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Twists of Gr(3, n) Cluster Variables as
Double and Triple Dimer Partition

Functions

Moriah Elkin, Gregg Musiker & Kayla Wright

Abstract We give a combinatorial interpretation for certain cluster variables in Grassmannian
cluster algebras in terms of double and triple dimer configurations. More specifically, we examine
several Gr(3, n) cluster variables that may be written as degree two or degree three polynomials
in terms of Plücker coordinates, and give generating functions for their images under the twist
map - a cluster algebra automorphism introduced in [1]. The generating functions range over
certain double or triple dimer configurations on an associated plabic graph, which we describe
using particular non-crossing matchings or webs (as in [13]), respectively. These connections
shed light on a conjecture appearing in [3], extend the concept of web duality introduced in [9],
and more broadly make headway on understanding Grassmannian cluster algebras for Gr(3, n).

1. Introduction
Cluster algebras are a well-loved object of study in algebraic combinatorics because of
their deep connection to a myriad of mathematical fields. Many mathematicians are
interested in finding combinatorial models for the generators of these algebras, which
are otherwise only recursively defined. This paper addresses that question for certain
cluster algebras coming from the Grassmannian, which is denoted Gr(k, n) and refers
to the set of k-dimensional subspaces of Cn. Focusing on the case of k = 3, we discuss
a connection between Grassmannian cluster algebras, m-fold dimer configurations
and non-elliptic webs. In particular, we establish a dimer-theoretic model for certain
generators of Grassmannian cluster algebras.

Scott in [22] was first to describe the cluster structure on Gr(k, n), and Postnikov
pioneered the study of the combinatorics of these cluster algebras in [18]. In par-
ticular, Postnikov introduced plabic graphs, which became the main combinatorial
tool for studying these cluster structures. In the same paper, he defined a bound-
ary measurement map that linked Plücker coordinates, coordinates that parameterize
the Grassmannian as a projective variety and are always generators for the associated
cluster algebras, to dimers (almost perfect matchings) on plabic graphs. This map was
later made more explicit by Talaska in [24]. Recently, [15] and [16] used the boundary
measurement map to give Laurent expansions for the images of Plücker coordinates
under a certain famous automorphism called the twist map, defined originally in [1].

As shown in [15, Prop. 8.10], up to multiplication by frozen variables, the twist
map on the Grassmannian sends cluster variables to cluster variables. For k = 2,
every Grassmannian cluster variable is a Plücker coordinate, and thus every Plücker
coordinate is the twist (up to frozens) of another Plücker coordinate. However, in
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Grassmannian cluster algebras with k ≥ 3 and n ≥ 6, some cluster variables are
more complicated polynomials in Plücker coordinates, and some Plücker coordinates
only appear as factors in the twists of these cluster variables. This paper will focus
on certain quadratic and cubic polynomials that first appear as cluster variables in
Gr(3, 6), Gr(3, 8), and Gr(3, 9), and will describe their twists combinatorially via the
boundary measurement map, thus providing Laurent expansions for a larger set of
cluster variables than simply twists of Plücker coordinates.

To do so, we examine the connection between products of m Plücker coordinates
and m-fold dimer configurations (i.e. superimpositions of m single dimer configura-
tions) elucidated in [14] for m = 2 and 3. 2-fold or double dimer configurations may
be described as non-crossing matchings, and Theorem 4.1 describes the matchings
associated to the twists of the quadratic cluster variables X and Y defined in Scott.
To describe the appropriate 3-fold or triple dimer configurations for cubic cluster vari-
ables, we require another combinatorial object called a web, introduced in [13]. Syn-
thesizing novel graph-theoretic reasoning with versions of the results of [15] and [16]
yields our main theorems, Theorems 5.10, 5.11, 5.12, and 5.13, which describe the
twists of several cubic expressions in Plücker coordinates as corresponding to certain
basis webs. We note that the matchings referenced in Theorem 4.1 and the webs
referenced in Theorems 5.12 and 5.13 first appeared as motivational examples in [9]
without the application to Laurent expansions provided here.

This paper is organized as follows. In Section 2 we give background: we recall the
cluster algebra structure of the Grassmannian in Section 2.1 and the terminology
of plabic graphs in Section 2.2, describe the cluster variables we will model combi-
natorially in Section 2.3, define the combinatorial models (dimer configurations) in
Section 2.4, and define the twist map as a cluster algebra automorphism in Section 2.5.
In Section 3, we describe a weighting scheme on dimer configurations, and translate
results of [15] and [16] into our setting for use in proving our main theorems. Then,
in Sections 4 and 5, we give our double and triple dimer partition functions for twists
of quadratic and cubic differences of Plücker coordinates; Section 5 begins with expo-
sition about webs and their connection to triple dimers, enumerates several relevant
classes of webs, and culminates with our main theorems. In Section 6, we describe
these theorems using the language of web duality introduced in [9], and provide some
explicit computations with standard Young tableaux. Finally, in Section 7, we jus-
tify a novel expression for a Gr(3, 9) cluster variable introduced in Section 2.3 and
referenced throughout.

We conclude with two appendices. The first, Section A, contains the lengthy, pic-
torial proofs of vital lemmas posed in Section 5. The second, Section B, gives explicit
computations of Laurent polynomials using our results in Section 5; it also provides
values of the twist map on many cluster variables in Gr(3, 7) and Gr(3, 8).

2. Preliminaries
We will use the following notation throughout the paper: let [n] = {1, 2, . . . , n}, and
for 1 ≤ k ≤ n, let

([n]
k

)
denote the set of all k-element subsets of [n].

2.1. The Grassmannian and its Cluster Structure. In this section, we briefly
review the cluster algebra structure on the Grassmannian; see [6] for a more thorough
exposition.

The Grassmannian, denoted Gr(k, n), is the space of k-dimensional linear sub-
spaces of n-dimensional complex space. Equivalently, it is the space of full rank k-by-n
matrices written in row-reduced echelon form, where the corresponding linear sub-
space is given by the row span of the corresponding matrix. We will consider the
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Plücker embedding of Gr(k, n) into projective space of dimension
(

n
k

)
− 1, defined

as follows: for any J ∈
([n]

k

)
, we have a corresponding projective Plücker coordi-

nate ∆J , and at a given M ∈ Matk×n(C) we define the value ∆J(M) to be the
maximal minor of M using the column set J . For any k, n, the corresponding set of
Plücker coordinates will satisfy certain quadratic Plücker relations.

Example 2.1. Consider a generic element M ∈ Gr(2, 4), represented by the following
row-reduced matrix:

M =
(

1 0 a b
0 1 c d

)
for a, b, c, d ∈ C

The set of Plücker coordinates is given by:

∆12 = det
(

1 0
0 1

)
= 1 , ∆13 = det

(
1 a
0 c

)
= c , ∆14 = det

(
1 b
0 d

)
= d

∆23 = det
(

0 a
1 c

)
= −a , ∆24 = det

(
0 b
1 d

)
= −b , ∆34 = det

(
a b
c d

)
= ad − bc

These coordinates satisfy the algebraic relation (−b) · c = 1 · (ad − bc) + (−a) · d, i.e.
∆24 · ∆13 = ∆12 · ∆34 + ∆23 · ∆14.

This equation is in fact the Ptolemy relation from ancient Greek geometry. To
see the connection, draw a quadrilateral inscribed in a circle with vertices cyclically
labeled 1, 2, 3, 4, and write ∆ij for the distance between vertices i and j. Then the
above relation among the lengths of the sides and diagonals of the quadrilateral will
always hold.

We will consider the homogeneous coordinate ring of Gr(k, n), denoted C[Ĝr(k, n)],
where Ĝr(k, n) is the affine cone over Gr(k, n), taken in the Plücker embedding. Scott
showed in [22] that C[Ĝr(k, n)] is a cluster algebra in the sense of [8].

We refer the reader to [5] for an in-depth exposition of cluster algebras, but will
briefly summarize here. In essence, a cluster algebra is a commutative ring generated
by cluster variables; cluster variables are grouped into families called clusters, and
are produced recursively from an initial cluster through a process called mutation.
Mutation relations are encoded by a quiver, as follows.

Definition 2.2. Let Q be a quiver with vertex set Q0 and arrow set Q1. For each
mutable vertex r ∈ Q0, define the mutation in direction r of Q, denoted µr(Q),
as another quiver on vertices (Q0 \ {r}) ∪ {r′} obtained by the following three-step
process:

• For any arrow s → r, draw an arrow r′ → s, and for any arrow r → t, draw
an arrow t → r′;

• For any path s → r → t, draw an arrow s → t;
• Delete any created 2-cycles.

We label the new vertex r′ according to the following relation:

r′r =
∏

(s→r)∈Q1

s +
∏

(r→t)∈Q1

t.

Example 2.3. The quivers in Figure 1 illustrate the cluster structure in C[Ĝr(2, 5)].
In the left quiver, the mutable vertices are ∆13 and ∆35; all other vertices are not
mutable or frozen, which is indicated by drawing them in boxes or “ice cubes.” The
quiver on the right arises from mutation in direction ∆13, and the new vertex label is

∆12∆35 + ∆23∆15

∆13
= ∆25.
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∆13 ∆35

∆23 ∆34

∆15

∆12 ∆45 ∆25 ∆35

∆23 ∆34

∆15

∆12 ∆45

µ∆13

Figure 1. An initial seed for C[ ̂Gr(2, 5)] and an example of quiver
mutation.

For any k < n, the “rectangles seed” defined in [6] provides an initial quiver and
set of cluster variables that generate C[Ĝr(k, n)] as a cluster algebra. These initial
cluster variables are a subset of the Plücker coordinates, and all Plücker coordinates
appear as cluster variables. However, for k ≥ 3 and n ≥ 6, certain cluster variables are
homogeneous polynomial functions of degree greater than 1 in the Plücker coordinates.
We study several types of non-Plücker cluster variables throughout this paper.

While lower-dimensional cells of the Grassmannian also admit cluster algebra struc-
tures, see for instance [16] which describes the twist map for cases of general positroid
varieties, in this paper we focus on seeds associated to the top cell of the Grass-
mannian. In particular, this restriction causes our cluster algebra structure to come
equipped with frozen cluster variables, which correspond to determinants of circularly
consecutive subsets of columns, i.e. Plückers of the form ∆i,i+1,i+2,...,i+k where indices
are taken modulo n.

2.2. Plabic Graphs. In this section, we introduce plabic graphs and their con-
nection to the cluster algebra structure on C[Ĝr(k, n)]; this study was pioneered by
Postnikov in [18]. See [7] for a more detailed exposition.

Definition 2.4. A plabic graph G is a planar bicolored graph embedded in a disk,
with n boundary vertices of degree 1, labeled 1, . . . , n clockwise. The embedding must
be proper, i.e. the edges of G must not cross, and each internal vertex of G must be
connected by a path to some boundary vertex of G.

All of our plabic graphs will in fact be bipartite, and all of our boundary vertices
will be colored black. We will refer to the set of vertices of G as V (G), the set of edges
of G as E(G), and the set of faces of G as F (G).

We next define an important method of labeling the faces of a reduced plabic
graphs.

Definition 2.5. A trip (also called a Postnikov strand or zigzag path) i → j in
a plabic graph is a directed path in G that

(1) either connects two boundary vertices or is a closed cycle containing no bound-
ary vertices, and

(2) obeys the rules of the road by turning maximally right at black internal vertices
and maximally left at white internal vertices.

We may label any face f ∈ F (G) with the set

If := {i | f lies to the left of the trip ending at vertex i}.

As shown in [18], the above definition will produce a labeling on the faces of the
plabic graph such that each face is labeled by the same number of indices and no
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two faces have the same label. Note that these conventions for trips and face labels
coincide with the conventions in Muller and Speyer’s work [16].

One may construct a reduced plabic graph from certain initial seeds for Gr(k, n)
(such as the rectangles seed of [6]) by reversing the operation described in [7, Defini-
tion 7.1.4]: in particular, by taking the planar dual of the quiver, identifying frozen
vertices with boundary faces, and checking that the face labels defined above agree
with the vertex labels of the original quiver. Figure 2 depicts two examples of the re-
sult of such a construction, arising from the quivers in Figure 1. We note that because
we are working in the top cell of Gr(k, n), all trips as in Definition 2.5 are of the form
i → i + k mod n, and boundary faces are labeled by circularly consecutive Plücker
coordinates.

1

4
5

3

2

12

23 34

45

15

13 35

1

4
5

3

2

12

23

34

45

15

25 35

µ∆13

Figure 2. Two plabic graphs for Gr(2, 5) (with face labeling), aris-
ing from the quivers in Figure 1.

Mutations at a vertex of degree 4 in a quiver correspond to square moves in a
plabic graph.

Definition 2.6. Let G be a plabic graph, and let F be a square face of G such that
each vertex bordering F is trivalent.(1) Suppose that F is bounded by strands with
sinks a, b, c, d such that F is labeled by the k-element subset Sbd := S ∪ {b, d} for
some S ∈

( [n]
k−2

)
and b, d ∈ [n]\S. Define the square move at face Sbd to be the local

move on G that swaps the colors of all vertices bordering Sab, and updates the label
of Sbd to Sac. See Figure 3.

We note that if one begins with a reduced plabic graph associated to a Plücker
seed and applies a sequence of square moves, the resulting plabic graph will again
correspond to a Plücker seed. Our work concerns non-Plücker cluster variables, which
arise from quiver mutations at vertices with valence greater than 4.

2.3. Quadratic and Cubic Differences of Plücker Coordinates. This pa-
per will focus on Grassmannian cluster algebras in the case k = 3. In this section,
we introduce notation for several classes of degree 2 and 3 cluster variables that ap-
pear in this setting, as well as another distinguished degree 3 polynomial in Plücker
coordinates.

(1)In general, performing a square move also requires that the vertices bordering F alternate in
color, but this is immediate from the fact that all plabic graphs we consider are bipartite.
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Sbd

Sbc

ScdSab

Sad

Sbc

Sab Sac

Sad

Scd

a b

cd

Figure 3. A square move, the plabic graph analogue of quiver mu-
tation at a degree 4 vertex. Note that the new face label satisfies the
Plücker relation ∆Sac = ∆Sab∆Scd + ∆Sad∆Sbc

∆Sbd
.

