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The linear system for Sudoku and a
fractional completion threshold

Peter J. Dukes & Kate I. Nimegeers

Abstract We study a system of linear equations associated with Sudoku latin squares. The
coefficient matrix M of the normal system has various symmetries arising from Sudoku. From
this, we find the eigenvalues and eigenvectors of M , and compute a generalized inverse. Then,
using linear perturbation methods, we obtain a fractional completion guarantee for sufficiently
large and sparse rectangular-box Sudoku puzzles.

1. Introduction
A latin square of order n is an n × n array with entries from a set of n symbols (often
taken to be [n] := {1, 2, . . . , n}) having the property that each symbol appears exactly
once in every row and every column. A partial latin square of order n is an n×n array
whose cells are either empty or filled with one of n symbols in such a way that each
symbol appears at most once in every row and every column. A partial latin square
can be identified with a set of ordered triples in a natural way: if symbol k appears in
row i and column j, we include the ordered triple (i, j, k). A completion of a partial
latin square P is a latin square L which contains P in the sense of ordered triples;
that is, every symbol occurring in P also occurs in the corresponding cell of L.

It is natural to ask how dense a partial latin square can be while still having a
completion. Daykin and Häggkvist conjectured [7] that a partial latin square in which
any row, column and symbol is used at most n/4 times should have a completion. They
proved a weaker version of this claim, with n/4 replaced by 2−9n1/2. Chetwynd and
Häggkvist [6] and later Gustavsson [8] obtained the first such completion guarantee
which was linear in n. Let us say that a partial latin square is ϵ-dense if no row,
column, or symbol is used more than ϵn times. Bartlett [3] built on the preceding work
to show that all ϵ-dense partial latin squares have a completion for ϵ = 9.8 × 10−5.
Then, over two papers, this was improved to roughly ϵ = 0.04, provided n is large. One
paper [4] of Bowditch and Dukes obtained this threshold for a fractional relaxation of
the problem, and the other paper [2] by Barber, Kühn, Lo, Osthus and Taylor showed
using absorbers and balancing graphs that the fractional threshold suffices for very
large instances of the (exact) completion problem.

Let h and w be integers with h, w ⩾ 2, and put n = hw. A Sudoku latin square
(or briefly Sudoku) of type (h, w) is an n × n latin square whose cells are partitioned
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into a w × h pattern of h × w subarrays where every symbol appears exactly once
in each subarray. The subarrays are called boxes, or sometimes also called cages.
A partial Sudoku and completion of such is defined analogously as above for latin
squares. The completion problem for partial Sudoku in the case h = w = 3 is a
famous recreational puzzle. A mathematical discussion of Sudoku solving strategies
can be found in [5, 14]. By contrast, we are interested here in the fractional relaxation
of partial Sudoku completion, essentially following the approach used in [4] for latin
squares.

Let us explain the fractional relaxation in more detail. Working from a partial latin
square P , an empty cell can be assigned a convex combination of symbols instead of
a single symbol. More formally, P can be represented as a function fP : [n]3 → {0, 1}
in which fP (i, j, k) is the number of times symbol k appears in cell (i, j). A fractional
completion of P is a function f : [n]3 → [0, 1] such that, for any i, j, k ∈ [n],

• fP (i, j, k) = 1 implies f(i, j, k) = 1; and
•

∑n
i=1 f(i, j, k) =

∑n
j=1 f(i, j, k) =

∑n
k=1 f(i, j, k) = 1.

Viewing this as an array, cell (i, j) is assigned a fractional occurrence of symbol k with
value f(i, j, k). The first condition ensures that filled cells of P are left unchanged.
The second condition ensures that every symbol appears with a total occurrence of
one in each column and each row, and that every cell is used with a total value of one.
For the Sudoku setting, we can add an extra family of constraints, namely that for all
boxes b and symbols k,

∑
(i,j)∈b f(i, j, k) = 1, where the sum is over all ordered pairs

(i, j) belonging to box b. We remark that when f is {0, 1}-valued, it corresponds to
an exact completion of P , whether for general latin squares or Sudoku.

Figure 1. Illustration of a fractional completion of a partial Sudoku
of type (2, 3)

Figure 1 depicts a fractional Sudoku of type (2, 3), where the solid disks correspond
to pre-filled cells of a partial Sudoku, and the multi-colored disks correspond to a
fractional completion.

The notion of ϵ-dense needs to be strengthened in the Sudoku setting. First, it
is natural to impose a constraint on number of filled cells in any box. Otherwise,
completion can be blocked by placing symbols 1, . . . , n − 1 in the top-left box and
symbol n in line with the remaining empty cell of that box. This uses each symbol
only once and each row and column at most max{h, w} times. For h ≈ w, this is
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sub-linear in n. Separately from this, it is also natural to prevent symbol occurrences
from being too unbalanced relative to the box partition. In more detail, for a Sudoku
of type (h, w), it is possible to force a given symbol in, say, the (1,1)-entry by placing
it outside of the top-left box in rows 2, . . . , h and in columns 2, . . . , w. We can arrange
for this to occur for different symbols, say 1 and 2, making completion impossible.
But this uses no row or column more than twice and uses each symbol only h + w − 2
times, which could again be sub-linear in n. An illustration of the obstructions for
h = w = 3 are given in Figure 2. To address this, we can strengthen the ϵ-dense
condition for a partial Sudoku to:

• each row, column, and box has at most ϵn filled cells;
• each symbol occurs at most ϵh times in any bundle of h rows corresponding to

the box partition, and likewise at most ϵw times in any bundle of w columns.

1 2 3

4 5 6

7 8 9

2

2

1

1

2

2

1

1

Figure 2. Sparse partial latin squares with no Sudoku completion

Our main result gives a guarantee on fractional completion of ϵ-dense Sudoku latin
squares.

Theorem 1.1. Let ϵ < 1/101. For sufficiently large integers h and w, every ϵ-dense
partial Sudoku of type (h, w) has a fractional completion.

It turns out that our methods to prove Theorem 1.1 really only require a weaker
notion of density. Roughly speaking, we need each empty cell (i, j) to have a large
proportion of all symbols k available to be placed there, and analogous availability
when the roles of rows, columns and symbols are permuted, and boxes are introduced.
This is made more precise later.

The outline of the paper is as follows. In the next section, we reformulate Sudoku
completion as a certain graph decomposition problem, and then give a linear system
of equations governing the fractional relaxation. Starting with the empty Sudoku, the
rank and a basis for the nullspace are computed and interpreted combinatorially. The
ϵ-dense case can be viewed as a perturbed version of the empty case, closely following
the approach in [4] for latin squares. This motivates a study of the linear algebra for
empty Sudoku in more detail. In Section 3, we observe that all relevant computations
take place in an adjacency algebra of fixed dimension, independent of h and w. Eigen-
values and eigenvectors relevant for the problem are described in Section 4.1. Then,
using computer-assisted symbolic algebra, a certain generalized inverse is computed
and upper-bounded in ∞-norm. This bound ensures solutions to our linear system
remain nonnegative. Section 5 discusses in more detail the perturbation as we pass
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to the ϵ-dense setting. By the end of this section, all the ingredients are in place to
prove Theorem 1.1. The last section contains some concluding remarks and a brief
discussion of possible extensions and generalizations.

2. Preliminaries and set-up
2.1. A graph decomposition model. In a Sudoku of type (h, w), let box(i, j)
denote the box containing cell (i, j). If boxes are numbered left to right then top to
bottom, then we have the formula box(i, j) = h⌊ i−1

h ⌋ + ⌊ j−1
w ⌋ + 1.

We define the graph Ghw as follows. Its vertex set is

V (Ghw) = {r1, . . . , rn} ∪ {c1, . . . , cn} ∪ {b1, . . . , bn} ∪ {s1, . . . , sn},

with the four sets corresponding to rows, columns, boxes, and symbols, respectively.
Its edge set is

(1) E(Ghw) =
n⋃

i,j=1
{{ri, cj}, {ri, sj}, {ci, sj}, {bi, sj}}.

