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Exceptional scattered sequences

Daniele Bartoli, Giuseppe Marino, Alessandro Neri & Lara
Vicino

Abstract The concept of scattered polynomials is generalized to those of exceptional scattered
sequences which are shown to be the natural algebraic counterpart of Fqn -linear MRD codes.
The first infinite family in the first nontrivial case is also provided and equivalence issues are
considered. As a byproduct, a new infinite family of MRD codes is obtained.

Rank-metric codes were introduced already in the late 70’s by Delsarte [18] and
then rediscovered by Gabidulin a few years later [21]. They attracted many researchers
in the last decade, due to their applications in network coding [47] and cryptogra-
phy [22, 30]. Such codes are sets of matrices over a finite field Fq endowed with the
rank distance, that is, the distance between two elements is defined as the rank of
their difference. Among them, of particular interest is the family of rank-metric codes
whose parameters are optimal, that is, for the given minimum rank, they have the
maximum possible cardinality. Such codes are called maximum rank distance (MRD)
codes and constructing new families is an important and active research task. From
a different perspective, rank-metric codes can also be seen as sets of (restrictions of)
Fq-linear homomorphisms from (Fqn)m to Fqn equipped with the rank distance; see
Sections 1.2 and 1.3. With this second point of view, it is evident that multivariate lin-
earized polynomials can be seen as the natural algebraic counterpart of rank-metric
codes. In the case of univariate linearized polynomials such a connection was ex-
ploited in [46] by Sheekey, where the notion of scattered polynomials was introduced;
see also [10]. Let f ∈ Ln,q[X] be a q-linearized polynomial and let t be a nonnegative
integer with t ⩽ n− 1. Then, f is said to be scattered of index t if for every x, y ∈ F∗

qn

f(x)
xqt = f(y)

yqt ⇐⇒ y

x
∈ Fq,

or equivalently

dimFq
(ker(f(x) − αxqt

)) ⩽ 1, for every α ∈ Fqn .

In a more geometrical setting, a scattered polynomial is connected with a scattered
subspace of the projective line; see [13]. From a coding theory point of view, f
is scattered of index t if and only if Cf,t = ⟨xqt

, f(x)⟩Fqn is an MRD code with
dimFqn (Cf,t) = 2. The polynomial f is said to be exceptional scattered of index t if
it is scattered of index t as a polynomial in Lℓn,q[X], for infinitely many ℓ; see [10].
The classification of exceptional scattered polynomials is still not complete, although
it gained the attention of several researchers [3, 10, 8, 20, 6].

Manuscript received 30th August 2023, revised 8th May 2024, accepted 21st May 2024.
Keywords. Scattered polynomials, linearized polynomials, MRD codes, finite fields.

ISSN: 2589-5486 http://algebraic-combinatorics.org/

https://doi.org/10.5802/alco.377
http://algebraic-combinatorics.org/


D. Bartoli, G. Marino, A. Neri & L. Vicino

While many families of scattered polynomials have been constructed in recent
years [46, 36, 34, 50, 9, 32, 31, 41, 51, 14, 17, 37, 13], only two families of exceptional
ones are known:

(Ps) f(x) = xqs of index 0, with gcd(s, n) = 1 (polynomials of so-called pseudoreg-
ulus type);

(LP) f(x) = x + δxq2s of index s, with gcd(s, n) = 1 and Nqn/q(δ) ̸= 1 (so-called
LP polynomials).

The generalization of the notion of exceptional scattered polynomials – together
with their connection with Fqn -linear MRD codes of Fqn -dimension 2 – yielded the
introduction of the concept of Fqn-linear MRD codes of exceptional type; see [12]. An
Fqn -linear MRD code C ⊆ Ln,q[X] is an exceptional MRD code if the rank metric code

Cℓ = ⟨C⟩F
qℓn

⊆ Lℓn,q[X]

is an MRD code for infinitely many ℓ. Only two families of exceptional Fqn -linear
MRD codes are known:

(G) Gk,s = ⟨x, xqs

, . . . , xqs(k−1)⟩Fqn , with gcd(s, n) = 1; see [18, 21, 29];
(T) Hk,s(δ) = ⟨xqs

, . . . , xqs(k−1)
, x+ δxqsk ⟩Fqn , with gcd(s, n) = 1 and Nqn/q(δ) ̸=

(−1)nk; see [46, 36].
The first family is known as generalized Gabidulin codes and the second one as gener-
alized twisted Gabidulin codes, whereas in [10] it has been shown that the only excep-
tional Fqn -linear MRD codes spanned by monomials are the codes (G), in connection
with so-called Moore exponent sets. Non-existence results on exceptional MRD codes
were provided in [12, Main Theorem].

In this paper we introduce the new notions of h-scattered sequences and exceptional
h-scattered sequences, which provide an ideal framework for exceptional MRD codes.
These h-scattered sequences are sequences of multivariate linearized polynomials F =
(f1, . . . , fs) ∈ Ln,q[X1, . . . , Xm], such that there exists I = (i1, . . . , im) ∈ Nm so that
the space

UI,F := {(xqi1

1 , . . . , xqim

m , f1(x1, . . . , xm), . . . , fs(x1, . . . , xm)) : x1, . . . , xm ∈ Fqn}

is h-scattered; see Definitions 2.1 and 2.2. Due to known theoretical results in [2, 42],
there is no loss of generality in considering spaces of this form, since every (nm)-
dimensional Fq-subspace of (Fqn)m+s is equivalent to a space of the form UI,F ; see also
Proposition 1.12. We then focus on the concept of indecomposability of h-scattered
sequences, which ensures that they cannot be obtained as direct sums of smaller h-
scattered sequences, and study how this property is preserved under classical and
Delsarte dualities. Finally we introduce the sequences of multivariate linearized poly-
nomials

(XqI

+ αXqJ

, XqJ

+ βY qI

+ γY qJ

),
for I, J ∈ {1, . . . , n− 1} and α, β, γ ∈ F∗

qn , and study their associated subspaces

U I,J,n
α,β,γ :=

{(
x, y, xqI

+ αyqJ

, xqJ

+ βyqI

+ γyqJ
)

: x, y ∈ Fqn

}
⊆ F4

qn .

We show in Theorem 3.2 that if a certain polynomial – which depends on I, J, α, β, γ –
has no roots in Fqn , then this sequence is 1-scattered. This condition is also necessary
when restricting to I, J ⩽ n/4, as we observe in Theorem 3.4. We then estimate the
maximum Fq-dimension intersection of U I,J,n

α,β,γ with the 2-dimensional Fqn -subspaces
of (Fqn)4. As a byproduct, this gives an estimate on all the generalized rank weights
of the code CI,J,n

α,β,γ associated with U I,J,n
α,β,γ . In particular, we observe that whenever

max{I, J} ⩽ (n − 1)/2, our construction automatically produces new MRD codes

Algebraic Combinatorics, Vol. 7 #5 (2024) 1406



Exceptional scattered sequences

which are inequivalent from the known constructions and whose generalized rank
weights are larger than the ones of the known constructions. We finally investigate
equivalence and dualities of the Fq-subspaces U I,J,n

α,β,γ .
The paper is structured as follows. Section 1 contains the preliminary notions

needed throughout the paper. In particular, we describe algebraic curves over finite
fields, multivariate linearized polynomials, rank-metric codes, and the concepts of
evasive and scattered subspaces. In Section 2 we introduce h-scattered sequences of
multivariate linearized polynomials and the concepts of exceptionality and indecom-
posability. Section 3 is devoted to the main general family of a scattered sequence of
bivariate linearized polynomials, and the study of its properties. Finally, we draw our
conclusions in Section 4, describing some open problems.

1. Definitions and preliminary results
1.1. Algebraic curves over a finite field. In this subsection, we collect some
preliminary definitions and results on algebraic curves over a finite field. Let q = ph,
where p is a prime and h > 0 an integer, and denote by Fq the finite field with q

elements. We denote by Fq the algebraic closure of Fq and by Fq[X,Y ] the ring
of polynomials in the variables X and Y with coefficients in Fq. Finally, let Pr(Fq)
and Ar(Fq) denote, respectively, the r-dimensional projective and affine space over Fq.
A curve is a variety of dimension 1 and plane curves are defined by bivariate polyno-
mials f(X,Y ) ∈ Fq[X,Y ].

Let X be an irreducible algebraic curve in Pn(Fq) and let X (Fq) (resp. X (Fq))
denote the set of all the places of X defined over Fq (resp. Fq). For a more compre-
hensive introduction to algebraic varieties and curves we refer the interested reader
to [27, 26, 48].

We recall now the following result, defining a Kummer cover of a plane curve.

Theorem 1.1 ([48, Corollary 3.7.4]). Let X : F (X,Y ) = 0 be an absolutely irreducible
plane curve defined over Fq and let X be its projective closure in P2(Fq). Let m be
a positive integer such that gcd(m, p) = 1 and f(X,Y ) ∈ Fq(X ) be such that there
exists a place Q ∈ X (Fq) with gcd(vQ(f),m) = 1, where vQ(f) denotes the valuation
at Q of the rational function f . Let X ′ be the space curve defined by the following
equations

X ′ :
{
F (X,Y ) = 0
Zm = f(X,Y )

and let X ′ be its projective closure in P3(Fq). Then X ′ is an absolutely irreducible
curve defined over Fq and it is called a Kummer cover of X . Correspondingly, X ′ is
called a Kummer cover of X .

