, Ex. 7,
p. 98]

-n, a, b —n,e—a,e—b|l |(d+e—a—0b),
F: 1| = 3F: 1|—
’ 2|: d, e ‘ :| 32|:67d+6ab’ :| (d)n ,
we have
—c, 1+a+z, 24+b+=x r4+c\[/xz+b+1 .
3fh 1 (=1,
24a+z, 1+ c rz+a+1
which is the right-hand side of (22) expressed as a hypergeometric series. O
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7.1. PROOF OF (2).

Proof. The assertion follows from the matrix identity

((%)tj“”(t + 1)t + 2)”“)
J 0< 1,,]<n 1
(== () e (52 (T))
n—yj—1 ¢ 0<i,j<n—1
v\ (J
(5,] —l—rz (z) (z) (t +2)7 )
0<i,j<n—1
. <<Z.)tj+1n(t+2)ni1) )
J 0<i,j<n—1

Indeed, the first and fourth matrices are lower triangular matrices and their corre-
sponding determinants are both equal to [[I') t/1="(¢ 4 2)"~*~!. The determinant
of the second matrix is equal to A,410(r,1,1,%;1) by (21) and the determinant of the
third matrix is equal to CSSPP,, o(r,t + 2) by Proposition 6.1. Hence the assertion
follows by taking determinants on both sides of the matrix identity.

To show the above matrix identity, we first use matrix multiplication and obtain
for the (i, 7)-th entry

(23)

(e (o) (1))
= Z <6zs+rz ( )( > (t+2)*~ ) (;>tj+1—”(t+2)"‘s—1.

The sum over terms not involving the variable r on the left-hand side of (23) is

i lﬂ( ) <;>tl+1”( + 1) 4 2)m

=0
By using (;) (;) = (;)( ) and the binomial theorem, we can rewrite the above sum
as

which is equal to the r-free term on the right-hand side of (23). The sum over the
terms of the right-hand side of (23) involving the variable r is equal to

o (e 2 ()0)

where we interchanged the order of the summation. Using Lemma 7.1 for the sum
over s witha=j,b=n—1,c=1, x =0, we obtain

e (oo £ o

where the upper bound of the second sum can be changed to n — 1, since the last
binomial coefficient is 0 for [ < s < n — 1. Interchanging the sums again and using
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the binomial theorem yields

rﬁ*“"%f(nﬁtij><sjj)§f(Q(;is>a+2w4_%—n“s

s=0 =0

e B )

s=0
which is equal to the terms of the left-hand side of (23) involving the variable r. O

7.2. PROOF OF (3).

Proof. By factoring out (—1)"*7 in the determinant expression of A, 11 x(r, 1,1, —1;1)
in (21), we obtain

i n+k+i\[i+j+k
e, g () (D)

Using the Chu-Vandermonde identity, the determinant for CSSPP,, o5 (7, 1) in Propo-
sition 6.1 simplifies to

h i
CSSPPac(ri1) = _det (51-7]- + r( K +jz T )) .

We claim the following matrix identity

(G>+4<n+k+j><i+j+k>) .(<k+j—i—1)>
i n—i—1 J 0<ij<n—1 Jj—i 0<i,j<n—1
] 2k+1+7
J =1/ Jo<i,j<n—1 J 0<i,j<n—1

Since the second and third matrices are upper triangular with determinant equal to
1, the assertion (3) follows by taking the determinant of all matrices in the above
identity.

To prove the above matrix identity we use matrix multiplication and obtain for
the (4, j)-th term

O > (6 RS Vo [ i iy

n—1 .
k+1 2k +1
=0 N ! J
The Chu-Vandermonde identity implies

S (06

which explains the terms of (24) not involving the variable r. Setting | = L — (2k+ ),
the coefficient of r on the right-hand side of (24) is equal to

zkﬂi’“ ( L—(j+Fk) ) (L)

Lo L—Q2k+j+1i))\j)
We can actually change the lower bound of the sum to 0 since the first binomial
coefficient is equal to 0 for 0 < L < 2k + j. Using Lemma 7.1 for a = 2k + j + 4,
b=2k+j+n—1,c=j,and z = —(j + k) as well as (j__ks)(fl)j*S = (j+’;:z_1)
yields the coefficient of r of the left-hand side of (24). O
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7.3. PROOF OF (4).