We begin by considering the case n = 6; the corresponding cluster algebra is
C[Ĝr(3, 6)], of finite type D4. We adopt the conventions of [22], and write X to refer
to the compound determinant

det
(

v1 × v2 v3 × v4 v5 × v6

)
.

Here vi denotes the ith column of M ∈ Gr(3, 6), treated as a vector in R3, and ×
denotes the usual three-dimensional cross-product (taking two R3-vectors as input
and outputting an R3-vector). Using cross-product identities (2) and (3) from [22],
i.e.

u · (v × w) = (u × v) · w = det(u u w) and (u × v) · (w × z) =
(

u · w u · z
v · w v · z

)
,

we can re-express X as the quadratic difference ∆134∆256 − ∆156∆234, which may
also be written as ∆124∆356 − ∆123∆456 or ∆125∆346 − ∆126∆345. Analogously, we
write Y to refer to the compound determinant

det
(

v6 × v1 v2 × v3 v4 × v5

)
,

which can be re-expressed as a quadratic difference as ∆145∆236 − ∆123∆456,
∆146∆235 − ∆156∆234, or ∆136∆245 − ∆126∆345. Scott observes in [22] that X and Y

appear as cluster variables for C[Ĝr(3, 6)].
When n = 8, we have the cluster algebra C[Ĝr(3, 8)] of finite type E8. Scott shows in

this case that all dihedral translates of the following cubics appear as cluster variables:
A = ∆134∆258∆167 − ∆134∆678∆125 − ∆158∆234∆167

and
B = ∆258∆134∆267 − ∆234∆128∆567 − ∆234∆258∆167.

We note that when the dihedral group D8 acts on the indices of the cubic function A
in Gr(3, 8), the image is only of size 8, i.e. only the cyclic translates. For example, if
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we apply the reflection ρ : i → 9 − i to each entry, we get ρ(A) = ∆568∆147∆238 −
∆568∆123∆478 − ∆148∆567∆238 = σ7(A) where σ : i → i + 1 mod 8. On the other
hand, the image of D8’s action on the cubic function B is indeed of size 16.

When n = 9, the corresponding cluster algebra C[Ĝr(3, 9)] is of affine type. We will
prove in Section 7 that all dihedral translates of the following expression appear as
cluster variables:

C = ∆124∆357∆689 + ∆123∆456∆789 − ∆124∆356∆789 − ∆123∆457∆689.

Note that the image of the action of the dihedral group D9 on C has size 9, since C
is invariant under the reflection ρ : i → 10 − i, i.e. ρ(C) = C.

We will also consider the expression

Z = ∆145∆278∆369 − ∆245∆178∆369 − ∆123∆456∆789 − ∆129∆345∆678 ∈ C[Ĝr(3, 9)],

which appears in [2, Example 8.1]. Its significance arises from the fact that every
cluster monomial arises from a standard Young tableau, but not every standard Young
tableau arises from a cluster monomial. The ones that do arise from cluster monomials
are called real tableaux, due to their manifestation in quantum affine algebras. In
finite type, every Young tableau is real, but since Gr(3, 9) is of affine type, some non-
real tableaux appear. Z is the lowest-degree element of Gr(3, 9) that arises from a
non-real tableau. We note that σ3(Z) = Z and ρ(Z) = σ8(Z), so the image of D9
acting on Z is simply of size 3.

To extend these classes of cluster variables, we increase n. Given n ≥ n′ ≥ 3 and
a subset I ⊆ [n] with |I|= n′, we define a projection πn,I : Gr(3, n) → Gr(3, n′)
that retains exactly the columns indexed by I of any matrix M ∈ Gr(3, n). We have
from [22] that in the case of n′ = 6, for any n ≥ 6 and I ⊆ [n] with |I|= 6, the
expressions XI := X ◦ π6,I and Y I := Y ◦ π6,I appear as cluster variables of Gr(3, n).
[4, Theorem 8.8] implies the analogous statement for expressions that project to A, B,
and C. The following widely expected conjecture, a reformulation of [3, Conjecture 3.2]
in the case of Gr(3, n), generalizes this fact.

Conjecture 2.7. Given n ≥ n′ ≥ 3 and a subset I ⊆ [n] with |I|= n′, we have
that x is a cluster variable in C[Ĝr(3, n′)] if and only if πn,I ◦ x is a cluster variable
in C[Ĝr(3, n)].

We note that the above expressions for A, B, and C shed light on [3, Conjecture 3.1],
which in part posits that there are 24

(
n
8
)

+ 9
(

n
9
)

degree 3 cluster variables in Gr(3, n).
Indeed, for any n we have described exactly 24

(
n
8
)

+ 9
(

n
9
)

such cluster variables: 8
(

n
8
)

dihedral translates and projections of A, 16
(

n
8
)

dihedral translates and projections
of B, and 9

(
n
9
)

dihedral translates and projections of C. It remains to show that there
are no other degree 3 cluster variables.

2.4. Dimer Configurations. We discuss the combinatorial model that dimers on
plabic graphs provide for Plücker coordinates. This connection was discovered by
Postnikov in [18] and developed by Talaska in [24]. We also define m-fold dimers; in
Sections 4 and 5, we will describe how these objects extend the model to products of
m Plücker coordinates.

Definition 2.8. A dimer configuration (also called an almost perfect match-
ing) D on a plabic graph G is a subset of edges of G such that

(1) each interior vertex of G is adjacent to exactly one edge in D, and
(2) each boundary vertex of G is adjacent to either no edges or one edge in D.
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Let ∂(D) be the set of boundary vertices adjacent to one edge in D; we call ∂(D) the
boundary condition for D. Also let D(G) denote the set of dimer configurations
on G, and define

DJ(G) := {D ∈ D(G) | ∂(D) = J}.

Given a plabic graph G for Gr(k, n), we may assign nonnegative real weights to its
edges, and define the edge weight of any dimer D to be the product of the weights
of the edges it contains:

wte(D) =
∏
e∈D

wt(e).

The following theorem, stated concisely in [14] with references to other work, relates
dimer configurations to points in the Grassmannian.

Theorem 2.9 ([12],[18],[24],[19],[14]). Let G be a plabic graph with black boundary
vertices 1, 2, . . . , n, and let k be the number of internal white vertices minus the number
of internal black vertices in G. Also let wt : E(G) −→ R≥0 be any weight function on
the edges of G. Then there exists some M̃ in the affine cone over the Grassmannian
G̃r(k, n) such that for all J ∈

([n]
k

)
,

∆J(M̃) =
∑

D∈DJ (G)

wte(D).

Here the affine cone arises since Plücker coordinates embed the Grassmannian into
projective space, so the value of an individual ∆J(M) is not well-defined in R. To
instead arrive at a point in the Grassmannian, we may identify edge weight functions
that yield the same sets of Plückers up to scaling, or alternatively take the equivalence
class of any M̃ .

Example 2.10. Consider the weighted plabic graph in Figure 4. The edges highlighted
in red form a dimer D with ∂(D) = {1, 4} and edge weight wte(D) = achnk.

1

4
5

3

2

a
b c

d

e f g

h i j
k

ℓ

m

n

Figure 4. An example of a dimer D with ∂D = {1, 4} on the plabic
graph at the right of Figure 2.
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To model products of Plücker coordinates, we define the notion of higher dimer
configurations.
Definition 2.11. An m-fold dimer configuration D of a plabic graph G is a mul-
tiset of the edges of G such that each vertex is contained in exactly m edges in D.
In other words, it is a superimposition of m single dimer configurations of G. When
m = 2, we call these double dimer configurations, and when m = 3 we call them
triple dimer configurations. We refer to the set of m-fold dimer configurations
of G as Dm(G).
Example 2.12. In Figure 5, the red edges, blue edges, and green edges are individually
single dimer configurations of the the plabic graph with boundary conditions {4, 5, 6},
{2, 3, 4} and {1, 7, 8} respectively. Forgetting the distinctions between these colors
yields a corresponding triple dimer configuration.

Figure 5. Three overlaid single dimer configurations (left) and the
associated triple dimer (right).

2.5. The Twist Map. In this section, we define an important cluster algebra auto-
morphism called the twist map. This map was first introduced in [1]; Marsh and Scott
linked it to dimer partition functions in [15], and Muller and Speyer showed in [16]
that it provides an inverse to the famous boundary measurement map introduced by
Postnikov [18]. Each paper uses a slightly different set of conventions, and we will use
yet another, but we will clarify the relationships between our twist and those in [15]
and [16].

We first give exposition following [15, Sec. 2]. Given a matrix M representing an
element of Gr(k, n), with column vectors v1, v2, . . . vn ∈ Rk (in order), we define the
generalized cross-product v = v1 × v2 × . . . × vk−1 to be the unique vector in
Rk satisfying v · w = det(v1 v2 . . . vk−1 w) for all w ∈ Rk. Then, the (left) twist
of M , denoted as T (M), is defined to be the k-by-n matrix whose ith column vector
is given by T (M)i = εi · vi−k+1 × vi−k+2 × . . . × vi−1, where

εi =
{

(−1)i(k−i) i ≤ (k − 1)
1 i ≥ k

and the subscripts are taken modulo n with signs introduced when wrapping around.
Explicitly,

T (M)i =
{

(−1)k−iv1 × v2 × . . . × vi−1 × vi−k+1+n × . . . × vn if i ≤ k − 1
vi−k+1 × vi−k+2 × . . . × vi−1 if i ≥ k

.
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In the special case of this paper where k = 3, by construction we obtain
T (M) = [vn−1 × vn vn × v1 v1 × v2 . . . vn−2 × vn−1]

= [vn−1 × vn − v1 × vn v1 × v2 . . . vn−2 × vn−1]
where only the usual cross-product is required. To compare the value of Plücker
coordinates before and after the twist, let ∆J denote the determinant of the submatrix
MJ (given by the columns indexed by set J), and let T (∆J) denote the determinant
of the corresponding submatrix of the twisted matrix, i.e. det (T (M)J). When J =
{a, b, c}, we have

T (∆abc) = det
(

va−2 × va−1 vb−2 × vb−1 vc−2 × vc−1

)
,

where indices are taken modulo n.
In [16], Muller and Speyer define a different version of the left twist, which we

denote TMuSp. They also define a right twist analogously, which is its inverse. We
define a right twist T ∗ analogously to the left twist of [15] above, via T ∗(M)i =
ε′

i · vi+1 × . . . × vi+k−1, where

ε′
i =

{
(−1)(k−1)(n−i+1) i ≥ (n − k + 2)
1 i ≤ (n − k + 1)

again with reduction modulo n and appropriate signs. Explicitly,

T ∗(M)i =
{

(−1)k−n+i−1v1 × v2 × . . . × vi−n+k−1 × vi+1 × . . . × vn if i ≥ n − k + 2,

vi+1 × vi+2 × . . . × vi+k−1 if i ≤ n − k + 1.

When k = 3 and J = {a, b, c}, we have

T ∗(∆abc) = det
(

va+1 × va+2 vb+1 × vb+2 vc+1 × vc+2

)
,

where indices are taken modulo n. This T ∗ is the twist we will use for the rest of the
paper.

We now recover a version of [15, Proposition 3.5] for our right twist in the special
case of k = 3, using the cross-product identities of [22] mentioned in Section 2.3.
If J = {a, a + 1, a + 2}, i.e. ∆J is a frozen variable, then

T ∗(∆J) = det
(

va+1 × va+2 va+2 × va+3 va+3 × va+4

)
= det(va+1 va+2 va+3) det(va+2 va+3 va+4)−det(va+1 va+3 va+4) det(va+2 va+2 va+3)

= ∆a+1,a+2,a+3∆a+2,a+3,a+4,

since det(va−1 va−1 va) = det(va+2 va+2 va+3) = 0. Similarly, if J = {a, a + 1, b}
where b ̸= a − 1, a + 2, then

T ∗(∆J) = det
(

va+1 × va+2 va+2 × va+3 vb+1 × vb+2

)
= det(va+1 va+2 va+3) det(va+2 vb+1 vb+2) − det(va+1 vb+1 vb+2) det(va+2 va+2 va+3)

= ∆a+1,a+2,a+3∆a+2,b+1,b+2.

Note that since the sign of a 3-cycle is +1, we may reorder the indices of the resulting
Plücker coordinates to be increasing modulo n without concern for signs.

When J = {a, b, c} where none of a, b, c are adjacent mod n, none of the Plücker
coordinates appearing in the quadratic differences vanish, and hence we recover the
expressions

T ∗(∆J) = det
(

va+1 × va+2 vb+1 × vb+2 vc+1 × vc+2

)
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=
{

Xa+1, a+2, b+1, b+2, c+1, c+2 a, b, c ̸= n − 1
Y a+1, a+2, b+1, b+2, c+1, c+2 otherwise

.

Recall that order is disregarded for the superscripts, so we may always write them in
increasing order modulo n.

We conclude by noting that, as stated in [16, Remark 6.3], our right twist T ∗

agrees with the right twist T ∗
MuSp up to rescaling. In the case of T ∗(∆J) where

J = {a1, a2, . . . , ak}, we get

(2.1) T ∗(∆J) = ∆I[a1]∆I[a2] · · · ∆I[ak] · T ∗
MuSp(∆J),

where the notation ∆I[aj ] is shorthand for the Plücker coordinate for the cyclically
connected subset {aj , aj + 1, aj + 2, . . . , aj + k − 1} where indices are taken modulo n.

3. Dimer Face Weights
In this section, we describe a method of weighting dimers using the face labels that
arise from strands of a plabic graph, rather than the arbitrary real edge weights
described in Section 2.4. Work of Marsh and Scott [15] and later Muller and Speyer [16]
connects a given boundary set to a sum of face weights of its corresponding dimers
via the twist map described in Section 2.5, though Marsh and Scott use different
conventions than ours. We show that our face weights coincide with face weights
in [16] up to scaling, and conclude that they describe our version of the right twist.
We also describe a translation between edge and face weights similar to that in [15].

We begin by establishing the notation that we will use to define our version of
face weights. Given a plabic graph G and a face f ∈ F (G), labeled using strands as
described in Subsection 2.1, we define the following quantities:

If := the face label of f and Wf := #{white vertices bordering f}.