In other words, exactly one edge is present for every combination of row-column, row-
symbol, column-symbol, and box-symbol. As a point of notation, Ghw depends only
on n = hw; indeed, if we omit indices in (1) it is seen to be simply a blow-up of the
graph K3 + e by independent sets of size n. With this in mind, the subscript in Ghw

can reasonably be interpreted as the product of h and w, though it will be useful
below to keep these parameters separate. Note that the subgraph of Ghw induced by
rows, columns, and symbols is just the complete 3-partite graph Kn,n,n.

A tile in Ghw is a copy of K3 + e induced by four vertices ri, cj , bℓ, sk for which
box(i, j) = ℓ. This tile represents the act of placing symbol k in cell (i, j), and also
keeps track of the box used. Let T (Ghw) denote the set of all n3 tiles in Ghw.

Given a partial Sudoku S of type (h, w), let GS denote the subgraph of Ghw

obtained by removing the edge sets of tiles corresponding to filled cells of S. In other
words, V (GS) = V (Ghw) and E(GS) contains:

• {ri, cj} if and only if cell (i, j) is empty;
• {ri, sk} if and only if symbol k is missing in row i;
• {cj , sk} if and only if symbol k is missing in column j;
• {bℓ, sk} if and only if symbol k is missing in box ℓ.

Let T (GS) be the set of tiles in T (Ghw) all of whose edges are in GS .
An equivalent but slightly different model can be obtained by including row-box

and column-box edges. That is, we could change tiles into cliques K4, and change the
host graph Ghw into a multigraph G∗

hw with the same vertex set and all the edges
of Ghw, and additionally including the edges

• {ri, bℓ} with multiplicity w if and only if row i is incident with box ℓ; and
• {cj , bℓ} with multiplicity h if and only if column j is incident with box ℓ.

Likewise, given a partial Sudoku S, we could define G∗
S to be the subgraph of G∗

hw

obtained by removing the edges of all 4-cliques on {ri, cj , bℓ, sk} whenever symbol k
occurs in cell (i, j) (and box ℓ) of S.

For graphs F and G, we say that G has an F -decomposition if its edge set E(G)
can be partitioned into subgraphs isomorphic to F . This extends naturally to multi-
graphs G, where now repeated edges are distinguished. That is, the number of copies
of F containing two vertices u ̸= v equals the multiplicity of edge {u, v} in G. Many
problems in combinatorics can be formulated in terms of graph decompositions. For
example, K3-decompositions of Kn,n,n are equivalent to latin squares of order n; see
for instance [2, 4, 12]. The following is an analog for Sudoku using our graphs above.
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Proposition 2.1. The partial Sudoku S has a completion if and only if the graph
GS has an edge-decomposition into tiles, or equivalently if and only if G∗

S has a K4-
decomposition.

Proof. Suppose S has a completion S′. If cell (i, j) was blank in S but filled in S′, say
with symbol k, we use the tile defined by {ri, cj , sk, bℓ}, where ℓ = box(i, j). Each such
tile belongs to T (GS) because (i, j) was blank in S and because k occurs only once
in S′ in row i, column j and box ℓ. Consider the set T of these tiles induced by cells
that were blank in S and filled in S′. These tiles are edge-disjoint, again because S′

has no repeated symbols in any any row, column, or box. We check that T gives an
edge-decomposition of GS into tiles. Any row-column edge of GS , say {ri, cj}, is in the
tile corresponding to the symbol placed at entry (i, j) of S′. Consider a row-symbol
edge, say {ri, sk} ∈ E(GS). The presence of this edge means k was missing from row i
in S. It occurs somewhere in row i of S′, say at entry (i, j). This entry was blank
in S, so ri, cj , sk define a tile in T , along with the box containing (i, j). A similar
verification holds for edges of type column-symbol and box-symbol in GS .

For the converse, the argument is reversible. Given a set T of tiles that form an
edge-decomposition of GS , we complete S by placing symbol k in entry (i, j) whenever
ri, cj , sk belong to a tile of T . Since the tiles of T are edge-disjoint, every entry (i, j)
is filled at most once and no row, column, or box contains repeats. Since the edges
within T partition those in GS , it follows that every blank entry of S gets filled, and
every symbol occurs in every row, column, and box.

The claim about G∗
S having a K4-decomposition is nearly identical. In the forward

implication, we note that a row-box edge {ri, bℓ} in G∗
hw occurs in total w times

counting E(G∗
S) and the decomposition. This is because the completion S′ has w

entries in row i and box ℓ. Similarly, column-box edges of G∗
hw occur a total of h

times. □

The model using row-box and column-box edges has the advantage that all 4-
cliques in G∗

S correspond to valid tiles. However, since no new information is carried
by those extra edges, we henceforth work with tiles in GS , omitting the implied edges
of type row-box and column-box.

This paper is concerned with partial Sudoku latin squares which are nearly empty.
Recall the definition of ϵ-dense discussed in Section 1 and strengthened for the case
of Sudoku. The definition leads easily to various degree bounds in GS , which we
summarize here.

Lemma 2.2. Suppose S is ϵ-dense. Then in the graph GS, the number of edges from
vertex

• cj to the row partite set is at least (1 − ϵ)n;
• sk to any row bundle is at least (1 − ϵ)h;
• ri to the column partite set is at least (1 − ϵ)n;
• sk to any column bundle is at least (1 − ϵ)w;
• ri, cj or bℓ to the symbol partite set is at least (1 − ϵ)n;
• sk to the box partite set is at least (1 − ϵ)n.

2.2. The linear system for Sudoku. Consider an empty n × n Sudoku, to be
filled with entries from [n]. Let xijk denote the number/fraction of symbols sk placed
in cell (i, j), where (i, j, k) ∈ [n]3. Latin square and Sudoku constraints naturally
correspond to linear equations on these variables. The condition that every cell have
exactly one entry becomes

∑
k xijk = 1 for each (i, j) ∈ [n]2. The condition that every

row contains every symbol exactly once becomes
∑

j xijk = 1 for each (i, k) ∈ [n]2.
Similarly, that every column contains every symbol exactly once becomes

∑
i xijk = 1
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for each (j, k) ∈ [n]2. Together, these 3n2 equations yield a linear system for (frac-
tional) latin squares. The additional condition relevant for Sudoku is that every box
contains every symbol exactly once, or∑

(i,j)∈box(ℓ)

xijk = 1

for each (k, ℓ) ∈ [n]2.
This results in a 4n2 × n3 linear system

(2) Wx = 1,

where 1 denotes the all-ones vector and W is the {0, 1} inclusion matrix of E(Ghw)
versus T (Ghw); that is, W (e, t) = 1 if e ∈ t and is 0 otherwise. In this paper, we
will mainly consider the (square) normal system, with coefficient matrix M = WW ⊤.
An entrywise nonnegative solution y to My = 1 implies the existence of a solution
x = W ⊤y ⩾ 0 to (2). This, in turn, produces a fractional edge-decomposition of Ghw

into tiles and a fractional Sudoku of type (h, w).
The rank (over the reals) of both W and M can be found by exhibiting a basis

for their range consisting of tiles in Ghw. For convenience, set punctuation will be
omitted from edges and tiles; we abbreviate these by juxtaposing vertices in different
partite sets of V (Ghw).

Proposition 2.3. We have rank(M) = rank(W ) = n3−(n−1)3+(n−1)(h−1)(w−1).

Proof. Let T1 be the set of n3 − (n − 1)3 tiles in Ghw which intersect at least one
of r1, c1, s1. It was shown in [4, Proposition 2.3] that T1 is linearly independent in the
vector space of functions from E(Kn,n,n) to R. Thus, T1 is also linearly independent
in RE(Ghw). Let T2 be any set of (n − 1)(h − 1)(w − 1) tiles of the form ricjskbℓ,
where k = 2, . . . , n − 1 and the bℓ range over all boxes disjoint from both row 1 and
column 1. Since the tiles in T2 use distinct box-symbol edges which are not present
in T1, it is clear that T1 ∪ T2 is linearly independent.