Proof. We expand the determinant for A, 11 (r,1,1,¢;1) in (21) by the Leibniz for-
mula and obtain

An+17k(7" 1,1 t'l)

S (CER RS et | Qe )

0€S[0,n-1]

= 3 s Y1 (rt”(i)—i<nn_—;é€)+ i 1) (z +o k))

0E€S(0,n—1] IC[0,n—1] i€l
_1)e—i i .
< T e ( )

i€[0,n—1]\1

Now note that the summand is 0 unless o(i) < ¢ for all ¢ € [0,n — 1] \ I, and,
therefore, we restrict our sum to such I. The power of ¢ is ), ;(co(i) — i), which is
non-negative as » ., co ,—1 (i—0(2)) = 0and 3,y ,, 47 ;(0(i)—) < 0, and, therefore,
we can now set t = O However, after this spe(nahsatlon the summand is zero unless
Y icr(o(i) —i) =0, and, therefore, >icon—1)~r(0(i) —i) = 0, which implies o(i) = i
for all ¢ € [0,n — 1] \ I. Hence, for ¢ = 0, the above simplifies to

An+1,k(7ﬁ7 1a 17 07 1)

= ¥ s X ()T

0€Sj0,n-1] IC[o,n—1] i€l
{ize ()i}

- T () (70)

UGS n—1]
— det <6ij+r<n+'+z>(z+3.+ )>
0<,i,j<n—1 ’ n—j—1 )

Taking the determinant of the following matrix identity implies the assertion (4), since
the second and third matrix are upper triangular with determinant equal to 1 and
the determinant of the fourth matrix is equal to CSSPP,, 1 (r,2) by Proposition 6.1.

( <n+k+j><i+j+k>) (<k+3>)
(Si’jﬁ-’f’ . . . . .
n—i—1 J 0<i,j<n—1 J =Y/ Jogiig<n—1
(V) B CE M e
i=i))ocijen \ 7 >0 Ltk

The constant term with respect to r of the (7, j)-th entry is on both sides (f'_*';) In
order to prove the matrix identity, it therefore suffices to consider the coefficient of r
of the (i, j)-th entry, i.e., to show

o S0 S0

Algebraic Combinatorics, Vol. 7 #5 (2024) 1338

0<i,j<n—1



Alternating sign matrices and totally symmetric plane partitions

We can rewrite the right-hand side of (25) by applying Lemma 7.1 for the sum over s
witha=14,b=n—1,c=1 and z = k and obtain

n—1 ,. l .
JHEN i k+n+s\(k+i+ts\/ k+1 -
27 —1)l=s
;(Hrk) ;(nil s l—s (=1)

n—1 . n—1 .
k+n+s\/k+i+s AV LR AV -
=5 S 2it(—1)i=s
s=0(n—i—1>( s )lo(l—l—k)(l—s) =07

where we interchanged the sums and changed the upper bound of the sum over s to
n — 1 which is allowed since (fj';) = 0 for s > [. By using ({L’j) (fj';) = (gt’;) (g:j)
together with the binomial theorem, we obtain the left-hand side of (25). O

APPENDIX A. COMBINATORIAL PROOF OF LEMMA 4.1

In this appendix, we provide a combinatorial proof of Lemma 4.1. In general, con-
structing combinatorial proofs in this field seems almost impossible (see [11]) and such
challenges are a main motivation to work in this area for some people. Thus we think
that it is an important step forward that we could at least find a combinatorial proof
for a very crucial step in our computation.

We need a number of definitions to reformulate the problem so that it is accessible
from a combinatorial point of view.

Replacing X; — —X;, we need to show

(26) Asym | [I (xi+vp)| = det (¥7+(-1)"'x7).

1<i,5<n
1<i<ji<n ILIX

Let L, denote the graph that is obtained from the complete simple graph on the
vertex set {1,2,...,n} by adding one loop at each vertex. We consider orientations
of L,, and imagine the vertices 1,2,...,n to be arranged on a horizontal line. We say
an edge is oriented from left to right if it is oriented from the smaller vertex ¢ to the
larger vertex j (and write ¢ — j) and from right to left otherwise (i « j). It will
be convenient to have two possible orientations for loops also, say, from left to right
(indicated as ¢ — 7) and from right to left (indicated as i < 4), so that there are in

total 2(»7,;,1) orientations of L,,. The set of all orientations of L, is denoted by O,,. An
example is provided in Figure 9.

