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Alternating sign matrices and totally
symmetric plane partitions

Ilse Fischer & Florian Schreier-Aigner

Abstract We introduce a new family An,k of Schur positive symmetric functions, which are
defined as sums over totally symmetric plane partitions. In the first part, we show that, for
k = 1, this family is equal to a multivariate generating function involving n + 3 variables of
objects that extend alternating sign matrices (ASMs), which have recently been introduced by
the authors. This establishes a new connection between ASMs and a class of plane partitions,
thereby complementing the fact that ASMs are equinumerous with totally symmetric self-
complementary plane partitions as well as with descending plane partitions. The proof is based
on a new antisymmetrizer-to-determinant formula for which we also provide a combinatorial
proof, and, although this proof is complicated, it is an important step forward as it is very hard
to find combinatorial proofs in this field. In the second part, we relate three specialisations
of An,k to weighted enumerations of certain well-known classes of column strict shifted plane
partitions that generalise descending plane partitions.

1. Introduction
Plane partitions were first studied by MacMahon [17] at the end of the 19th century,
however found broader interest in the combinatorial community starting in the second
half of the last century. Alternating sign matrices (ASMs) on the other hand were
introduced by Robbins and Rumsey [20] in the early 1980s. Together with Mills [18],
they conjectured that the number of n × n ASMs is given by

∏n−1
i=0

(3i+1)!
(n+i)! . Stanley

then pointed out that these numbers had appeared before in the work of Andrews [3]
as the enumeration formula for a certain class of plane partitions, called descending
plane partitions (DPPs). Soon after that Mills, Robbins and Rumsey [19] observed
(conjecturally) that this formula also counts another class of plane partitions, namely
totally symmetric self-complementary plane partitions (TSSCPPs). Although these
conjectures have all been proved since then, see among others [4, 24], it is mostly
agreed that there is no good combinatorial understanding of this relation between
ASMs and certain classes of plane partitions since we lack transparent combinatorial
proofs of these results. However, Konvalinka and the first author [11, 12] have recently
established complicated bijective proofs (involving a generalisation of the involution
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T : ∅

πk(T ): ∅ (1k+1) (1k+2) (2, 1k+1) (2k+2)

ω(T ): v3 ruv2 ruvw ru2v r2u3

Figure 1. Totally symmetric plane partitions inside a (2, 2, 2)-box,
their associated weight ω(T ) and the partitions πk(T ).

principle) for two non-trivial alternating sign matrix result. On the one hand, they
have provided a bijective proof for the fact that n×n ASMs are counted by the product
formula given above and, on the other hand, they have constructed a bijective proof
for an identity that implies the equinumerosity of ASMs and DPPs.

One purpose of this paper is to relate ASMs to yet another class of plane parti-
tions, namely totally symmetric plane partitions (TSPPs), in a new way. This relation
is via a certain Schur polynomial expansion. Other known relations between ASMs
and TSPPs are the fact that the number of symmetric plane partitions inside an
(n, n, n− 1)-box is the product of the number of TSPPs inside an (n−1, n−1, n−1)-
box and the number of ASMs of size n, see [7], and via posets, see [23, Section 8].

The following symmetric functions are studied in this paper

An,k(r, u, v, w; x) :=
∑

T∈TSPPn−1

ω(T )sπk(T )(x),

where sπk(T )(x) are Schur functions, the sum is over totally symmetric plane partitions
inside an (n − 1, n − 1, n − 1)-box, πk(T ) is a slight modification of the diagonal
of T and ω(T ) is a monomial in r, u, v, w that depends on the parameters in the
Frobenius notation of π0(T ). All notations in the introduction are defined in the
following sections. For n = 3, the function A3,k(r, u, v, w, x) is a sum over all TSPPs
inside a (2, 2, 2)-box, see Figure 1, and it is equal to

v3 + ruv2s(1k+1)(x) + ruvws(1k+2)(x) + ru2vs(2,1k+1)(x) + r2u3s(2k+2)(x).

Our first main result states that in the special case k = 1, the above functions give
the Schur polynomial expansion of a weighted generating function for ASMs, which
has recently been introduced by the authors in [13].

Theorem 1.1. For all positive integers n, the weighted generating function for ASMs
with respect to the weight ωA is equal to

(1)
∑

A∈ASMn

ωA(u, v, w; x) = An,1(1, u, v, w; x).

The relevant definitions for this theorem can be found in Section 3. In particular,
ωA(u, v, w; x) is defined in (9).

Our proof of this result is (mostly) non-combinatorially, and thus it adds another
problem to the growing zoo of (obviously challenging) bijective proof problems related
to ASMs and plane partitions. More specifically, it suggests that there is a bijection
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between the down-arrowed monotone triangles(1) from [13], and pairs of totally sym-
metric plane partitions and semistandard Young tableaux. Moreover, (1) involves
n + 3 parameters, and, therefore, we have a considerable number of equidistributed
statistics that could help in finding such a bijection. These n + 3 statistics are the
exponents of u, v, w, x1, . . . , xn, and it is interesting to note that, on the alternating
sign matrix side, the exponent of xi is closely related to the difference of the i-th
and (i − 1)-st row sum of the monotone triangles, while the exponent of xi on the
plane partition side is precisely the difference of the i-th and (i−1)-st row sum in the
Gelfand–Tsetlin pattern when interpreting the Schur polynomial as the generating
function of Gelfand–Tsetlin patterns.

In the second part of our paper, we consider the case of general k and connect
the family An,k of symmetric functions to another family of plane partitions, namely
column strict shifted plane partitions (CSSPPs) of class k. CSSPPs of class k form a
family of plane partitions, generalising cyclically symmetric plane partitions (CSPPs)
and DPPs in the sense that they are in bijection to CSPPs for k = 0 and to DPPs
for k = 2. Let CSSPPn,k(r, t) denote a certain generating function of CSSPPs of
class k with at most n entries in the first row; for the definitions see Section 6. Then
our second main theorem states the following.
Theorem 1.2. Let n be a positive integer and let 1 = (1, . . . , 1). Then,

An+1,0(r, 1, 1, t; 1) = CSSPPn,0(r, t + 2),(2)
An+1,k(r, 1, 1,−1; 1) = CSSPPn,2k(r, 1),(3)
An+1,k(r, 1, 1, 0; 1) = CSSPPn,k(r, 2).(4)

For k = 1, the identity (3) is closely related a special case of [13, Theorem 2.6].
The choice of the parameters (u, v, w) = (1, 1,−1) in (3) corresponds to the straight
enumeration of ASMs, while the choice (u, v, w) = (1, 1, 0) in (4) corresponds to the
2-enumeration of ASMs, which is related to the straight enumeration of the Aztec
diamond.

The structure of the paper is as follows. In Section 2, we recall some basics of plane
partitions and introduce the family An,k of symmetric functions in detail. In Section 3,
we provide the definition of the symmetric generating function for ASMs and relate
the weight for ASMs to the six-vertex model. Section 4 contains Lemma 4.1, which
allows us to express certain antisymmetrizer as determinants. We provide two proofs
of this lemma: one is very short and uses linear algebra. The second is complicated and
combinatorial in nature and based on directed graphs. The latter can be found in the
appendix. While this combinatorial proof does not seem to be insightful at first glance,
its complexity might serve as an explanation why it is so hard to come up with bijective
proofs in this field, see [11] for more discussion of this point. Section 5 contains the
proof of Theorem 1.1. In Section 6, we recall CSSPPs and provide in Lemma 6.2 a
determinantal description of An,k closely related to the Giambelli identity for Schur
functions. The proof of Theorem 1.2 is presented in Section 7.

An extended abstract containing parts of Section 2–5 was published in the pro-
ceedings of FPSAC 2020 [2].

2. A family of symmetric functions related to TSPPs
A partition λ = (λ1, . . . , λn) is a weakly decreasing sequence of non-negative integers
(we deviate from the more usual definition where parts have to be positive). We
identify a partition λ with its Young diagram, which is a collection of left-justified

(1)These are certain decorated monotone triangles. Monotone triangles are in easy bijective cor-
respondence with ASMs.
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(|) (0|k) (0|k + 1) (1|k + 1) (1, 0|k + 1, k)

Figure 2. All k-tall partitions of size 3 in Frobenius notation to-
gether with their associated Dyck paths.

4 3 3 1
4 2 1
2

Figure 3. A plane partition inside a (3, 4, 4)-box, with 0 entries
omitted, and its graphical representation as stacks of cubes.

boxes with λi boxes in the i-th row from the bottom (using French notation). The
conjugate λ′ of λ is the partition obtained by reflecting the Young diagram along the
y = x axis, i.e., λ′i = |{j : λj ⩾ i}|. The Durfee square of a partition λ is the largest
square which fits into the Young diagram. The Frobenius notation of a partition λ
is (λ1 − 1, . . . , λl − l|λ′1 − 1, . . . , λ′l − l), where l = maxi{λi ⩾ i} is the length of the
Durfee square of λ.

Let k be a non-negative integer. A k-tall partition(2) λ of size n is a partition
λ = (λ1, . . . , λn+k−1) with λ1 ⩽ n− 1 that satisfies λi + k ⩽ λ′i whenever λi ⩾ i. See
Figure 2 for an example. If λ has Frobenius notation (a1, . . . , al|b1 + k, . . . , bl + k),
then λ is a k-tall partition iff ai ⩽ bi for all 1 ⩽ i ⩽ l. Let N denote a unit north-step
and E a unit east-step. The map

(a1, . . . , al|b1 + k, . . . , bl + k) 7→
N bl+1Eal+1N bl−1−blEal−1−al · · ·N b1−b2Ea1−a2Nn−b1−1En−a1−1

and (|) 7→ NnEn is a bijection from k-tall partitions of size n to Dyck paths of
length 2n.