We next show that T1 ∪ T2 generates any given column of W , say the one corre-
sponding to a tile {ri, cj , sk, bℓ}. Suppose i ⩽ h and j ⩽ w. Then ℓ = box(i, j) = 1.
We can form the target tile as a linear combination in T1, namely as

ricjskb1 = r1cjskb1 + ric1skb1 + ricjs1b1 − r1c1skb1 − r1cjs1b1 − ric1s1b1 + r1c1s1b1.

Suppose next that i > h and j ⩽ w. As above, we have the linear combination

ricjskbℓ = r1cjskb1 + ric1skbℓ + ricjs1bℓ − r1c1skb1 − r1cjs1bℓ − ric1s1b1 + r1c1s1b1.

Similarly, T1 generates any tile with i ⩽ h and j > w. Suppose, then, that i > h
and j > w. If k = 1, the corresponding tile belongs to T1, so assume k > 1. Put
p = box(1, j) and q = box(i, 1), and note that all tiles meeting these boxes are in the
span of T1, as shown above. Since i > h, j > w, and k > 1, we know that sk and bℓ

occur together in some tile ri′cj′skbℓ ∈ T2. Using this and other tiles generated so far,
we compute

ricjskbℓ

= ricjs1bℓ + r1cjskbp + ric1skbq − r1c1skb1 − r1cjs1bp − ric1skbq + ri′cj′skbℓ

− ri′cj′s1bℓ − r1cj′skbp − ri′c1skbq + r1c1skb1 + r1cj′s1bp + ri′c1s1bq − r1c1s1b1.

We have shown that T1∪T2 spans each column of W , and hence is a basis for range(W ).
□
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Suppose now that some cells of our Sudoku have been pre-filled, resulting in the
graph GS as described earlier. Let WS denote the {0, 1} inclusion matrix of edges
versus tiles in GS . Then the system

(3) WSx = 1

has a solution x ⩾ 0 if and only if GS admits a fractional edge-decomposition into
tiles. Note that for non-empty S, the dimensions in the system (3) are smaller than
in (2). The tile weights are given by entries xijk of x. By Proposition 2.1, the existence
of such a solution is equivalent to our partial Sudoku S having a completion.

We may again consider the normal system with coefficient matrix MS = WSW ⊤
S .

Even though many possible solutions of (3) are lost in doing so, the normal system has
the advantage of allowing eigenvalue and perturbation methods, as was done in [4].
We extend these methods to the Sudoku setting in Sections 4 and 5 to follow.

2.3. The kernel. For our analysis of the linear systems (2) and (3) above, it is
important to study the nullspace/kernel of M , or equivalently the left nullspace of W .
This can be viewed as the set of all edge-weightings in Ghw in which each tile has a
vanishing total weight (over its four edges).

After some simplification, Proposition 2.3 gives

(4) dim ker(M) = 4n2 − rank(M) = 3n + (h + w)(n − 1).

We would like to find a basis for ker(M). First, a spanning set is described in three
categories of vectors below.

(A) Choose a row ri and define the vector v, coordinates indexed by E(Ghw), where
v(ricj) = 1 for all j ∈ [n], v(risk) = −1 for all k ∈ [n], and otherwise v(e) = 0. Similar
classes of kernel vectors exist with the roles of row, column and symbol permuted.

Consider the characteristic vector t of some tile t. If ri ∈ t, then since t contains
exactly one column and exactly one symbol we have t · v = 1 − 1 = 0. On the other
hand, if ri ̸∈ t, the support of t is disjoint from the support of v, hence we again have
t · v = 0. In plain language, this kernel vector encodes the condition that the number
of times a column is used with row i equals the number of times a symbol is used in
row i. Verification is similar for the permuted varieties.

(B) Choose a box bℓ and define the vector v in which v(ricj) = 1 for all (i, j) ∈ bℓ,
v(bℓsk) = −1 for all k ∈ [n], and otherwise v(e) = 0.

As before, let t be the characteristic vector of a tile t. If bℓ ∈ t, then since t contains
exactly one row, column and symbol, we have t · v = 1 − 1 = 0. On the other hand,
if bℓ ̸∈ t, the supports of t and v are disjoint. This kernel vector encodes the condition
that the number of entries filled in box ℓ equals the number of symbols used in box ℓ.

(C) Choose a bundle of rows {rhp+1, . . . , rh(p+1)} and a symbol sk. Define the
vector v with v(risk) = 1 and v(bℓsk) = −1 for all hp < i, ℓ ⩽ h(p+1), and otherwise
v(e) = 0. A similar class of vectors exists for column bundles.

Once again, let t be the characteristic vector of a tile t. Suppose sk ∈ t and t
intersects the row bundle defining v. Since t contains exactly one row and exactly
one box meeting this bundle, we have t · v = 1 − 1 = 0. On the other hand, if either
sk ̸∈ t or t intersects a different row bundle, the supports of t and v are disjoint. The
encoded condition states that a given symbol sk appears the same number of times
in a row bundle as in the corresponding box bundle. The column bundle case has a
similar verification.

To see that the vectors above span ker(M), it is convenient to examine the sub-
space U spanned by the row and column varieties of type (A), along with all vectors
of type (B). Note that all vectors in U are invariant under symbol permutation. It is
straightforward to see that dim(U) = 3n, since basis vectors have disjoint supports.
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Next, let V be the subspace of ker(M) spanned by the type (C) vectors. It is easy to
see that dim(V ) = (h + w)n and dim(U ∩ V ) ⩽ h + w, the number of row or column
bundles. Therefore,

dim(U + V ) = dim(U) + dim(V ) − dim(U ∩ V ) ⩾ 3n + (h + w)(n − 1) = dim ker(M).

For a basis of ker(M), it suffices to take the row and column varieties of type (A)
vectors, all type (B) vectors, and those of type (C) which avoid a particular symbol,
say sn. More details on this can be found in the second author’s thesis [13].

Let K be the 4n2 × 4n2 matrix which projects onto ker(M). We have K2 = K =
K⊤. Let K[S] denote the principal submatrix of K whose rows and columns cor-
respond to the edges of GS . The following orthogonality relations are similar to [4,
Proposition 2.5].

Proposition 2.4. The range of K[S] is orthogonal to the all-ones vector and to the
range of MS. That is, (a) K[S]1 = 0; and (b) K[S]MS = O.

Proof. For matrices and vectors indexed by E(Ghw), sort the indices so that those
corresponding to E(GS) come first. Let L be the inclusion map from edges of GS to
edges of Ghw and let Q be the inclusion map from tiles of GS to tiles of Ghw. As
matrices, L and Q have the structure [I | O]⊤.

Let 1S = (1 | 0) be the 4n2 × 1 zero-one indicator vector of E(GS) in E(Ghw).
Alternatively, 1S is obtained from the 4n2 ×1 all-ones vector by subtracting indicator
vectors of tiles in S. It follows that 1S is contained in the range of W ⊤, and hence is
orthogonal to ker(W ⊤). We now compute

K[S]1 = L⊤KL1 = L⊤K1S = 0.

This proves (a). With our matrix partition, we have

W =
[

WS ∗
O ∗

]
and LWS = WQ. Working from these,

K[S]MS = L⊤KLWSW ⊤
S = L⊤KWQW ⊤

S = O,

since KW = O. This proves (b). □

Next, we recall [4, Lemma 2.6]. The idea lets us solve an under-determined system
Ax = b by inverting an additive shift of A. We use this later in Section 5 with A
taking the role of MS , B a multiple of K[S], and b = 1.

Lemma 2.5 (see [4]). Let A and B be symmetric N × N real matrices with AB = O,
A + B nonsingular, and Bb = 0. Then A(A + B)−1b = b.