Now each monomial in the expansion of H1<i<j<n(Xi +Y;) corresponds to an
orientation of L, as follows: For i < j, we let ¢ — j if we pick X; in X;4+Y; and ¢ < j
if we pick Y;. Thus, the weight of an orientation O € O, is defined as

n
w(O) _ HX?{321:1—>]}Y;'#{]<1U<—1}’
i=1
so that > ocp w(0) = [licicjen(Xi + Yj). The weight in our example is
XTXS XX, Y2Y2YS.

We consider a subset P,, of orientations in O,, that will provide a combinatorial
interpretation for the right-hand side of (26). The definition is recursive: We have
P1 = Oq, and, for n > 1, P, is partitioned into two sets:

e cither all edges incident with n are oriented away from n (necessarily to the
left) and the restriction of the orientation to {1,2,...,n — 1} is in P,_1,

o or all edges incident with 1 are oriented away from 1 (necessarily to the right)
and the restriction of the orientation to {2,3,...,n} is in P,_; with vertices
renamed through a shift by 1.
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FIGURE 9. An orientation of L; that is in Pr.

There are 2" such orientations in P,, and the orientation in Figure 9 is in P7.

Orientations in P,, can be encoded by a linear order of the vertices 1,2,...,n that
is induced by the inductive build-up of the orientations together with the orientation
of the loop of the first vertex in the list. In the example in Figure 9, the order is
4563271. This encoding has the following features.

e Each vertex in the list is either greater than all its predecessors in the list or
smaller than all its predecessors.

e The orientation is obtained from the list as follows: The edges are oriented
away from each vertex to its predecessors in the linear order, and the loop
of a vertex different from the first vertex in the list is oriented from left to
right if this vertex is smaller than all its predecessors and from right to left
otherwise. The orientation of the loop of the first vertex is given.

e The weight can easily be computed as follows: The exponent of X; or Y; is
the position of vertex i in the list.

It follows that for each orientation in P, the set {1,2,...,n} can be partitioned
into maximal intervals of integers that are either added consecutively “from above”
(upper sections) or added consecutively “from below” (lower sections) in the recursive
procedure. More formally, there is a strictly increasing sequence of integers iy < i1 <
i < ...<n+1=1is and a strictly decreasing sequence of integers io — 1 = jg > j1 >
j2 > ... > 0= j; such that the linear order is

i07i0+17i0+25" '77‘/1_17.7.07].0_1’" '7j1+177:177‘/1+1=- --aiQ_lvjlajl_lv' e 7j2+17'~ .o

The vertices greater than iy have their outgoing edges all to the left, while the vertices
smaller than 4y have their outgoing edges all to the right. The intervals [ig, i1 — 1],
[i1,i2—1], [i2,93—1], ... are said to be the upper sections, while the intervals [j;+1, jo],
[72+1,71], [Js + 1, 42], - .. are said to be the lower sections. The only exceptional case
happens if ig — io: If i3 = ig + 1, then [j; + 1,4¢] is a lower section and if i; > ig + 1,
then [ig, ig] is a lower section and [ig + 1,41 — 1] is an upper section. In our example,
(0,%1,12) = (4,7,8) and (jo,j1,73) = (3,1,0). Here we are in the exceptional case, so
that [1,1],[2, 3], [4, 4] are the lower sections and [5, 6], [7, 7] are the upper sections.
The claim (26) is equivalent to

(27) ASym l 3 w(0)

0e0,

_ G [ Y w(0)
oeP,

In order to see this equivalence, we need to show

@nlzw<0>]— det (Y7 +(~1)*1X7)

1<i,j<n
0€P, LIS
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which we do by induction with respect to n. The case n = 1 is easy. By definition,

S wO) =Y Y wO)+X7(1,2,...,n) | Y. w(O)],

oeP, O€EPn -1 O€Pn 1

where (1,2,...,n) denotes the cyclic permutation that sends ¢ — ¢ + 1mod n and
acts on X; and Y; simultaneously. Therefore,

A/Sy\mlz (0)

oePn,

= ngno’-a Yr Z w(0)