A plane partition π inside an (a, b, c)-box is an array (πi,j)1⩽i⩽a,1⩽j⩽b of non-
negative integers less than or equal to c, with weakly decreasing rows and columns,
i.e., πi,j ⩾ πi,j+1 and πi,j ⩾ πi+1,j . We can visualise a plane partition π as stacks
of unit cubes by putting πi,j cubes at position (i, j), see Figure 3. The visualisation
allows an equivalent definition of plane partitions as follows. A plane partition π inside
an (a, b, c)-box is a subset of [a]×[b]×[c], where [n] = {1, . . . , n}, such that (i, j, k) ∈ π
implies (i′, j′, k′) ∈ π for all i′ ⩽ i, j′ ⩽ j, k′ ⩽ k. A plane partition is called totally
symmetric if for every (i, j, k) ∈ π, all permutations of (i, j, k) are also elements
of π. We denote by TSPPn the set of totally symmetric plane partitions (TSPPs)
inside an (n, n, n)-box. Let T = (Ti,j)1⩽i,j⩽n be a totally symmetric plane partition,
diag(T ) = (Ti,i)′1⩽i⩽n its diagonal (note that we conjugate) and (a1, . . . , al|b1, . . . , bl)
the Frobenius notation of diag(T ). The partition diag(T ) describes the shape which

(2)For k = 0, these objects were defined in [21, Ex 6.16(bb), p.223] without a name, and for k = 1
in [2] as modified balanced partitions.
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Figure 4. Running example in the proof of Proposition 2.1 (left)
and its diagonal diag(T ) (right), with the corresponding edges also
coloured in green.

is obtained by intersecting the visualisation of T as stacks of cubes with the x = y
plane. See Figure 4 right for an example. We associate with T the partition πk(T ) =
(a1, . . . , al|b1 + k, . . . , bl + k) of size n + 1. As a consequence of the next proposition,
we obtain that πk(T ) is a k-tall partition of size n + 1.

Proposition 2.1. Let λ = (a1, . . . , al|b1 + k, . . . , bl + k) be a k-tall partition. The
number of totally symmetric plane partitions T with πk(T ) = λ is given by

det
1⩽i,j⩽l

((
bi

aj

))
.

Proof. This is a classical application of the Lindström–Gessel–Viennot theorem [15,
16], see also [22]. We sketch the proof on the example in Figure 4.

TSPPs of order n clearly correspond to lozenge tilings of a regular hexagon with
side lengths n that are symmetric with respect to the vertical symmetry axis as well
as rotation of 120◦. By this symmetry, it suffices to know a sixth of the lozenge tiling.
In our example, we choose the sixth that is in the wedge of the red dotted rays.
Now observe that the positions of the horizontal lozenges in the upper half of the
vertical symmetry axis are prescribed by the bi’s, while the positions of the vertical
segments in the lower part of the vertical symmetry axis are prescribed by the ai’s.
Both are indicated in green in Figure 4. By the cyclic symmetry, these green segments
have corresponding segments on the red dotted ray that is not contained on the
vertical symmetry axis, again indicated in green in the figure. Now the lozenge tiling is
determined by the family of non-intersecting lattice paths that connect these segments
with the horizontal lozenges in the upper half of the vertical symmetry axis, indicated
in blue in the figure. □

Let λ = (λ1, . . . , λn) ⊆ (nn) be a partition with Frobenius notation (a1, . . . , al|
b1, . . . , bl) and define λc = (λc

i )1⩽i⩽n by λc
n+1−i = n−λi. Then λc is the complement

of λ inside the partition (nn) in the sense that we can fill a square of side length n
by the Young diagrams of λ and λc without overlap, see Figure 5 for an example.
Let (ac

1, . . . , ac
L|bc

1, . . . , bc
L) be the Frobenius notation of λc. Every box of the x = y

diagonal of the n × n square is either in the Durfee square of λ or of λc. Hence we
have l + L = n. Using induction on n, one can show the equality of the following sets.

(5) {a1, . . . , al, bc
1, . . . , bc

L} = {ac
1, . . . , ac

L, b1, . . . , bl} = {0, . . . , n− 1}

Algebraic Combinatorics, Vol. 7 #5 (2024) 1323
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Figure 5. The partition λ = (6, 6, 5, 5, 3, 1) in the bottom left and
its complement λc = (5, 3, 1, 1) in the top right. Their corresponding
Durfee squares are coloured in blue or red respectively.

For a totally symmetric plane partition T = (Ti,j)1⩽i,j⩽n inside an (n, n, n)-box de-
note by T c the complement of T , defined by

T c = (n− Tn+1−i,n+1−j)1⩽i,j⩽n.

The map T 7→ T c is an involution on totally symmetric plane partitions inside an
(n, n, n)-box which satisfies π0(T c) = π0(T )c. Together with Proposition 2.1, this
implies

(6) det
1⩽i,j⩽l

((
bi

aj

))
= det

1⩽i,j⩽n−l

((
bc

i

ac
j

))
.

Denote by An,k(r, u, v, w; x) the symmetric polynomials in x = (x1, . . . , xn+k−1)
defined by

(7) An,k(r, u, v, w; x) =
∑

T∈TSPPn−1

ω(T )sπk(T )(x),

where

(8) ω(T ) = rlu

l∑
i=1

(ai+1)
v
(n

2)−
l∑

i=1

(bi+1)
w

l∑
i=1

(bi−ai)
,

if diag(T ) has Frobenius notation (a1, . . . , al|b1, . . . , bl). We list this family of sym-
metric functions for n ⩽ 4.

A1,k(r, u, v, w, t; x) = 1,

A2,k(r, u, v, w, t; x) = v + ru s(0|k)(x),
A3,k(r, u, v, w, t; x) = v3 + ruv2 s(0|k)(x) + ruvw s(0|k+1)(x) + ru2v s(1|1+k)(x)

+ r2u3 s(1,0|1+k,k)(x),
A4,k(r, u, v, w, t; x) = v6 + ruv5 s(0|k)(x) + ruv4w s(0|k+1)(x) + ru2v4 s(1|k+1)(x)

+ ruv3w2 s(0|k+2)(x) + 2ru2v3w s(1|k+2)(x) + ru3v3 s(2|k+2)(x)
+ r2u3v3 s(1,0|k+1,k)(x) + 2r2u3v2w s(1,0|k+2,k)(x)
+ r2u4v2 s(2,0|k+2,k)(x) + r2u3vw2 s(1,0|k+2,k+1)(x)
+ r2u4vw s(2,0|k+2,k+1)(x) + r2u5v s(2,1|k+2,k+1)(x)
+ r3u6 s(2,1,0|k+2,k+1,k)(x).
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0 0 0 1 0 0
0 1 0 0 0 0
0 0 1 −1 1 0
1 −1 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0


4

2 4
2 3 5

1 3 5 6
1 2 3 5 6

1 2 3 4 5 6

Figure 6. An ASM of size 6 and its corresponding monotone tri-
angle, where the special entries are written in bold and red, and the
right-leaning entries are in italic and blue.

3. The symmetric generating function for ASMs
An alternating sign matrix, or ASM for short, of size n is an n × n matrix with
entries −1, 0, 1 such that all row- and column-sums are equal to 1 and in all rows and
columns the non-zero entries alternate. See Figure 6 (left) for an example of an ASM
of size 6. We denote by ASMn the set of ASMs of size n. Following the convention
of [20, Eq. 18] and [9], we define the inversion number inv and the complementary
inversion number inv′ of an ASM A = (ai,j)1⩽i,j⩽n of size n as

inv(A) :=
∑

1⩽i′<i⩽n
1⩽j′⩽j⩽n

ai′,jai,j′ and inv′(A) :=
∑

1⩽i′<i⩽n
1⩽j⩽j′⩽n

ai′,jai,j′ ,

and denote by N (A) the number of −1’s of A. The number of −1 entries, the inversion
number and the complementary inversion number of an ASM A of size n are connected
by

N (A) + inv(A) + inv′(A) =
(

n

2

)
,

which follows immediately by relating these statistics with the corresponding statistics
on monotone triangles; this is described after Theorem 3.2. It is easy to see that there
is a unique 1 entry in the top (resp. bottom) row of A. We denote by ρT (A) the
number of 0 entries left of the unique 1 in the top row, and by ρB(A) the number of 0
entries right of the unique 1 in the bottom row. For the example given in Figure 6,
the five statistics are (N (A), inv(A), inv′(A), ρT (A), ρB(A)) = (2, 6, 7, 3, 2).

A monotone triangle with n rows is a triangular array (mi,j)1⩽j⩽i⩽n of integers of
the following form,

m1,1
m2,1 m2,2

. .
.

· · ·
. . .

. .
.

. .
. . . .

. . .

mn−1,1 mn−1,2 · · · · · · mn−1,n−1
mn,1 mn,2 mn,3 · · · · · · mn,n

such that the entries are weakly increasing along northeast and southeast diagonals,
i.e., mi+1,j ⩽ mi,j ⩽ mi+1,j+1, and strictly increasing along rows. Given an ASM A
of size n, we obtain a monotone triangle by recording in the i-th row from top the
indices of the columns with a positive partial column sum of the top i rows of A.
For an example see Figure 6. It is well-known that this map is a bijection between
ASMs of size n and monotone triangles with bottom row 1, 2, . . . , n. Each entry of a

Algebraic Combinatorics, Vol. 7 #5 (2024) 1325
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monotone triangle M = (mi,j)1⩽j⩽i⩽n not in the bottom row is exactly of one of the
following three types.

• An entry mi,j is called special iff mi+1,j < mi,j < mi+1,j+1.
• An entry mi,j is called left-leaning iff mi,j = mi+1,j .
• An entry mi,j is called right-leaning iff mi,j = mi+1,j+1.