3. The adjacency algebra
3.1. A coherent configuration for Sudoku. Let X be a finite set. A coherent
configuration on X is a partition of X × X into a set of relations R = {R1, . . . , Rd}
satisfying the following properties:

(1) the union of some relations in R equals the diagonal {(x, x) : x ∈ X};
(2) for each R in R, the transpose relation R⊤ = {(y, x) : (x, y) ∈ R} is also in R;
(3) for each i, j, k, there exists a constant pk

ij such that for any x, z with
(x, z) ∈ Rk, there are exactly pk

ij elements y such that (x, y) ∈ Ri

and (y, z) ∈ Rj .
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Given a group G acting on a set X, the set of orbits of the induced action on X ×X
is a coherent configuration, [9]. Here, we set up a coherent configuration on the ground
set X = E(Ghw) using a group of Sudoku symmetries. The wreath product Sh ≀ Sw

acts on rows and preserves the row bundle partition. Similarly, Sw ≀Sh acts on columns.
The direct product of these acts on [n]2 and in particular the second factors Sw × Sh

act on the n boxes. Finally, if we take a product with Sn for symbol symmetries, we
have the group

Γhw = (Sh ≀ Sw) × (Sw ≀ Sh) × Sn ⩽ Aut(Ghw)
acting on E(Ghw) = {ricj , risk, cjsk, bℓsk : i, j, k, ℓ ∈ [n]}.

We describe the relations on ordered pairs of edges in more detail. Given two rows ri

and ri′ , we write ri ∼ ri′ if and only if ⌊(i − 1)/h⌋ = ⌊(i′ − 1)/h⌋. Similarly, given
two columns cj and cj′ , we write cj ∼ cj′ iff ⌊(j − 1)/w⌋ = ⌊(j′ − 1)/w⌋. In other
words, ∼ tracks whether two rows or two columns belong to the same bundle. From
the definition, it is clear that ∼ is an equivalence relation on both rows and columns.
Write ri

∼=/ ri′ if ri ∼ ri′ but ri ̸= ri′ . Define ∼=/ similarly for columns.
Given two boxes bℓ and bℓ′ , write bℓ ⌣ bℓ′ if ⌊(ℓ − 1)/h⌋ = ⌊(ℓ′ − 1)/h⌋. Informally,

this keeps track of whether the two boxes occur in the same row bundle. Write bℓ ⌢ bℓ′

iff ℓ ≡ ℓ′ (mod h); this is the analog for boxes in the same column bundle. By abuse
of notation, we write ri ⌣ bℓ to mean that the corresponding row and box intersect,
and similarly for cj ⌢ bℓ.

Ordered pairs of vertices in Ghw are partitioned into relations according to Ta-
ble 1. A blank indicates the trivial relation. Moving from vertices to edges, there
are 69 relations induced on ordered pairs of edges. These are labelled and displayed
in Figure 3.

rows cols symbols boxes
rows =, ∼=/ ,≁ ⌣, ̸⌣
cols =, ∼=/ ,≁ ⌢, ̸⌢

symbols =, ̸=
boxes ⌣, ̸⌣ ⌢, ̸⌢ =, ⌣, ⌢, ̸≍

Table 1. Relations on vertices of Ghw

Proposition 3.1. The relations R1, . . . , R69 given in Figure 3 define a coherent con-
figuration on on E(Ghw).

Proof. The relations =, ∼=/ , ̸∼ are orbits of Sh ≀Sw (respectively Sw ≀Sr) acting on pairs
of rows (columns). The direct product of second factors Sw×Sh induces relations =, ⌣
, ⌢, ≍ on ordered pairs of boxes. The relations ⌣, ̸⌣ (respectively ⌢, ̸⌢) also define
orbits on ordered pairs of rows (columns) with boxes. Finally, the relations =, ̸= define
orbits of Sn acting on pairs of symbols. It follows that the set of relations {R1, . . . , R69}
matches the coherent configuration from the action of Γhw on E(Ghw). □

The diagonal relation {(x, x) : x ∈ X} is a union of R1, R16, R32, R62. For any
relation Ri, its transpose R⊤

i can be identified directly from Figure 3. With extensive
case analysis, it would be technically possible to demonstrate formulas for the struc-
ture constants pk

ij . However, to avoid presenting such details and to reduce errors, we
implemented the following computer-assisted procedure:

(1) argue that pk
ij belongs to Z[h, w], and is at most quadratic in each of h, w;

(2) compute all structure constants explicitly for the nine cases 2 ⩽ h, w ⩽ 4;
(3) interpolate this data to arrive at symbolic expressions for pk

ij .
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Figure 3. Relations on edges of Ghw

We discuss these points in a little more detail.

Proposition 3.2. In the coherent configuration defined by Γhw, each structure con-
stant pk

ij is a polynomial of degree at most 2 in each of h and w.

Proof. Fix two edges x, z ∈ E(Ghw) with (x, z) ∈ Rk. The quantity pk
ij counts the

edges y ∈ E(Ghw) with (x, y) ∈ Ri and (y, z) ∈ Rj . This quantity is zero unless the
indices i and j simultaneously allow one of the four types of edges for y. Given indices
i and j which admit a choice of y, we must choose either a row-column pair, a row-
symbol pair, a column-symbol pair, or a box-symbol pair. The two components of each
pair can be selected separately, leading to a product of choices for the two components.
Each factor is easily seen to have degree at most one in both h and w. The number of
choices for a row is an element of {0, 1, h − 2, h − 1, h, n − 2h, n − h, n}. Similarly, the
number of choices for a column is an element of {0, 1, w−2, w−1, w, n−2w, n−w, n}.
The number of choices for a symbol is an element of {0, 1, n − 2, n − 1, n}. Finally, the
number of choices for a box is a product of an element of {0, 1, h − 2, h − 1, h} with
an element of {0, 1, w − 2, w − 1, w}. □
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The choice of nine cases 2 ⩽ h, w ⩽ 4 suffices because of the degree bound in
Proposition 3.2. The computation was carried out on computer by explicitly listing
all 4h2w2 edges and counting incidences. This took several minutes for the larger cases.
From this, the interpolation in (3) can be performed using a 9×9 Vandermonde matrix
based on the terms 1, h, w, h2, hw, w2, h2w, hw2, h2w2, where (h, w) ∈ {2, 3, 4}2.

For each relation index i = 1, . . . , 69, we consider its corresponding adjacency
matrix Ai. Let A denote the R-vector space spanned by the Ai. Since the relations
form a coherent configuration, A is closed under matrix multiplication, and hence
forms an algebra.

If we view each relation as a graph, then {Ri : i = 1, . . . , 69} is a decomposition
of the line graph of Ghw into regular graphs. The degrees of these graphs are the
nonzero row sums of the corresponding adjacency matrices. We give the degrees di

for each of the relations in Table 2. These are arranged into columns according to the
four edge types: row-column, row-symbol, column-symbol, and symbol-box. Consider,
for example, the degree d47. Given a row-symbol edge, say r1s1, this degree counts
the symbol-box edges skbℓ with sk ̸= s1 and bℓ in the same row bundle as r1. There
are n − 1 choices for sk and h choices for bℓ, since every row is incident with exactly
n/w = h boxes. So d47 = (n − 1)h.

i di i di i di i di

1 1 13 n 25 n 42 n
2 w − 1 14 n(h − 1) 26 n(w − 1) 43 n(h − 1)
3 (h − 1)w 15 nh(w − 1) 27 n(h − 1)w 44 n(w − 1)
4 h − 1 16 1 30 n 45 n(h − 1)(w − 1)
5 (h − 1)(w − 1) 17 n − 1 31 n(n − 1) 50 h
6 (h − 1)2w 18 h − 1 32 1 51 (n − 1)h
7 h(w − 1) 19 (n − 1)(h − 1) 33 n − 1 52 h(w − 1)
8 h(w − 1)2 20 h(w − 1) 34 w − 1 53 (n − 1)h(w − 1)
9 n(h − 1)(w − 1) 21 (n − 1)h(w − 1) 35 (n − 1)(w − 1) 58 w

10 n 28 n 36 (h − 1)w 59 (n − 1)w
11 n(h − 1) 29 n(n − 1) 37 (n − 1)(h − 1)w 60 (h − 1)w
12 nh(w − 1) 46 h 54 w 61 (n − 1)(h − 1)w
22 n 47 (n − 1)h 55 (n − 1)w 62 1
23 n(w − 1) 48 h(w − 1) 56 (h − 1)w 63 n − 1
24 n(h − 1)w 49 (n − 1)h(w − 1) 57 (n − 1)(h − 1)w 64 h − 1
38 n 65 (n − 1)(h − 1)
39 n(h − 1) 66 w − 1
40 n(w − 1) 67 (n − 1)(w − 1)
41 n(h − 1)(w − 1) 68 (h − 1)(w − 1)

69 (n − 1)(h − 1)(w − 1)
Table 2. Relation degrees di; alternatively the nonzero row sums of Ai

3.2. The coefficient matrix M . Recall that W denotes the {0, 1} inclusion matrix
of edges versus tiles in Ghw, and that M = WW ⊤. We computed the rank and a basis
for the kernel of M in Section 2. A key next observation is that M belongs to our
adjacency algebra.