€S, O€EPr_1

+ ngna-a X(1,2,...,n) Z w(0)

ocES, O€EPn_1

By the induction hypothesis, this is equal to

n
—1)nthyn det Y7+ (=1t x7
;( ) ki€{1,2,j..,n}\{k}( J (=D )
4 1<]<n—1

IDERRD ¢ det V7 4 (-1)x]
+Z ze{1,2,..?,n}\{k}( P+ (=D V)
1<j<n—1

n+k Yn 1 n+1Xn det YJ_|_ -1 j+1Xj
Z FEMG) et (07 (1))
1<jg<n—1
= det (V7 +(-111x]),

1<i,5<n

where the last equality follows from expanding with respect to the last column.
Rephrasing (27), we need to show

:0,

(28) ASym [ > w(0)

O€R.,,
with R,, = O,, \ Py, and we provide a combinatorial proof for this identity.

Combinatorial proof of (28). It suffices to find an involution on R, such that when
orientation O is paired with O5 under this involution, then there exists a transposition
7 € S, with w(02) = Tw(0).

We will use of the following notation: For an orientation O € O, and a subset
S C [n], we let O|s denote the restriction of O to the subgraph of L,, induced by S.
We may also identify this with an element of O|g| in a natural way, i.e., by using the
isomorphism between L|g| and the restriction of L, to S that is induced the unique
order-preserving bijection between [| S]] and S.

Now suppose that O € R,, and let m be minimal such that O|p,,; € Ryy,. It follows
that Olj,—1] € Pm—1. When referring to lower sections in the following, we mean
lower sections of the restriction of O|f,_1). First we get rid of the following case.

Step 1. There is a lower section [p, ¢] and an integer k with p < k < ¢ such
that k<~ m and £+ 1 — m.

The weight of O|},,) is invariant under applying the transposition (k,% + 1): for
re{l,2,...,m—1}~{k, k+1}, the edges {k,r}, {k+1,r} have the same orientation,
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since they are in the same lower section. The weight that comes from the restriction
to {k,k + 1,m} is either X?X? X, Y, (if m — m) or X7 X7, V2 (if m < m).
We “exchange the neighbourhoods” of k,k+1in {m+1,m+2,...,n}: For all j €
{m+1,m+2,...,n}, we have k — j in the new orientation iff k + 1 — j in the
old orientation, and we have k < j in the new orientation iff £ + 1 + j in the old
orientation. The transposition 7 is equal to (k, k + 1).

The so-obtained orientation is again of the same type (i.e., there is a lower section
with such an integer k), and the map is an involution.

Therefore, we can assume from now on that for each lower section [p, |, there is
akwithp—1<k<qgsuchthat pp+1,....k—>mand k+1,k+2,...,q < m. We
say that a lower section is normal if this is satisfied.

The idea of the remainder of the proof is roughly as follows: In the restriction
Ol|jm—1), we consider for each vertex the number of left-pointing edges. From right
to left, this is a strictly decreasing sequence of numbers, until these numbers are
eventually 0 for the remaining vertices. We compare them to the number of left-
pointing edges from m. The typical case is that this number is between the numbers

for two adjacent vertices ¢,i+11in {1,2,...,m—1}. It is then possible to let 7 = (i,m)
or 7 = (141, m). Which of the two cases has to be chosen depends on the lower section
between ¢ and ¢ + 1 in the total order of 1,2,...,m — 1, more precisely on the k just

described that “makes” it into a normal section. The non-typical exceptional cases
(such as for instance when m has no left-pointing edges) makes the proof involved.

In the following, we let ¢; denote the number of left-pointing edges away from 1.
Next we rule out the following case.

Step 2. There is an i € {1,2,...,m — 1} with 0 # ¢; = {,,.

We need to consider two cases here.

Case 1: i + m < m or i — m — m. Note that within {1,2,...,m} the con-
tribution of the vertices ¢ and m to the weight is Yme;f{" in the first case and
X; X, Y,V in the second case. We only need to exchange the neighbourhood of i
and m for vertices in {m+1,m+2,...,n}.

Case 2: i < m — m or i — m < m. Note that within {1,2,...,m} the contribu-
tion of 4 and m to the weight is Xmem Ytm in the first case and Xl-Y;le,fLm in the
second case. We transform the cases into one another, and exchange the neighbour-
hoods of ¢ and m in the vertex set {m +1,m+2,...,n}.