For 1 ⩽ i ⩽ n− 1, we define the following statistics,

si(M) = # of special entries in row i, s(M) = # of all special entries,
li(M) = # of left-leaning entries in row i, l(M) = # of all left-leaning entries,
ri(M) = # of right-leaning entries in row i, r(M) = # of all right-leaning entries,

and set s0(M) = l0(M) = r0(M) = 0. In our running example in Figure 6, these
statistics are

(si(M))1⩽i⩽5 = (0, 1, 1, 0, 0), s(M) = 2,

(li(M))1⩽i⩽5 = (0, 1, 2, 1, 3), l(M) = 7,

(ri(M))1⩽i⩽5 = (1, 0, 0, 3, 2), r(M) = 6.

Finally, we set for 1 ⩽ i ⩽ n

d̂i(M) =
i∑

j=1
mi,j −

i−1∑
j=1

mi−1,j + ri−1(M)− li−1(M)− 1,

and define the weight ωM (u, v, w; x) of a monotone triangle as

(9) ωM (u, v, w; x) = ur(M)vl(M)
n∏
i

x
d̂i(M)
i (uxi + w + vx−1

i )si−1(M),

where x = (x1, . . . , xn). In our running example in Figure 6, the weight ωM (u, v, w; x)
is given by

ωM (u, v, w; x) = u6v7x3
1x2

2x2
3x2

4x3
5x2

6(ux3 + w + vx−1
3 )(ux4 + w + vx−1

4 )

Remark 3.1. The weight ωM (u, v, w; x) is related to the weight W0(M), which is
defined in [13, p. 17], by the relation

ωM (u, v, w; x) = W0(M ′),

where M ′ is the monotone triangle obtained by subtracting 1 from all entries in M .

For an ASM A, we set ωA(u, v, w; x) = ωM (u, v, w; x), where M is the correspond-
ing monotone triangle. We call the generating function of ASMs with respect to the
weight ωA(u, v, w; x) the symmetric generating function for ASMs since, as a conse-
quence of the next theorem, it turns out to be a symmetric polynomial in x. Namely,
as a special case of [13, Theorem 3.1], we have the following explicit formula for the
generating function.

Theorem 3.2. Let Ex denote the shift operator which is defined as Exf(x) = f(x+1).
The symmetric generating function for ASMs of size n is
(10)∑

A∈ASMn

ωA(u, v, w; x) =
∏

1⩽i<j⩽n

(
uEλi + wEλiE

−1
λj

+ vE−1
λj

)
s(λn,...,λ1)(x)

∣∣∣∣∣∣
λi=i−1

.
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(1) (2) (3) (4) (5) (6)

Figure 7. The six possible configurations at a vertex.

Let A be an ASM of size n and M its corresponding monotone triangle. By com-
paring the statistics for ASMs and monotone triangles, we have

inv(A) = r(M),
inv′(A) = l(M),
N (A) = s(M),

ρT (A) = d̂1(M),

ρB(A) = d̂n(M),

where the last two identities follow directly from the definitions and the first three are
proven in [13]. Since the bottom row of M is 1, 2, . . . , n, there are no special entries in
row n− 1. Further there are no special entries in row 0, since this row has no entries.
Therefore, the symmetric generating function specialises to

(11)
∑

A∈ASMn

ωA(u, v, w; x)

∣∣∣∣∣
x2=...=xn−1=1

=
∑

A∈ASMn

(u + v + w)N (A)uinv(A)vinv′(A)x
ρT (A)
1 xρB(A)

n .

Theorem 10 arose naturally from a constant term formulation of the operator
formula in [8] for monotone triangles with bottom row 1, 2, . . . , n (it is generalised to
arbitrary bottom rows in [13, Theorem 3.1]). The purpose of the following digression
is to relate it to a function that appeared in connection with the six-vertex model.
This interesting relation was brought to our attention by a referee of the FPSAC
submission, and we wish to thank her/him for sharing this insight.

A configuration of the six-vertex model of size n is an orientation of the n× n grid
with n external edges(3) on each side such that for each vertex the indegree equals
the outdegree. We restrict ourselves to configurations in which the external edges on
the top and bottom are oriented outwards, and on the left and right are oriented
inwards; this is called the domain wall boundary condition (DWBC). It is well known
that configurations of the six-vertex model with DWBC are mapped bijectively to
ASMs by replacing the fifth vertex configurations in Figure 7 by a 1 entry, the sixth
configuration by a −1 entry and the other configurations by 0 entries. For an example
see Figure 8. For an ASM A, we denote by νi(A) the number of configurations of
type (1) and (2) in the i-th row of the corresponding six-vertex configuration and by
µi(A) the number of configurations of type (6) in row i. In [6], Behrend considered

(3)An external edge is an edge with only one incident vertex.
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0 1 0 0

1 −1 0 1

0 0 1 0

0 1 0 0

Figure 8. A configuration of the six-vertex model with DWBC and
its corresponding ASM.

the following generating function of ASMs

Xn(u, w; x1, . . . , xn)
= Z1,2,...,n

n (u, w; x1, . . . , xn; ux2
1 + (w − u− 1)x1 + 1, . . . , ux2

n + (w − u− 1)xn + 1)

=
∑

A∈ASMn

uinv(A)
n∏

i=1
x

νi(A)
i (ux2

i + (w − u− 1)xi + 1)µi(A).

For the definitions of Xn and Zn, see [6, Eqs. 67, 70, 73] and, for the statistics νi and
µi compare also to [6, Eqs. 113, 2]. In the following, we show that the function Xn

satisfies

(12)
∑

A∈ASMn

ωA(u, 1, w; x) = Xn(u, 1 + u + w; x).

For an ASM A, let M = (mi,j) be the monotone triangle associated to A. The
equation (12) is an easy consequence of the identities si−1(M) = µi(A) and νi(A) =
d̂i(M)−si−1(M). The first identity follows directly from the bijections between mono-
tone triangles, ASMs and configurations of the six-vertex model. In the remainder of
this section, we prove the second identity.

Let a0, . . . , al (resp. b1, . . . , bl) be the positions of the 1 (resp. −1) entries in row i.
By the definition of the bijection between monotone triangles and ASMs, we have

{a0, . . . , al} = {mi,1, . . . , mi,i}∖ {mi−1,1, . . . , mi−1,i−1},
{b1, . . . , bl} = {mi−1,1, . . . , mi−1,i−1}∖ {mi,1, . . . , mi,i}.

Note that the second equality implies l = si−1(M). In the corresponding six-vertex
configuration, the vertex configurations of type (1) correspond to 0 entries in the ASM
that satisfy the following two conditions: (a) they are left of the first 1 or between
a −1 and the following 1, and (b) the entries in the same column and above the 0
sum to 0. There are (a0 − 1) +

∑l
j=1(aj − bj − 1) entries satisfying condition (a).

On the other hand, it is not difficult to see that the 0 entries which satisfy (a) but
not (b) are exactly in the columns corresponding to a left-leaning entry of M in row
i− 1, i.e., there are li−1(M) such entries. Configurations of type (2) correspond to 0
entries between a 1 and the following −1 entry with the property that the entries
in the same column and above the 0 sum to 1. These positions correspond to the
right-leaning entries in M in row i− 1, hence there are ri−1(M) such entries. Putting

Algebraic Combinatorics, Vol. 7 #5 (2024) 1328



Alternating sign matrices and totally symmetric plane partitions

this all together, we have

νi(A) = (a0 − 1) +
l∑

j=1
(aj − bj − 1)− li−1(M) + ri−1(M)

=
i∑

j=1
mi,j −

i−1∑
j=1

mi−1,j − si−1(M)− 1− li−1(M) + ri−1(M) = d̂i(M)− si−1(M).

4. An antisymmetrizer to determinant formula
In this section we provide a fundamental tool for the proof of Theorem 1.1. We present
both a non-combinatorial proof next and a combinatorial proof for it in the appendix.
The first application of the lemma is indeed the proof of the Theorem 1.1, however
more applications are given in [10, 13].

Lemma 4.1. Let n ⩾ 1, and X = (X1, . . . , Xn),Y = (Y1, . . . , Yn) be indeterminants.
Then

ÂSym

 ∏
1⩽i⩽j⩽n

(Yj −Xi)

 = det
1⩽i,j⩽n

(
Y j

i −Xj
i

)
,

where ÂSym is the antisymmetrizer with respect to two sets of variables which is
defined as

ÂSym [f(X;Y)] =
∑

σ∈Sn

sgn σf(Xσ(1), . . . , Xσ(n); Yσ(1), . . . , Yσ(n)).

Proof. Since we aim that proving the equality of two polynomials in X1, . . . , Xn,
Y1, . . . , Yn, standard arguments imply that it suffices to consider the case when
X1, . . . , Xn, Y1, . . . , Yn are algebraically independent. In particularly, we may assume
det1⩽i,j⩽n

(
Y j

i −Xj
i

)
̸= 0, which will be useful below.

The proof is by induction with respect to n. The result is obvious for n = 1.
Let Ln(X;Y), Rn(X;Y) denote the left- and right-hand side of the identity
in the statement, respectively. By the induction hypothesis, we can assume
that Ln−1(Y1, . . . , Yn−1; X1, . . . , Xn−1) = Rn−1(Y1, . . . , Yn−1; X1, . . . , Xn−1). We
show that both Ln(X;Y) and Rn(X;Y) can be computed recursively using
Ln−1(X1, . . . , Xn−1; Y1, . . . , Yn−1) and Rn−1(X1, . . . , Xn−1; Y1, . . . , Yn−1), respec-
tively, with the same recursion. For the left-hand side, we have

(13) Ln(X;Y)

=
n∑

i=1
(−1)i+1

(
n∏

k=1
(Yk −Xi)

)
Ln−1(X1, . . . , X̂i, . . . , Xn; Y1, . . . , Ŷi, . . . , Yn),

where X̂i and Ŷi means that Xi and Yi are omitted. In order to deal with the right-
hand side, we first observe

(14)
n∑

j=0
(Y j

i −Xj
i )en−j(−Y1, . . . ,−Yn) = (−1)n−1

n∏
k=1

(Yk −Xi),

where ej(Y1, . . . , Yn) denotes the j-th elementary symmetric function. Note that the
summand for j = 0 on the left-hand side is actually 0, and can therefore be omitted.
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Now consider the following system of linear equations with n unknowns cj(X;Y),
1 ⩽ j ⩽ n.

n∑
j=1

(Y j
i −Xj

i )cj(X;Y) = (−1)n−1
n∏

k=1
(Yk −Xi), 1 ⩽ i ⩽ n.