Proposition 3.3. The matrix M = WW ⊤ lies in A, with

M =hw(A1 + A16 + A32 + A62) + w(A46 + A50) + h(A54 + A58)(5)
+ A10 + A13 + A22 + A25 + A28 + A30 + A38 + A42.
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Proof. Given two edges e, f in Ghw, the entry M(e, f) equals the number of tiles
containing both e and f . Since a tile contains exactly one row, column, box, and
symbol, this number is zero whenever e ∪ f contains two distinct vertices of the same
type. Moreover, since the box in a tile must correspond with the row-column pair,
M(e, f) is zero if e ∪ f ⊃ {ri, bℓ} or {cj , bℓ} with, respectively ri ̸⌣ bℓ or cj ̸⌢ bℓ. It
suffices to consider those remaining cases when there exist tiles extending e ∪ f .

If e = f , we claim that there are n such tiles, regardless of the type of edge.
For e = {ri, cj}, any of the n symbols extend e to a tile (and there is a unique box
involved). For e = {ri, sk}, there are any of n columns (with one corresponding box
for each) extending e. This is similar when we exchange the roles of rows and columns.
Finally, for e = {bℓ, sk}, any of the hw = n cells (i, j) with box(i, j) = ℓ extend e to a
tile. The identity relation in our setup decomposes into the identity on the four types
of edges; in terms of matrices,

I = A1 + A16 + A32 + A62.

We have shown that the diagonal entries of M , and hence the coefficient for each of
these four adjacency matrices, equals n.

Next, consider e = {ri, sk} and f = {bℓ, sk}. In the event that ri ⌣ bℓ, we obtain w
possible columns cj such that box(i, j) = ℓ, and e ∪ f ∪ {cj} defines a valid tile. The
two relations corresponding to this choice of e and f (transposes of each other) have
indices 46 and 50 in our labeling. If instead we take e = {cj , sk} for cj ⌢ bℓ, there
are likewise exactly h extensions to a tile via some row ri. This choice corresponds to
relations numbered 54 and 58.

Finally, in each of the following possibilities for {e, f}, there is a unique tile ricjskbℓ

extending e ∪ f , where ℓ = box(i, j):

{ricj , risk}, {ricj , cjsk}, {risk, cjsk}, {ricj , bℓsk}.

The corresponding relation labels are 10, 13, 22, 25, 28, 30, 38, 42. □

The structure of entries of M is depicted in Figure 4. On the left, we present M as
a block matrix, whose block partition corresponds to the four edge types. Each block
is an n2 × n2 matrix which can be factored as a Kronecker product. It is convenient
to slightly abuse the Kronecker product in the following way. In forming A ⊗ B, each
factor will be indexed by one of our four Sudoku objects: rows, columns, symbols,
and boxes. The product is then indexed by corresponding pairs of elements. For
instance, the (1, 2)-block of M can be represented as Ir ⊗ Jcs, where Ir is the identity
matrix indexed by {r1, . . . , rn} and Jcs is the all-ones matrix whose rows are indexed
by {c1, . . . , cn} and columns are indexed by {s1, . . . , sn}. The latter can be factored
as jc ⊗ j⊤

s , where j is an n × 1 all-ones vector and the subscript indicates the indexing
set. The (1, 2)-block of M has rows indexed by edges e = ricj , columns indexed by
edges f = ri′sk′ , and the (e, f)-entry is 1 if and only if i = i′. This exactly recovers
the condition for e and f sharing a common tile. Other blocks of M are similar.
We use Hrb to denote the zero-one matrix indexed by rows versus boxes in which
Hrb(ri, bℓ) = 1 if and only if ri ⌣ bℓ. We use Hcb analogously for columns. Finally,
Hrcb is n2 × n, indexed by row-column edges versus boxes, and Hrcb(ricj , bℓ) = 1 if
and only if box(i, j) = ℓ.

On the right of Figure 4, we display the locations of nonzero entries as a graphic,
illustrated in the case h = 2, w = 3. The diagonal has entries n = hw. Blocks (2, 4)
and (4, 2) correspond to A46 and A50, with coefficient w. Blocks (3, 4) and (4, 3)
correspond to A54 and A58, with coefficient h. The other blocks correspond to the
remaining terms with coefficient 1.
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Figure 4. Illustration of the block matrix structure of M

4. Spectral decomposition of M

4.1. Eigenvalues and eigenvectors. Since M = WW ⊤, we know it is symmetric
and hence has real eigenvalues. We also have rank(M) = rank(W ), so from Section 2.3,
we know that zero is an eigenvalue of M with multiplicity 3n+(h+w)(n−1). Moreover,
M has constant row sums equal to 4n, since every edge belongs to n tiles, and every
tile has four edges. This gives an eigenvalue 4n corresponding to the one-dimensional
eigenspace of constant vectors.

In this section, we compute all other eigenvalues and corresponding eigenvectors
for M . By (5), we know that M ∈ A. Later, a generalized inverse for M is expressed
with a list of coefficients in A. For the discovery of these coefficients, it is helpful to
have a good understanding of the spectral decomposition of M . This is summarized
here, with more details and verifications for eigenvectors appearing in the remainder
of this subsection.

Proposition 4.1. The eigenvalues of M are θj = jn, j = 0, 1, . . . , 4. Each eigenspace
has a basis of eigenvectors consisting of vectors with entries in {0, ±1}.

We have discussed θ0 = 0 and θ4 = 4n earlier, so we turn our focus to θ1, θ2, θ3.
Below, we describe different varieties of eigenvectors (A), (B), etc., for each of these θj .
A basis for each eigenspace can be found by taking a union of linearly independent
vectors over the different varieties. Making a selection of linearly independent vectors
of the indicated size within each variety can be done using relations as in Section 2.3.
More details can be found in [13].

We give an informal description and brief verification for each eigenvector. Checking
that Mv = θjv can be done as follows. Take each edge f ∈ E(Ghw) and extend to
a tile t ⊃ f in all possible ways. Then, sum the values of v on the four edges of t,
and check that this total equals θjv(f). This often equals zero, either from canceling
signs or when the support of v is disjoint from the relevant tiles t. Figures 5, 6 and 7
give diagrams illustrating the eigenvector varieties in the case (h, w) = (2, 3). In these
diagrams, the four sections correspond to the four edge types: row-column (top left),
row-symbol (top right), symbol-column (bottom left), and box-symbol (bottom right).
Symbols + and − denote vector entries 1 and −1, respectively, and blanks represent 0
in the corresponding positions.

• θ1 = n; eigenspace dimension 4n2 − (2n − 3)(h + w) − 5n − 1
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Figure 5. Eigenvectors for θ1 = n

(A) Opposite signs on two distinct rows and two distinct columns, at least one
pair of which is in a common bundle. There are (n − 1)2 − (h − 1)(w − 1) linearly
independent vectors of this kind.

If ri0 , ri1 are the rows and cj0 , cj1 are the columns, then the entries are given
explicitly by v(ricj) = (−1)α+β if (i, j) = (iα, jβ), and otherwise v(e) = 0. For an
edge f = ricj , we have n tiles extending f corresponding to a choice of symbol sk.
Each such tile contains at most one non-vanishing edge, namely that corresponding
to f . So Mv(f) = nv(f). For f of type row-symbol, column-symbol or box-symbol,
we have Mv(f) = 0, either from cancellation or disjoint supports. Importantly, having
either ri0 ∼ ri1 or cj0 ∼ cj1 ensures cancellation within each box.