Note that Theorem 1.1 applies in particular if X is a line, in which case X ′ is a
plane curve. As it is shown in [48, Corollary 3.7.4], if the genus of X is given, then it
is possible to easily compute the genus of a Kummer cover X ′.

Finally, we conclude this subsection stating the well-known Hasse-Weil bound for
the number of Fq-rational places of a curve defined over Fq.

Theorem 1.2 (Hasse-Weil). Let X be an absolutely irreducible algebraic curve
in Pn(Fq) of genus g. Then the set X (Fq) of its Fq-rational places satisfies
(1) q + 1 − 2g√

q ⩽ |X (Fq)| ⩽ q + 1 + 2g√
q.

If the curve X is singular, there is some ambiguity in defining what an Fq-rational
point of X actually is. For this reason often the function field version is also used;
see [48]. The difference between the number of Fq-rational points of a non-singular

Algebraic Combinatorics, Vol. 7 #5 (2024) 1407



D. Bartoli, G. Marino, A. Neri & L. Vicino

model X ′ ⊂ Pr(Fq), for some integer r, of X and the number of “true" Fq-rational
points (x0 : y0 : t0) ∈ P2(Fq) of X is at most (d−1)(d−2)/2−g; see [27, Lemma 9.55].
We refer the interested readers to [27, Section 9.6], where other relations are inves-
tigated. Thus, since we will be interested in solutions of particular equations (which
correspond to centers of Fq-rational places) we can roughly say that for an absolutely
irreducible curve defined over Fq the condition q + 1 − 2g√

q > 0 still yields the exis-
tence of at least one Fq-rational point (x0 : y0 : t0) ∈ P2(Fq) (seen as the center of at
least one Fq-rational place).

1.2. The space of multivariate linearized polynomials. Linearized polynomi-
als over finite fields are important objects with a rich literature, for both a theoretical
and an applied point of view. Formally, one defines the set of q-polynomials over a
finite field Fqn as

Ln,q[X] :=
{ t∑

j=0
ajX

qj

: aj ∈ Fqn

}
.

This set can be naturally considered as a ring (L,+, ◦), endowed with standard
polynomial addition (+) and polynomial map composition (◦). The importance of
this ring is due to the fact that the polynomial evaluation map provides an Fq-algebra
isomorphism
(2) Ln,q[X] := Ln,q[X]/(Xqn

−X) ∼= EndFq
(Fqn).

In this section we study a natural extension of the ring of linearized polynomials to
the multivariate setting. Define the set of formal multivariate linearized polynomials
on m variables as the Fqn-vector space over the (infinite) basis

{Xqj

i : 1 ⩽ i ⩽ m, j ∈ N}.
In order to mimic the action of the generator of Gal(Fqn/Fq), we then reduce this
vector space modulo the relations

{Xqn

i −Xi = 0 : 1 ⩽ i ⩽ m}.
In this way, we obtain the following Fqn -vector space. Let X := (X1, . . . , Xm) be a
vector of indeterminates and let

Ln,q[X] :=
{ m∑

i=1

n−1∑
j=0

fi,jX
qj

i : fi,j ∈ Fqn

}
=
〈{
Xqj

i : 1 ⩽ i ⩽ m, 0 ⩽ j ⩽ n− 1
}〉

Fqn

.

The following result gives a linearized polynomial representation of spaces of rect-
angular matrices.

Proposition 1.3. The polynomial evaluation map given by
Ln,q[X] −→ HomFq

((Fqn)m,Fqn)
f 7−→ (v 7−→ f(v))

is an isomorphism of Fq-vector spaces.

Proof. By definition, we have that

Ln,q[X] ∼=
m⊕

i=1
Ln,q[Xi],

as Fq-vector space. Combining it with (2), we obtain

Ln,q[X] ∼=
m⊕

i=1
HomFq (Fqn ,Fqn) ∼= HomFq ((Fqn)m,Fqn) ∼= Fn×nm

q .

□
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Due to Proposition 1.3, we can define the rank of a multivariate linearized polyno-
mial in Ln,q[X] as the Fq-rank of the associated Fq-linear homomorphism from (Fqn)m

to Fqn . Like for the univariate case, it is immediate to see that rank-one linearized
multivariate polynomials can all be expressed in terms of the field trace. In the sequel,
let Trqn/q denote the trace function of Fqn over Fq.
Lemma 1.4.

{f ∈ Ln,q[X] : rk(f) = 1} = {αTrqn/q(vX⊤) : α ∈ F∗
qn , v ∈ (Fqn)m ∖ {0}}.

Consider the Fqn -bilinear form on Ln,q[X], given by f ⋆ g :=
∑

i,j fi,jgi,j , where

f =
m∑

i=1

n−1∑
j=0

fi,jX
qj

i , g =
m∑

i=1

n−1∑
j=0

gi,jX
qj

i .

Lemma 1.5. Let f ∈ Ln,q[X], and let α ∈ F∗
qn and v ∈ (Fqn)m. Then

f ⋆ (αTrqn/q(vX⊤)) = αf(v).

Proof. Since f ⋆ (αTrqn/q(vX⊤)) = αf ⋆ (Trqn/q(vX⊤)), it is enough to prove it
for α = 1. This is a straightforward computation, since, writing v = (v1, . . . , vm)
and f =

∑
i,j fi,jX

qj

i , we have

f ⋆ (Trqn/q(vX⊤)) =
m∑

i=1

n−1∑
j=0

fi,jv
qj

i = f(v).

□

1.3. Rank-Metric Codes. Since we have seen in Proposition 1.3 that the space of
multivariate linearized polynomials over Fqn is isomorphic to the space of n × nm
matrices over Fq, we can actually study rank-metric codes in Ln,q[X]. This has been
done independently in [43]. Here, we define the rank distance to be the distance drk
induced by the rank:

drk(f, g) := rk(f − g).
Definition 1.6. An Fqn-linear rank-metric code C is an Fqn-subspace of Ln,q[X], en-
dowed with the rank metric. The dimension of C is k = dimFqn (C) and its minimum
rank distance is the integer

d = drk(C) := min{rk(f) : f ∈ C ∖ {0}}.
The parameters of an Fqn -linear rank-metric code in Ln,q[X] must satisfy the

following inequality, known as the Singleton-like bound, which was shown by Delsarte
in [18]:
(3) kn ⩽ m(n− d+ 1).
Codes meeting (3) with equality are called maximum rank distance (MRD)
codes.

Let C ⊆ Ln,q[X] be an Fqn -linear code. The dual code is
C⊥ = {f ∈ Ln,q[X] : f ⋆ g = 0 for all g ∈ C}.

Apart from a classical representation as matrices over Fq, rank-metric codes are
also usually represented as spaces of vectors over the extension field Fqn , especially
when they have an inherited Fqn -linearity. The way to connect our codes in Ln,q[X]
with those in (Fqn)nm is briefly described as follows. Let us fix an Fq-basis (β1, . . . , βn)
of Fqn , and take the Fq-basis of (Fqn)m given by
(4) B := (βjei)1⩽i⩽m,

1⩽j⩽n

,
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where {e1, . . . , em} is the canonical Fqn-basis of (Fqn)m.
Define the map

evB : Ln,q[X] −→ (Fqn)nm

f 7−→ (f(βjei))1⩽i⩽m,
1⩽j⩽n

.

From Proposition 1.3, we immediately deduce the following.
Corollary 1.7. The map evB is an Fqn-linear isomorphism.

Let G = (g1, . . . , gk) be an Fqn -basis of C. We define the Fq-space
UG := {(g1(x1, . . . , xm), . . . , gk(x1, . . . , xm)) : x1, . . . , xm ∈ Fqn} ⊆ (Fqn)k.

Definition 1.8. Let C be a k-dimensional Fqn-linear code, and let G be a basis of C.
The effective length of C is ℓ(C) := dimFq

(UG). The code C is nondegenerate
if ℓ(C) = nm.
Remark 1.9. The effective length of a code is well-defined. Indeed, while the Fq-
space UG depends on the choice of the Fqn -basis G of C, its Fq-dimension does not.
If G′ is another Fqn -basis of C, then G′ = GA for some A ∈ GL(k, qn), and hence
UG′ = UGA, which leaves the Fq-dimension of UG fixed.
Remark 1.10. The definition of effective length and nondegeneracy of a code C
in Ln,q[X] are equivalent to those for Fqn -linear rank-metric codes in (Fqn)nm. In-
deed, let us fix G to be an Fqn -basis of C and take B as an Fq-basis of (Fqn)m of the
form (4). Then, a basis of evB(C) is given by evB(G), and if we put these vectors as the
rows of a generator matrix G, we then have that the Fq-span of the columns of G is
exactly UG . Thus, this coincides with the notion of effective length and nondegeneracy
of Fqn -linear rank metric codes in (Fqn)nm; see e.g. [1].
Proposition 1.11. Let C ⊆ Ln,q[X] be an Fqn-linear rank-metric code. The following
are equivalent.

(a) C is nondegenerate.
(b) For any Fqn-basis G = (g1, . . . , gk) of C, it holds that

k⋂
i=1

ker(gi) = {0}.