The determinant of this system of equations is obviously Rn(X;Y) and can be assumed
to be non-zero. By (14), we know that the unique solution of this system is given by
cj(X;Y) = en−j(−Y1, . . . ,−Yn). On the other hand, by Cramer’s rule,

cn(X;Y) =

det
1⩽i,j⩽n

Y j
i −Xj

i , if j < n

(−1)n−1
n∏

k=1
(Yk −Xi), if j = n


Rn(X;Y) .

The assertion now follows from cn(X;Y) = e0(−Y1, . . . ,−Yn) = 1, since expanding the
determinant in the numerator with respect to the last column yields the recursion (13)
with Ln−1 replaced by Rn−1. □

5. The Schur expansion of the symmetric generating function
In order to prove Theorem 1.1, we first derive an explicit expansion of the symmetric
generating function into Schur polynomials. Second, we prove that the coefficients of
each Schur polynomial satisfy the same recursion as the right hand side of (1). Let
ASym denote the antisymmetrizer, i.e.,

ASymx f(x) =
∑

σ∈Sn

sgn(σ) · f(xσ(1), . . . , xσ(n)).

We can rewrite the classical bialternant formula for Schur polynomials using the
antisymmetrizer and obtain for the operator formula in (10) ∏

1⩽i<j⩽n

(
uEλi

+ wEλi
E−1

λj
+ vE−1

λj

)
s(λn,...,λ1)(x)

∣∣∣∣∣∣
λi=i−1

=

 ∏
1⩽i<j⩽n

(
uEλi

+ wEλi
E−1

λj
+ vE−1

λj

) ASymx

[
n∏

i=1
xλi+i−1

i

]
∏

1⩽i<j⩽n

(xj − xi)


∣∣∣∣∣∣∣∣
λi=i−1

=
ASymx

[ ∏
1⩽i<j⩽n

(
uEλi

+ wEλi
E−1

λj
+ vE−1

λj

)
·

n∏
i=1

xλi+i−1
i

]
∏

1⩽i<j⩽n

(xj − xi)

∣∣∣∣∣∣∣∣∣∣
λi=i−1

.

Since applying Eλi
to xλi

i has the same effect as multiplication by xi, we obtain further

(15)
ASymx

[ ∏
1⩽i<j⩽n

(
uxi + wxix

−1
j + vx−1

j

) n∏
i=1

x
2(i−1)
i

]
∏

1⩽i<j⩽n

(xj − xi)
.
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By multiplying the (i, j)-th factor in the product with x−1
i xj and multiplying the

antisymmetrizer by the symmetric function
∏

i x
−(n−1)
i (vx−1

i + w + uxi), we arrive at

n∏
i=1

(
xn−1

i
v
xi

+ w + uxi

) ASymx

[ ∏
1⩽i⩽j⩽n

(
v
xi

+ w + uxj

)]
∏

1⩽i<j⩽n

(xj − xi)
=

n∏
i=1

(
xn−1

i
v
xi

+ w + uxi

) ASymx

[ ∏
1⩽i⩽j⩽n

(
v

xj
+ w + uxi

)]
∏

1⩽i<j⩽n

(xi − xj) ,

where we replaced xi by xn+1−i for all i in both the numerator and denominator. We
apply Lemma 4.1 for Xi = −w − uxi and Yi = vx−1

i , and obtain

(16)
det1⩽i,j⩽n

(
xn−j

i pj(xi)
)

∏
1⩽i<j⩽n(xi − xj) ,

where

pj(x) = xj−1 vjx−j − (−w − ux)j

(vx−1 + w + ux) =
j−1∑
k=0

xk(−w − ux)kvj−k−1.

To emphasise the general principle used to express the determinantal expression
in (16) as a sum of Schur polynomials, we consider qj(x) to be a family of poly-
nomials qj(x) :=

∑
k⩾0 aj,kxk. Using the linearity of the determinant in the columns,

we have

(17)
det

1⩽i,j⩽n

(
xn−j

i qj(xi)
)

∏
1⩽i<j⩽n

(xi − xj) =
∑

k1,...,kn⩾0

 n∏
j=1

aj,kj

 s(k1,...,kn)(x),

where we used the well known extension of Schur polynomials to arbitrary sequences
L = (L1, . . . , Ln) of non-negative integers via

sL(x) :=
det

1⩽i,j⩽n

(
x

Lj+n−j
i

)
∏

1⩽i<j⩽n

(xi − xj) .

It can be checked that the generalised Schur polynomial sL(x) is either equal to 0
or sL(x) = sgn(σ)sλ(x) where λ = (λ1, . . . , λn) is a partition and σ ∈ Sn is a
permutation such that Lj = λσ(j) + j − σ(j) for all 1 ⩽ j ⩽ n. It follows that (17) is
equal to

(18)
∑

λ

sλ(x)

∑
σ∈Sn

sgn(σ)
n∏

j=1
aj,λσ(j)+j−σ(j)

 =
∑

λ

sλ(x) det
1⩽i,j⩽n

(aj,λi+j−i) ,

where the sum is over all partitions λ. By applying (18) to the family of polynomials

pj(x) =
j−1∑
k=0

xk(−w − ux)kvj−k−1 =
j−1∑
k=0

∑
l⩾0

(−1)k

(
k

l

)
xk+lulvj−k−1wk−l,
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we obtain∑
A∈ASMn

ωA(u, v, w; x)

=
∑

λ

sλ(x) det
1⩽i,j⩽n

j−1∑
k=0

∑
l⩾0

k+l=λi+j−i

(−1)k

(
k

l

)
ulvj−k−1wk−l


=
∑

λ

sλ(x) det
1⩽i,j⩽n

(
j−1∑
k=0

(−1)k

(
k

λi + j − i− k

)
uλi+j−i−kvj−k−1w2k+i−λi−j

)
.

We denote by mi,j(λi) the (i, j)-th entry of the matrix in the above determinant.
An entry mi,1(λi) =

( 0
λi+1−i

)
uλi+1−iwi−λi−1 in the first column is 1 iff λi = i − 1

and 0 otherwise. Let l be the side length of the Durfee square of λ. The only possible
part of λ satisfying λi = i − 1 is the (l + 1)-st. Hence we assume for the rest of the
proof λl+1 = l. By expanding the determinant along the first column, we obtain

det
1⩽i,j⩽n

(mi,j(λi)) = (−1)l+2 det
1⩽i,j⩽n−1

(
m′i,j

)
,

where (m′i,j)1,⩽,i,j⩽n−1 denotes the matrix obtained by deleting the first column and
the (l + 1)-st row of (mi,j(λi))1⩽i,j⩽n. For 1 ⩽ i ⩽ l, in which case we have λi ⩾ i,
we can rewrite m′i,j as

m′i,j =
j∑

k=0
(−1)k

(
k

λi + (j + 1)− i− k

)
uλi+(j+1)−i−kv(j+1)−k−1w2k+i−λi−(j+1)

=
j−1∑
k=0

(−1)k+1uλi+j−i−kvj−k−1w2k+1+i−λi−j

×
((

k

λi + j − i− k

)
+
(

k

λi + j − i− k − 1

))
= −w mi,j(λi)− u mi,j(λi − 1).

For i > l on the other hand, i.e., λi+1 < i, we can express m′i,j analogously as

m′i,j =
j∑

k=0
(−1)k

(
k

λi+1 + (j + 1)− (i + 1)− k

)
× uλi+1+(j+1)−(i+1)−kv(j+1)−k−1w2k+(i+1)−λi+1−(j+1) = vmi,j(λi+1),

where the sum has been extended, which is allowed since
(

j
λi+1−i

)
= 0. Summaris-

ing, we denote by cn,λ the coefficient of sλ(x) in the symmetric generating function∑
A∈ASMn

ωA(u, v, w; x). Then

cn,λ =

(−1)l det
1⩽i,j⩽n−1

(
m′i,j

)
= (−1)l det

1⩽i,j⩽n−1

({
−wmi,j(λi)− umi,j(λi − 1), i ⩽ l

vmi,j(λi+1), i > l

)
=

∑
(f1,...,fl)∈{0,1}l

u
∑l

i=1
fivn−1−lwl−

∑l

i=1
ficn−1,(λ1−f1,...,λl−fl,λl+2,...,λn),

with cn−1,(λ1−f1,...,λl−fl,λl+2,...,λn) = 0 if (λ1 − f1, . . . , λl − fl, λl+2, . . . , λn) is not a
partition, where the equality follows from the linearity of the determinant in the rows
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and choosing fi = 0 iff we select the first term in row i. Using Frobenius notation for
λ = (a1, . . . , al|b1, . . . , bl), the above recursion can be rewritten as

cn,(a1,...,al|b1,...,bl)

=
∑

(f1,...,fl)∈{0,1}l

u
∑l

i=1
fivn−1−lwl−

∑l

i=1
ficn−1,(a1−f1,...,al−fl|b1−1,...,bl−1),

where cn−1,(a1,...,al−1,−1|b1,...,bl−1,0) is defined as cn−1,(a1,...,al−1|b1,...,bl−1) .
Denote by dn,λ the coefficient of sλ(x) in An,1(1, u, v, w; x). For λ = (a1, . . . , al|

b1, . . . , bl), Proposition 2.1 implies

dn,(a1,...,al|b1,...,bl) = u
∑l

i=1
(ai+1)v(n

2)−
∑l

i=1
biw
∑l

i=1
(bi−1−ai) det

1⩽i,j⩽l

((
bj − 1

ai

))
= u

∑l

i=1
(ai+1)v(n

2)−
∑l

i=1
biw
∑l

i=1
(bi−1−ai) det

1⩽i,j⩽l

((
bj − 2

ai

)
+
(

bj − 2
ai − 1

))
=

∑
(f1,...,fl)∈{0,1}l

u
∑l

i=1
fivn−1−lwl−

∑l

i=1
fidn−1,(a1−f1,...,al−fl|b1−1,...,bl−1),

where we used the linearity of the determinant in the last step. The assertion follows
by induction on n since both cn,λ and dn,λ satisfy the same recursion and the induction
base can be checked easily. This proves Theorem 1.1.