The transposition 7 is equal to (i,m). Note that orientations of edges incident with
vertices in lower sections are not changed, and, therefore, all lower sections are still
normal. Also note that we stay within the type of orientations under consideration
since the number of left-pointing edges from i and m does not change. Hence the map
is an involution.

The only case that remains is the following.

Step 3. We have ¢,,, # ¢; for all i € [m — 1] or ¢, = 0.

Since Oljm—1] € Pm—1, we have £y, 1 > L2 > ... > £ > 0, where ¢ is the
smallest integer in an upper section (setting ¢ = oo if ¢ does not exist). The case
£y, = 0 as well as some instances of the cases that ¢,, > ¢,,_1 and ¢; > {,, are dealt
with after Cases A and Cases B.

For now we assume that there exist i,i + 1 € {¢t,t + 1,...,m — 1} such that
liv1 > Ly > {;. The transposition 7 will be either (¢,m) or (i + 1,m). Let [p,q]
be the lower section that appears in the linear order of [m — 1] induced by O|};,—1
between ¢ and 7 + 1 (which are by assumption contained in different upper sections,
since ;11 — ¢; > 1) so that this part of the linear order reads as

inaq_la"'apai+17
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and let k be such that p,p+1,...,k > mand k+1,k+2,...,¢ < m (such a k exists
because all lower sections are normal). Since ({;11 — ) + (b, — €;) = biv1 — €; =
q—p+2=(q—k)+(k—p+1)+1, we have either ¢, —¢; < g—kor l;11—Cp, < k—p+1
but not both.

Case A: by, — U; < q—k

In this case, we change the linear order for O}, —q) so that

quvqilv7pa7’+1:>q7q7177q7(£m*€7)+177’aq7(£m*gl)aap57’+1

to the effect that XX, 1... X, (s, —¢,)41 in the weight is replaced by Yf’”%i and
change

to the effect that ¥, % in Vi = Y5V, im =% is replaced by XqXq—1 ... Xq— (6, —t:)41-

In addition, in analogy to Case 2, we transform the case i < m — m into
i — m < m, and vice versa. There is no such transformation if i < m <+ m or
i — m — m (as in Case 1). Finally, we exchange the neighbourhood of ¢ and m in
{m+1,m+2,...,n}.

Note that still all lower sections are normal and the transposition 7 is equal
to (i,m).

We apply this case also if i = m —1 (but still £,,, — {,,—1 < ¢—k). As £, > £; > 0,
we automatically exclude ¢,,, = 0 here.

Case B: biz1 — by <k —p+1

In this case, we change the linear order for O|[m,1] so that

i7Q7q_17"'ap7i+1:>7;7Qﬂq_1ﬂ"'7p+£i+1_£m7i+17p+€i+1_gm_l"'ap+17p

to the effect that Yﬁ{ﬁe’" in Yf&l = Yiﬁ}rl%’"Yfﬂ is replaced by X,Xpi1...

Xp+i,11—0,—1 and change
p,p+1,....p+liy1 by —1—om=pp+1,....p+0li11—¥p—1+m

to the effect that X, X1 ... Xpte,.,—¢,,—1 is replaced by Y,fli+17£’". In addition, we
have again i +1 < m — m & i+ 1 = m < m, and exchange the neighbourhood
ofi+land min {m+1,m+2,...,n}.

Again all lower sections are still normal and the transposition 7 is (i + 1,m).

We apply this case also if i+1 =¢ (but still £, —¢,,, < k—p+1). Asly > q—p+2 >
k —p+ 1, we automatically exclude ¢, = 0 also here.

We leave it to the reader to check that Cases A and B “match each other”: if we
start with an orientation that falls under Case A, it is transformed into one that falls
under Case B, and is then transformed into the original orientation, and vice versa.
Therefore, we only need to figure out which cases are left and find an involution with
the required property on them.

Step 4. We claim that the following two types are left.

(1) 4, =0

(2) Suppose q is the first element in the list of the encoding of O|};,,—1}, then ¢ — ¢
and for the rightmost lower section [p, ¢|, there exists a k withp — 1 < k < ¢
such that ¢ < m iff ¢ € [k + 1, ¢].