We say f is an inner face if it is not adjacent to the boundary of the circle, and outer
otherwise. Given a dimer D, we define the following quantities based on whether a
given face is inner or outer.

Df :=
{

#{edges of D that border f} if f is inner,
#{edges of D not adjacent to boundary vertices that border f} if f is outer.

Example 3.1. Figure 6 depicts the four single dimer configurations on a certain plabic
graph for Gr(3, 7) that have the boundary condition {3, 4, 6}. Let D1, D2, D3, and
D4 be the single dimer configurations shown left to right in colors red, orange, blue
and purple respectively.

• For the inner face ∆367, Wf = 2; we have (D1)f = (D2)f = 2 and (D3)f =
(D4)f = 1.

• For the outer face ∆127, Wf = 3; we have (D1)f = (D2)f = (D3)f = 2 and
(D4)f = 1.

We are now ready to define dimer face weights.

Definition 3.2. Given an m-fold dimer configuration D on a plabic graph G, we
define the face weight of D to be

wtf (D) =
∏

f∈F (G)

I
mWf −Df −m
f .

Example 3.3. Again, consider the dimers D1, D2, D3, and D4 on the plabic graph
for Gr(3, 7) shown in Figure 6. There are four possible single dimer configurations
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Figure 6. All single dimer configurations with boundary condition
{3, 4, 6} on a certain plabic graph for Gr(3, 7).

with respect to the boundary condition {3, 4, 6}. The weights of each of these single
dimer configurations are as follows:

wtf (D1) = ∆456
∆167∆237∆567

∆267∆367
; wtf (D2) = ∆456

∆167∆347∆567

∆367∆467

wtf (D3) = ∆456
∆167∆457

∆467
; wtf (D4) = ∆456

∆127∆567

∆267
.

The following theorem is central to our main results; we will extend it to m-fold
dimers in future sections.

Theorem 3.4. Let G be a plabic graph with black boundary vertices 1, 2, . . . , n, let k be
the number of internal white vertices minus the number of internal black vertices in G,
and let J be a k-element subset of [n]. Then where wtf (D) =

∏
f∈F (G) I

nWf −Df −n
f ,

T ∗(∆J) =
∑

D∈DJ (G)

wtf (D).

Proof. We will prove this theorem by relating it to [16, Remark 7.11], which pro-
vides the following formula for their variant T ∗

MuSp of the right twist of a Plücker
coordinate:

T ∗
MuSp(∆J) =

∑
D∈DJ (G)

w̃tf (D),

where w̃tf (D) is defined via ∏
f∈F (G)

I
(B̃f −1)−#{e∈D:∂̃fe=1}
f ,
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and B̃f and ∂̃fe are defined in terms of the number of edges e such that face f lies
directly upstream of e.(2) We have from Equation (2.1) that for J = {a1, a2, . . . , ak},

T ∗
MuSp(∆J) = 1

∆I[a1]∆I[a2] · · · ∆I[ak]

T ∗(∆J),

where the notation ∆I[aj ] is shorthand for the Plücker coordinate for the cyclically
connected subset {aj , aj + 1, aj + 2, . . . , aj + k − 1} where indices are taken modulo n.
It will therefore suffice to show that

(3.1)
∑

D∈DJ (G)

w̃tf (D) = 1
∆I[a1]∆I[a2] · · · ∆I[ak]

∑
D∈DJ (G)

wtf (D).

Note that since our plabic graphs are bipartite, all inner faces are bordered by an
even number of edges, and similarly for all outer faces since all boundary vertices are
black (and we do not count the “edges” between boundary vertices). Thus Wf , the
number of white vertices adjacent to a face f , is exactly half the number of edges
bordering f ; we now have from [16, Section 5.1] that Wf = B̃f .

If a given face f is inner, we immediately have that #{e ∈ D : ∂̃fe = 1} =
Df . If f is outer, the equality holds unless f lies immediately counter-clockwise to
a boundary edge e that is included in the dimer cover D, in which case we have
#{e ∈ D : ∂̃fe = 1} = Df + 1. The boundary edges included in D are exactly those
adjacent to boundary vertices j ∈ J . Therefore, by the construction of face labels,
when J = {a1, a2, . . . , ak}, the three outer faces where #{e ∈ D : ∂̃fe = 1} = Df + 1
are precisely those labeled I[a1], I[a2],. . . , I[ak]. Equation (3.1) now follows from a
comparison of definitions. □

Remark 3.5. For k = 3, the twist map T ∗ doubles degree, while the twist map
T ∗

MuSp is of degree −1. This is consistent with the claims made in our proof, which
assert in this case that images of T ∗

MuSp(∆J) and T ∗(∆J) agree up to a quotient
by three frozen variables.

The following definition and proposition provide a translation between the face
weights of Definition 3.2 and the edge weights used in the statements of Subsection 2.4,
creating a streamlined comparison between our results and those of other authors
that are phrased in terms of edge weights. In particular, in Section 6, we will use
this proposition to describe our main theorems using the language of web duality
introduced in [9].

Definition 3.6. Given a plabic graph G with face labels If , we define the weight of
an edge e, denoted wt(e), via

wt(e) = ∆I1 · ∆I2 · · · ∆Id

∆Ie(1) · ∆Ie(2)

,

where I1 through Id label the d faces bordering the black endpoint of edge e, and Ie(1)
and Ie(2) label the two faces that border edge e itself. See Figure 7.

Remark 3.7. This definition is analogous to [15, Definition 7.1], except that they
consider white vertices where we consider black vertices. The significance of this switch
is that by our definition, all edges adjacent to boundary vertices will have weight 1,
since all boundary vertices of our plabic graphs are black.

(2)As in [16, Remark 5.8], such a weighting appeared previously in [23] but via different exposition.
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Figure 7. A weight function on the plabic graph G; here wt(e) =
∆I3 · ∆I4 · · · ∆Id

.

Proposition 3.8. Given an m-fold dimer configuration D on a plabic graph G, con-
sider the edge-weighting wt(e) of Definition 3.6, and let wte(D) =

∏
e∈D wt(e) as in

Section 2.4. Also recall the face-weighting wtf (D) of Definition 3.2. Then

wte(D)
/  ∏

inner f∈F (G)

∆If

m

= wtf (D).

Proof. First, note that any m-fold dimer D is an overlay of m single dimers
D1, . . . , Dm, and from the definitions we have

wte(D)(∏
inner

f∈F (G)
∆If

)m =
m∏

i=1

wte(Di)∏
inner

f∈F (G)
∆If

and

wtf (D) =
m∏

i=1
wtf (Di).

It therefore suffices to prove the case where m = 1.
For any edge e ∈ E(G), let e(1) and e(2) be the faces adjacent to e, as in Figure 7.

Also, let VD(G) be the set of vertices of G that are adjacent to some edge of D; note
that VD(G) is exactly the set of interior vertices of G together with ∂D. Then by
definition, we have

wte(D)∏
inner

f∈F (G)
∆If

=

∏
black

v∈VD(G)

∏
f ∈ F (G)

incident to v

∆If∏
e∈D Ie(1)Ie(2)

· 1∏
inner

f∈F (G)
∆If

=

∏
inner

f∈F (G)
∆

#
(

black v∈VD(G)
incident to f

)
−1

If
·
∏

outer
f∈F (G)

∆
#

(
black v∈VD(G)

incident to f

)
If∏

e∈D Ie(1)Ie(2)
.

For a given f ∈ F (G), we extract the power of ∆If
in the above quotient. If f is

inner, every vertex adjacent to f is included in D, and there are the same number of
white vertices adjacent to f as black vertices. We therefore get

∆
#

(
black v∈VD(G)

incident to f

)
−#

(
edges e∈D

incident to f

)
−1

If
= ∆

#
(

white v∈V (G)
incident to f

)
−#

(
edges e∈D

incident to f

)
−1

If

= ∆Wf −Df −1
If

.
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If f is outer, we get

∆
#

(
black v∈VD(G)

incident to f

)
−#

(
edges e∈D

incident to f

)
If

= ∆

(
#

(
black interior

v∈V (G)
incident to f

)
+#

( black v∈∂D
incident to f

))
−

(
#

( edges e∈D
incident to f

and to ∂G

)
+#

( edges e∈D
incident to f
but not ∂G

))
If

= ∆
#

(
black interior

v∈V (G)
incident to f

)
−#

( edges e∈D
incident to f
but not ∂G

)
If

= ∆

(
#

(
white interior

v∈V (G)
incident to f

)
−1

)
−#

( edges e∈D
incident to f
but not ∂G

)
If

= ∆Wf −Df −1
If

,

where the second-to-last equality follows from the fact that all boundary vertices of
G are black. The product of these powers of face weights is wtf (D) by definition. □

Example 3.9. Since {3, 4, 6} = {a, a + 1, b}, we have from Subsection 2.5 that
T ∗(∆346) = ∆456∆157. Taking the sum of the weights of the single dimer configura-
tions with boundary condition {3, 4, 6}, as computed in Example 3.3, yields

∆456 · ∆167∆237∆467∆567 + ∆167∆267∆347∆567 + ∆167∆267∆367∆457 + ∆127∆367∆467∆567

∆267∆367∆467
.

This is indeed the Laurent expansion for ∆456∆157, which is consistent with Theo-
rem 3.4.

We also note using Equation (2.1) that T ∗
MuSp(∆346) = ∆456∆157

∆345∆456∆167
= ∆157

∆345∆167
,

which is consistent with this map being degree −1 as in Remark 3.5.

4. Double Dimer Configurations for Quadratic Differences
In this section, we give a combinatorial interpretation via double dimer face weights
for the twists of the quadratic cluster variables X and Y in Gr(3, 6), and of analogous
expressions XS and Y S for any S ⊂ [n] with |S|= 6 ≤ n.

Theorem 4.1. Given a plabic graph G for Gr(3, n) and set S = {s1 < · · · < s6} ⊆ [n],
let D2

X(G) be the set of double dimers on G with paths connecting vertices in pairs
{s1, s6}, {s2, s3}, and {s4, s5}, and let D2

Y (G) be the set of double dimers with paths
connecting vertices in pairs {s1, s2}, {s3, s4}, and {s5, s6}, where the double dimers
in each set possibly include internal doubled edges and cycles, but no additional edges
adjacent to boundary vertices. Then

• T ∗(XS) =
∑

D∈D2
X

(G) 2#(cycles in D)wtf (D)
• T ∗(Y S) =

∑
D∈D2

Y
(G) 2#(cycles in D)wtf (D).

Proof. It follows from Theorem 3.4 that for any plabic graph G for Gr(k, n), and for
any I, J ⊂ [n] with |I|= |J |= k,

T ∗(∆I∆J) = T ∗(∆I)T ∗(∆J) =

 ∑
D∈DI (G)

wtf (D)

  ∑
D∈DJ (G)

wtf (D)


=

∑
D∈D2

I,J
(G)

MDwtf (D),

where D2
I,J(G) ⊂ D2(G) is the set of double dimer covers D of G formed by over-

laying a single dimer with boundary condition I and a single dimer with boundary
condition J , and the multiplicity MD is the number of pairs of single dimers that
become D when overlaid.
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To characterize D2
I,J(G), we note that the edges contained in any double dimer

may be viewed as a union of connected components, each of which is a path between
boundary vertices, a doubled edge, or an internal cycle; see [12]. It follows from [14,
Theorem 3.1] that for any I, J ∈

([n]
k

)
, D2

I,J(G) contains exactly those double dimers
consisting of k non-crossing paths, each connecting a vertex with label in I to a vertex
with label in J , as well as possibly some internal doubled edges and cycles; and that
for any double dimer D,

MD = 2#(cycles in D).

Now in the case of X, where k = 3, we have

T ∗(XS) = T ∗(∆134)T ∗(∆256) − T ∗(∆156)T ∗(∆234)

=
∑

D∈D134,256(G)

2#(cycles in D)wtf (D) −
∑

D∈D156,234(G)

2#(cycles in D)wtf (D).

The first sum contains exactly those double dimers with paths connecting 1 to 2,
3 to 6, and 4 to 5; or 1 to 6, 2 to 3, and 4 to 5. These are the only possible non-
crossing matchings. The second, negative sum contains exactly those double dimers
with paths connecting 1 to 2, 3 to 6, and 4 to 5. Therefore the terms that remain
after cancellation are the weights of all double dimers that connect 1 to 6, 2 to 3, and
4 to 5, which are exactly those included in D2

X(G).
Similarly, in the case of Y , we have

T ∗(Y ) = T ∗(∆145)T ∗(∆236) − T ∗(∆123)T ∗(∆456)

=
∑

D∈D145,236(G)

2#(cycles in D)wtf (D) −
∑

D∈D123,456(G)

2#(cycles in D)wtf (D).

The first sum contains exactly those double dimers with paths connecting 1 to 6, 2 to
5, and 3 to 4; or 1 to 2, 3 to 4, and 5 to 6. The second, negative sum contains exactly
those double dimers with paths connecting 1 to 6, 2 to 5, and 3 to 4. Therefore the
terms that remain after cancellation are the weights of all double dimers that connect
1 to 2, 3 to 4, and 5 to 6, which are exactly those included in D2

Y (G).
This completes the proof for S = {1, 2, 3, 4, 5, 6}; the argument is identical for

general S. □

Example 4.2. Figure 8 depicts all double dimer configurations in D2
X123567(G), which

is defined in Theorem 4.1 to be the set of double dimers with paths connecting vertex
1 to 7, 2 to 3, and 5 to 6. One may streamline the construction of these dimers by first
finding “forced edges” that necessarily must be included a certain number of times in
any dimer with the desired connectivity. For example, there must be a single dimer
edge adjacent to every boundary vertex except vertex 4, which cannot be adjacent to
any dimer edges.

Computing the twist of X123567 using the methods described in Section 2.5 yields
T ∗(X123567) = (127)(234)(X134567). Theorem 4.1 asserts that the Laurent expansion
for T ∗(X123567) should be the sum of the face weights of the double dimers in Figure 8,
and indeed we have

(127)(234)(X134567) = (127)(234)(167)(237)(345)(467)
(267)(347)

+ (127)(234)(127)(234)(367)2(457)
(237)(267)(347)

+ (127)(234)(127)(345)(367)(467)
(267)(347)
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Figure 8. Double dimer configurations satisfying the connectivity
pattern for X123567.