6. An,k and column strict shifted plane partitions
Recall that a strict partition is a sequence λ = (λ1, . . . , λn) of strictly decreasing
positive integers. The shifted Young diagram of shape λ has λi cells in row i and each
row is indented by one cell to the right with respect to the previous row. The shifted
Young diagram of the strict partition (6, 5, 2) is as follows.

A column strict shifted plane partition (CSSPP) is a filling of a shifted Young diagram
with positive integers such that rows decrease weakly and columns decrease strictly.
Let k be an integer, then a CSSPP is said to be of class k if the first part of each row
exceeds the length of its row by precisely k. The following is a CSSPP of class 2.

8 8 7 6 3 2
7 5 2 1 1

4 1

For a CSSPP π of class k, we define ρ(π) as the number of rows of π and µ(π) as
the number of entries πi,j ⩽ k + j − i. In the above example, the two statistics are
ρ(π) = 3 and µ(π) = 6, where the entries contributing to µ(π) are coloured blue. We
define the function CSSPPn,k(r, t) as the generating function

CSSPPn,k(r, t) =
∑

π

rρ(π)tµ(π),

where the sum is over all CSSPP π of class k whose first row has at most n entries.
Using a lattice path description for CSSPPs and the Lindström–Gessel–Viennot the-
orem, we obtain the following determinantal formula for CSSPPn,k(r, t). A detailed
proof can be found in [1, Lemma 5.1].

Algebraic Combinatorics, Vol. 7 #5 (2024) 1333



I. Fischer & F. Schreier-Aigner

Proposition 6.1. Let n be a positive integer and k a non-negative integer. Then

CSSPPn,k(r, t) = det
0⩽i,j⩽n−1

δi,j + r
∑
l⩾0

(
i

l

)(
j + k

l + k

)
tj−l

 .

It is crucial for the proof of Theorem 1.2 to express An,k(r, 1, 1, t; x) as a de-
terminant. The next lemma gives a determinantal expression for the more general
An,k(r, u, v, w; x).
Lemma 6.2. Let n ⩾ 2 be an integer, then

(19) An,k(r, u, v, w; x) = det
0⩽i,j⩽n−2

(
(−1)j−ivj+1

(
i

j

)
+ rui+1wj−is(i|j+k)(x)

)
.

Proof. We denote by [0, n] = {0, 1, . . . , n}. Expanding the determinant by the Leibniz
formula yields

(20)
∑

σ∈S[0,n−2]

sgn(σ)
n−2∏
i=0

(
(−1)σ(i)−ivσ(i)+1

(
i

σ(i)

)
+ rui+1wσ(i)−is(i|σ(i)+k)(x)

)
=

∑
A⊆[0,n−2]

∑
σ∈S[0,n−2]

sgn(σ)
∏
i∈A

(
rui+1wσ(i)−is(i|σ(i)+k)(x)

)
×

∏
i∈[0,n−2]∖A

(
(−1)σ(i)−ivσ(i)+1

(
i

σ(i)

))
.

For A = {a1, . . . , al} ⊆ [0, n − 2] with a1 > . . . > al denote(4) by Bc =
{bc

1, . . . , bc
n−1−l} = [0, n− 2]∖A the complement of A where bc

1 > . . . > bc
n−1−l. For a

permutation σ ∈ S[0,n−2] denote by b1 > . . . > bl the elements of the image of A and
by ac

1 > . . . > ac
n−1−l the elements of the image of Bc. Define π ∈ Sl and τ ∈ Sn−l−1

via σ(ai) = bπ(i) and σ(bc
i ) = ac

τ(i). It is not complicated to see that the sign of σ is
given by

sgn(σ) = sgn(π) sgn(τ)
∏

i∈[0,n−2]∖A

(−1)σ(i)−i.

For a given set A ⊆ [n− 1], the permutation σ is uniquely determined by {b1, . . . , bl}
and the permutations π, τ . Note that λ = (a1, . . . , al|b1, . . . , bl) yields a partition
inside (n− 1)n−1. Hence we can rewrite (20) as∑

λ=(a1,...,al|b1,...,bl)⊆(n−1)n−1

∑
π∈Sl

∑
τ∈Sn−l−1

sgn(π) sgn(τ)

×
l∏

i=1
ruai+1wbπ(i)−ais(ai|bπ(i)+k)(x)

n−l−1∏
i=1

vac
τ(i)+1

(
bc

i

ac
τ(i)

)
=

∑
λ=(a1,...,al|b1,...,bl)⊆(n−1)n−1

rlu
∑l

i=1
(ai+1)v(n

2)−
∑l

i=1
(bi+1)w

∑l

i=1
(bi−ai)

× det
1⩽i,j⩽l

(
s(ai|bj+k)(x)

)
det

1⩽i,j⩽n−l−1

((
bc

i

ac
j

))
,

where we used
∑n−l−1

i=1 (ac
i + 1) +

∑l
i=1(bi + 1) =

(
n
2
)

in the last step. Using (6) and
the Giambelli identity which states

s(a1,...,al|b1+k,...,bl+k)(x) = det
1⩽i,j⩽l

(
s(ai|bj+k)(x)

)
,

(4)The notation is used in a similar way as in (5).
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we can rewrite the above as∑
λ=(a1,...,al|b1,...,bl)⊆(n−1)n−1

rlu
∑l

i=1
(ai+1)v(n

2)−
∑l

i=1
(bi+1)w

∑l

i=1
(bi−ai)

× s(a1,...,al|b1+k,...,bl+k)(x) det
1⩽i,j⩽l

((
bi

aj

))
,

which is equal to An,k(r, u, v, w; x) by Proposition 2.1. □

7. Proof of Theorem 1.2
Using the hook-content formula, we can express the evaluation of the Schur polynomial
s(a|b)(x) at (x1, . . . , xn) = (1, . . . , 1) as

s(a|b)(x1, . . . , xn+k−1)
∣∣
x=1 =

(
n + k − 1 + a

a + b + 1

)(
a + b

a

)
.

Together with Lemma 6.2 we obtain

(21) An,k(r, u, v, w; 1)

= det
0⩽i,j⩽n−2

(
(−1)j−ivj+1

(
i

j

)
+ rui+1wj−i

(
n + k + i− 1
i + j + k + 1

)(
i + j + k

i

))
.

We also need the following transformation identity for a binomial sum for the proof
of Theorem 1.2.

Lemma 7.1. Let a, b, c be non-negative integers with a, c ⩽ b and x a variable, then

(22)
b∑

l=0

(
l

c

)(
x + l

l − a

)
=

c∑
s=0

(
x + b + s + 1

b− a

)(
x + a + s

s

)(
x + c

c− s

)
(−1)c−s.

Proof. Using hypergeometric notation, we can rewrite the left-hand side as

3F2

[
c− b, 1, a− b

−b, − b− x

∣∣∣∣ 1](b

c

)(
x + b

x + a

)
.

We apply the 3F2-series transformation [14, (3.1.1)]

3F2

[
a, b, − n

d, e

∣∣∣∣ 1] = 3F2

[
d− a, b, − n

d, 1 + b− e− n

∣∣∣∣ 1] (e− b)n

(e)n
,

and obtain

3F2

[
−c, 1, a− b

−b, 2 + a + x

∣∣∣∣ 1](b

c

)(
x + b + 1
x + a + 1

)
.

By further applying the terminating form of the 3F2-series transformation [5, Ex. 7,
p. 98]

3F2

[
−n, a, b

d, e

∣∣∣∣ 1] = 3F2

[
−n, e− a, e− b

e, d + e− a− b

∣∣∣∣ 1] (d + e− a− b)n

(d)n
,

we have

3F2

[
−c, 1 + a + x, 2 + b + x

2 + a + x, 1 + x

∣∣∣∣ 1](x + c

c

)(
x + b + 1
x + a + 1

)
(−1)c,

which is the right-hand side of (22) expressed as a hypergeometric series. □
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7.1. Proof of (2).

Proof. The assertion follows from the matrix identity((
i

j

)
tj+1−n(t + 1)i−j(t + 2)n−i−1

)
0⩽i,j⩽n−1

·
(

(−1)i+j

(
i

j

)
+ rtj−i

(
n + i

n− j − 1

)(
i + j

i

))
0⩽i,j⩽n−1

=
(

δi,j + r

n−1∑
l=0

(
i

l

)(
j

l

)
(t + 2)j−l

)
0⩽i,j⩽n−1

·
((

i

j

)
tj+1−n(t + 2)n−i−1

)
0⩽i,j⩽n−1

.