We will see that these cases are turned into one another under our involution.
There is also no intersection as £ > 0 in the second case, since [k + 1, ¢| is not empty.

(1) and (2) have not been considered before: This is obvious for (1). As
for (2), we have that £, < €, or t = oc0: if t # o0, thent =g¢+1, {441 =¢—p+2 and
Uy, =q—k < g—p+2, so it suffices to check l411 — ¥, > k—p+1 (because otherwise
the case would have been dealt with in Case B), which is obviously satisfied. On the
other hand, if ¢ = 0o, then this case has also not been dealt with in Cases A and B.
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There are no more cases to consider than (1) and (2): The cases that have
not been dealt with before are (a) £,, =0, (b) t = 00, (¢) € > €m—1 but not already
covered Case A, and (d) ¢,, < ¢; but not already covered by Case B.

All cases with £, = 0 are still there. If ¢ = oo, then [1,m —1] is the rightmost lower

section in this case, and there exists a k with 0 < k < m—1suchthat 1,2,...,k - m
and k+1,...,m — 1+ m because [1,m — 1] is normal. The fact that the restriction
to {1,2,...,m} is in R, implies m — m and we can assume k < m — 1 because

otherwise £, = 0 and that is already covered. This is then covered by (2).

If t # oo and ¢, > {,,_1, we still need to consider the case ¢,, — {1 > q — k,
because it has not been dealt with in Case A. We will show that this case can actually
not happen. Let [1, ¢] be the lower section after m — 1 and, as usual, 0 < k < ¢ such
that 1,2,...,k = m, k+1,...,g + m.Now {,, 1 = m—1—q,sothat {,,—{p,_1 > q—k
is equivalent to ¢, > m — 1 — k and therefore ¢,,, > m — k. As 1,2,...,k — m, this
implies k4 1,k +2,...,m < m (because these are m — k edges) and O] € Prn, 2
contradiction.

If t # oo and 0 # £, < {4, but the case is not covered by Case B. Let [p, q] be the
lower section that appears in the linear order just before ¢, and let p,p+1,...,k — m
and k + 1,k + 2,...,q + m. Since ¢ is leftmost, [p,q] is also the rightmost lower
section and ¢, = ¢—p+2 and t = ¢+ 1. We can assume ¢; — £,,, > k —p+ 1 (because
otherwise we are in Case B), so therefore (¢ — p+2) — £,,, > k — p+ 1, which implies
q—k+1>4,, but since k + 1,k +2,...,q < m we have ¢, = q — k, so that the
left-pointing edges from m hit precisely k + 1,...,q. We have k < ¢ since ¢, > 0.
This is covered by (2).

Now we show how (1) and (2) are turned into one another.

Suppose we are in (1). Since £,,, = 0, we have ¢ # oo because otherwise Olf,,,) has
only right-pointing edges and would be contained in P,,. Let [p, q] be the lower section
that precedes ¢ (so that ¢ = ¢ + 1), which is the rightmost lower section. The linear

order of the vertices in [m — 1] starts as ¢,q — 1,...,p,q + 1 and we change this to
g+1,q,g—1,...,p with ¢+ 1 — ¢+ 1. This replaces qu+—1p+2 with X, Xpt1 - Xgy1-

Moreover, we change p,p+1,...,q+1 —>mtop,p+1,...,q+1 < m, which replaces
XpXpi1 - Xg1 with Y,27PT2. Summarizing, one weight is obtained from the other
by applying the transposition (¢ + 1,m) when restricting to [m]. We exchange the
neighbourhood of ¢+ 1 and m in {m+1,m+2,...,n}.

Suppose we are in (2). Then the linear order of the vertices in [m — 1] starts
as ¢, ¢q—1, ..., k+ 1 and we change this to ¢ — 1,¢ — 2,...,k + 1,q. This re-
places Xp11Xp42... X, with qu*’“. We also change k£ + 1,k + 2,...,q < m to
k+1,k+2,...,q — m, so that Y,27% is replaced by Xj41Xgi2.-- Xg4. So one weight is
obtained from the other by applying the transposition (g, m) when restricting to [m].
We exchange the neighbourhood of ¢ and m in {m+1,m+2,...,n}. O
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