(B) Opposite signs on two distinct rows (or columns) in the same bundle and on
two distinct symbols. There are (n − 1)(h(w − 1) + w(h − 1)) linearly independent
vectors of this kind.

If ri0 , ri1 are the rows and sk0 , sk1 are the symbols, then the entries are given ex-
plicitly by v(risk) = (−1)α+γ if (i, k) = (iα, kγ), and otherwise v(e) = 0. Verification
that Mv = nv is similar to (A).

(C) Alternating signs on a rectangle of boxes and opposite signs on two distinct
symbols. There are (n − 1)(h − 1)(w − 1) linearly independent vectors of this kind.

Suppose ℓαβ are the four box indices, where α, β ∈ {0, 1} tell us the chosen
row/column bundles, respectively. As in (B), let kγ be the chosen symbol indices,
γ ∈ {0, 1}. The entries of the eigenvector are given by v(skbℓ) = (−1)α+β+γ when
(k, ℓ) = (kγ , ℓαβ), and otherwise v(e) = 0. Cancellation occurs if we sum over rows,
columns, or symbols. For a symbol-box edge f = skbℓ, the n tiles extending f corre-
spond to a choice of entry in box ℓ. This picks up the value of v(f) with a multiplicity
of n. So Mv = nv.

• θ2 = 2n; eigenspace dimension (2n−h−w)+(n−1)(h+w−2)+(h−1)(w−1) =
(n − 3)(h + w − 1) + 2n.

(A)++++++
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−−−
−−−

−−−
−−−

++++++

++++++

−−−−−−
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Figure 6. Eigenvectors for θ2 = 2n
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(A) Opposite signs on two distinct rows in the same bundle; constant on all columns
and symbols. A similar variety exists with rows and columns swapped. There are
h(w − 1) + w(h − 1) = 2n − h − w linearly independent vectors of this kind.

If ri0 , ri1 are the rows, then the eigenvector entries are v(ricj) = v(risk) = (−1)α

when i = iα, and otherwise v(e) = 0 for all other edges. An edge f = ricj or risk

has exactly n extensions to a tile, each of which has two edges of a common sign. So
Mv(f) = 2nv(f) in those cases. It is easy to see that Mv(f) = 0 on all other edges
due to cancellation on rows.

(B) Opposite signs on both rows and boxes of two distinct row bundles; opposite
signs on symbols. A similar variety exists with rows and columns swapped. There are
(n − 1)(h + w − 2) linearly independent vectors of this kind.

If f is a row-column edge, the cancellation on symbols gives Mv(f) = 0. Likewise,
if f is a column-symbol edge, the cancellation on rows gives Mv(f) = 0. For f of
either of the other two edge types, there are n extensions to a tile, and again the
nonzero edges (if any) agree in sign.

(C) Alternating signs on a rectangle of boxes; constant on all symbols and on
entries within each box. There are (h−1)(w −1) = n−h−w +1 linearly independent
vectors of this kind.

For row-symbol or column-symbol edges, the extension to a tile leads to cancella-
tion. For a row-column edge f , there n extensions to a tile by selecting a symbol, and
each has two matching edges from the entry and box. So Mv(f) = 2nv(f). Similarly,
for a box-symbol edge f , we have Mv(f) = 2nv(f).

• θ3 = 3n; eigenspace dimension n + h + w − 3
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Figure 7. Eigenvectors for θ3 = 3n

(A) Opposite signs on two distinct symbols; constant on all rows, columns, and
boxes. There are n − 1 linearly independent vectors of this kind.

If k0, k1 are the two symbols, then the eigenvector entries are v(risk) = v(cjsk) =
v(bℓsk) = (−1)γ when k = kγ , and otherwise v(e) = 0 for all other edges. If f is any
edge involving a symbol skγ , the n tiles extending f each have (if any) three nonzero
edges of matching sign. So Mv(f) = 3nv(f). In other cases, it is easy to see that
Mv(f) = 0 by cancellation.

(B) Opposite signs on both rows and boxes of two distinct row bundles; constant
on all columns and symbols. A similar variety exists with rows and columns swapped.
There are (h − 1) + (w − 1) linearly independent vectors of this kind. The verification
here is similar to (A), except that row bundles take the role of symbols.

Although it is somewhat cumbersome, one can use Kronecker product to express
all of the above eigenvectors, including the kernel vectors from Section 2.3. They can
be verified using Figure 4 and block matrix multiplication.

We next consider in more detail the projectors onto the eigenspaces of M .
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4.2. Projectors and a generalized inverse for M . Since M is symmetric, the
projectors Ej onto eigenspaces for θj are pairwise orthogonal idempotents summing
to I. Moreover, we have Ej ∈ A for each j as a general fact of coherent configurations;
see for instance [9].

Figure 8. Structure of entries of E0, E1 (top), E2, E3 (bottom) for
(h, w) = (2, 3)

The projectors can be computed as Ei = Vi(V ⊤
i Vi)−1V ⊤

i , where Vi is a matrix
whose columns are a basis of eigenvectors for θi. As a special case, since V4 is the
all-ones vector, we have E4 = 1

4n2 J . The structure of entries for each of the other
projectors is shown in Figure 8. Intensity of blue/red correspond respectively to
extreme positive/negative entries, while shades of green/yellow correspond to pos-
itive/negative entries which are smaller in magnitude.

Knowing the eigenvalues and eigenspace projectors for M can be used to compute
a generalized inverse M+ satisfying MM+M = M . We explain this computation in
the rest of this section.

The spectral decomposition of M is given by M = nE1 + 2nE2 + 3nE3 + 4nE4.
In what follows, E0 will also be denoted K, since it projects onto the kernel of M .
Although M itself is not invertible, if we take η ̸= 0, say η = n/x, we can invert the
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additive shift A = M + ηK as

(6) A−1 = 1
n

xK +
4∑

j=1

1
j

Ej

 .

This formula results from the Ei being orthogonal idempotents with E0 + E1 + · · · +
E4 = I. Later on, to solve our linear system for fractional Sudoku, we make use of a
generalized inverse M+ of the form in (6). It turns out that x = 3/2, or η = 2n/3, is
a nice choice. A discussion of this choice is given in the next subsection.

With some computer-assisted algebra, we found coefficients to express A−1 in the
basis {Ai : i = 1, . . . , 69} for the adjacency algebra A. These are expressed in Table 3.
For convenience, we have cleared a denominator of 9n3 and then applied an additive
shift of 5/16. Using our Sage [16] worksheet at https://github.com/pbd345/sudoku,
the interested reader can compute various symbolic products in A, including a verifi-
cation that Table 3 does indeed give an inverse of A.

relations coeffs relations coeffs
1 9n2 + h + w 32 9n2 + n + h
2, 4, 5 h + w 34 n + h
3, 6, 17, 19, 39, 43, 47, 51 w 38, 42 −9n/2 + h + w
7, 8, 33, 35, 40, 44, 55, 59 h 46, 50 −9nw/2 + n + w
10, 13 −9n/2 + w + 1 54, 58 −9nh/2 + n + h
11, 14 w + 1 62 9n2 + n + h + w − 1
12, 15, 24, 27, 29, 31 1 63 h + w − 1
16 9n2 + n + w 64 n + w − 1
18 n + w 65 w − 1
20, 36, 48, 52, 56, 60 n 66 n + h − 1
22, 25 −9n/2 + h + 1 67 h − 1
23, 26 h + 1 68 n − 1
28, 30 −7n/2 + 1 69 −1

Table 3. Coefficients of 9n3A−1 + 5
16 J

4.3. Norm bounds. We work with the ∞-norm of vectors ∥x∥∞ = max{|x1|, . . . , |xn|}
and the induced norm on matrices

∥A∥∞ = max
i

∑
j

|Aij |.