Indeed, the first and fourth matrices are lower triangular matrices and their corre-
sponding determinants are both equal to

∏n−1
i=0 ti+1−n(t + 2)n−i−1. The determinant

of the second matrix is equal to An+1,0(r, 1, 1, t; 1) by (21) and the determinant of the
third matrix is equal to CSSPPn,0(r, t + 2) by Proposition 6.1. Hence the assertion
follows by taking determinants on both sides of the matrix identity.

To show the above matrix identity, we first use matrix multiplication and obtain
for the (i, j)-th entry

(23)
n−1∑
l=0

(
i

l

)
tl+1−n(t + 1)i−l(t + 2)n−i−1

(
(−1)l+j

(
l

j

)
+ rtj−l

(
n + l

n− j − 1

)(
l + j

l

))

=
n−1∑
s=0

(
δi,s + r

n−1∑
l=0

(
i

l

)(
s

l

)
(t + 2)s−l

)(
s

j

)
tj+1−n(t + 2)n−s−1.

The sum over terms not involving the variable r on the left-hand side of (23) is
n−1∑
l=0

(−1)l+j

(
i

l

)(
l

j

)
tl+1−n(t + 1)i−l(t + 2)n−i−1.

By using
(

i
l

)(
l
j

)
=
(

i
j

)(
i−j
i−l

)
and the binomial theorem, we can rewrite the above sum

as(
i

j

)
tj+1−n(t+2)n−i−1

n−1∑
l=0

(
i− j

i− l

)
(−t)(i−j)−(i−l)(t+1)i−l =

(
i

j

)
tj+1−n(t+2)n−i−1,

which is equal to the r-free term on the right-hand side of (23). The sum over the
terms of the right-hand side of (23) involving the variable r is equal to

rtj+1−n
n−1∑
l=0

(
i

l

)
(t + 2)n−l−1

n−1∑
s=0

(
s

l

)(
s

j

)
,

where we interchanged the order of the summation. Using Lemma 7.1 for the sum
over s with a = j, b = n− 1, c = l, x = 0, we obtain

rtj+1−n
n−1∑
l=0

(
i

l

)
(t + 2)n−l−1

n−1∑
s=0

(
n + s

n− 1− j

)(
s + j

s

)(
l

l − s

)
(−1)l−s,

where the upper bound of the second sum can be changed to n − 1, since the last
binomial coefficient is 0 for l < s ⩽ n − 1. Interchanging the sums again and using
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the binomial theorem yields

rtj+1−n
n−1∑
s=0

(
n + s

n− 1− j

)(
s + j

s

) n−1∑
l=0

(
i

l

)(
l

l − s

)
(t + 2)n−l−1(−1)l−s

= rtj+1−n(t + 2)n−i−1
n−1∑
s=0

(
i

s

)(
n + s

n− 1− j

)(
s + j

s

)
(t + 1)i−s,

which is equal to the terms of the left-hand side of (23) involving the variable r. □

7.2. Proof of (3).

Proof. By factoring out (−1)i+j in the determinant expression of An+1,k(r, 1, 1,−1; 1)
in (21), we obtain

An+1,k(r, 1, 1,−1; 1) = det
0⩽i,j⩽n−1

((
i

j

)
+ r

(
n + k + i

n− j − 1

)(
i + j + k

i

))
.

Using the Chu-Vandermonde identity, the determinant for CSSPPn,2k(r, 1) in Propo-
sition 6.1 simplifies to

CSSPPn,2k(r, 1) = det
0⩽i,j⩽n−1

(
δi,j + r

(
2k + i + j

j

))
.

We claim the following matrix identity((
j

i

)
+ r

(
n + k + j

n− i− 1

)(
i + j + k

j

))
0⩽i,j⩽n−1

·
((

k + j − i− 1
j − i

))
0⩽i,j⩽n−1

=
((

k + j

j − i

))
0⩽i,j⩽n−1

·
(

δi,j + r

(
2k + i + j

j

))
0⩽i,j⩽n−1

.

Since the second and third matrices are upper triangular with determinant equal to
1, the assertion (3) follows by taking the determinant of all matrices in the above
identity.

To prove the above matrix identity we use matrix multiplication and obtain for
the (i, j)-th term

(24)
n−1∑
l=0

((
l

i

)
+ r

(
n + k + l

n− i− 1

)(
i + l + k

l

))(
k + j − l − 1

j − l

)

=
n−1∑
l=0

(
k + l

l − i

)(
δl,j + r

(
2k + l + j

j

))
.

The Chu-Vandermonde identity implies
n−1∑
l=0

(
k + j − l − 1

j − l

)(
l

i

)
=
(

k + j

j − i

)
,

which explains the terms of (24) not involving the variable r. Setting l = L− (2k +j),
the coefficient of r on the right-hand side of (24) is equal to

2k+j+n−1∑
L=2k+j

(
L− (j + k)

L− (2k + j + i)

)(
L

j

)
.

We can actually change the lower bound of the sum to 0 since the first binomial
coefficient is equal to 0 for 0 ⩽ L < 2k + j. Using Lemma 7.1 for a = 2k + j + i,
b = 2k + j + n − 1, c = j, and x = −(j + k) as well as

(−k
j−s

)
(−1)j−s =

(
j+k−s−1

j−s

)
yields the coefficient of r of the left-hand side of (24). □
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7.3. Proof of (4).

Proof. We expand the determinant for An+1,k(r, 1, 1, t; 1) in (21) by the Leibniz for-
mula and obtain

An+1,k(r, 1, 1, t; 1)

=
∑

σ∈S[0,n−1]

sgn(σ)
n−1∏
i=0

(
(−1)σ(i)−i

(
i

σ(i)

)
+ rtσ(i)−i

(
n + k + i

n− σ(i)− 1

)(
i + σ(i) + k

i

))

=
∑

σ∈S[0,n−1]

sgn(σ)
∑

I⊆[0,n−1]

∏
i∈I

(
rtσ(i)−i

(
n + k + i

n− σ(i)− 1

)(
i + σ(i) + k

i

))

×
∏

i∈[0,n−1]∖I

(−1)σ(i)−i

(
i

σ(i)

)
.

Now note that the summand is 0 unless σ(i) ⩽ i for all i ∈ [0, n − 1] ∖ I, and,
therefore, we restrict our sum to such I. The power of t is

∑
i∈I(σ(i) − i), which is

non-negative as
∑

i∈[0,n−1](i−σ(i)) = 0 and
∑

i∈[0,n−1]∖I(σ(i)−i) ⩽ 0, and, therefore,
we can now set t = 0. However, after this specialisation, the summand is zero unless∑

i∈I(σ(i)− i) = 0, and, therefore,
∑

i∈[0,n−1]∖I(σ(i)− i) = 0, which implies σ(i) = i

for all i ∈ [0, n− 1] ∖ I. Hence, for t = 0, the above simplifies to

An+1,k(r, 1, 1, 0; 1)

=
∑

σ∈S[0,n−1]

sgn(σ)
∑

I⊆[0,n−1]
{i:σ(i)̸=i}⊆I

∏
i∈I

(
r

(
n + k + i

n− σ(i)− 1

)(
i + σ(i) + k

i

))

=
∑

σ∈S[0,n−1]

n−1∏
i=0

(
δi,σ(i) + r

(
n + k + i

n− σ(i)− 1

)(
i + σ(i) + k

i

))

= det
0⩽,i,j⩽n−1

(
δi,j + r

(
n + k + i

n− j − 1

)(
i + j + k

i

))
.

Taking the determinant of the following matrix identity implies the assertion (4), since
the second and third matrix are upper triangular with determinant equal to 1 and
the determinant of the fourth matrix is equal to CSSPPn,k(r, 2) by Proposition 6.1.(

δi,j + r

(
n + k + j

n− i− 1

)(
i + j + k

j

))
0⩽i,j⩽n−1

·
((

k + j

j − i

))
0⩽i,j⩽n−1

=
((

k + j

j − i

))
0⩽i,j⩽n−1

·

δi,j + r
∑
l⩾0

(
i

l

)(
j + k

l + k

)
2j−l


0⩽i,j⩽n−1

.

The constant term with respect to r of the (i, j)-th entry is on both sides
(

k+j
i−j

)
. In

order to prove the matrix identity, it therefore suffices to consider the coefficient of r
of the (i, j)-th entry, i.e., to show

(25)
n−1∑
s=0

(
n + k + s

n− i− 1

)(
i + s + k

s

)(
k + j

j − s

)
=

n−1∑
s,l=0

(
k + s

s− i

)(
s

l

)(
j + k

l + k

)
2j−l.
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We can rewrite the right-hand side of (25) by applying Lemma 7.1 for the sum over s
with a = i, b = n− 1, c = l and x = k and obtain

n−1∑
l=0

(
j + k

l + k

)
2j−l

l∑
s=0

(
k + n + s

n− i− 1

)(
k + i + s

s

)(
k + l

l − s

)
(−1)l−s

=
n−1∑
s=0

(
k + n + s

n− i− 1

)(
k + i + s

s

) n−1∑
l=0

(
j + k

l + k

)(
k + l

l − s

)
2j−l(−1)l−s,

where we interchanged the sums and changed the upper bound of the sum over s to
n − 1 which is allowed since

(
k+l
l−s

)
= 0 for s > l. By using

(
j+k
l+k

)(
k+l
l−s

)
=
(

j+k
j−s

)(
j−s
l−s

)
together with the binomial theorem, we obtain the left-hand side of (25). □

Appendix A. Combinatorial proof of Lemma 4.1
In this appendix, we provide a combinatorial proof of Lemma 4.1. In general, con-
structing combinatorial proofs in this field seems almost impossible (see [11]) and such
challenges are a main motivation to work in this area for some people. Thus we think
that it is an important step forward that we could at least find a combinatorial proof
for a very crucial step in our computation.

We need a number of definitions to reformulate the problem so that it is accessible
from a combinatorial point of view.