+ (127)(234)(167)(234)(367)(457)
(267)(347)

+ (127)(234)(123)(367)(457)
(237)

= wtf (D1) + wtf (D2) + wtf (D3) + wtf (D4) + wtf (D5)
where D1, D2, D3, D4, D5 are the red, orange, blue, purple and brown double dimer
configurations in Figure 8, respectively.

We end this section by answering a question posed to us by David Speyer regarding
cluster variables associated to (untwisted) Plücker coordinates.

Proposition 4.3. For any n ≥ 4, in the coordinate ring C[Ĝr(3, n)], the Laurent
expansion for the cluster variable given by a Plücker coordinate ∆J may be expressed
combinatorially as a partition function as given by either Theorem 3.4 or Theorem 4.1,
up to multiplication by frozen variables.

Proof. It is sufficient to demonstrate in C[Ĝr(3, n)] that up to multiplication by frozen
variables, any Plücker coordinate may be written as the image of the twist map applied
either to a Plücker coordinate ∆I or to a quadratic difference XS . In what follows,
we consider indices mod n.

If J = {a, a + 1, a + 2}, the fact that T ∗(∆a−1,a,a+1) = ∆a+1,a+2,a+3∆J follows
directly from a computation at the end of Section 2.5. The subsequent computation
implies that if J = {a, a + 1, b} where b ̸= a − 1, a + 2, we have T ∗(∆a−1,b−2,b−1) =
∆b−1,b,b+1∆J .

Finally, if J = {a, b, c} where none of a, b, c are adjacent, we consider the
right twist map applied to the quadratic difference Xa−2,a−1,b−2,b−1,c−2,c−1 =
∆a−2,b−2,b−1∆a−1,c−2,c−1 − ∆a−2,c−2,c−1∆a−1,b−2,b−1. Since none of a, b, c are ad-
jacent to one another, all six of these superscripts are distinct numbers. Using the
identities of Section 2.5, we compute

T ∗(Xa−2,a−1,b−2,b−1,c−2,c−1)
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= 3 = 2

= +

Figure 9. Planar skein relations for web reduction.

= [∆b−1,b,b+1∆a−1,a,b][∆c−1,c,c+1∆a,a+1,c] − [∆c−1,c,c+1∆a−1,a,c][∆b−1,b,b+1∆a,a+1,b]

= ∆b−1,b,b+1∆c−1,c,c+1

(
∆a−1,a,b∆a,a+1,c − ∆a−1,a,c∆a,a+1,b

)

= ∆b−1,b,b+1∆c−1,c,c+1

(
∆a−1,a,a+1∆a,b,c

)
where the last equality follows from a three-term Plücker relation. The final ex-
pression is the Plücker variable ∆J up to multiplication by the frozen variables
∆a−1,a,a+1∆b−1,b,b+1∆c−1,c,c+1. □

5. Triple Dimer Configurations for Cubic Differences
5.1. Webs. In order to classify the triple dimer configurations that give expressions
for A and B, we associate each triple dimer configuration to a web. Webs were first
introduced by Kuperberg in [13].

Definition 5.1. A web W is a planar bipartite graph embedded in the disc such that
all internal vertices are trivalent. Within the disc, W may also include some vertex-
less directed cycles, as well as some directed edges from a black boundary vertex to a
white boundary vertex, which we call “paths.”

We will require all boundary vertices of our webs to be either univalent or isolated
(0-valent); by an abuse of notation, we will treat this condition as intrinsic to the
definition for the remainder of the paper.

Given a web W , we may consider its web interior W̊ , which only consists of the
internal vertices and edges of W . A connected component of W is a connected
component of W̊ along with the boundary vertices it attaches to; namely, we do not
consider the boundary of the disc as an edge that connects all boundary vertices.

A non-elliptic web W is a web containing no interior faces bounded by four or
fewer edges; i.e., it contains no contractible cycles, bigons, or squares. Every web may
be expressed as a sum of nonelliptic webs via the reduction moves in Figure 9, see [13]
and [4].

Lastly, we introduce terminology for some common web components. We will call
an internal white vertex incident to three black boundary vertices a tripod; and we
will call a component with one black internal vertex adjacent to three white internal
vertices, each of which are adjacent to two black boundary vertices, a hexapod. See
Figure 10.
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Figure 10. A web composed of a hexapod (on vertices 1, 2, 3, 7, 8,
and 9) and a tripod (on vertices 4, 5, and 6)

5.2. Triple Dimer Configurations As Webs. Given a triple dimer configura-
tion D on a plabic graph G, let GD be the subgraph of G containing all edges included
at least once in D. We create a web W (D) corresponding to D as follows:

(1) For each boundary vertex in G, create a corresponding boundary vertex in
W (D). Color each boundary vertex white if it is adjacent to a doubled edge
in D, and black otherwise.

(2) For each interior cycle in GD consisting entirely of bivalent vertices, add a
vertexless loop to W (D), oriented arbitrarily.

(3) For each chain of bivalent vertices connecting two boundary vertices v, v′ ∈
GD, construct a path between the corresponding boundary vertices in W (D).
To orient this path, note that the chain must correspond to a path alternating
between singled and doubled edges in D, and since all boundary vertices of G
are black, that path must have even length. Thus exactly one of v and v′ must
be adjacent to a doubled edge in D, and therefore colored white in W (D).
Orient the path in W (D) towards the white vertex.

(4) For each connected component of GD containing at least one trivalent ver-
tex, include a corresponding component in W (D) with all bivalent vertices
removed, merging each pair of edges that was adjacent to a deleted vertex.
Retain the color of all interior trivalent vertices. (Note that all trivalent ver-
tices in GD must be adjacent to single edges in D, so the graph will remain
bipartite, again because chains of bivalent vertices in GD correspond to paths
alternating between singled and doubled edges in D.)

Note that this construction of W (D) is equivalent to the construction of a web from
a triple dimer via “weblike subgraphs” given in [14].

Example 5.2. Consider the triple dimer configuration D on the plabic graph G in
Figure 11. We create the corresponding subgraph GD by removing duplicate edges
of D. In W (D), we include an oriented edge from vertex 2 to vertex 1, since vertex 1
is adjacent to a doubled edge in D, and color vertex 1 white, while all other boundary
vertices remain black. We also include two connected components corresponding to
the components of GD that contain trivalent vertices, with bivalent vertices removed.
Note that we ignore isolated edges in GD, which come from tripled edges in D.

5.3. Enumeration of Non-Elliptic Webs. The proofs of our main theorems will
rely on the enumeration of several classes of non-elliptic webs in Lemmas 5.6, 5.7, 5.8,
and 5.9. Propositions 5.3 and 5.5 place significant bounds on this enumeration, in
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Figure 11. From a triple dimer configuration D (left), to the cor-
responding graph GD (middle), to a web W (D) (right).

particular confirming that the classes are finite. Lemma 5.4 is used to prove Proposi-
tion 5.5.

Proposition 5.3. Let W be a nonelliptic web with n boundary vertices. Let c be the
number of cycles in W , let k be the number of connected components of W , and let
|Vint| be the number of internal vertices in W . Then |Vint|= n + 2c − 2k.

Proof. By planarity of W and the Euler characteristic, we have that |E|= |V |−k + c
where E is the set of edges of W and V is the set of all vertices in W . Moreover, we
have

∑
v∈V deg(v) = 2|E|. Since all internal vertices in the web are trivalent and we

have n boundary vertices of degree 1, we see

n + 3(|V |−n) =
∑
v∈V

deg(v) = 2|E|= 2|V |−2k + 2c,

which implies that |V |−2n = −2k + 2c. Since |V |= |Vint|+n, it follows that |Vint|=
n + 2c − 2k. □

Lemma 5.4. Let W̊ be the interior of a nonelliptic web W , and assume that W̊ is
connected and consists only of cycles. Then there exist two adjacent vertices in W̊
that are bivalent in W̊ .

Proof. Given a connected nonelliptic web interior W̊ that consists entirely of cycles,
we may construct W̊ by beginning with a central 2m-gon and adding 2m-gons exterior
of it one by one, so that every intermediate step remains a valid web interior V̊ of a
different web V . Since webs are trivalent, all vertices with degree less than three in V̊
must be adjacent to the boundary in V ; and since webs are planar, only vertices not
enclosed by other edges in V (“exterior vertices”) may possibly be adjacent to the
boundary in V . Therefore, at any step of the process of building W̊ , the additional
2m-gon cannot share more than one edge with any one old 2m-gon (see the left of
Figure 12), and it also must only share one set of adjacent edges along the boundary
of the web interior (see the right of Figure 12): otherwise, in both cases, we would
have interior bivalent vertices in V̊ .

Additionally, note that at any step, every exterior vertex of V̊ must be either
bivalent or trivalent, since V̊ consists only of cycles. Let BT V̊ be the number of
bivalent exterior vertices minus the number of trivalent exterior vertices of V̊ . When
we build W̊ starting from a central 2m-gon W̊0, this central 2m-gon has at least 6
bivalent vertices and 0 trivalent vertices, so BT W̊0

≥ 6. Figure 13 shows the possible
effects of adding a hexagon; none of these change BT . The effects of adding a larger
2m-gon would be analogous, with possibly more trivalent vertices being replaced by
possibly more bivalent vertices, so adding a larger 2m-gon would only increase BT .
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Figure 12. Ways to add a hexagon to a web interior that do not
produce another valid web interior.

Figure 13. The five ways to add a hexagon to a web interior: the
boundary initially consists of the blue and green vertices (where the
green vertices are bivalent), and after the hexagon is added, it consists
of the red and green vertices (where the green vertices are trivalent).
Note that in each case, adding the hexagon does not change BT . For
instance, adding a hexagon as in the top leftmost figure replaces two
bivalent vertices with four bivalent vertices and two trivalent vertices.

Therefore W̊ has BT W̊ ≥ 6 also, i.e. W̊ has more exterior bivalent vertices than
exterior trivalent vertices. The exterior vertices of W̊ (each of which is either bivalent
or trivalent) form a cycle, and since the discrepancy BT V̊ is positive for each such
intermediate web interior V̊ , at least two exterior bivalent vertices must be adjacent.

□

Proposition 5.5. Let W be a nonelliptic web, let c be the number of cycles in W , and
let |Vint| be the number of internal vertices in W (equivalently, |Vint| is the number
of vertices in W̊ ). Then

• if c ≥ 1, |Vint|≥ 2c + 4,
• if c ≥ 2, |Vint|≥ 2c + 6,
• if c ≥ 3, |Vint|≥ 2c + 7,
• and if c ≥ 4, |Vint|≥ 2c + 8.

Proof. Let ac be the minimal number of vertices in a nonelliptic web interior with c
cycles, so |Vint|≥ ac. We first show that ac is also the minimum number of vertices in
a connected nonelliptic web interior with c cycles that is composed entirely of cycles.
To accomplish this, given a nonelliptic web interior W̊ with c cycles and v vertices,
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Figure 14. The only non-elliptic webs with seven black boundary
vertices and one white boundary vertex that do not contain paths
between boundary vertices.

we demonstrate that if W̊ is disconnected or contains a vertex or edge that is not part
of a cycle, then v > ac.

If W̊ contains a vertex that is not part of a cycle, then we may delete it to arrive at
a web interior with c cycles and v −1 vertices, so by minimality, v > ac. If W̊ contains
edges that are not part of cycles, we may delete them to create a disconnected web
interior that has v vertices and is composed entirely of cycles, so the only remaining
case is when W̊ is disconnected and composed entirely of cycles. In this case, by
Lemma 5.4, there exist two adjacent bivalent vertices in each connected component;
identifying two such pairs of vertices from separate components yields a web interior
with c cycles and v − 2 vertices, so v > ac in this case also.

Therefore ac is the minimum number of vertices in a connected nonelliptic web
interior with c cycles that is composed entirely of cycles. Let W̊ be such a web interior
with c cycles and ac vertices. Then from Lemma 5.4, there exist two adjacent bivalent
vertices in W̊ ; these vertices must both be part of only one cycle. Therefore removing
both vertices creates a web interior with c−1 cycles and ac−2 vertices, so ac−1 ≤ ac−2,
so ac ≥ ac−1 + 2. It follows that, for any i < c,

|Vint|≥ ac ≥ ai + 2(c − i) = 2c + (ai − 2i).

Clearly a1 = 6, the minimal number of vertices in a nonelliptic web interior with
one cycle. The only way to construct a connected nonelliptic web interior consisting
entirely of two cycles is to overlap the cycles at one edge; the number of vertices is
minimized when both cycles are hexagons, in which case there are ten vertices, so
a2 = 10. Next, we must be able to construct any connected nonelliptic web interior
consisting entirely of three cycles by adding a cycle to a connected nonelliptic web
interior consisting entirely of two cycles. There is one place to add the new cycle that
only creates three new vertices, and no way to create fewer; therefore a3 = 13. The
same is true to add a fourth cycle, so a4 = 16. Now, applying the above formula for
i = 1, 2, 3, 4 yields the three desired statements. See http://oeis.org/A121149 for
more details. □

We now begin our enumeration of particular non-elliptic webs with 8 boundary
vertices, which will assist in the proofs of Theorems 5.10 and 5.11.
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Figure 15. All possible nonelliptic webs with a path between two
adjacent boundary vertices and six other black boundary vertices.

Lemma 5.6. All non-elliptic webs with seven black boundary vertices and one white
boundary vertex that do not have have paths between boundary vertices are listed in
Figure 14.

Proof. Proposition 5.3 gives |Vint|= 8 + 2c − 2k for the number of internal vertices in
such a web W that has k connected components and c cycles.

If k = 1, |Vint|= 2c + 6, so from Proposition 5.5, c < 3 in this case. If c = 2,
|Vint|= 10; all of these vertices are required to construct the two cycles, but due to
the colors of the boundary vertices, it is impossible to connect all boundary vertices
to the interior hexagons without adding more vertices. Therefore c cannot be 2. If
c = 1, |Vint|= 8. Six of these internal vertices must be used to create the hexagon; and
since there is only one white boundary vertex, the other two internal vertices must
be white and adjacent to two of the black vertices in the hexagon. The resulting web
is possible to complete, as shown in the top left web in Figure 14. Finally, if c = 0,
|Vint|= 6. The only bipartite tree webs with 7 black leaves, 1 white leaf, and 6 internal
trivalent vertices are shown in Figure 14; there are four.