It is straightforward to obtain a bound on the ∞-norm of (6) using the values in
Tables 2 and 3. The triangle inequality gives a crude bound of order O(n−1), but we
can get an exact value with the help of a computer. First, we store the coefficients
of the projectors relative to our coherent configuration basis and make a note of
their signs. For each of the four sections corresponding to the edge types, we sum the
absolute values of projector coefficients times the section row sums. When we combine
these as in (6), the result is a list of three piecewise linear functions (one duplicate
occurs for two sections), each multiplied by n−1. These functions are

f1(x) = 3| x
2 − 3

4 | + 4| x
6 − 5

36 | + 2| x
12 − 7

144 | + 2| x
12 − 13

144 | + 2| x
3 − 11

18 | + 3| x
2 − 1

4 | + 1,

f2(x) = 2| x
2 − 3

4 | + 4| x
6 − 5

36 | + 2| x
12 − 7

144 | + 2| x
12 − 13

144 | + | x
3 − 11

18 | + | x
3 − 1

9 | + 2| x
2 − 1

4 | + 1,

f3(x) = 3| x
2 − 3

4 | + | x
4 − 25

48 | + 6| x
6 − 5

36 | + 3| x
12 − 13

144 | + 3| x
3 − 11

18 | + 3| x
2 − 1

4 | + 1.
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f2

f1

3
4
5
6
7
8
9

10

Figure 9. A−1 norm plots (f1, f2, f3) as functions of x := n/η

Graphs for the functions fi(x) are shown in Figure 9. It turns out that max{fi(x) :
i = 1, 2, 3} is minimized at x = 3/2, yielding the dominant term 15/4n, also an upper
bound for all h, w ⩾ 2. The results of this computation are summarized in the lemma
below.

Lemma 4.2. Let A = M + 2n
3 K. Then

∥A−1∥∞ = 15
4n

− 7(h + w)
8n2 − 4

9n2 + 31(h + w) − 21
72n3 <

15
4n

.

We also note the following bound on K = E0.

Lemma 4.3. We have ∥K∥∞ ⩽
11
2 − 17(h + w)

6n
+ O(n−1).

5. Perturbation
5.1. Changes to M resulting from pre-filled entries. Let S be a partial
Sudoku of type (h, w), where hw = n. Recall that GS is the graph obtained from Ghw

by deleting the edges of tiles corresponding to pre-filled entries in S. Suppose S is
ϵ-dense. We know that every edge in GS is contained in at least (1 − 3ϵ)n tiles in GS .

Let M = WW ⊤ and MS = WSW ⊤
S , as introduced in Section 2. To set up our

perturbation argument, we are interested in quantifying the change in M resulting
from pre-filling the entries of S. It makes no sense to subtract MS from M directly,
since these matrices have different sizes. However, we can use a convenient border.

Let M̃ denote the 4n2 ×4n2 matrix, indexed by edges of G, whose entries are given
by

M̃(e, f) =


MS(e, f) if e, f ∈ E(GS);
0 if e ∈ E(GS) and f ̸∈ E(GS);
M(e, f) if e ̸∈ E(GS).

If we sort the rows and columns so that those indexed by E(GS) come first, then

(7) M̃ =
[

MS O
as in M

]
.

Put ∆M = M − M̃ . We next estimate ∥∆M∥∞ under our sparseness assumption.
For an edge e ∈ E(GS), let U(e) denote the set of unavailable options

U(e) = {t ∈ T (Ghw) : e ∈ t and f ∈ t for some f ∈ E(Ghw) ∖ E(GS)}.
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Put u(e) = |U(e)| and u = (u(e) : e ∈ E(GS)). In more detail, if e is an edge of type
row-column, say e = {ri, cj}, then U(e) keeps track of those symbols k which are not
able to be placed in cell (i, j) because k already appears in row i or column j or box
box(i, j). If e is an edge of type row-symbol, say e = {ri, sk}, then U(e) keeps track
of those columns j which are unavailable for symbol k in row i, either because cell
(i, j) was pre-filled or k appears somewhere else in column j or box box(i, j). Note
that several columns might be eliminated as options if k appears in a box intersecting
row i. Edges of type column-symbol behave in an analogous way. Finally, if e is an
edge of type box-symbol, say e = {bℓ, sk}, then U(e) keeps track of those cells (i, j)
in box ℓ for which k is not allowed, either because (i, j) was already filled in S, or
because k already appears in the row or column bundle for box ℓ.

Lemma 5.1. We have 0 ⩽ ∆M1 ⩽ 4u entrywise. In particular, ∥∆M∥∞ ⩽ 4∥u∥∞.

Proof. Entry e of (∆M)1 equals
∑

f ∆M(e, f). The summand is the number of un-
available tiles t with e ∈ t and f ∈ t. Since each copy t contains four edges, this count
is at most 4u(e). □

If S is ϵ-dense, then ∥u∥∞ ⩽ 3ϵn. This gives the following bound on ∆M .

Lemma 5.2. Suppose S is an ϵ-dense partial Sudoku. With ∆M constructed from S
as above, we have ∥∆M∥∞ ⩽ 12ϵn.

5.2. A guarantee on nonnegative solutions. The following can be distilled
from [4, Section 3].

Lemma 5.3. Let A be an N × N invertible matrix over the reals. Suppose A − ∆A is
a perturbation. Then

(1) A − ∆A is invertible provided ∥A−1∆A∥∞ < 1; and
(2) the solution x to (A − ∆A)x = A1 is entrywise nonnegative provided

∥A−1∆A∥∞ ⩽ 1
2 .

Lemma 5.3 can be proved using the expansion (A−∆A)−1 =
∑∞

k=0(A−1∆A)kA−1.
More details on matrix norms and the convergence of this series can be found in Horn
and Johnson’s book [10].

We would like to apply Lemma 5.3 to the perturbation M −∆M , but we must take
care to handle the nontrivial kernel. Of various possible approaches, one convenient
thing to do is to place those columns of K = E0 corresponding to non-edges of GS

in the perturbation. In more detail, let A = M + ηK and observe that A1 = 4n1.
That is, for this choice of A, the right side of the system in Lemma 5.3 is just a scalar
multiple of the all-ones vector. Define ∆A = ∆M + ηK ′, where

K ′(e, f) =
{

0 if f ∈ E(GS);
K(e, f) otherwise.

Note that

(8) A−1(ηK ′) =

1
η

K +
4∑

j=1

1
jn

Ej

 (ηK ′) = K ′,

since the columns of K ′ are orthogonal to each of the other eigenspaces.

Lemma 5.4. Suppose S is ϵ-dense. Then, for large h and w, ∥K ′∥∞ ⩽ (ϵ+o(1))∥K∥∞.

Proof. Write K =
∑m

i=1 ciAi. Fix e ∈ E(Ghw). Then we have∑
f∈E(Ghw)

|K(e, f)| =
∑

i

|ci|di(e),
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where di(e) is the number of edges f with (e, f) ∈ Ri. Recall that di(e) is zero unless
e is of an edge type corresponding to the first coordinate of Ri, and we may assume
a canonical choice r1c1, r1s1, c1s1, or s1b1 for e.