Replacing Xi → −Xi, we need to show

(26) ÂSym

 ∏
1⩽i⩽j⩽n

(Xi + Yj)

 = det
1⩽i,j⩽n

(
Y j

i + (−1)j+1Xj
i

)
.

Let Ln denote the graph that is obtained from the complete simple graph on the
vertex set {1, 2, . . . , n} by adding one loop at each vertex. We consider orientations
of Ln and imagine the vertices 1, 2, . . . , n to be arranged on a horizontal line. We say
an edge is oriented from left to right if it is oriented from the smaller vertex i to the
larger vertex j (and write i → j) and from right to left otherwise (i ← j). It will
be convenient to have two possible orientations for loops also, say, from left to right
(indicated as i → i) and from right to left (indicated as i ← i), so that there are in
total 2(n+1

2 ) orientations of Ln. The set of all orientations of Ln is denoted by On. An
example is provided in Figure 9.

Now each monomial in the expansion of
∏

1⩽i⩽j⩽n(Xi + Yj) corresponds to an
orientation of Ln as follows: For i ⩽ j, we let i→ j if we pick Xi in Xi +Yj and i← j
if we pick Yj . Thus, the weight of an orientation O ∈ On is defined as

w(O) =
n∏

i=1
X

#{j⩾i:i→j}
i Y

#{j⩽i:j←i}
i ,

so that
∑

O∈On
w(O) =

∏
1⩽i⩽j⩽n(Xi + Yj). The weight in our example is

X7
1 X5

2 X4
3 X4Y 2

5 Y 3
6 Y 6

7 .
We consider a subset Pn of orientations in On that will provide a combinatorial

interpretation for the right-hand side of (26). The definition is recursive: We have
P1 = O1, and, for n > 1, Pn is partitioned into two sets:

• either all edges incident with n are oriented away from n (necessarily to the
left) and the restriction of the orientation to {1, 2, . . . , n− 1} is in Pn−1,

• or all edges incident with 1 are oriented away from 1 (necessarily to the right)
and the restriction of the orientation to {2, 3, . . . , n} is in Pn−1 with vertices
renamed through a shift by 1.
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Figure 9. An orientation of L7 that is in P7.

There are 2n such orientations in Pn and the orientation in Figure 9 is in P7.
Orientations in Pn can be encoded by a linear order of the vertices 1, 2, . . . , n that

is induced by the inductive build-up of the orientations together with the orientation
of the loop of the first vertex in the list. In the example in Figure 9, the order is
4 5 6 3 2 7 1. This encoding has the following features.

• Each vertex in the list is either greater than all its predecessors in the list or
smaller than all its predecessors.

• The orientation is obtained from the list as follows: The edges are oriented
away from each vertex to its predecessors in the linear order, and the loop
of a vertex different from the first vertex in the list is oriented from left to
right if this vertex is smaller than all its predecessors and from right to left
otherwise. The orientation of the loop of the first vertex is given.

• The weight can easily be computed as follows: The exponent of Xi or Yi is
the position of vertex i in the list.

It follows that for each orientation in Pn, the set {1, 2, . . . , n} can be partitioned
into maximal intervals of integers that are either added consecutively “from above”
(upper sections) or added consecutively “from below” (lower sections) in the recursive
procedure. More formally, there is a strictly increasing sequence of integers i0 < i1 <
i2 < . . . < n + 1 = is and a strictly decreasing sequence of integers i0− 1 = j0 > j1 >
j2 > . . . > 0 = jt such that the linear order is

i0, i0+1, i0+2, . . . , i1−1, j0, j0−1, . . . , j1+1, i1, i1+1, . . . , i2−1, j1, j1−1, . . . , j2+1, . . . .

The vertices greater than i0 have their outgoing edges all to the left, while the vertices
smaller than i0 have their outgoing edges all to the right. The intervals [i0, i1 − 1],
[i1, i2−1], [i2, i3−1], . . . are said to be the upper sections, while the intervals [j1+1, j0],
[j2 + 1, j1], [j3 + 1, j2], . . . are said to be the lower sections. The only exceptional case
happens if i0 → i0: If i1 = i0 + 1, then [j1 + 1, i0] is a lower section and if i1 > i0 + 1,
then [i0, i0] is a lower section and [i0 + 1, i1 − 1] is an upper section. In our example,
(i0, i1, i2) = (4, 7, 8) and (j0, j1, j3) = (3, 1, 0). Here we are in the exceptional case, so
that [1, 1], [2, 3], [4, 4] are the lower sections and [5, 6], [7, 7] are the upper sections.

The claim (26) is equivalent to

(27) ÂSym
[ ∑

O∈On

w(O)
]

= ÂSym
[ ∑

O∈Pn

w(O)
]

.

In order to see this equivalence, we need to show

ÂSym
[ ∑

O∈Pn

w(O)
]

= det
1⩽i,j⩽n

(
Y j

i + (−1)j+1Xj
i

)
,
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which we do by induction with respect to n. The case n = 1 is easy. By definition,∑
O∈Pn

w(O) = Y n
n

∑
O∈Pn−1

w(O) + Xn
1 (1, 2, . . . , n)

 ∑
O∈Pn−1

w(O)

 ,

where (1, 2, . . . , n) denotes the cyclic permutation that sends i → i + 1mod n and
acts on Xi and Yi simultaneously. Therefore,

ÂSym
[ ∑

O∈Pn

w(O)
]

=
∑

σ∈Sn

sgn σ · σ

Y n
n

∑
O∈Pn−1

w(O)


+
∑

σ∈Sn

sgn σ · σ

Xn
1 (1, 2, . . . , n)

 ∑
O∈Pn−1

w(O)

 .

By the induction hypothesis, this is equal to
n∑

k=1
(−1)n+kY n

k det
i∈{1,2,...,n}∖{k}

1⩽j⩽n−1

(Y j
i + (−1)j+1Xj

i )

+
n∑

k=1
(−1)1+kXn

k det
i∈{1,2,...,n}∖{k}

1⩽j⩽n−1

(Y j
i + (−1)j+1Xj

i )

=
n∑

k=1
(−1)n+k(Y n

k + (−1)n+1Xn
k ) det

i∈{1,2,...,n}∖{k}
1⩽j⩽n−1

(Y j
i + (−1)j+1Xj

i )

= det
1⩽i,j⩽n

(
Y j

i + (−1)j+1Xj
i

)
,

where the last equality follows from expanding with respect to the last column.
Rephrasing (27), we need to show

(28) ÂSym
[ ∑

O∈Rn

w(O)
]

= 0,

with Rn = On ∖ Pn, and we provide a combinatorial proof for this identity.

Combinatorial proof of (28). It suffices to find an involution on Rn such that when
orientation O1 is paired with O2 under this involution, then there exists a transposition
τ ∈ Sn with w(O2) = τ w(O1).

We will use of the following notation: For an orientation O ∈ On and a subset
S ⊆ [n], we let O|S denote the restriction of O to the subgraph of Ln induced by S.
We may also identify this with an element of O|S| in a natural way, i.e., by using the
isomorphism between L|S| and the restriction of Ln to S that is induced the unique
order-preserving bijection between [|S|] and S.

Now suppose that O ∈ Rn and let m be minimal such that O|[m] ∈ Rm. It follows
that O|[m−1] ∈ Pm−1. When referring to lower sections in the following, we mean
lower sections of the restriction of O|[m−1]. First we get rid of the following case.

Step 1. There is a lower section [p, q] and an integer k with p ⩽ k < q such
that k ← m and k + 1→ m.

The weight of O|[m] is invariant under applying the transposition (k, k + 1): for
r ∈ {1, 2, . . . , m−1}∖{k, k+1}, the edges {k, r}, {k+1, r} have the same orientation,
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since they are in the same lower section. The weight that comes from the restriction
to {k, k + 1, m} is either X2

kX2
k+1XmYm (if m → m) or X2

kX2
k+1Y 2

m (if m ← m).
We “exchange the neighbourhoods” of k, k + 1 in {m + 1, m + 2, . . . , n}: For all j ∈
{m + 1, m + 2, . . . , n}, we have k → j in the new orientation iff k + 1 → j in the
old orientation, and we have k ← j in the new orientation iff k + 1 ← j in the old
orientation. The transposition τ is equal to (k, k + 1).

The so-obtained orientation is again of the same type (i.e., there is a lower section
with such an integer k), and the map is an involution.

Therefore, we can assume from now on that for each lower section [p, q], there is
a k with p− 1 ⩽ k ⩽ q such that p, p + 1, . . . , k → m and k + 1, k + 2, . . . , q ← m. We
say that a lower section is normal if this is satisfied.

The idea of the remainder of the proof is roughly as follows: In the restriction
O|[m−1], we consider for each vertex the number of left-pointing edges. From right
to left, this is a strictly decreasing sequence of numbers, until these numbers are
eventually 0 for the remaining vertices. We compare them to the number of left-
pointing edges from m. The typical case is that this number is between the numbers
for two adjacent vertices i, i+1 in {1, 2, . . . , m−1}. It is then possible to let τ = (i, m)
or τ = (i+1, m). Which of the two cases has to be chosen depends on the lower section
between i and i + 1 in the total order of 1, 2, . . . , m− 1, more precisely on the k just
described that “makes” it into a normal section. The non-typical exceptional cases
(such as for instance when m has no left-pointing edges) makes the proof involved.

In the following, we let ℓi denote the number of left-pointing edges away from i.
Next we rule out the following case.