If k = 2, |Vint|= 2c + 4, so from Proposition 5.5, c < 2 in this case. If c = 1,
|Vint|= 6; all of these vertices are required to construct the cycle, and again due to
the colors of the boundary vertices, it is impossible to complete the web without
adding more vertices. Therefore c = 0. The only bipartite forest webs with 7 black
leaves, 1 white leaf, 4 internal trivalent vertices, and 2 connected components are
shown in Figure 14; there are five.

If k ≥ 3, we have from Proposition 5.5 that c = 0, implying that |Vint|≤ 2. It is
impossible to connect all boundary vertices with this few internal vertices. Therefore
Figure 14 enumerates all pathless non-elliptic webs with seven black boundary vertices
and one white boundary vertex. □

Lemma 5.7. All non-elliptic webs with a path between two adjacent boundary vertices
and six other black boundary vertices are listed in Figure 15, up to reflection.

Proof. Proposition 5.3 gives |Vint|= 6 + 2c − 2k for the number of internal vertices in
such a web W with k connected components and c cycles.

If k = 1, then |Vint|= 2c + 4, so from Proposition 5.5, c < 2 in this case. If c = 1,
|Vint|= 6, and we must use all six internal vertices to make a hexagon. However, the
three black internal vertices cannot be connected to the boundary since the web must
be bipartite, so it is impossible to complete a valid web where c = 1. If c = 0, the web
must be composed of a path 2 → 1 and a bipartite tree with six black leaves and four
trivalent internal vertices. Suppose that we have a white vertex adjacent to a black
leaf. We claim that this white vertex must be adjacent to exactly one other leaf. If it
were attached to at least two other leaves, that would force us to finish a connected
component without including all the vertices. If it was attached to no other leaves,
this would force the creation of two other internal black vertices, which would in turn
force the creation of four white vertices, two for each new black vertex. This would
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Figure 16. The unique web that connects non-adjacent boundary
vertices.

yield a total of seven internal vertices, which is too many. Therefore, the white vertex
must be adjacent to exactly one other black leaf, along with one new black internal
vertex adjacent to two more white internal vertices. This tree appears alongside the
requisite path in the two webs shown in the top row of Figure 15.

If k = 2, then |Vint|= 2c + 2, so from Proposition 5.5, c = 0. There is only one way
to construct a bipartite forest with two connected components, six black leaves, and
three trivalent internal vertices; the possible configurations of these trees are shown
alongside the requisite path in the bottom three webs in Figure 15.

Finally, if k ≥ 3, then |Vint|≤ 2c, but c = 0 by Proposition 5.5 and there is no
way to complete a web with 0 internal vertices. Therefore Figure 15 enumerates all
non-elliptic webs with a path between adjacent boundary vertices and six other black
boundary vertices, up to reflection. □

Lemma 5.8. The only non-elliptic web with a path between non-adjacent boundary
vertices and six other black boundary vertices is depicted in Figure 16.

Proof. For ease of reference, we label the target of the path vertex 1, and continue
labeling vertices clockwise. We first show that the only possible path between non-
adjacent boundary vertices must be 5 → 1. If we had a path 3 → 1 or 7 → 1, then
since webs are planar, one boundary vertex (2 or 8 respectively) would be isolated,
unable to be in the same connected component as any other boundary vertex. Then
Proposition 5.3 gives |Vint|= 1 + 2c − 2k for this portion of the web, and by Propo-
sition 5.5, it cannot have any cycles. Therefore this portion of the web must have
−1 internal vertices, which is impossible, so there is no way to complete the web.
Similarly, if we had a path 4 → 1 or 6 → 1, then two vertices (2 and 3 or 7 and 8
respectively) would be isolated. Then Proposition 5.3 gives |Vint|= 2+2c−2k for this
portion of the web, and by Proposition 5.5, it cannot have any cycles (since it has
at least one connected component). Therefore this portion of the web must have zero
internal vertices and only one connected component, which is impossible, so there is
no way to complete the web.

We now show that Figure 16 depicts the only web with a path 5 → 1. This path
isolates the vertices 2, 3, 4 and 6, 7, 8, so Proposition 5.3 gives |Vint|= 3 + 2c − 2k for
the portions of the web on either side of the path. Neither side can have any cycles
by Lemma 5.5, so the web must have one internal vertex adjacent to each of these
boundary vertices. This produces the web in Figure 16. □

The following lemma will be of use in the proofs of Theorems 5.12 and 5.13.

Lemma 5.9. All non-elliptic webs with nine black boundary vertices are the dihedral
translates of those listed in Figure 17.
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Figure 17. All nonelliptic webs with nine black boundary vertices.

Proof. Proposition 5.3 gives |Vint|= 9 + 2c − 2k for the number of internal vertices in
such a web W that has k connected components and c cycles. Note that since there
are no white boundary vertices, this web cannot contain any directed paths.

If k = 1, |Vint|= 2c + 7, so from Proposition 5.5, c < 4 in this case. If c = 3,
|Vint|= 13; all of these vertices are required to construct the three cycles, but due to
the colors of the boundary vertices, it is impossible to connect all boundary vertices
to the interior hexagons without adding more vertices. Thus, c cannot be 3. If c = 2,
|Vint|= 11; all but one of these vertices are required to construct the two cycles,
but again due to the colors of the boundary vertices, it is impossible to connect all
boundary vertices to the interior hexagons without adding more vertices. Therefore c
cannot be 2. If c = 1, |Vint|= 9. Six of these internal vertices must be used to create
the hexagon; and since there are only black boundary vertices, the other three internal
vertices must be white and adjacent to two of the black vertices in the hexagon. The
resulting web is possible to complete, as shown in Figure 17. Finally, if c = 0, |Vint|= 7.
The only bipartite tree with 9 black leaves and 7 internal trivalent vertices is shown.

If k = 2, then |Vint|= 2c + 5, which implies that c < 2. If c = 1, then there
are seven internal vertices, of which six of these must comprise a cycle (a hexagon).
However, then there are not enough internal vertices left to connect to nine degree
one black vertices as two connected components. On the other hand, if c = 0, there
are five internal vertices, and it is possible to construct configurations consisting of a
hexapod and a tripod as its two connected components.

If k = 3, then |Vint|= 2c + 3, which implies that c = 0, and there are simply
three internal vertices. Consequently, the only allowable configurations in this case
are composed of three tripods. Lastly, we observe that if k ≥ 4, we again have c = 0
and hence only one internal vertex; it is impossible to connect all boundary vertices
with this few internal vertices, so no configurations exist in this case. □

5.4. Webs for Cubic Differences. Our main theorems give non-elliptic webs that
describe triple dimers for twists of A, B, C, Z, and their dihedral translates. We work
through examples of their use in Section B.

We begin by establishing notation. Given n ≥ 8 and a plabic graph G for Gr(3, n),
recall that D3(G) is the set of triple dimers on G, and let W denote the set of
nonelliptic webs. For any D ∈ D3(G), we may apply the reduction rules of Figure 9
to write its corresponding web W (D) as a sum of nonelliptic summands:

W (D) =
∑

W ∈W
CD

W W,

where CD
W ∈ Z≥0 is the coefficient of the nonelliptic web W in W (D). Additionally,

given any web W with n′ boundary vertices, n ≥ n′, and S = {s1 < · · · < sn′} ⊆ [n],
let W S denote the web with n boundary vertices and the following properties:

• All boundary vertices with labels in [n] \ S are isolated, i.e. they are not
adjacent to edges.
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Figure 18. Non-elliptic webs corresponding to cubic differences in
Gr(3, 8) and Gr(3, 9). (i) is the batwing corresponding to A, (ii) is
the octopus corresponding to B, (iii) is the hexa-crab corresponding
to C, and (iv) is the tri-crab corresponding to Z.

• When all boundary vertices of W S with labels not in S are removed, and the
remaining vertices are relabeled s1 7→ 1, s2 7→ 2, . . . , sn′ 7→ n′, the resulting
web is W .

Theorem 5.10. In Gr(3, 8), write A = A1 − A2 − A3

= ∆134∆258∆167 − ∆134∆678∆125 − ∆158∆234∆167.

Then
T ∗(A) =

∑
D∈D3(G)

CD
batwingwtf (D),

where the “batwing” is the nonelliptic web pictured in Figure 18(i). Additionally, for
any n ≥ 8, σ ∈ D8, and S = {s1 < · · · < s8} ⊆ [n], we have that T ∗(σ(A)S) =∑

D∈D3 CD
σ(batwing)S wtf (D).

Theorem 5.11. In Gr(3, 8), write B = B1 − B2 − B3

= ∆258∆134∆267 − ∆234∆128∆567 − ∆234∆258∆167.

Then
T ∗(B) =

∑
D∈D3(G)

CD
octopuswtf (D),

where the “octopus” is the nonelliptic web pictured in Figure 18(ii). Additionally, for
any n ≥ 8, σ ∈ D8, and S = {s1 < · · · < s8} ⊆ [n], we have that T ∗(σ(B)S) =∑

D∈D3 CD
σ(octopus)S wtf (D).

Theorem 5.12. In Gr(3, 9), write C = C1 + C2 − C3 − C4

= ∆124∆357∆689 + ∆123∆456∆789 − ∆124∆356∆789 − ∆123∆457∆689.

Then
T ∗(C) =

∑
D∈D3(G)

CD
hexa-crabwtf (D),

where the “hexa-crab” is the nonelliptic web pictured in Figure 18(iii). Additionally,
for any n ≥ 9, σ ∈ D9, and S = {s1 < · · · < s9} ⊆ [n], we have that T ∗(σ(C)S) =∑

D∈D3 CD
σ(hexa−crab)S wtf (D).

Theorem 5.13. In Gr(3, 9), write Z = Z1 − Z2 − Z3 − Z4

= ∆145∆278∆369 − ∆245∆178∆369 − ∆123∆456∆789 − ∆129∆345∆678.
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Then
T ∗(Z) =

∑
D∈D3(G)

CD
tri−crabwtf (D),

where the “tri-crab” is the nonelliptic web pictured in Figure 18(iv).

We will present an example of the application of Theorem 5.10 in Section B.1, and
an example of the application of Theorem 5.11 in Section B.2.

In order to prove Theorems 5.10 through 5.13, we define a notion of compatibility
between webs and triple products of Plücker coordinates. We enumerate nonelliptic
webs that are compatible with A1, and then show that the set of nonelliptic webs
compatible with A2 or A3 is exactly the set of nonelliptic webs compatible with A1
that are not the batwing. It follows intuitively that the batwing should be the only
web compatible with A1 − A2 − A3.

Rigorously, we show that the twist of A1 is the sum of the face weights of triple
dimers that correspond to webs that have as a summand one of the webs with which
A1 is compatible. Proving the analogous statement for A2 and A3 allows cancellation
to yield the given formula for the twist of A. A similar cancellation occurs with
Theorem 5.11 for B and the octopus, Theorem 5.12 for C and the hexa-crab, and
Theorem 5.13 for Z and the tri-crab.

Definition 5.14. Let W be a non-elliptic web with n boundary vertices v1, . . . , vn.
Also let I, J, K be subsets of [n] with |I|= |J |= |K|= 3; we associate them to the
Plücker coordinates ∆I , ∆J , and ∆K . By [14, Lemma 4.11], W has an edge coloring
in the usual sense (that no incident edges have the same color) using the three colors
red, blue, and green. We write that W is compatible with the product ∆I∆J∆K if
there exists such an edge coloring of W that satisfies the following conditions for all
i ∈ [n]:

• If i ∈ I \ J \ K (resp. J \ I \ K, K \ I \ J), then vi is black and adjacent to a
red (resp. blue, green) edge.

• If i ∈ I ∩ J \ K (resp. I ∩ K \ J , J ∩ K \ I), then vi is white and adjacent to
a green (resp. blue, red) edge.

• Otherwise, vi is adjacent to no edges in W .
We write that W is uniquely compatible with ∆I∆J∆K if there exists a unique
such edge coloring.

Remark 5.15. This definition is a special case of the notion of consistent labeling
defined in [14, Section 4.5]. In Lam’s notation, a(I, J, K; W ) counts the number of
edge colorings that satisfy the above conditions; thus we write that W is compati-
ble with ∆I∆J∆K if a(I, J, K; W ) > 0, and uniquely compatible with ∆I∆J∆K if
a(I, J, K; W ) = 1.

Remark 5.16. The definition of compatibility is best understood through the lens of
dimers. W is compatible with ∆I∆J∆K exactly when it is possible to construct a
triple dimer (on some plabic graph) that corresponds to W by overlaying a red dimer
with boundary condition I, a blue dimer with boundary condition J , and a green
dimer with boundary condition K.

We next present lemmas enumerating the non-elliptic webs corresponding to each
term of A, B, C, and Z. Each proof involves examining the webs enumerated in
Lemmas 5.6, 5.7, 5.8, and 5.9, in an attempt to find an edge coloring that satisfies
the compatibility conditions. Even after some immediate reductions, the lists of webs
to be tested are cumulatively quite long, so we defer these proofs to Section A.
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Figure 19. All non-elliptic webs compatible with A1. Web (i) is the
batwing, web (ii) is the only non-elliptic web compatible with A2,
and web (iii) is the only non-elliptic webs compatible with A3.

Figure 20. All non-elliptic webs compatible with B1. Web (ii) is
the only non-elliptic web compatible with B2, and webs (iii) and (iv)
are the only non-elliptic webs compatible with B3.

Figure 21. Webs corresponding to the triple products in C.

Lemma 5.17. The non-elliptic webs compatible with A1 = ∆134∆258∆167 are pictured
in Figure 19. Web (ii) of Figure 19 is the only non-elliptic web compatible with A2 =
∆134∆125∆678, and web (iii) of Figure 19 is the only non-elliptic web compatible with
A3 = ∆158∆234∆167. Additionally, each compatibility is unique.