(c) ⋂
f∈C

ker(f) = {0}.

(d) drk(C⊥) > 1.
Proof. (b) ⇐⇒ (c): Clear.

(a) ⇐⇒ (b): Consider the Fq-linear map

ψG : (Fqn)m −→ (Fqn)k

v 7−→ (g1(v), . . . , gk(v)).
Then, by the rank-nullity theorem we have

dimFq
(im(ψG)) + dimFq

(ker(ψG)) = dimFq
(UG) + dimFq

(⋂
i

ker(gi)
)

= nm,

from which we derive the equivalence.
(c) ⇐⇒ (d): Let h ∈ C⊥ ∖ {0}. By Lemma 1.4, h has rank one if and only if

h = αTrqn/q(vX⊤). Furthermore, for every f ∈ C we have
0 = f ⋆ h = αf(v).

Hence, there exists h ∈ C⊥ of rank one if and only if there exists a nonzero
v ∈

⋂
f∈C ker(f). □
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We conclude this section by recalling a useful result on a canonical form for rank-
metric codes. This has been shown in [43, Corollary IV.10] and [2, Theorem 5.3].

Proposition 1.12 ([2, 42]). Let C ⊆ Ln,q[X] be a nondegenerate Fqn-linear rank-
metric code. Then k ⩾ m and for every (i1, i2, . . . , im) ∈ (Z/nZ)m there exists
f1, . . . , fk−m ∈ Ln,q[X] such that C is GL(nm, q)-equivalent to

⟨Xqi1

1 , . . . , Xqim

m , f1, . . . , fk−m⟩Fqn .

1.4. Scattered and evasive subspaces. In this section we recall the notion of
evasiveness and scatteredness of subspaces in (Fqn)k, and how they are related to
rank-metric codes.

Definition 1.13. Let k, n be positive integers and h, r be nonnegative integers such
that h < k and h ⩽ r. An Fq-subspace U ⊆ (Fqn)k is said to be (h, r)-evasive
if for every h-dimensional Fqn-subspace H ⊆ (Fqn)k, it holds dimFq

(U ∩ H) ⩽ r.
When h = r, an (h, h)-evasive subspace is called h-scattered. Furthermore, when
h = 1, a 1-scattered subspace is simply called scattered.

Scattered subspaces were originally introduced by Blokhuis and Lavrauw in [13].
They were later generalized for every h in [16]. The more general notion of evasive
subspaces was instead introduced in [4], although similar notions can be found in [44,
24, 19, 25]. It is worth noticing that we extended the definition of h-scatteredness also
to h = 0, so that every Fq-subspace of (Fqn)k is h-scattered for some h. Thus, talking
about h-scattered subspace is equivalent to talk about any Fq-subspace of (Fqn)k.

For what concerns h-scattered subspaces, there is a well-known bound on their
Fq-dimension. Namely, an h-scattered subspace U ⊆ (Fqn)k satisfies

(5) dimFq (U) ⩽ kn

h+ 1;

see [13, 16]. An h-scattered subspace meeting (5) with equality is called a maximum
h-scattered subspace.

Without loss of generality, we can restrict to study only Fq-subspaces U ⊆ (Fqn)k

such that ⟨U⟩Fqn = (Fqn)k. Indeed, if this is not the case, there exists an Fqn -
hyperplaneH ∼= (Fqn)k−1 containing U , and hence we can restrict to study U as an Fq-
subspace of (Fqn)k−1. Thus, from now on, we will always assume that ⟨U⟩Fqn = (Fqn)k.

With this assumption, there is a natural one-to-one correspondence between
GL(r, q)-equivalence classes of k-dimensional Fqn -linear rank-metric codes in (Fqn)r

and GL(k, qn)-equivalence classes of Fq-subspaces of (Fqn)k of Fq-dimension r. This
was developed in [45]; see also [1]. Here, we rephrase it in terms of Fqn -linear
rank-metric codes in Ln,q[X].

We first start defining the GL(nm, q)-equivalence in this framework. Fix an Fq-
basis (β1, . . . , βn) of Fqn . Then every f ∈ Ln,q[X], considered as an element of
HomFq

((Fq)nm,Fqn), can be written as

f
(∑

j

βjX1,j , . . . ,
∑

j

βjXm,j

)
= f̃(βjXi,j)1⩽i⩽m,

1⩽j⩽n

= f̃(X1,1, X1,2, . . . , Xm,1, . . . , Xm,n).

In this way, we can easily observe that GL(nm, q) naturally acts on f̃ and thus
induces an action on Ln,q[X] which preserves the image, and hence the rank.

Let U(nm, k)qn/q denote the set of GL(k, qn)-equivalence classes [U ] of nm-
dimensional Fq-subspaces of (Fqn)k, and let C(nm, k)qn/q denote the set of GL(nm, q)-
equivalence classes [C] of nondegenerate k-dimensional Fqn -linear codes in Ln,q[X].
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One can define the maps
Φ : C(nm, k)qn/q −→ U(nm, k)qn/q

[⟨g1, . . . , gk⟩Fqn ] 7−→ [UG ] ,

where G = (g1, . . . , gk), and
Ψ : U(nm, k)qn/q −→ C(nm, k)qn/q

[⟨u1, . . . , unm⟩Fq
] 7−→ [ev−1

B (rowsp(u⊤
1 | . . . | u⊤

nm))] .

Note that, the map Ψ does not depend on the choice of the basis B, since any other
Fq-basis B′ of (Fqn)m can be obtained via the action of GL(nm, q), and hence it gives
an equivalent code.

Theorem 1.14 ([45]). The maps Φ and Ψ are well-defined and they are the inverses
of each other. Hence, they define a one-to-one correspondence between equivalence
classes of nondegenerate k-dimensional Fqn-linear codes in Ln,q[X] and equivalence
classes of Fq-subspaces of (Fqn)k of Fq-dimension nm.

The correspondence in Theorem 1.14 induces a correspondence between maximum
h-scattered subspaces and MRD codes. We reformulate it in our setting, while the
more general version can be found in [52, Theorem 3.2]; see also [38, Theorem 4.9].

Theorem 1.15 ([52, Theorem 3.2]). Suppose that h+1 divides k and let m := k
h+1 . Let

U be an nm-dimensional Fq-subspace in (Fqn)k and let C ∈ Ψ([U ]) be any of its asso-
ciated k-dimensional Fqn-linear rank-metric codes in Ln,q[X]. Then, U is maximum
h-scattered if and only if C is an MRD code.

We conclude by remarking the fact that the setting of Ln,q[X] is a bit more re-
strictive for studying scattered subspaces and MRD codes, since we are fixing the
dimension of the Fq-subspaces to be a multiple of n – or in other words, we are fixing
the size of the matrices to be one multiple of the other. However, in this way, we
will see that we can take advantage of the multivariate polynomial representation,
using tools described in Section 1.1 in order to derive new construction of maximum
scattered subspaces – and hence MRD codes.

2. Indecomposable h-scattered sequences
In this section we introduce the notions of scattered sequences and of their indecom-
posability. Scattered sequences are sequences of multivariate linearized polynomials
which give rise to scattered subspaces. We distinguish between decomposable and in-
decomposable ones. While the former can be obtained as direct sums of smaller scat-
tered sequences in smaller ambient spaces, the indecomposable ones can be thought
as basic building blocks for constructing infinite families of larger scattered sequences
via direct sums. Thus, every scattered subspace can be decomposed as the direct sum
of indecomposable scattered subspaces. From an applied point of view, indecompos-
able scattered sequences give rise to rank-metric codes having certain generalized rank
weights which are larger than those obtained as direct sums; see Remark 3.8. Being
generalized rank weights invariant under code equivalence, as a byproduct, this au-
tomatically implies that rank-metric codes obtained from indecomposable scattered
sequences are inequivalent from the ones obtained as direct sums. We start with this
definition.

Definition 2.1. Let I := (i1, i2, . . . , im) ∈ (Z/nZ)m and consider f1, . . . , fs ∈
Ln,q[X]. We define the I-space UI,F := UF ′ , where

F ′ = (Xqi1

1 , . . . , Xqim

m , f1, . . . , fs).
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The s-tuple F := (f1, . . . , fs) is said to be an (I;h)qn-scattered sequence of order
m if the I-space UI,F is maximum h-scattered in (Fqn)m+s. When the set I is not
relevant, for brevity we will refer to F as an h-scattered sequence.

Note that for m = h = s = 1 and i1 = 0 the above definition coincides with the one
of scattered polynomials as in [46]. In particular, h-scattered sequences with h = 1
will be simply called scattered sequences. It is worth noting that scattered sequence
with s > 1 have been investigated so far only when m = 1; see [11, 12].
Definition 2.2. An (I;h)qn-scattered sequence F := (f1, . . . , fs) of order m is said
to be exceptional if it is h-scattered over infinitely many extensions Fqnℓ of Fqn .

When dealing with nm-dimensional Fq-subspaces of (Fqn)k, they can all be repre-
sented by spaces of the form UF , for F = (f1, . . . , fk).