Let GS denote the complement of GS in Ghw. Then we have

(9)
∑

f∈E(Ghw)

|K ′(e, f)| =
∑

f∈E(GS)

|K(e, f)| =
m∑

i=1
|ci|d′

i(e),

where d′
i(e) is the number of edges f ∈ E(GS) with (e, f) ∈ Ri. With the exception

of i ∈ I := {1, 2, 4, 16, 32, 62}, each relation Ri has an associated feature which,
owing to our ϵ-density assumption, limits the number of missing edges f in GS with
(e, f) ∈ Ri. These features are indicated in Table 4, along with bounds on leading
terms of |ci|d′

i(e). A legend and upper bound on corresponding d′
i(e) are given in

Table 5. Terms with i ∈ I are of lower order. Otherwise, when we compute the
sum (9), we obtain the same leading terms as in the computation of ∥K∥∞, each
times ϵ. The edge type with largest total coefficient of ϵ is the box-symbol type, or
column 4 in Table 4. This results in

∥K ′∥∞ ⩽

(
11
2 + O(h−1 + w−1)

)
ϵ + h + w

2n
+ O(h−2 + w−2 + n−1). □

leading sparse leading sparse leading sparse leading sparse
i term feature i term feature i term feature i term feature
1 3/2n - 13 ϵ/2 r 25 ϵ/2 c 42 ϵ/2 b
2 1/h - 14 ϵ/6 rb 26 ϵ/6 cb 43 ϵ/6 rb
3 ϵ/2 r 15 ϵ/12 all 27 ϵ/12 all 44 ϵ/6 cb
4 1/w - 16 1/2h - 30 ϵ/3 s 45 ϵ/12 all
5 ϵ/2 b 17 ϵ/2 r 31 ϵ/12 all 50 ϵ/2 srb
6 ϵ/3 rb 18 ϵ/2 srb 32 1/2w - 51 ϵ/6 rb
7 ϵ/2 c 19 ϵ/3 rb 33 ϵ/2 c 52 ϵ/6 s
8 ϵ/3 cb 20 ϵ/6 s 34 ϵ/2 scb 53 ϵ/12 all
9 ϵ/12 all 21 ϵ/12 all 35 ϵ/3 cb 58 ϵ/2 scb

10 ϵ/2 r 28 ϵ/3 s 36 ϵ/6 s 59 ϵ/6 cb
11 ϵ/6 rb 29 ϵ/12 all 37 ϵ/12 all 60 ϵ/6 s
12 ϵ/12 all 46 ϵ/2 srb 54 ϵ/2 scb 61 ϵ/12 all
22 ϵ/2 c 47 ϵ/6 rb 55 ϵ/6 cb 62 (h + w)/2n -
23 ϵ/6 cb 48 ϵ/6 s 56 ϵ/6 s 63 ϵ/2 b
24 ϵ/12 all 49 ϵ/12 all 57 ϵ/12 all 64 ϵ/2 srb
38 ϵ/2 b 65 ϵ/3 rb
39 ϵ/6 rb 66 ϵ/2 scb
40 ϵ/6 cb 67 ϵ/3 cb
41 ϵ/12 all 68 ϵ/3 s

69 ϵ/4 all
Table 4. Terms contributing to ∥K∥∞

sparse feature bound sparse feature bound
r cells filled in a row ϵn b cells filled in a box ϵn

c cells filled in a column ϵn s occurrences of a symbol ϵn

rb cells filled in a row bundle ϵnh srb times a symbol is in a row bundle ϵh
cb cells filled in a column bundle ϵnw scb times a symbol is in a column bundle ϵw

all cells filled in all of S ϵn2

Table 5. Legend for Table 4 and ϵ-density bounds

Putting together Lemmas 4.2, 4.3, 5.2 and 5.4, we obtain a bound on A−1∆A.
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Proposition 5.5. Suppose S is an ϵ-dense partial Sudoku of type (h, w) where h, w
are large. Then ∥A−1∆A∥∞ < 101ϵ/2 + o(1).

Proof. From (8), submultiplicativity and the triangle inequality,
∥A−1∆A∥∞ ⩽ ∥A−1∥∞∥∆M∥∞ +∥K ′∥∞ < 15

4n ×12ϵn+ 11
2 ϵ+o(1) = 101

2 ϵ+o(1). □

5.3. Proof of the main result. We are now ready to prove our result on partial
Sudoku completion under the ϵ-dense assumption.

Proof of Theorem 1.1. Apply Lemma 5.3 to A and ∆A constructed as above. Under
the assumption ϵ < 1/101, Proposition 5.5 gives ∥A−1∆A∥∞ < 1/2 for sufficiently
large h, w. This implies an entrywise nonnegative solution to (A−∆A)x = 1. Let x′ de-
note the restriction of x to E(GS). Since A−∆A is block lower-triangular with respect
to the partition into edges and non-edges of GS , it follows that (MS + ηK[S])x′ = 1.
We note that MS and K[S] are symmetric and satisfy the conditions in Proposi-
tion 2.4. Therefore, Lemma 2.5 implies MSx′ = 1. This, in turn, implies a nonnegative
solution to the linear system for completing S via the coefficient matrix WS . □

It is worth a remark that the lower order terms in Lemmas 4.2 and 4.3 are ac-
tually negative. This means our hypothesis of large h and w is only really used to
control the mild lower-order terms in K ′. In general, our method is robust for small
partial Sudoku, often succeeding in practice with densities much larger than 1/101.
For instance, the completion shown in Figure 1 came from applying the above proof
method.

6. Variations and concluding remarks
In the case of Sudoku with ‘thin boxes’, say with fixed w and height h = n/w tending
to infinity, the bundle condition for ϵ-density is seemingly stronger than necessary to
ensure completion. That is, by adding symbols before completion, one could ensure
that a symbol occurring in some column bundle (of fixed size w) occurs in each of
the w boxes of that bundle. Then, one only needs to allocate remaining symbols that
occur in a small fraction of the rows, columns, and boxes. This setting of thin boxes
is discussed in more detail in [13].

Suppose we generalize our setting so that each Sudoku box/cage is an arbitrary
polyomino of n cells. Most of our set-up stays the same, except that the n-to-1 function
box(i, j) mapping cells to boxes changes, say to box′(i, j). If this change is sufficiently
small, we can reasonably expect the same perturbation methods to give a fractional
completion guarantee for sparse partial Sudoku of this generalized type.

We describe in a little more detail a setting in which this could work. Define a
polyomino Sudoku as above to have α-approximate type (h, w) if, for each box ℓ,
the symmetric difference between box−1(ℓ) and (box′)−1(ℓ) can be covered by αh
rows and αw columns. The 0-approximate case coincides with our standard setting of
rectangular boxes. Let M ′ denote the 4n2 × 4n2 matrix for the empty Sudoku with
polyomino boxes defined by box′, and let M be our usual matrix for the case of h × w
boxes. It is not hard to see that, for an α-approximate type (h, w),
(10) ∥M − M ′∥∞ ⩽ 2(αh)w + 2(αw)h = 4αn.

Applying the triangle inequality to (10) and our earlier estimates, a completion result
for the α-approximate setting would follow readily.

It is possibly of interest to consider properties of the matrix M ′ for specific box
arrangements. A ‘Pentadoku’ is a 5×5 Sudoku-like puzzle whose cages are pentomino
shapes. Each cage (in addition to each line) must contain the numbers from 1 to 5
exactly once. Figure 10 shows an example of a completed Pentadoku puzzle.
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1 2 3 4 5

4 5 1 2 3

5 3 2 1 4

3 1 4 5 2

2 4 5 3 1

Figure 10. A solved
Pentadoku puzzle

1 2 3 4 5 6

4 5 6 1 2 3

3 6 2 5 1 4

5 1 4 3 6 2

2 3 1 6 4 5

6 4 5 2 3 1

Figure 11. Puzzle with
simultaneous box condi-
tions

A generalization which we have not considered could allow two or more simulta-
neous box patterns. This is natural because the row and column conditions in a latin
square can already be viewed as degenerate box conditions. An example for n = 6
with both 2 × 3 and 3 × 2 boxes is given in Figure 11. Using a generalized notion
of tile and a suitably enlarged linear system, similar methods as in this paper could
apply, at least in principle.

Methods of algebraic graph theory have been applied to Sudoku before, but in a
slightly different way. A Sudoku graph has n2 vertices corresponding to cells, and two
vertices are declared adjacent if they share the same row, column or box. Eigenvalues
and eigenvectors of Sudoku graphs have been investigated in [1, 11, 15]. Although
they have integral eigenvalues and Kronecker-structured {±1, 0}-valued eigenvectors,
as ours, we could see no way to use the Sudoku graph alone to build the linear
system for completion. Still, it would be interesting to explore the Sudoku graph in
the context of completing partial Sudoku.

As a last remark, our results are only about fractional completion. For partial
latin squares, the iterative absorption methods of [2] are able to convert a sparseness
guarantee for fractional completion into a guarantee for (exact) completion. We do
not know whether these or other methods could work for the Sudoku setting.

Acknowledgements. The authors are grateful to Akihiro Munemasa, who suggested
expressing our coherent configuration in terms of a group action.
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