Lemma 5.18. The non-elliptic webs compatible with B1 = ∆258∆134∆267 are pictured
in Figure 20. Web (iii) of Figure 20 is the only non-elliptic web compatible with
B2 = ∆234∆128∆567, and webs (ii) and (iv) of Figure 20 are the only non-elliptic
webs compatible with B3 = ∆234∆258∆167. Additionally, each compatibility is unique.

Lemma 5.19. The non-elliptic webs compatible with C1 = ∆124∆357∆689 are
pictured in Figure 21. Web (ii) is the only non-elliptic web compatible with
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Figure 22. Webs corresponding to the triple products in Z.

C2 = ∆123∆456∆789, webs (ii) and (iii) are the only non-elliptic webs compati-
ble with C3 = ∆124∆356∆789, and webs (ii) and (iv) are the only non-elliptic webs
compatible with C4 = ∆123∆457∆689. Additionally, each compatibility is unique.

Lemma 5.20. The non-elliptic webs compatible with Z1 = ∆145∆278∆369 are pic-
tured in Figure 22. Webs (ii) through (v) are the only non-elliptic webs compati-
ble with Z2 = ∆245∆178∆369, web (vi) is the only non-elliptic web compatible with
Z3 = ∆123∆456∆789, and web (vii) is the only non-elliptic web compatible with
Z4 = ∆129∆345∆678. Additionally, each compatibility is unique.

At last, we complete the proofs of our formulas for the twists of A, B, C, and Z,
as well as their projections and dihedral translates. The arguments are similar at this
stage, so we combine them.

Proof of Theorems 5.10, 5.11, 5.12, and 5.13. It follows from Theorem 3.4 that for
any plabic graph G for Gr(3, n), and for any I, J, K ⊂ [n] of size 3,

T ∗(∆I∆J∆K) = T ∗(∆I)T ∗(∆J)T ∗(∆K)

=

 ∑
D∈DI (G)

wtf (D)

  ∑
D∈DJ (G)

wtf (D)

  ∑
D∈DK (G)

wtf (D)


=

∑
D∈D3

I,J,K
(G)

MDwtf (D),

where D3
I,J,K(G) ⊂ D3(G) is the set of triple dimer configurations D on G formed by

overlaying three single dimers with boundary conditions I, J , and K respectively, and
where the multiplicity MD is the number of triples of single dimers that become D
when overlaid.

It follows from [14, Lemma 4.12] that D3
I,J,K(G) contains all dimers D such that

W (D) is compatible with ∆I∆J∆K , each with multiplicity

MD =
∑

W ∈W
CD

W a(I, J, K; W ),
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where a(I, J, K; W ) is the number of edge colorings of W compatible with ∆I∆J∆K ,
as in Remark 5.15.

Lemma 5.17 asserts that a(A1; W ) is 0 for all nonelliptic webs except those shown
in Figure 19, for which it is 1; that a(A2; W ) is 0 for all nonelliptic webs except the
one shown in Figure 19(ii), for which it is 1; and that a(A3; W ) is 0 for all nonelliptic
webs except the one shown in Figure 19(iii), for which it is 1. It follows that

T ∗(A) = T ∗(A1) − T ∗(A2) − T ∗(A3)

=
∑

D∈D3
A1

(G)

wtf (D) −
∑

D∈D3
A2

(G)

wtf (D) −
∑

D∈D3
A3

(G)

wtf (D)

=
∑

D∈D3(G)

 ∑
W ∈W

in Figure 19

CD
W

 wtf (D) −
∑

D∈D3(G)

 ∑
W ∈W

in Figure 19(ii)

CD
W

 wtf (D)

−
∑

D∈D3(G)

 ∑
W ∈W

in Figure 19(iii)

CD
W

 wtf (D)

=
∑

D∈D3(G)

∑
W ∈W

in Figure 19(i)

CD
W wtf (D) =

∑
D∈D3(G)

CD
batwingwtf (D)

since there is only one web, the batwing, in Figure 19(i). This is the formula stated
in Theorem 5.10.

Analogous arguments using Lemmas 5.18, 5.19, and 5.20 similarly link B to the
octopus, C to the hexa-crab, and Z to the tri-crab, completing the specialized state-
ments of each theorem. The generalized statements about dihedral translates and
projections follow immediately. □

6. Comparison to Web Duality
In this section, we describe the results of Theorems 4.1, 5.10, 5.11, 5.12, and 5.13 in
the language of the web duality defined in [9]. Our results provide rigorous graph-
theoretic justification for Observation 8.2 and several of the dualities pictured in [9,
Figure 3], as well as extending the sense of web duality beyond the case considered
in [9] where k divides n; these results are depicted in Figure 23. Additionally, since our
theorems are phrased in terms of face weights rather than the edge weights considered
in [9], they introduce a direct link between web duality and formulas for Laurent
expansions of cluster variables. Finally, we demonstrate calculations with standard
Young tableaux that corroborate [9, Observation 8.3] in the context of our results.

Fix k < n, an r-dimensional vector space U , and a sequence λ = (λ1, . . . , λn)
of integers between 1 and r such that λ1 + λ2 + · · · + λn = kr. Now Wλ(U) is a
certain space of tensor invariants that is in particular spanned by SLr-webs with n
boundary vertices v1, . . . , vn such that vi satisfies a condition determined by λi. We
describe some special cases:

• If r = 1, then SL1-webs are sets of boundary vertices, and vi should be
included in the set if and only if λi = 1.

• If r = 2, then SL2-webs are spanned by non-crossing matchings, and vi should
be included in the matching if and only if λi = 1.

• If r = 3, then SL3-webs are those defined in Section 5.1. We color vi black if
λi = 1 and white if λi = 2, and we do not include vi in the web if λi ∈ {0, 3}.
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We also have a Zn-grading of C[Ĝr(k, n)] given by the number of times each column
appears in a given product of Plücker coordinates. In particular, C[Ĝr(k, n)]λ consists
of linear combinations of r-fold products of Plücker coordinates such that in each
product, column i appears λi times. Note that in [9], a Plücker coordinate is shorthand
for the sum of dimer weights given by the boundary measurement map of Theorem 2.9.
We may identify elements of C[Ĝr(k, n)]λ with webs as in [4].

Given a plabic graph G, the notation Webr(G; λ) refers to the weighted sum of r-
weblike subgraphs of G (equivalently, of r-fold dimers on G) that satisfy the boundary
conditions given by λ. For instance, Web3(G; (2, 1, 1, 1, 1, 1, 1, 1) would be the weighted
sum of all triple dimers D on G such that boundary vertex 1 of W (D) is white and
W (D) has 7 boundary black vertices. Finally, we define the immanant map

Imm : Wλ(U)∗ → C[Ĝr(k, n)]λ
via

Imm(φ)(X̃(G)) = φ(Webr(G; λ))
for any edge-weighted plabic graph X̃(G). Effectively, the weight of an r-fold dimer D
in Webr(G; λ) is included in Imm(φ)(X̃(G)) with multiplicity equal to the value of φ
on W (D). We say that an SLr-web W and an SLk-web W ′ (viewed as an element of
C[Ĝr(k, n)]) are dual if the functional φ that is 1 on W and 0 on all other independent
webs has Imm(φ)(X̃(G)) = W ′.

We may now restate Theorems 4.1, 5.10, 5.11, 5.12, and 5.13. For clarity, the follow-
ing theorem lacks full generality with respect to projections and dihedral translates,
but the generalizations should be clear from the original theorem statements. We rely
on Proposition 3.8 to transition between our face weights and the edge weights of [9].

Theorem 6.1. Let G be a plabic graph with face weights as in Definition 3.2, and
assign it edge weights as in Definition 3.6.

(4.1) Let U be a 2-dimensional vector space, and define φX ∈ W[16](U)∗ to be 1
on the SL2 basis web with paths connecting six boundary vertices in pairs
{1, 6}, {2, 3}, and {4, 5}. Then Imm(φX)(X̃(G)) = T ∗(X). Similarly, define
φY ∈ W[16](U)∗ to be 1 on the SL2 basis web with paths connecting vertices
in pairs {1, 2}, {3, 4}, and {5, 6}. Then Imm(φY )(X̃(G)) = T ∗(Y ).

(5.10) Let U be a 3-dimensional vector space, and define φA ∈ W[2,17](U)∗ to be the
batwing as in Figure 18. Then Imm(φA)(X̃(G)) = T ∗(A).

(5.11) Let U be a 3-dimensional vector space, and define φB ∈ W[2,17](U)∗ to be the
octopus as in Figure 18. Then Imm(φB)(X̃(G)) = T ∗(B).

(5.12) Let U be a 3-dimensional vector space, and define φC ∈ W[19](U)∗ to be the
hexa-crab as in Figure 18. Then Imm(φC)(X̃(G)) = T ∗(C).

(5.13) Let U be a 3-dimensional vector space, and define φZ ∈ W[19](U)∗ to be the
tri-crab as in Figure 18. Then Imm(φZ)(X̃(G)) = T ∗(Z).

Note that in particular, removing the stated choice of edge weights and considering
X, Y , C, and Z only as arising abstractly from the boundary measurement map
recovers several of the dualities in the top and bottom left of [9, Figure 3] (reproduced
in the top left and bottom of Figure 23). Our work presents the twist map as concretely
realizing this duality.

It also adds an interpretation of duality for A and B in Gr(3, 8), which appears
pictorially on the top right of Figure 23. We reference [4, Figure 22] for the tensor dia-
grams corresponding to A and B, the duals of the batwing and octopus, respectively.
Figure 23 displays elements of Wλ(U)∗ on the left, and their dual tensor diagrams
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Figure 23. Duality between webs in small cases. Note that the top-
left and bottom of the figure depicts webs shown in [9, Figure 3]; the
top-right is new.

in C[Ĝr(k, n)] on the right.(3) Unlike our setting, Fomin and Pylyavskyy [4] notably
allow tensor diagrams with boundary vertices of valence higher than one.

Note that an analogue of [9, Observation 8.2] continues to hold in the listed exam-
ples for Gr(3, 8): the dual of a non-elliptic web arises from clasping boundary vertices
of another non-elliptic web. It would be interesting to check this statement for the
other non-elliptic webs depicted in Lemmas 5.6, 5.7, and 5.8 using the methods we
will describe in Section A.

6.1. Young Tableaux. We provide some explicit computations with tableaux asso-
ciated to [9, Observation 8.3], which notes that in small cases, the duality map aligns
with a combination of the transpose map applied to a rectangular standard Young
tableau and the Khovanov–Kuperberg bijection [11] between two-row or three-row
standard Young tableaux and non-crossing matchings or non-elliptic webs, respec-
tively.

We begin with Gr(3, 6). In what follows, for every standard Young tableau of rect-
angular shape [3, 3], we demonstrate the effect of the Khovanov–Kuperberg bijection:

(3)We only study one direction of duality for Gr(3, 8), since diagrams with white boundary vertices
represent more general SL3-invariants than elements of the coordinate ring of the Grassmannian.
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we read the top row from left to right, and match each entry j to the largest un-
matched value i on the row below such that i < j.

4 5 6
1 2 3

↔ (3, 4), (2, 5), (1, 6),

2 5 6
1 3 4

↔ (1, 2), (4, 5), (3, 6),

3 4 6
1 2 5

↔ (2, 3), (1, 4), (5, 6),

3 5 6
1 2 4

↔ (2, 3), (4, 5), (1, 6), and

2 4 6
1 3 5

↔ (1, 2), (3, 4), (5, 6).

Additionally, as computed in [25], the transposes of these five standard Young tableaux
(of shape [2, 2, 2]) biject to non-elliptic webs, with

3 6
2 5
1 4

corresponding to the union of the two tripods [1, 2, 3] and [4, 5, 6],

4 6
3 5
1 2

corresponding to the union of the two tripods [1, 5, 6] and [2, 3, 4], and

5 6
2 4
1 3

corresponding to the union of the two tripods [1, 2, 6] and [3, 4, 5],

while 4 6
2 5
1 3

and 5 6
3 4
1 2

correspond to two rotations of a hexapod (the second entry

in the right column at the top left of Figure 23), which encode the compound determi-

nants X = det
(

v1 ×v2 v3 ×v4 v5 ×v6

)
and Y = det

(
v6 ×v1 v2 ×v3 v4 ×v5

)
,

respectively. We now observe that, as shown in Figure 23, duality links a non-crossing
matching to the non-elliptic web corresponding to the transpose of its standard Young
tableau:

(3, 4), (2, 5), (1, 6) ↔ the union of the two tripods [1, 2, 3] and [4, 5, 6]

(1, 2), (4, 5), (3, 6) ↔ the union of the two tripods [1, 5, 6] and [2, 3, 4]
(2, 3), (1, 4), (5, 6) ↔ the union of the two tripods [1, 2, 6] and [3, 4, 5]

(2, 3), (4, 5), (1, 6) ↔ the hexapod corresponding to X
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(1, 2), (3, 4), (5, 6) ↔ the hexapod corresponding to Y.

We perform the analogous computations for the dualities in Gr(3, 9) given by
twisting the degree three cluster algebra elements C and Z. Under the Khovanov–
Kuperberg bijection, the tensor diagram for C (the second entry in the right column
at the bottom of Figure 23) corresponds to the standard Young tableau

TC = 6 8 9
3 5 7
1 2 4

.

The web corresponding to its transpose

T ∗
C = 4 7 9

2 5 8
1 3 6

is the hexa-crab depicted in Figure 18, which aligns with the duality depicted in the
middle row in the bottom of Figure 23. Additionally, [2, Example 8.1 and Remark 8.2]
verify that the tensor diagram for Z (the first entry in the right column on the bottom
of Figure 23) corresponds to the standard Young tableau

TZ = 5 8 9
2 6 7
1 3 4

.

The web corresponding to its transpose

T ∗
Z = 4 7 9

3 6 8
1 2 5

is in fact the three tripods (1, 8, 9), (2, 3, 4), (5, 6, 7), i.e. the fourth web illustrated in
Figure 17, the tri-crab. Again, this result is consistent with the duality depicted in
the top row in the bottom left quadrant of [9, Figure 3].