We consider the natural operation of direct sum on subspaces of (Fqn)k1 and
(Fqn)k2 whose dimension is multiple of n. This can be identified with the opera-
tion on sequences of multivariate linearized polynomials obtained by juxtaposing
the two corresponding sequences. For F = (f1, . . . , fk1) ∈ Ln,q[X1, . . . , Xm]k1 and
G = (g1, . . . , gk2) ∈ Ln,q[Y1, . . . , Ym′ ]k2 define

F ⊕ G := (f1, . . . , fk1 , g1, . . . , gk2) ∈ Ln,q[X1, . . . , Xm, Y1, . . . , Ym′ ]k1+k2 .

Then it is immediate to see that
UF ⊕ UG = UF⊕G .

Thus, we can give the following definition.
Definition 2.3. An nm-dimensional Fq-subspace UH of (Fqn)k is said to be decom-
posable if it can be written as

UH = UF ⊕ UG

for some nonempty F ,G. When this happens we say that F and G are factors of H.
Furthermore, U is then said to be indecomposable if it is not decomposable.

Let us now consider the direct sum of h-scattered sequences. Let I := (i1, . . . , im),
J := (j1, . . . , jm′), let F = (f1, . . . , fs) and G = (g1, . . . , gs′) be (I;h)qn and (J ;h)qn -
scattered sequences of orders m and m′, respectively. The direct sum H := F ⊕ G is
the (s+ s′)-tuple (f1, . . . , fs, g1, . . . , gs′). Since

UI⊕J ,H = UI,F ⊕ UJ ,G ,

H is an (I ⊕ J ;h)qn-scattered sequence of order m+m′; see [5, 16].
Lemma 2.4. Let I = (i1, . . . , im) ∈ (Z/nZ)m and let F := (f1, . . . , fs) ∈
Ln,q[X1, . . . , Xm]s. If UI,F is decomposable, then there exist J1 ∈ (Z/nZ)m1 ,
J2 ∈ (Z/nZ)m2 , G1 ∈ Ln,q[X1, . . . , Xm1 ]s1 , G2 ∈ Ln,q[X1, . . . , Xm2 ]s2 such that UI,F
is GL(m+ s, qn)-equivalent to

UJ1,G1 ⊕ UJ2,G2 .

Proof. Let C = ⟨Xqi1

1 , . . . , Xqim

m , f1, . . . , fs⟩Fqn ⊆ Ln,q[X1, . . . , Xm]. Assume that
UI,F is decomposable and UI,F = UX1 ⊕ UX2 , for some X1,X2 ⊆ Ln,q[X1, . . . , Xm].
Let Ci := ⟨Xi⟩Fqn , for i ∈ {1, 2}. Then, C is equivalent to C1 ⊕ C2. Let min = ℓ(Ci)
for i ∈ {1, 2}. Then Ci is equivalent to a nondegenerate code C̃i ⊆ Ln,q[X1, . . . , Xmi ].
By Proposition 1.12, C̃i is equivalent to a code ⟨Xqji,1

1 , . . . , Xq
ji,mi

mi
, gi,1, . . . , gi,si

⟩Fqn ,
for each i ∈ {1, 2}. Thus, UI,F is GL(m+ s, qn)-equivalent to

UJ1,G1 ⊕ UJ2,G2 ,

where Ji = (ji,1, . . . , ji,mi) and Gi = (gi,1, . . . , gi,si) for each i ∈ {1, 2}. □
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Thus, Definition 2.3 can be extended to sequences of linearized polynomials.
An (I;h)qn -scattered sequence F of order m is said to be decomposable, if UI,F is
decomposable. Otherwise, it is indecomposable. Note that, by Lemma 2.4, if F is
decomposable, then it can be decomposed in two sequences of linearized polynomials
of smaller orders m1,m2 such that m = m1 +m2.

For any m ⩾ 1, there exist many h-scattered sequences of order m obtained as
direct sums of scattered polynomials and thus it is natural to search for examples of
h-scattered sequences which cannot be obtained as direct sums.

Lemma 2.5. Let F := (f1, . . . , fs) be an (I;h)qn-scattered sequence of order m. If UI,F
is (r, rn/(h+ 1) − 1)-evasive for any r ∈ [h+ 1, ⌊(m+ s)/2⌋] with (h+ 1) | rn then F
is indecomposable.

Proof. Let r ∈ [h + 1, ⌊(m + s)/2⌋]. A maximum h-scattered subspace in (Fqn)r has
dimension rn/(h + 1). If F has a factor of order r then dimFq

(UI,F ∩ (Fqn)r) =
rn/(h+ 1), a contradiction to the (r, rn/(h+ 1) − 1)-evasiveness. □

2.1. Indecomposable h-scattered sequences and ordinary duality. Let
σ : V × V −→ Fqn be a nondegenerate bilinear form on V = (Fqn)r and define

σ′ : V × V −→ Fq,
(u, v) 7−→ Trqn/q(σ(u, v)).

Then σ′ is a nondegenerate bilinear form on V , when V is regarded as an rn-
dimensional vector space over Fq. Let τ and τ ′ be the orthogonal complement maps
defined by σ and σ′ on the lattices of the Fqn-subspaces and Fq-subspaces of V , respec-
tively. Recall that ifR is an Fqn -subspace of V and U is an Fq-subspace of V then Uτ ′ is
an Fq-subspace of V , dimFqn (Rτ ) + dimFqn (R) = r and dimFq

(Uτ ′) + dimFq
(U) = rn.

It easy to see that Rτ = Rτ ′ for each Fqn -subspace R of V . For a more detailed
explanation, we refer to [49, Chapter 7].

With the notation above, Uτ ′ is called the dual of U (with respect to τ ′). Up to
GL(r, qn)-equivalence, the dual of an Fq-subspace of V does not depend on the choice
of the nondegenerate bilinear forms σ and σ′ on V . For more details see [42]. If R is
an s-dimensional Fqn -subspace of V and U is a t-dimensional Fq-subspace of V , then

(6) dimFq (Uτ ′
∩Rτ ) − dimFq (U ∩R) = rn− t− sn.

Proposition 2.6. The dual of an indecomposable scattered subspace is an indecom-
posable scattered subspace as well.

Proof. Let U be a decomposable scattered subspace of V = (Fqn)r. Then rn is even,
dimFq U = rn/2 and there exists 2 ⩽ i ⩽ r/2 such that V = V1 ⊕ V2, where V1 =
(Fqn)i, V2 = (Fqn)r−i, dimFq

(U ∩ V1) = in/2 and dimFq
(U ∩ V2) = (r − i)n/2. Also,

V = V τ
1 ⊕ V τ

2 , Uτ ′ is a maximum scattered Fq-subspace of V and from Equation (6)
we get

dimFq
(Uτ ′

∩ V τ
1 ) = in

2 + rn− rn

2 − in = (r − i)n
2

and dimFq
(Uτ ′ ∩ V τ

2 ) = in
2 , i.e. Uτ ′ is decomposable. □

2.2. Indecomposable h-scattered sequences and Delsarte duality. In [16,
Section 3], another type of duality has been introduced. Let U be an m-dimensional
Fq-subspace of a vector space V = (Fqn)k, with m > k. By [35, Theorems 1, 2] (see
also [33, Theorem 1]), there is an embedding of V in Z = (Fqn)m with Z = V ⊕ Γ
for some (m − k)-dimensional Fqn -subspace Γ such that U = ⟨W,Γ⟩Fq

∩ V , where
W is an m-dimensional Fq-subspace of Z, ⟨W ⟩Fqn = Z and Γ ∩ V = W ∩ Γ = {0}.
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Then the quotient space Z/Γ is isomorphic to V and under this isomorphism U is
the image of the Fq-subspace W + Γ of Z/Γ. Now, let β′ : W × W → Fq be a non-
degenerate bilinear form on W . Then β′ can be extended to a non-degenerate bilinear
form β : Z×Z → Fqn . Let ⊥ and ⊥′ be the orthogonal complement maps defined by β
and β′ on the lattice of Fqn-subspaces of Z and of Fq-subspaces of W , respectively.
The m-dimensional Fq-subspace W + Γ⊥ of the quotient space Z/Γ⊥ will be denoted
by U⊥ and we call it the Delsarte dual of U with respect to β′. By [16, Remark 3.7],
up to GL(m, q)-equivalence, the Delsarte dual of an m-dimensional Fq-subspace does
not depend on the choice of the nondegenerate bilinear form on W .

The following result relates the Delsarte dual of an Fq-subspace of (Fqn)k with the
dual of a rank-metric code in Ln,q[X].

Theorem 2.7. Let C ⊆ Ln,q[X] be a nondegenerate Fqn-linear rank-metric code with
drk(C) > 1, and let U ∈ Φ([C]). Then Φ([C⊥]) = [U⊥].