Step 2. There is an i ∈ {1, 2, . . . , m− 1} with 0 ̸= ℓi = ℓm.
We need to consider two cases here.
Case 1: i ← m ← m or i → m → m. Note that within {1, 2, . . . , m} the con-

tribution of the vertices i and m to the weight is Y ℓm
i Y ℓm

m in the first case and
XiXmY ℓm

i Y ℓm
m in the second case. We only need to exchange the neighbourhood of i

and m for vertices in {m + 1, m + 2, . . . , n}.
Case 2: i← m→ m or i→ m← m. Note that within {1, 2, . . . , m} the contribu-

tion of i and m to the weight is XmY ℓm
i Y ℓm

m in the first case and XiY
ℓm

i Y ℓm
m in the

second case. We transform the cases into one another, and exchange the neighbour-
hoods of i and m in the vertex set {m + 1, m + 2, . . . , n}.

The transposition τ is equal to (i, m). Note that orientations of edges incident with
vertices in lower sections are not changed, and, therefore, all lower sections are still
normal. Also note that we stay within the type of orientations under consideration
since the number of left-pointing edges from i and m does not change. Hence the map
is an involution.

The only case that remains is the following.
Step 3. We have ℓm ̸= ℓi for all i ∈ [m− 1] or ℓm = 0.
Since O|[m−1] ∈ Pm−1, we have ℓm−1 > ℓm−2 > . . . > ℓt > 0, where t is the

smallest integer in an upper section (setting t = ∞ if t does not exist). The case
ℓm = 0 as well as some instances of the cases that ℓm > ℓm−1 and ℓt > ℓm are dealt
with after Cases A and Cases B.

For now we assume that there exist i, i + 1 ∈ {t, t + 1, . . . , m − 1} such that
ℓi+1 > ℓm > ℓi. The transposition τ will be either (i, m) or (i + 1, m). Let [p, q]
be the lower section that appears in the linear order of [m − 1] induced by O|[m−1]
between i and i + 1 (which are by assumption contained in different upper sections,
since ℓi+1 − ℓi > 1) so that this part of the linear order reads as

i, q, q − 1, . . . , p, i + 1,
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and let k be such that p, p +1, . . . , k → m and k +1, k +2, . . . , q ← m (such a k exists
because all lower sections are normal). Since (ℓi+1 − ℓm) + (ℓm − ℓi) = ℓi+1 − ℓi =
q−p+2 = (q−k)+(k−p+1)+1, we have either ℓm−ℓi ⩽ q−k or ℓi+1−ℓm ⩽ k−p+1
but not both.

Case A: ℓm − ℓi ⩽ q − k
In this case, we change the linear order for O|[m−1] so that

i, q, q − 1, . . . , p, i + 1⇒ q, q − 1, . . . , q − (ℓm − ℓi) + 1, i, q − (ℓm − ℓi), . . . , p, i + 1
to the effect that XqXq−1 . . . Xq−(ℓm−ℓi)+1 in the weight is replaced by Y ℓm−ℓi

i and
change
q−(ℓm−ℓi)+1, q−(ℓm−ℓi)+2, . . . , q ← m⇒ q−(ℓm−ℓi)+1, q−(ℓm−ℓi)+2, . . . , q → m,

to the effect that Y ℓm−ℓi
m in Y ℓm

m = Y ℓi
m Y ℓm−ℓi

m is replaced by XqXq−1 . . . Xq−(ℓm−ℓi)+1.
In addition, in analogy to Case 2, we transform the case i ← m → m into

i→ m← m, and vice versa. There is no such transformation if i ← m ← m or
i → m → m (as in Case 1). Finally, we exchange the neighbourhood of i and m in
{m + 1, m + 2, . . . , n}.

Note that still all lower sections are normal and the transposition τ is equal
to (i, m).

We apply this case also if i = m− 1 (but still ℓm− ℓm−1 ⩽ q− k). As ℓm > ℓi > 0,
we automatically exclude ℓm = 0 here.

Case B: ℓi+1 − ℓm ⩽ k − p + 1
In this case, we change the linear order for O|[m−1] so that

i, q, q− 1, . . . , p, i + 1⇒ i, q, q− 1, . . . , p + ℓi+1− ℓm, i + 1, p + ℓi+1− ℓm− 1 . . . , p + 1, p

to the effect that Y
ℓi+1−ℓm

i+1 in Y
ℓi+1

i+1 = Y
ℓi+1−ℓm

i+1 Y ℓm
i+1 is replaced by XpXp+1 . . .

Xp+li+1−ℓm−1 and change
p, p + 1, . . . , p + ℓi+1 − ℓm − 1→ m⇒ p, p + 1, . . . , p + ℓi+1 − ℓm − 1← m

to the effect that XpXp+1 . . . Xp+ℓi+1−ℓm−1 is replaced by Y
ℓi+1−ℓm

m . In addition, we
have again i + 1 ← m → m ⇔ i + 1 → m ← m, and exchange the neighbourhood
of i + 1 and m in {m + 1, m + 2, . . . , n}.

Again all lower sections are still normal and the transposition τ is (i + 1, m).
We apply this case also if i+1 = t (but still ℓt−ℓm ⩽ k−p+1). As ℓt ⩾ q−p+2 >

k − p + 1, we automatically exclude ℓm = 0 also here.
We leave it to the reader to check that Cases A and B “match each other”: if we

start with an orientation that falls under Case A, it is transformed into one that falls
under Case B, and is then transformed into the original orientation, and vice versa.
Therefore, we only need to figure out which cases are left and find an involution with
the required property on them.

Step 4. We claim that the following two types are left.
(1) ℓm = 0
(2) Suppose q is the first element in the list of the encoding of O|[m−1], then q → q

and for the rightmost lower section [p, q], there exists a k with p− 1 ⩽ k < q
such that i← m iff i ∈ [k + 1, q].

We will see that these cases are turned into one another under our involution.
There is also no intersection as ℓ > 0 in the second case, since [k + 1, q] is not empty.

(1) and (2) have not been considered before: This is obvious for (1). As
for (2), we have that ℓm < ℓt or t =∞: if t ̸=∞, then t = q + 1, ℓq+1 = q− p + 2 and
ℓm = q−k < q−p+2, so it suffices to check ℓq+1− ℓm > k−p+1 (because otherwise
the case would have been dealt with in Case B), which is obviously satisfied. On the
other hand, if t =∞, then this case has also not been dealt with in Cases A and B.
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There are no more cases to consider than (1) and (2): The cases that have
not been dealt with before are (a) ℓm = 0, (b) t =∞, (c) ℓm > ℓm−1 but not already
covered Case A, and (d) ℓm < ℓt but not already covered by Case B.

All cases with ℓm = 0 are still there. If t =∞, then [1, m−1] is the rightmost lower
section in this case, and there exists a k with 0 ⩽ k ⩽ m−1 such that 1, 2, . . . , k → m
and k + 1, . . . , m− 1← m because [1, m− 1] is normal. The fact that the restriction
to {1, 2, . . . , m} is in Rm implies m → m and we can assume k < m − 1 because
otherwise ℓm = 0 and that is already covered. This is then covered by (2).

If t ̸= ∞ and ℓm > ℓm−1, we still need to consider the case ℓm − ℓm−1 > q − k,
because it has not been dealt with in Case A. We will show that this case can actually
not happen. Let [1, q] be the lower section after m− 1 and, as usual, 0 ⩽ k ⩽ q such
that 1, 2, . . . , k → m, k+1, . . . , q ← m. Now ℓm−1 = m−1−q, so that ℓm−ℓm−1 > q−k
is equivalent to ℓm > m − 1 − k and therefore ℓm ⩾ m − k. As 1, 2, . . . , k → m, this
implies k + 1, k + 2, . . . , m ← m (because these are m − k edges) and O|[m] ∈ Pm, a
contradiction.

If t ̸=∞ and 0 ̸= ℓm < ℓt, but the case is not covered by Case B. Let [p, q] be the
lower section that appears in the linear order just before t, and let p, p+1, . . . , k → m
and k + 1, k + 2, . . . , q ← m. Since t is leftmost, [p, q] is also the rightmost lower
section and ℓt = q− p + 2 and t = q + 1. We can assume ℓt− ℓm > k− p + 1 (because
otherwise we are in Case B), so therefore (q − p + 2)− ℓm > k − p + 1, which implies
q − k + 1 > ℓm, but since k + 1, k + 2, . . . , q ← m we have ℓm = q − k, so that the
left-pointing edges from m hit precisely k + 1, . . . , q. We have k < q since ℓm > 0.
This is covered by (2).

Now we show how (1) and (2) are turned into one another.
Suppose we are in (1). Since ℓm = 0, we have t ̸= ∞ because otherwise O|[m] has

only right-pointing edges and would be contained in Pm. Let [p, q] be the lower section
that precedes t (so that t = q + 1), which is the rightmost lower section. The linear
order of the vertices in [m − 1] starts as q, q − 1, . . . , p, q + 1 and we change this to
q + 1, q, q− 1, . . . , p with q + 1→ q + 1. This replaces Y q−p+2

q+1 with XpXp+1 · · ·Xq+1.
Moreover, we change p, p+1, . . . , q +1→ m to p, p+1, . . . , q +1← m, which replaces
XpXp+1 · · ·Xq+1 with Y q−p+2

m . Summarizing, one weight is obtained from the other
by applying the transposition (q + 1, m) when restricting to [m]. We exchange the
neighbourhood of q + 1 and m in {m + 1, m + 2, . . . , n}.

Suppose we are in (2). Then the linear order of the vertices in [m − 1] starts
as q, q − 1, . . ., k + 1 and we change this to q − 1, q − 2, . . . , k + 1, q. This re-
places Xk+1Xk+2 . . . Xq with Y q−k

q . We also change k + 1, k + 2, . . . , q ← m to
k+1, k+2, . . . , q → m, so that Y q−k

m is replaced by Xk+1Xk+2 . . . Xq. So one weight is
obtained from the other by applying the transposition (q, m) when restricting to [m].
We exchange the neighbourhood of q and m in {m + 1, m + 2, . . . , n}. □
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