It would be interesting to extend these computations to our additional dualities in
Gr(3, 8), depicted in Figure 23. We expect that they relate to semi-standard Young
tableaux of shape [3, 3, 3], using entries only involving 1, 2, . . . , 8; conjecturally, these
would be the 24 tableaux provided in [3, Section 3.1] for Gr(3, 8).

7. Construction of C

In this section, we justify our claim from Section 2.3 that the element

C = ∆124∆357∆689 + ∆123∆456∆789 − ∆124∆356∆789 − ∆123∆457∆689

of C[Gr(3, 9)] is a cluster variable. It will suffice to show that the above expression
corresponds to the tensor diagram on the right of the middle row in the bottom left of
Figure 23, since that diagram is a planar tree, and therefore corresponds to a cluster
variable by [4, Corollary 8.10].

We explained in Section 6 that under the Khovanov–Kuperberg bijection, the clus-
ter algebra element C and its corresponding web invariant [WC ] correspond to a
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particular standard Young tableau, namely

TC = 6 8 9
3 5 7
1 2 4

.

We algebraically express [WC ] as a polynomial in Plücker coordinates by producing a
tensor diagram from the rows of TC and then resolving crossings to create a summation
in terms of planar webs. This process is illustrated in Figure 25: we consider the triple
product ∆124∆357∆689 formed from the rows(4) of TC , construct a corresponding
tensor diagram by superimposing the three associated tripods, and apply the SL3-
web Skein relation shown in Figure 24 to resolve two of the crossings that appear.

= +

Figure 24. Additional Skein relation for tensor diagrams, which are
not necessarily planar.

Figure 25. Applying the Skein relation of Figure 24 to the tensor
diagram for ∆124∆357∆689 to obtain the tensor diagram for C.

To translate the tensor diagrams in Figure 25 into an expression in Plücker coor-
dinates, we note that the tensor diagram on the left side of the equation consists of
three tripods, and therefore corresponds to a product of three Plücker cluster vari-
ables, in particular ∆124∆357∆689. The first summand in the bottom line of Figure 25
similarly corresponds to ∆124∆356∆789. The next summand has two components: a
tripod, which corresponds to the Plücker coordinate ∆123; and a hexapod, which cor-
responds to the compound determinant det(v4 ×v5, v6 ×v7, v8 ×v9), i.e. the quadratic
difference X456789 = ∆457∆689 − ∆456∆789. Therefore, we may express this summand

(4)On further review of this process, as we apply the Khovanov–Kuperberg bijection described
in Section 6.1 to the transpose T ∗

C , the first step yields the triples (6, 8, 9), (3, 5, 7), (1, 2, 4), which
are natural to utilize to obtain a leading monomial for an expression of a web invariant in terms of
Plücker coordinates based on the theory of non-crossing tableaux, see [20, 17]. However, it is only
a coincidence rather than a more general phenomenon that these triples agree with the three rows
of TC .
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Figure 26. Enumeration of non-elliptic webs compatible (high-
lighted in yellow for emphasis) and incompatible with A1 =
(134)(258)(167).

as ∆123(∆457∆689 − ∆456∆789). Finally, the rightmost summand at the bottom of
Figure 25 is the desired web [WC ]. We have therefore recovered the relation

∆124∆357∆689 = ∆124∆356∆789 + ∆123(∆457∆689 − ∆456∆789) + C,

and our expression for C follows.
We note that similar tensor diagram manipulations are sufficient to calculate expan-

sions of A, B, and Z; however, such expansions are already present in the literature.

Appendix A. Proofs of Lemmas
In this Appendix, we prove the lemmas from Section 5, restating them for convenience.

Lemma 5.17. The non-elliptic webs compatible with A1 = ∆134∆258∆167 are pictured
in Figure 19. Web (ii) of Figure 19 is the only non-elliptic web compatible with A2 =
∆134∆125∆678, and web (iii) of Figure 19 is the only non-elliptic web compatible with
A3 = ∆158∆234∆167. Additionally, each compatibility is unique.

Proof of Lemma 5.17. In Figures 26, 27, and 28, we enumerate all nonelliptic webs
with boundary vertices {v1, . . . , vn} such that v1 is colored white and v2, . . . , vn are
colored black. Those compatible with A1, A2, or A3 respectively are fully colored and
boxed; for all others, the impossibility of a proper edge coloring with the corresponding
boundary edge colors is demonstrated. Note that no web compatible with A2 can
contain a path v2 → v1 or v5 → v1, since the edges incident to v2 and v5 cannot be
the same color as the edge incident to v1; similarly, no web compatible with A3 can
contain a path v8 → v1 or v5 → v1. We therefore omit such webs in the corresponding
figures. Also note that any completed proper coloring is unique given the compatibility
conditions.
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Figure 27. Enumeration of non-elliptic webs compatible (high-
lighted in yellow for emphasis) and incompatible with A2 =
(134)(125)(678).

Figure 28. Enumeration of non-elliptic webs compatible (high-
lighted in yellow for emphasis) and incompatible with A3 =
(158)(234)(167).
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Figure 29. Enumeration of non-elliptic webs compatible (high-
lighted in yellow for emphasis) and incompatible with B1 =
(258)(134)(267).

□

Lemma 5.18. The non-elliptic webs compatible with B1 = ∆258∆134∆267 are pictured
in Figure 20. Web (iii) of Figure 20 is the only non-elliptic web compatible with
B2 = ∆234∆128∆567, and webs (ii) and (iv) of Figure 20 are the only non-elliptic
webs compatible with B3 = ∆234∆258∆167. Additionally, each compatibility is unique.

Proof of Lemma 5.18. Similarly to the previous proof, for each term of B, we enu-
merate all nonelliptic webs with boundary vertices {v1, . . . , vn} such that v2 is colored
white and v1, v3, . . . , vn are colored black. Note that no web compatible with B1 can
contain a path v6 → v2, no web compatible with B2 can contain any path, and no
web compatible with B3 can contain a path v3 → v2, so we omit these webs in the
corresponding figures. Also note that any completed proper coloring is unique given
the compatibility conditions. □

We use the following lemma to limit our lists of webs for terms of C.

Lemma A.1. Let I = {i − 1, i, i + 1} mod 9, and J, K ∈
([9]\I

3
)
. If a non-elliptic web

is compatible with ∆I∆J∆K , it must be one of the webs pictured in Figure 32.

Proof. In Figure 33, we enumerate all nonelliptic webs listed in Lemma 5.9, drawing
vertex i at the top of each web without loss of generality, and eliminate any that do
not admit a proper coloring such that the edges adjacent to vertices i − 1, i, and i + 1
are the same color. □

We now prove Lemmas 5.19 and 5.20.
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Figure 30. Enumeration of non-elliptic webs compatible (high-
lighted in yellow for emphasis) and incompatible with B2 =
(234)(128)(567).

Figure 31. Enumeration of non-elliptic webs compatible (high-
lighted in yellow for emphasis) and incompatible with B3 =
(234)(258)(167). Note that the middle web of the third row is in-
compatible due to a collision on an internal vertex of the hexagon,
where two green edges are forced to meet. The rightmost two webs
of the third row give the only webs compatible with the boundary
condition B3.

Figure 32. All non-elliptic webs compatible with some ∆I∆J∆K ,
where I = {i − 1, i, i + 1} mod 9 and J, K ∈

([9]\I
3

)
.
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Figure 33. Enumeration of non-elliptic webs compatible (high-
lighted in yellow for emphasis) and incompatible with some
∆I∆J∆K , where I = {i − 1, i, i + 1} mod 9 with vertex i drawn
at the top of each web, and J, K ∈

([9]\I
3

)
.

Lemma 5.19. The non-elliptic webs compatible with C1 = ∆124∆357∆689 are
pictured in Figure 21. Web (ii) is the only non-elliptic web compatible with
C2 = ∆123∆456∆789, webs (ii) and (iii) are the only non-elliptic webs compati-
ble with C3 = ∆124∆356∆789, and webs (ii) and (iv) are the only non-elliptic webs
compatible with C4 = ∆123∆457∆689. Additionally, each compatibility is unique.

Proof of Lemma 5.19. For each term of C, we enumerate non-elliptic webs with nine
black boundary vertices. Since every term of C besides C1 has a factor of ∆I where
I = {i − 1, i, i + 1} mod 9, for these terms we only check the appropriate rotations
of the webs listed in Lemma A.1; see Figure 35. For C1, in Figure 34 we check all
webs listed in Lemma 5.9. Note that any completed proper coloring is unique given
the compatibility conditions. □

Algebraic Combinatorics, Vol. 7 #5 (2024) 1386



Double and Triple Dimer Partition Functions in Gr(3, n)

Figure 34. Enumeration of non-elliptic webs compatible (high-
lighted in yellow for emphasis) and incompatible with C1, checking
all webs listed in Lemma 5.9.
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Figure 35. Enumeration of non-elliptic webs compatible (high-
lighted in yellow for emphasis) and incompatible with C2, C3, and
C4, checking appropriate rotations of the webs listed in Lemma A.1
for ∆I = ∆123, ∆789, and ∆123, respectively.

Lemma 5.20. The non-elliptic webs compatible with Z1 = ∆145∆278∆369 are pic-
tured in Figure 22. Webs (ii) through (v) are the only non-elliptic webs compati-
ble with Z2 = ∆245∆178∆369, web (vi) is the only non-elliptic web compatible with
Z3 = ∆123∆456∆789, and web (vii) is the only non-elliptic web compatible with
Z4 = ∆129∆345∆678. Additionally, each compatibility is unique.

Proof of Lemma 5.20. Similarly to the previous proof, in Figures 36 and 37 we enu-
merate non-elliptic webs with nine black boundary vertices for each of Z1 and Z2.
Note that Z3 = C2 = (123)(456)(789), and Z4 is a cyclic shift of Z3 corresponding
to a counterclockwise rotation by one vertex, so we may refer to Lemma 5.19 for the
webs compatible with those triple products. Also note that any completed proper
coloring is unique given the compatibility conditions. □

Appendix B. Computations of Twists
In this Appendix, we demonstrate computations using Theorems 5.10 and 5.11. Since
this section contains many long expressions in Plücker coordinates, in what follows
we will use the shorthand (I) to denote the Plücker coordinate ∆I . We note that we
chose to compute T ∗(σ2(A)) and T ∗(σ7(B)) (where σ ∈ D8 represents clockwise
rotation by one vertex) in particular because, for the initial seed we will consider, the
numbers of terms in their Laurent expansions are relatively small compared to the
corresponding numbers for other dihedral images of A and B.

To check the Laurent expressions arising from our computations, we used Sage-
Math [21] and Pavel Galashin’s applet [10] to explore the full set of Plücker cluster
variables in a particular quiver for Gr(3, 8), via sequences of square moves on the cor-
responding plabic graph. This allowed us to identify the resulting cluster variables as
Plücker coordinates, as well as record a sample mutation sequence to get to each such
variable. We then used SageMath, including the ClusterSeed and ClusterAlgebra
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Figure 36. Enumeration of non-elliptic webs compatible (high-
lighted in yellow for emphasis) and incompatible with Z1.
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Figure 37. Enumeration of non-elliptic webs compatible (high-
lighted in yellow for emphasis) and incompatible with Z2.
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packages (thanks to the second author and Christian Stump; Dylan Rupel and Salva-
tore Stella) to arrive at Laurent polynomial expressions for all such cluster variables.
Computations in SageMath subsequently allowed us to compute Laurent polyno-
mial expressions for the entire mutation class of 128 cluster variables. With this list,
we were able to identify the Laurent expansions for the remaining 56 non-Plücker
cluster variables as versions of X, Y , A, and B. We will refer to these expansions in
the following two examples.

For reference, we list our computations for the twists of A and B as in [15] here:

T ∗(A) = (123)(234)(456)(178)[(267)(358) − (235)(678)]
= (123)(234)(456)(178)Y 235678(B.1)

T ∗(B) = (178)(456)(234)[(348)(367)(125)
− (348)(567)(123) − (345)(367)(128)]

= (178)(456)(234)σ4ρ(B)
(B.2)

where ρ reflects indices via i → 9 − i. We justify these computations algebraically in
Section B.3, along with providing a table of the twists of all Gr(3, 7) cluster variables.

B.1. Computing T ∗(σ2(A)). We give a complete description of the triple dimer
partition function given in Theorem 5.10 for

σ2(A) = (356)(247)(138) − (356)(347)(128) − (237)(456)(138),

the cyclic rotation of A clockwise by two vertices. In what follows, we will refer to the
rotation of the batwing connectivity pattern clockwise by two vertices as the batwing2.

From the theorem, the only triple dimers D whose weights contribute to T ∗(σ2(A))
are those such that W (D) contains the batwing2 as a nonelliptic summand. We were
able to list these by first drawing all triple dimers such that W (D) is the batwing2,
and then adding squares, bigons, and internal cycles wherever possible. Tables 2, 3,
and 4 contain a complete list of these triple dimers, and their associated weights; note
that only one triple dimer has a bigon in its corresponding web, causing its weight to
have a coefficient of CD

batwing2 = 2 in T ∗(σ2(A)).
According to Theorem 5.10, summing the weights listed in Tables 2, 3,

and 4 should yield T ∗(σ2(A)). Indeed, it follows from (B.1) that T ∗(σ2(A)) =
(123)(345)(456)(678)Y 124578, and our code yielded the following Laurent polynomial
expression for this product of cluster variables:

T ∗(σ2(A)) = (123)(345)(456)(678)
(246)(568)(268)2(168) [(248)2(256)(268)(168)2(567)+

+ (248)(245)(268)2(168)2(567) + (248)(246)(568)(268)(168)(128)(567)
+ (248)2(256)2(168)2(567) + (248)(246)(568)(268)(168)(128)(567)
+ 2 · (248)(246)(256)(568)(168)(128)(678)
+ (245)(246)(568)(268)(168)(128)(678)
+ (246)2(568)2(128)2(678) + (248)(246)(256)(568)(268)(168)(178)
+ (246)2(568)2(268)(128)(178)].