Proof. The proof extends the one in [16, Theorem 4.12] from univariate to multi-
variate linearized polynomials, and we write it for convenience of the reader. Let us
consider any total order on {1, . . . ,m} × {0, 1, . . . , n − 1} which we transfer on the
set {Xqj

i : 1 ⩽ i ⩽ m, 0 ⩽ j ⩽ n − 1}. Using Gaussian elimination, there exists
R = {(s1, t1), . . . , (sk, tk)} ⊆ {1, . . . ,m} × {0, 1, . . . , n− 1} such that

C = ⟨g1, . . . , gk⟩Fqn , C⊥ = ⟨f1, . . . , fnm−k⟩Fqn ,

with
gi = Xqti

si
+

∑
(a,b)/∈R

gi,a,bX
qb

a ,

fi = Xqri

ℓi
−

k∑
j=1

gj,ℓi,riX
qtj

sj
,

where S = ({1, . . . ,m} × {0, 1, . . . , n − 1}) ∖ R = {(ℓ1, r1), . . . , (ℓnm−k, rnm−k)}.
We set G = (g1, . . . , gk) and F = (f1, . . . , fnm−k). With this notation in mind, the
claim is equivalent to show that the Delsarte dual of UG coincides, up to GL(nm, q)-
equivalence, with UF . Since C has minimum distance greater than 1, we can embed
Λ := ⟨UG⟩Fqn in (Fqn)nm as

Λ ∼= {(xi,j) 1⩽i⩽m,
0⩽j⩽n−1

: xi,j = 0 for (i, j) ∈ S},

in such a way the vector (g1(x), . . . , gk(x)) is identified with the vector
(ai,j) 1⩽i⩽m

0⩽j⩽n−1
,

where asi,ti
= gi(x) for i ∈ {1, . . . , k} and ai,j = 0 for (i, j) /∈ R. Consider the

Fqn -subspace Γ of (Fqn)nm defined as

Γ :=

(xi,j) 1⩽i⩽m,
0⩽j⩽n−1

: xsi,ti
= −

∑
(a,b)/∈R

gi,a,bxa,b, for i ∈ {1, . . . , k}

 ,

and the Fq-subspace

W :=
{(

xqj

i

)
1⩽i⩽m,

0⩽j⩽n−1
: x1, . . . , xk ∈ Fqn

}
.

It holds that Γ ∩ W = {0}, otherwise we would have ker(g1) ∩ . . . ∩ ker(gk) ̸= {0},
contradicting the hypothesis of C being nondegenerate; see Proposition 1.11. Further-
more, ⟨Γ,W ⟩Fq

∩Λ = UG . Consider the Fqn -bilinear form β : (Fqn)nm×(Fqn)nm → Fqn
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given by the standard inner product. Its restriction β′ to W ×W is

β′

((
xqj

i

)
1⩽i⩽m,

0⩽j⩽n−1
,
(
yqj

i

)
1⩽i⩽m,

0⩽j⩽n−1

)
=

m∑
i=1

Trqn/q(xiyi).

We can now compute the orthogonal complement of Γ with respect to β, which is

Γ⊥ =

(xi,j) 1⩽i⩽m,
0⩽j⩽n−1

: xℓi,ri
=

k∑
j=1

gj,ℓi,ri
xsj ,tj

, for 1 ⩽ i ⩽ nm− k

 .

The subspace W + Γ⊥ of (Fqn)nm/Γ⊥ is isomorphic to ⟨W,Γ⊥⟩Fq
∩ Λ′, with

Λ′ = {(xi,j) 1⩽i⩽m,
0⩽j⩽n−1

: xi,j = 0, for (i, j) ∈ R}.

By identifying Λ′ with (Fqn)nm−k, straightforward computations show that under this
identification, ⟨W,Γ⊥⟩Fq

∩ Λ′ coincides with UF . Thus, Φ([C⊥]) = [U⊥
G ]. □

Proposition 2.8. The Delsarte dual of an indecomposable subspace is an indecom-
posable subspace.

Proof. Let U be an indecomposable subspace and suppose on the contrary that U⊥ =
U1⊕U2 and let C ∈ Ψ([U ]). By Theorem 2.7, we have [C⊥] = Ψ([U⊥]) = Ψ([U1⊕U2]) =
[C1 ⊕ C2], where Ci ∈ Ψ([Ui]) for i ∈ {1, 2}. Thus, C⊥ is equivalent to C1 ⊕ C2, which
implies [C] = [C⊥

1 ⊕ C⊥
2 ]. In particular, this means

[U ] = [U⊥
1 ⊕ U⊥

2 ],
which contradicts the hypothesis of U being indecomposable. □

3. The first infinite family of indecomposable exceptional
scattered sequences of order larger than 1

A first example of indecomposable ((0, 0), 1)q4 -scattered sequence of order larger than
one for q = 22s+1 was provided in [7] and it consists of the pair (xq+yq2

, xq2 +yq+yq2).
In this paper we provide a generalization of this example to an infinite family of
exceptional type.

Definition 3.1. Let n be a positive integer and consider the finite field Fqn . For each
choice of α, β, γ ∈ F∗

qn , and I ̸= J ∈ N, I, J < n− 1, we define the set

U I,J,n
α,β,γ :=

{(
x, y, xqI

+ αyqJ

, xqJ

+ βyqI

+ γyqJ
)

: x, y ∈ Fqn

}
.

We can immediately give the following result which gives a sufficient condition on
U I,J,n

α,β,γ for being exceptional scattered.

Theorem 3.2. Assume that gcd(I, J, n) = 1 and that the polynomial

(7) P I,J
α,β,γ(X) :=

{
XqJ−I +1 + γX − αβ, ifI < J,

XqI−J +1 + γXqI−J − αβ, ifI > J,

has no roots in Fqn . Then the set U I,J,n
α,β,γ is exceptional scattered.

Proof. Assume that P I,J
α,β,γ(X) has no roots in Fqn and let λ ∈ Fqn ∖Fq be such that

(8)(
x, y, xqI

+ αyqJ

, xqJ

+ βyqI

+ γyqJ
)

= λ
(
u, v, uqI

+ αvqJ

, uqJ

+ βvqI

+ γvqJ
)
,

with x, y, u, v ∈ Fqn . The set U I,J,n
α,β,γ is maximum scattered if and only if the previous

equation holds only for u = v = 0.
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By way of contradiction, we assume that (u, v) ̸= (0, 0). We have

(9)


x = λu

y = λv

λqI

uqI + αλqJ

vqJ = λ
(
uqI + αvqJ

)
λqJ

uqJ + βλqI

vqI + γλqJ

vqJ = λ
(
uqJ + βvqI + γvqJ

)
.

The last two equations in (9) can be rewritten as

(10) λqJ

αvqJ

+ λqI

uqI

− λ
(
uqI

+ αvqJ
)

= 0

and

(11) λqJ
(
uqJ

+ γvqJ
)

+ λqI

βvqI

− λ
(
uqJ

+ βvqI

+ γvqJ
)

= 0.

Multiplying (10) by
(
uqJ + γvqJ

)
and (11) by αvqJ , and taking the difference of the

obtained equations, we have

(12)
(
λqI

− λ
)(

uqI +qJ

+ γuqI

vqJ

− αβvqI +qJ
)

= 0.

If v = 0 then u ̸= 0 and λqI −λ = 0, i.e. λ ∈ FqI . If v ̸= 0, letting X := uqI

vqI (if I < J)

or X := uqJ

vqJ (if I > J), we can rewrite (uqI +qJ + γuqI

vqJ − αβvqI +qJ )/vqI +qJ as
P I,J

α,β,γ(X). By assumption, the polynomial P I,J
α,β,γ(X) has no roots in Fqn , hence (12)

is satisfied if and only if λ ∈ FqI .
We consider now the difference between (10) multiplied by βvqI and (11) multiplied

by uqI and we have

(13)
(
λqJ

− λ
)(

αβvqI +qJ

− γuqI

vqJ

− uqI +qJ
)

= 0.

Then, arguing as above we see that Equation (13) is satisfied if and only if λ ∈ FqJ .
We have therefore obtained that the values of λ satisfying (8) need to be λ ∈

FqI ∩ FqJ ∩ Fqn . As, by assumption, gcd(I, J, n) = 1, we hence have that λ ∈ Fq, a
contradiction. So (u, v) = (0, 0), which yields that the set U I,J,n

α,β,γ is scattered.
The fact that U I,J,n

α,β,γ is exceptional scattered follows directly from the discussion
above. Indeed, let Fqnℓ be the extension field of Fqn that is the splitting field of the
polynomial P (X). Then, there exist infinitely many integers t satisfying the following
two conditions:

• gcd(I, J, nt) = 1,
• the polynomial P I,J

α,β,γ(X) has no roots in Fqnt .
This can be seen as all the t ∈ N such that gcd(I, J, t) = 1 and gcd(ℓ, t) = 1 are suit-
able. Hence, the set U I,J,nt

α,β,γ =
{(
x, y, xqI + αyqJ

, xqJ + βyqI + γyqJ
)

: x, y ∈ Fqnt

}
is scattered for infinitely many t, meaning that U I,J,n

α,β,γ is exceptional scattered. □

Note that for α = β = γ = 1, I = 1, J = 2, one obtains the indecomposable
maximum scattered linear set in [7].

Remark 3.3. Apart from the maximum scattered subspaces found in [7], we want
to point out that in this paper we provide many more constructions, and the family
that we propose is nonempty for infinitely many n and q. To see this, we just need to
prove that we can always choose α, β, γ such that the polynomial P I,J

α,β,γ(X) has no
roots in Fqn . If we restrict to the case that K = J − I > 0 and n are coprime, then
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the polynomial P I,J
α,β,γ(X) is a projective polynomial associated to the automorphism

σ : x 7−→ xqK . The linearized polynomial associated with P I,J
α,β,γ(X) is

f(X) := Xq2K

+ γXqK

− αβX.

By [39, Theorem 6], P I,J
α,β,γ(X) has no roots in Fqn if and only if the matrix Af has

no eigenvalues in Fq, where

Af := CfC
σ
f · . . . · Cσn−1

f ,

and

Cf =
(

0 αβ
1 −γ

)
is the companion matrix associated with f .

We can choose αβ, γ ∈ F∗
q such that the corresponding degree 2 polynomial

f̃ := X2 + γX − αβ associated with f is a primitive polynomial, that is, it is irre-
ducible and its roots η1, η2 are generators of F∗

q2 . Thus, since the coefficients are in Fq,
Af = (Cf )n, and its eigenvalues are ηn

1 , η
n
2 . If n ̸≡ 0 (mod q + 1), then ηn

1 , η
n
2 /∈ F∗

q

and the polynomial P I,J
α,β,γ(X) has no roots in Fqn .

Since there are φ(q2 − 1)/2, where φ is the Euler’s totient function, primitive
polynomials f̃ of degree 2 and α, β ∈ F∗

qn , this shows that there are at least
(qn − 1)φ(q2 − 1)/2 choices for P I,J

α,β,γ(X) with gcd(K,n) = 1 and (q + 1) ∤ n.

Using algebraic curves over finite fields we can actually prove the converse of The-
orem 3.2 in a small-degree regime for I and J .

Theorem 3.4. Assume that gcd(I, J, n) = 1 and max{I, J} ⩽ n/4. If the set U I,J,n
α,β,γ

is scattered, then the polynomial

(14) P I,J
α,β,γ(X) :=

{
XqJ−I +1 + γX − αβ, ifI < J,

XqI−J +1 + γXqI−J − αβ, ifI > J,

has no roots in Fqn .

Proof. Assume that P I,J
α,β,γ(X) has a root µ ∈ Fqn . Then, with the notations as in

the proof of Theorem 3.2, uqI

vqI = µ (if I < J) or uqJ

vqJ = µ (if I > J), and we let
µ̃ := 1

µq−I = v
u (if I < J) or µ̃ := 1

µq−J = v
u (if I > J). In this way, we can rewrite

the third equation in (9) as

uqI
(
λqI

− λ
)

+ αµ̃qJ

uqJ
(
λqJ

− λ
)

= 0.

Note that this equation defines the reducible curve

X : uqI
(
λqI

− λ
)

+ αµ̃qJ

uqJ
(
λqJ

− λ
)

= 0

in A2(Fqn), with coordinates (u, λ). Then, there are two possible cases:
(1) if I < J , let K := J − I. The curve

(15) Y : −αµ̃qJ

uqJ −qI

=

∏
ϑ∈FqI ∖F

qgcd(I,J)
(λ− ϑ)∏

η∈FqJ ∖F
qgcd(I,J)

(λ− η)

is an Fqn -rational component of X . Note that, applying the Frobenius auto-
morphism to (15), it is possible to see that Y is also defined by the following

Algebraic Combinatorics, Vol. 7 #5 (2024) 1418



Exceptional scattered sequences

equation

(16) uqK−1 = 1
A

∏
ϑ∈FqI ∖F

qgcd(I,J)
(λ− ϑ)∏

η∈FqJ ∖F
qgcd(I,J)

(λ− η) ,

where A :=
(

−αµ̃qJ
)q−I

.
(2) If instead I > J , let K := I − J . The curve

(17) Y : uqI −qJ

= −αµ̃qJ

∏
η∈FqJ ∖F

qgcd(I,J)
(λ− η)∏

ϑ∈FqI ∖F
qgcd(I,J)

(λ− ϑ)

is an Fqn-rational component of X . As above, applying the Frobenius auto-
morphism to (17), it is possible to see that Y is also defined by the following
equation

(18) uqK−1 = B

∏
η∈FqJ ∖F

qgcd(I,J)
(λ− η)∏

ϑ∈FqI ∖F
qgcd(I,J)

(λ− ϑ) ,

where B :=
(

−αµ̃qJ
)q−J

.

In case (a) (resp. (b)), as gcd(qK −1, q) = 1 and

∏
ϑ∈F

qI ∖F
qgcd(I,J)

(λ−ϑ)∏
η∈F

qJ ∖F
qgcd(I,J)

(λ−η)
has valuation

either 0, 1 or −1 at all the places of P1(Fqn), except possibly at the place at infinity, we
have that the projective closure Y of (16) (resp. (18)) is a Kummer cover of P1(Fqn).

Hence, we can readily compute the genus g′ of Y following [48, Corollary 3.7.4]:

g′ = 1 − (qK − 1) + 1
2
(
qK − 2

) (
qI + qJ − 2qgcd(I,J)

)
= qmax{I,J}+K

2 +G(q),

where G(q) is a polynomial in q of degree max{I, J}. Note that there are at most
(q + 2) deg(Y) ⩽ (q + 2)(qK − 1)(qI − qgcd(I,J)) places centered at points on the line
at infinity or on (λq − λ)u = 0. By the Hasse-Weil bound of Theorem 1.2, we hence
have that

|Y(Fqn)| ⩾ qn + 1 − 2g′q
n
2 − (q + 2)(qK − 1)(qI − qgcd(I,J)) > 1

as, by assumption, max{I, J} ⩽ n/4 and thus there exists λ ∈ Fqn ∖Fq such that (8)
is satisfied for non-zero values of u, v and hence the set U I,J,n

α,β,γ is not scattered. □

To prove the indecomposability of U I,J,n
α,β,γ the following result will be crucial.

Theorem 3.5. If P I,J
α,β,γ(X) has no roots in Fqn then U I,J,n

α,β,γ is (2, 2 max{I, J})q-
evasive.

Proof. To prove that U I,J,n
α,β,γ is (2, 2 max{I, J})q-evasive, we need to show that any

Fqn -subspace of dimension 2 contains at most q2 max{I,J} vectors of U I,J,n
α,β,γ .

Let
w1 :=

(
x, y, xqI

+ αyqJ

, xqJ

+ βyqI

+ γyqJ
)

, w2 :=
(

z, t, zqI

+ αtqJ

, zqJ

+ βtqI

+ γtqJ
)

be two vectors in U I,J,n
α,β,γ that are Fqn-independent. A vector

w3 :=
(
u, v, uqI

+ αvqJ

, uqJ

+ βvqI

+ γvqJ
)
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lies in ⟨w1, w2⟩Fqn if and only if the following matrix

M :=

x y xqI + αyqJ

xqJ + βyqI + γyqJ

z t zqI + αtq
J

zqJ + βtq
I + γtq

J

u v uqI + αvqJ

uqJ + βvqI + γvqJ


has rank 2.

We now study the number of (u, v) ∈ F2
qn such that rk(M) = 2, by imposing the

3 × 3 minors of M to be zero.
If xt − yz ̸= 0, this is equivalent to determining the number of solutions of the

following system {
uqI

+ αvqJ

−Av +Bu = 0(19)
uqJ

+ βvqI

+ γvqJ

− Cv +Du = 0,(20)
where

A :=
x
(
zqI + αtq

J
)

− z
(
xqI + αyqJ

)
xt− yz

,

B :=
y
(
zqI + αtq

J
)

− t
(
xqI + αyqJ

)
xt− yz

,

C :=
x
(
zqJ + βtq

I + γtq
J
)

− z
(
xqJ + βyqI + γyqJ

)
xt− yz

,

D :=
y
(
zqJ + βtq

I + γtq
J
)

− t
(
xqJ + βyqI + γyqJ

)
xt− yz

.

Note that (19) and (20) define two plane curves

X1 : uqI

+ αvqJ

−Av +Bu = 0,

X2 : uqJ

+ βvqI

+ γvqJ

− Cv +Du = 0

in A2(Fqn), with coordinates (u, v). Hence, we can estimate the number of solutions
of the previous system by estimating the number of intersections of such curves. To
this aim, in order to use Bézout’s theorem, we first show that X1 and X2 have no
common components. Consider the projective closures X1 and X2 of the curves in
P2(Fqn), with coordinates [u : v : w] and r : w = 0 being the line at infinity.

• Suppose I < J . Then X1 ∩ r = {[1 : 0 : 0]}, while X2 ∩ r = {[−γq−J : 1 : 0]}.
• Suppose I > J . Then X1 ∩ r = {[0 : 1 : 0]}, while X2 ∩ r = {[1 : 0 : 0]}.

In both cases, as the curves intersect the same line r in two different points, we
conclude that they cannot have a common component, otherwise we would find the
points of intersection of such a component with r appearing in

(
X1 ∩ r

)
∩
(
X2 ∩ r

)
,

which we have shown to be empty.
Then, by Bézout’s Theorem, we have that the number of solutions of the system

defined by (19) and (20) is at most q2 max{I,J}.
If instead xt− yz = 0, we distinguish a number of cases.