The terms of this Laurent expansion corresponding to each triple dimer are also listed
in Tables 2,3, and 4, confirming that the sums agree.
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B.2. Computing T ∗(σ7(B)). We similarly give a complete description of the triple
dimer partition function given in Theorem 5.11 for

σ7(B) = (147)(156)(238) − (123)(178)(456) − (123)(147)(568),

the cyclic rotation of B clockwise by seven vertices.
From the theorem, the only triple dimers D whose weights contribute to T ∗(σ7(B))

are those such that W (D) contains the appropriate rotation of the octopus as a
nonelliptic summand. We were able to list these using the same method as in the
previous section; Tables 5, 6, 7, 8, and 9 contain a complete list of these triple dimers
and their associated weights and coefficients.

To check that the sum of these weights (with multiplicity) indeed yields T ∗(σ7(B)),
we have from the expression (B.2) for T ∗(B) that

T ∗(σ7(B)) = (123)(345)(678)
[
(256)[(247)(138) − (347)(128)] − (237)(456)(128)

]
= (123)(345)(678)

(
σ3ρ(B)

)
where ρ reflects indices via i → 9 − i and σ follows this by clockwise rotation. Our
code yielded the following Laurent polynomial for this expression:

T ∗(σ7(B)) = (123)(345)(678)
(248)(124)(568)(268)2(168) [(248)3(256)(268)(168)2(123)(567)

+ (248)2(246)(568)(268)(168)(128)(123)(567)

+ (248)2(256)(268)(168)2(128)(234)(567)

+ (248)(246)(568)(268)(168)(128)2(234)(567)

+ (248)3(256)2(168)2(123)(678)

+ 2 · (248)2(246)(256)(568)(168)(128)(123)(678)

+ (248)(246)2(568)2(128)2(123)(678)
+ (248)(124)(256)(568)(268)(168)(128)(234)(678)

+ (248)2(256)2(168)2(128)(234)(678)

+ (124)(246)(568)2(268)(128)2(234)(678)

+ 2 · (248)(246)(256)(568)(168)(128)2(234)(678)(246)2(568)2(128)3(234)(678)

+ (248)2(246)(256)(568)(268)(168)(123)(178)

+ (248)(246)2(568)2(268)(128)(123)(178)

+ (124)(246)(568)2(268)2(128)(234)(178)
+ (248)(246)(256)(568)(268)(168)(128)(234)(178)

+ (246)2(568)2(268)(128)2(234)(178)]

The terms of this Laurent expansion corresponding to each triple dimer are also listed
in Tables 5, 6, 7, 8, and 9, confirming that the sums agree.

B.3. Computing Twists Algebraically. In this section, we list the twists of all
cluster variables in Gr(3, 7), and algebraically justify our computations for the twists
of A and B in Gr(3, 8). We utilize the following results from Section 2.5 (where indices
are taken in increasing order modulo n):

• We have T ∗(∆a,a+1,a+2) = ∆a+1,a+2,a+3∆a+2,b+1,b+2.
• When b ̸= a − 1, a + 2, we have T ∗(∆a,a+1,b) = ∆a+1,a+2,a+3∆a+2,b+1,b+2.
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• When J = {a, b, c} where none of a, b, c are adjacent, we have

T ∗(∆J) = det
(

va+1 × va+2 vb+1 × vb+2 vc+1 × vc+2

)
=

{
Xa+1, a+2, b+1, b+2, c+1, c+2 a, b, c ̸= n − 1
Y a+1, a+2, b+1, b+2, c+1, c+2 otherwise

.

Table 1 lists twists in Gr(3, 7). In this setting, all calculations of twists of quadratic
differences of form XS are special cases of the computation appearing in the proof of
Proposition 4.3; for instance, when (a−2, a−1, b−1, b−2, c−2, c−1) = (1, 2, 3, 4, 5, 6)
we obtain T ∗(X123456) = ∆167∆456∆234[∆357]. The computations for those of form
Y S are similar.

We note that the non-crossing matching corresponding to a given quadratic differ-
ence provides a convenient heuristic for computing frozen factors of twists of quadratic
differences. In particular, these frozen factors are indexed by all face labels appearing
between two boundary vertices that are included in the corresponding matching, but
not connected to each other. We also observe overall that in Gr(3, 7), we either have

T ∗(Xs1,s2,s3,s4,s5,s6) = ∆s2,s2+1,s2+2∆s4,s4+1,s4+2∆s6,s6+1,s6+2∆s2+1,s4+1,s6+1

or that T ∗(Xs1,s2,s3,s4,s5,s6) is the product of two frozen variables and a quadratic
difference.

Variable Twist Variable Twist
∆124 ∆234∆356 ∆126 ∆234∆137
∆235 ∆345∆467 ∆237 ∆345∆124
∆346 ∆456∆157 ∆134 ∆456∆235
∆457 ∆567∆126 ∆245 ∆567∆346
∆156 ∆167∆237 ∆356 ∆167∆457
∆267 ∆127∆134 ∆467 ∆127∆156
∆137 ∆123∆245 ∆157 ∆123∆267

∆125 ∆234∆367 ∆135 X234567

∆236 ∆345∆147 ∆246 Y 134567

∆347 ∆456∆125 ∆357 X124567

∆145 ∆567∆236 ∆146 Y 123567

∆256 ∆167∆347 ∆257 X123467

∆367 ∆127∆145 ∆136 Y 123457

∆147 ∆123∆256 ∆247 X123456

X123456 ∆167∆234∆456∆357 Y 123456 ∆345∆567Y 123467

X234567 ∆127∆345∆567∆146 Y 234567 ∆167∆456X123457

X134567 ∆127∆567Y 123456 Y 134567 ∆123∆167∆456∆257
X124567 ∆127∆234∆567∆136 Y 124567 ∆123∆167Y 234567

X123567 ∆127∆234X134567 Y 123567 ∆123∆167∆345∆247
X123467 ∆127∆234∆456∆135 Y 123467 ∆123∆345Y 124567

X123457 ∆234∆456X123567 Y 123457 ∆123∆345∆567∆246

Table 1. Twists of Gr(3,7) cluster variables, arranged by cyclic or-
bits.

We now compute the twists of A and B in Gr(3, 8). Applying the twist to the
expression

A = (134)(258)(167) − (134)(125)(678) − (158)(234)(167)
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yields
T ∗(A) = (235)(456)[(347)(126) − (346)(127)](238)(178)

− (235)(456)(234)(367)(178)(128) − (123)(267)(345)(456)(238)(178)
= (178)(456)[(235)(347)(126)(238) − (235)(346)(127)(238)
− (235)(234)(367)(128) − (123)(267)(345)(238).]

We use the Plücker relation (123)(467) − (124)(367) + (126)(347) − (127)(346) = 0 to
arrive at the expression

T ∗(A) = (178)(456)[(235)(238)(124)(367) − (235)(238)(123)(467)
− (235)(234)(367)(128) − (123)(267)(345)(238)],

and further simplify using the Plücker relation (124)(238) − (234)(128) = (123)(248)
to arrive at

T ∗(A) = (178)(456)(123)[(235)(367)(248) − (235)(238)(467) − (267)(238)(345)].
The Plücker relation (267)(348) − (367)(248) + (467)(238) − (678)(234) = 0 im-
plies that (235)(367)(248) − (235)(238)(467) = (235)[(267)(348) − (234)(678)] and
(267)(238)(345) = (267)[(235)(348) − (234)(358)]. Substituting yields

T ∗(A) = (178)(456)(123)[(267)(234)(358) − (234)(235)(678)]
= (123)(234)(456)(178)[(267)(358) − (235)(678)]
= (123)(234)(456)(178)Y 235678.

We now apply the twist to the expression
B = (258)(134)(267) − (234)(158)(267) − (234)(125)(678),

which yields
T ∗(B) = [(134)(267) − (234)(167)](235)(456)(348)(178)

− (345)(456)(267)(123)(348)(178) − (345)(456)(234)(367)(178)(128)
= (456)(178)[(134)(267)(235)(348) − (234)(167)(235)(348)
− (345)(267)(123)(348) − (345)(234)(367)(128).]

Using the Plücker relation (134)(235) = (123)(345) + (135)(234), we arrive at the
expression

T ∗(B) = (178)(456)(234)[(135)(348)(267) − (235)(167)(348) − (345)(367)(128)],
and using the Plücker relation (167)(235) − (267)(135) + (367)(125) − (567)(123) = 0
yields

T ∗(B) = (178)(456)(234)[(348)(367)(125) − (348)(567)(123) − (345)(367)(128)]
= (178)(456)(234)σ5ρ(B),

where ρ reflects indices via i → 9 − i and σ follows this by clockwise rotation.
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Table 2. Triple Dimers for T ∗(σ2(A)).

Triple Dimer Configuration Weight Information

Dimer weight:
(123)(345)(456)(567)(678)(248)2(168)(256)

(268)(246)

Term in Laurent expansion:
(248)2(256)(268)(168)2(567)

Dimer weight:
(123)(345)(456)(567)(678)(248)(168)(245)

(568)(246)

Term in Laurent expansion:
(248)(245)(268)2(168)2(567)

Dimer weight:
(123)(345)(456)(567)(678)(128)(248)

(268)

Term in Laurent expansion:
(248)(246)(568)(268)(168)(128)(567)

Dimer weight:
(123)(345)(456)(678)2(248)2(168)(256)2

(568)(246)(268)2

Term in Laurent expansion:
(248)2(256)2(168)2(567)
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Table 3. Triple Dimers for T ∗(σ2(A)) Continued.

Triple Dimer Configuration Weight Information

Dimer weight:
(123)(345)(456)(678)2(248)(168)(256)(245)

(268)(246)(568)

Term in Laurent expansion:
(248)(246)(568)(268)(168)(128)(567)

Dimer weight:
2 · (123)(345)(456)(678)2(128)(248)(256)

(268)2

Term in Laurent expansion:
2 · (248)(246)(256)(568)(168)(128)(678)

Dimer weight:
(123)(345)(456)(678)2(128)(245)

(268)

Term in Laurent expansion:
(245)(246)(568)(268)(168)(128)(678)
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Table 4. Triple Dimers for T ∗(σ2(A)) Continued.

Triple Dimer Configuration Weight Information

Dimer weight:
(123)(345)(456)(678)2(128)2(568)(246)

(268)2(168)

Term in Laurent expansion:
(246)2(568)2(128)2(678)

Dimer weight:
(123)(345)(456)(678)(178)(248)(256)

(268)

Term in Laurent expansion:
(248)(246)(256)(568)(268)(168)(178)

Dimer weight:
(123)(345)(456)(678)(178)(128)(568)(246)

(268)(168)

Term in Laurent expansion:
(246)2(568)2(268)(128)(178)
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Table 5. Triple Dimers for T ∗(σ7(B)).

Triple Dimer Configuration Weight Information

Dimer weight:
(248)2(168)(256)(123)2(345)(567)(678)

(124)(268)(568)

Term in Laurent expansion:
(248)3(256)(268)(168)2(123)(567)

Dimer weight:
(248)(246)(123)2(345)(567)(678)(128)

(124)(268)

Term in Laurent expansion:
(248)2(246)(568)(268)(168)(128)(123)(567)

Dimer weight:
(248)(168)(256)(123)(234)(345)(567)(678)(128)

(124)(268)(568)

Term in Laurent expansion:
(248)2(256)(268)(168)2(128)(234)(567)

Dimer weight:
(246)(123)(234)(345)(567)(678)(128)2

(124)(268)

Term in Laurent expansion:
(248)(246)(568)(268)(168)(128)2(234)(567)
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Table 6. Triple Dimers for T ∗(σ7(B)) Continued.

Triple Dimer Configuration Weight Information

Dimer weight:
(248)2(168)(256)2(123)3(345)(678)2

(124)(268)2(568)

Term in Laurent expansion:
(248)3(256)2(168)2(123)(678)

Dimer weight:
2 · (248)(246)(256)(123)2(345)(678)2(128)

(124)(268)2

Term in Laurent expansion:
2 · (248)2(246)(256)(568)(168)(128)(123)(678)

Dimer weight:
(246)2(568)(123)2(345)(678)2(128)2

(124)(268)2(168)

Term in Laurent expansion:
(248)(246)2(568)2(128)2(123)(678)

Dimer weight:
(256)(123)(234)(345)(678)2(128)

(268)

Term in Laurent expansion:
(248)(124)(256)(568)(268)(168)(128)(234)(678)
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Table 7. Triple Dimers for T ∗(σ7(B)) Continued.

Triple Dimer Configuration Weight Information

Dimer weight:
9248)(168)(256)2(123)(234)(345)(678)2

(124)(268)2(568)

Term in Laurent expansion:
(248)2(256)2(168)2(128)(234)(678)

Dimer weight:
(246)(568)(123)(234)(345)(678)2(128)2

(248)(268)(168)

Term in Laurent expansion:
(124)(246)(568)2(268)(128)2(234)(678)

Dimer weight:
2 · (246)(256)(123)(234)(345)(678)2(128)2

(124)(268)2

Term in Laurent expansion:
2 · (248)(246)(256)(568)(168)(128)2(234)(678))
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Table 8. Triple Dimers for T ∗(σ7(B)) Continued.

Triple Dimer Configuration Weight Information

Dimer weight:
(246)2(568)(123)(234)(345)(678)2(128)3

(124)(248)(268)2(168)

Term in Laurent expansion:
(246)2(568)2(128)3(234)(678)

Dimer weight:
(248)(246)(256)(123)2(345)(678)(178)

(124)(268)

Term in Laurent expansion:
(248)2(246)(256)(568)(268)(168)(123)(178)

Dimer weight:
(246)2(568)(123)2(345)(678)(178)(128)

(124)(268)(168)

Term in Laurent expansion:
(248)(246)2(568)2(268)(128)(123)(178)
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Table 9. Triple Dimers for T ∗(σ7(B)) Continued.

Triple Dimer Configuration Weight Information

Dimer weight:
(246)(568)(123)(234)(345)(678)(178)(128)

(248)(168)

Term in Laurent expansion:
(124)(246)(568)2(268)2(128)(234)(178)

Dimer weight:
(246)(256)(123)(234)(245)(678)(178)(128)

(124)(268)

Term in Laurent expansion:
(248)(246)(256)(568)(268)(168)(128)(234)(178)

Dimer weight:
(246)(568)(123)(234)(345)(678)(178)(128)2

(124)(248)(268)(168)

Term in Laurent expansion:
(246)2(568)2(268)(128)2(234)(178)
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