(i) If x
(
zqI + αtq

J
)

− z
(
xqI + αyqJ

)
̸= 0, then the 2 × 2 submatrix of M given

by (
x xqI + αyqJ

z zqI + αtq
J

)
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has determinant different from zero. Hence, in this case we need to estimate
the number of solutions of the following system:{

v = A1u(21)

A2u+ C2

(
uqI

+ αvqJ
)

+
(
uqJ

+ βvqI

+ γvqJ
)

= 0,(22)

where

A1 :=
y
(
zqI + αtq

J
)

− t
(
xqI + αyqJ

)
x
(
zqI + αtqJ

)
− z

(
xqI + αyqJ

) ,
A2 :=

(
xqI + αyqJ

)(
zqJ + βtq

I + γtq
J
)

−
(
zqI + αtq

J
)(

xqJ + βyqI + γyqJ
)

x
(
zqI + αtqJ

)
− z

(
xqI + αyqJ

) ,

C2 := −
x
(
zqJ + βtq

I + γtq
J
)

− z
(
xqJ + βyqI + γyqJ

)
x
(
zqI + αtqJ

)
− z

(
xqI + αyqJ

) .

Therefore, in order to apply Bézout’s Theorem, we show that the curve defined
by (21) is not a component of the curve defined by (22). Note that, if A2 ̸= 0,
this follows immediately. We consider hence the case A2 = 0. The above
system reads{

v = A1u

C2

(
uqI + αAqJ

1 uqJ
)

+
(
uqJ + βAqI

1 u
qI + γAqJ

1 uqJ
)

= 0,

and the curve defined by (21) is a component of the curve defined by (22) if
and only if the polynomial

C2

(
uqI

+ αAqJ

1 uqJ
)

+
(
uqJ

+ βAqI

1 u
qI

+ γAqJ

1 uqJ
)

is identically zero, i.e., if and only if (A1, C2) satisfies the following system of
equations:

(23)
{
βAqI

1 + C2 = 0
1 + γAqJ

1 + αC2A
qJ

1 = 0.

From the first equation of (23) we have C2 = −βAqI

1 and, substituting in the
second equation, this gives

(24) 1 + γAqJ

1 − αβAqJ +qI

1 = 0.

Setting X := A−qI

1 or X := A−qJ

1 , (24) corresponds to P I,J
α,β,γ(X) = 0 and

by assumption it has no solutions in Fqn . This shows that the curve defined
by (21) is not a component of the curve defined by (22). Therefore, by Bézout’s
theorem, the number of solutions of the system defined by (21) and (22) is at
most qmax{I,J}.

(ii) The case y
(
zqI + αtq

J
)

− t
(
xqI + αyqJ

)
̸= 0 can be treated analogously to

the previous one, as we consider the 2 × 2 submatrix of M given by(
y xqI + αyqJ

t zqI + αtq
J

)
.
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(iii) If x
(
zqJ + βtq

I + γtq
J
)

− z
(
xqJ + βyqI + γyqJ

)
̸= 0, we consider the 2 × 2

submatrix of M given by(
x xqJ + βyqI + γyqJ

z zqJ + βtq
I + γtq

J

)
,

which has non-zero determinant. Proceeding as in the previous cases, we con-
sider the system{

v = Ã1u

Ã2u+
(
uqI + αvqJ

)
+ C̃2

(
uqJ + βvqI + γvqJ

)
= 0,

where

Ã1 :=
y
(
zqJ + βtq

I + γtq
J
)

− t
(
xqJ + βyqI + γyqJ

)
x
(
zqJ + βtqI + γtqJ

)
− z

(
xqJ + βyqI + γyqJ

) ,
Ã2 := −

(
xqI + αyqJ

)(
zqJ + βtq

I + γtq
J
)

−
(
zqI + αtq

J
)(

xqJ + βyqI + γyqJ
)

x
(
zqJ + βtqI + γtqJ

)
− z

(
xqJ + βyqI + γyqJ

) ,

C̃2 := −
x
(
zqI + αtq

J
)

− z
(
xqI + αyqJ

)
x
(
zqJ + βtqI + γtqJ

)
− z

(
xqJ + βyqI + γyqJ

) .
Computations as in case (i) lead to the following system:

(25)

 1 + βC̃2Ã1
qI

= 0
αÃ1

qJ

+ γC̃2Ã1
qJ

+ C̃2 = 0.

From the first equation of (25) we have C̃2 = − 1
βÃ1

qI and, substituting in the
second equation, this gives

−αβÃ1
qJ +qI

+ 1 + γÃ1
qJ

= 0.

Setting X := Ã1
−qI

or X := Ã1
−qJ

, the above equation is equivalent to
P I,J

α,β,γ(X) = 0 and the conclusion follows as in case (i).
(iv) In the case y

(
zqJ + βtq

I + γtq
J
)

− t
(
xqJ + βyqI + γyqJ

)
̸= 0, we proceed as

above, this time starting from the 2 × 2 submatrix of M given by(
y xqJ + βyqI + γyqJ

t zqJ + βtq
I + γtq

J

)
.

□

The following is a direct consequence of Theorem 3.5, combined with [7, Theo-
rem 3.3].

Corollary 3.6. If P I,J
α,β,γ(X) has no roots in Fqn and max{I, J} ⩽ (n − 1)/2,

then U I,J,n
α,β,γ is cutting, that is, for every Fqn-hyperplane of (Fqn)4 we have that ⟨H ∩

U I,J,n
α,β,γ⟩Fqn = H.

We are now ready to prove our main result concerning the exceptionality and
indecomposability of the family U I,J,n

α,β,γ .
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Theorem 3.7. For fixed n, α, β, γ, I ̸= J , with gcd(I, J, n) = 1, suppose that P I,J
α,β,γ(X)

has no roots in Fqn . Then the set U I,J,n
α,β,γ is scattered and indecomposable over infinitely

many extensions Fqℓn of Fqn .

Proof. The set U I,J,n
α,β,γ is exceptional scattered by Theorem 3.2. Note that for any ℓ

large enough we have max{I, J} ⩽ (nℓ− 1)/2 and thus U I,J,n
α,β,γ is (2, n− 1)-evasive by

Theorem 3.5. The claim follows by Lemma 2.5, with m = s = 2 and h = 1. □

We conclude by observing the main properties of the codes CI,J,n
α,β,γ associated with

the Fq-subspaces U I,J,n
α,β,γ .

Remark 3.8. Let I, J, α, β, γ be such that P I,J
α,β,γ(X) has no roots in Fqn , and let us

consider any code CI,J,n
α,β,γ associated with U I,J,n

α,β,γ , that is, CI,J,n
α,β,γ ∈ Ψ([U I,J,n

α,β,γ ]). First of
all, CI,J,n

α,β,γ is an MRD code of dimension dimFqn (CI,J,n
α,β,γ) = 4. This is a consequence

of [15, Theorem 3.2]. Furthermore, since U I,J,n
α,β,γ is 1-scattered (Theorem 3.2), we also

derive that the third generalized rank weight is 2n− 1, and by Theorem 3.5, we also
derive that the second generalized rank weight of CI,J,n

α,β,γ is at least 2(n− max{I, J});
see [45, Theorem 3], [38, Theorem 3.3]. Thus, when max{I, J} ⩽ (n − 1)/2, we find
that this second generalized rank weight is at least n + 1. By [7, Proposition 4.10]
a decomposable code D = D1 ⊕ D2 where D1 and D2 are [n, 2]qn/q MRD codes has
second rank generalized weight equal to n. Since it is easy to see that generalized rank
weights are invariant under code equivalence, we immediately derive that the codes
CI,J,n

α,β,γ are new and inequivalent from already known codes. We refer the reader to [38]
and references therein, for a comprehensive understanding of generalized rank weights
and their relation to evasive subspaces. Finally, by Corollary 3.6 and [1, Corollary 5.7],
the code CI,J,n

α,β,γ is minimal, that is, the set of supports of its nonzero codewords is an
antichain and has cardinality q4n−1

qn−1 . We refer the reader to [1] for a comprehensive
understanding of minimal rank-metric codes.

Remark 3.9. Although it is known that it is very likely to have Fq2n -linear n × 2n
MRD codes of Fq2n -dimension 2 (and hence Fqn -dimension 4 as the codes CI,J,n

α,β,γ), the
same result is not true for Fqn -linear n× 2n MRD codes. In fact, it was proved that
the proportion of Fq2n -linear n×2n MRD codes of Fq2n -dimension 2 tends to 1 when q
grows [40], while the proportion of Fqn -linear n× 2n MRD codes of Fqn -dimension 4
tends to 0 as q grows [23]. In this direction, it would be very interesting to know
whether the Fqn -linear MRD codes CI,J,n

α,β,γ are not equivalent to Fq2n -linear codes.

3.1. Equivalence issue. Let U I,J,n
α,β,γ and U I0,J0,n

α,β,γ
be two sets as in Definition 3.1,

U I,J,n
α,β,γ =

{(
x, y, xqI

+ αyqJ

, xqJ

+ βyqI

+ γyqJ
)

: x, y ∈ Fqn

}
U I0,J0,n

α,β,γ
=
{(
u, v, uqI0 + αvqJ0

, uqJ0 + βvqI0 + γvqJ0
)

: u, v ∈ Fqn

}
.

(26)

The sets U I,J,n
α,β,γ and U I0,J0,n

α,β,γ
are GL(4, qn)-equivalent if and only if there exists

(27) N :=


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 ∈ GL(4,Fqn)
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such that
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44




x
y

xqI + αyqJ

xqJ + βyqI + γyqJ

 =


u
v

uqI0 + αvqJ0

uqJ0 + βvqI0 + γvqJ0

 .

Before proving Theorem 3.10 on the GL(4, qn)-equivalence classes for the sets in-
troduced in Definition 3.1, we establish some notations that will be useful in the
proof.

Let K := J − I and

ρqK

:=
(

β

β

)qK−I (
α

α

)q−I

, ϑqK

:=
(

β

β

)qK−I (
α

α

)q−I

γqK−I

, σqK

:= −
(

α

α

)q−I

γq−I

,

µqK

:=
(

αβ

γ

)q−I

, νqK

:=
(

γα

γα

)q−I

, ξqK

:= −

(
βqK

αqK +1

γα

)q−I

.(28)

Theorem 3.10. Let 0 < I, J, I0, J0 ⩽ (n − 1)/2, I ̸= J and I0 ̸= J0. Consider two
sets U I,J,n

α,β,γ and U I0,J0,n

α,β,γ
, with notations as in (26), (27), and (28).

Then U I,J,n
α,β,γ and U I0,J0,n

α,β,γ
are not GL(4, qn)-equivalent if one of the following con-

ditions holds:
(1) (I, J) ̸= (I0, J0);
(2) (I, J) = (I0, J0) and{

X = ρqK

Xq2K + ϑqK

Y q2K + σqK

Y qK

X = µqK

Y + νqK

XqK + ξqK

Y q2K

.

has no solutions (x, y) ∈ F2
qn ∖ {(0, 0)}

Proof. As noted above, two sets U I,J,n
α,β,γ and U I0,J0,n

α,β,γ
(as in (26)) are GL(4, qn)-

equivalent if and only if there exists N ∈ GL(4,Fqn), with notations as in (27),
such that

(29)


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44




x
y

xqI + αyqJ

xqJ + βyqI + γyqJ

 =


u
v

uqI0 + αvqJ0

uqJ0 + βvqI0 + γvqJ0

 .

From (29), we have the following system of equations:

a11x + a12y + a13

(
xqI

+ αyqJ
)

+ a14

(
xqJ

+ βyqI

+ γyqJ
)

= u

a21x + a22y + a23

(
xqI

+ αyqJ
)

+ a24

(
xqJ

+ βyqI

+ γyqJ
)

= v

a31x + a32y + a33

(
xqI

+ αyqJ
)

+ a34

(
xqJ

+ βyqI

+ γyqJ
)

= uqI0 + αvqJ0

a41x + a42y + a43

(
xqI

+ αyqJ
)

+ a44

(
xqJ

+ βyqI

+ γyqJ
)

= uqJ0 + βvqI0 + γvqJ0
.

Substituting, we obtain the following two equations:

0=a31x+a32y+a33xqI
+a33αyqJ

+a34xqJ
+a34βyqI

+a34γyqJ
−aqI0

11 xqI0 −aqI0
12 yqI0 +(30)

−aqI0
13

(
xqI+I0 +αqI0

yqJ+I0
)

−aqI0
14

(
xqJ+I0 +βqI0

yqI+I0 +γqI0
yqJ+I0

)
+

−α

(
aqJ0

21 xqJ0 +aqJ0
22 yqJ0 +aqJ0

23

(
xqI+J0 +αqJ0

yqJ+J0
)

+aqJ0
24

(
xqJ+J0 +βqJ0

yqI+J0 +γqJ0
yqJ+J0

))
,
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0=a41x+a42y+a43xqI
+a43αyqJ

+a44xqJ
+a44βyqI

+a44γyqJ
−aqJ0

11 xqJ0 −aqJ0
12 yqJ0 +(31)

−aqJ0
13

(
xqI+J0 +αqJ0

yqJ+J0
)

−aqJ0
14

(
xqJ+J0 +βqJ0

yqI+J0 +γqJ0
yqJ+J0

)
+

−β

(
aqI0

21 xqI0 +aqI0
22 yqI0 +aqI0

23

(
xqI+I0 +αqI0

yqJ+I0
)

+aqI0
24

(
xqJ+I0 +βqI0

yqI+I0 +γqI0
yqJ+I0

))
+

−γ

(
aqJ0

21 xqJ0 +aqJ0
22 yqJ0 +aqJ0

23

(
xqI+J0 +αqJ0

yqJ+J0
)

+aqJ0
24

(
xqJ+J0 +βqJ0

yqI+J0 +γqJ0
yqJ+J0

))
.

We wish to show that, in both cases (a) and (b) listed in the statement of the
theorem, it is not possible to find an element of GL(4,Fqn) such that (30) and (31)
are both satisfied for any values of x, y ∈ Fqn , i.e., such that the polynomials on the
left hand side of (30) and (31) are both identically zero. Note that this last equivalence
holds because the left hand sides of (30) and (31) are polynomials in x and y of degree
smaller than qn.

We prove this by considering separately the listed conditions (a) and (b).
(1) (I, J) ̸= (I0, J0).

• Case I ̸= I0, J0. Considering the terms of (30), note that we have:

a31x = 0 a32y = 0 a33x
qI

= 0 a34βy
qI

= 0.

Hence, a31 = a32 = a33 = a34 = 0.
• Case I = J0.

– Subcase J ̸= I + I0 and J ̸= 2I. Considering the coefficients of x,
y, xqJ , yqJ , we get a31 = a32 = a33 = a34 = 0.

– Subcase J = I+I0 and J+I0 = J0+I. Considering the coefficients
of x, y, xqJ , yqJ , xqI+J0 , yqI+J0 , xqJ+J0 , yqJ+J0 , we get a31 = a32 =
a33 = a34 = 0.

– Subcase J = I+I0 and J+I0 ̸= J0+I. Considering the coefficients
of x, y, xqJ , yqJ , xqJ+I0 , yqJ+I0 , we get a31 = a32 = a33 = a34 = 0.

– Subcase J = 2I and J ̸= I + I0. Considering the coefficients of x,
y, xqJ , yqJ , xqJ+J0 , yqJ+J0 , we get a31 = a32 = a33 = a34 = 0.

• Case I = I0 and J ̸= J0.
– Subcase J ̸= I + J0 and J ̸= 2I. Considering the coefficients of
x, y, xqJ , yqJ , we get a31 = a32 = a33 = a34 = 0.

– Subcase J = I+J0. Considering the coefficients of x, y, xqJ , yqJ ,
xqJ+J0 , yqJ+J0 , we get a31 = a32 = a33 = a34 = 0.

– Subcase J = 2I and J0 ̸= 3I. Considering the coefficients of x, y,
xqJ , yqJ , xqI+J , yqI+J , we get a31 = a32 = a33 = a34 = 0.

– Subcase J = 2I and J0 = 3I. Considering the coefficients of x, y,
xq5I , yq5I , xq2I , yq2I , we get a31 = a32 = a33 = a34 = 0.

In all the cases listed above, the matrix (27) is not an element of GL(4,Fqn).
Hence the two sets U I,J,n

α,β,γ and U I0,J0,n

α,β,γ
are not GL(4, qn)-equivalent.

(2) (I, J) = (I0, J0) and{
X = ρqK

Xq2K + ϑqK

Y q2K + σqK

Y qK

X = µqK

Y + νqK

XqK + ξqK

Y q2K

has no solutions (x, y) ∈ F2
qn ∖ {(0, 0)}.

From (30), for the coefficients of

x, y, xqI

, yqI

, xqJ

, yqJ

, xq2I

, yq2I

, xqI+J

, yqI+J

, xq2J

, yq2J
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we obtain the following conditions
a31 = a32 = a24 = a23 = a13 = a14 = 0
a33 = aqI

11, a33α+ a34γ − αaqJ

22 = 0, a34 = αaqJ

21 , a34β = aqI

12.(32)
Then, from (31), we obtain the following system:

(33)



a41 = a42 = 0
a43 = βaqI

21

a43α+ a44γ − aqJ

12 − γaqJ

22 = 0
a44 − aqJ

11 − γaqJ

21 = 0
a44β = βaqI

22.

Hence, considering the conditions on the coefficients given by (32) and (33),
we have the following:

aqI

11α+ αaqJ

21γ = αaqJ

22

βaqI

21α+
(
aqJ

11 + γaqJ

21

)
γ = aqJ

12 + γaqJ

22(
aqJ

11 + γaqJ

21

)
β = βaqI

22.

As aqI

12 = a34β = βαaqJ

21 , Equation (2) can be rewritten as

(34) βaqI

21α+
(
aqJ

11 + γaqJ

21

)
γ = βqK

αqK

aqJ+K

21 + γaqJ

22 .

Moreover, from Equation (2), we have that

aqJ

22 = βqK

β
qK

(
aqJ+K

11 + γqK

aqJ+K

21

)
.

Then, from Equation (2), we obtain

(35) βqK

β
qK

(
aqJ+K

11 + γqK

aqJ+K

21

)
= aqI

11α+ αaqJ

21γ

α

and substituting in Equation (34) we have

(36) βaqI

21α+
(
aqJ

11 + γaqJ

21

)
γ = βqK

αqK

aqJ+K

21 + γ

α

(
aqI

11α+ αaqJ

21γ
)
.

Considering now Equation (35), we rewrite it as

aqI

11 =
(
β

β

)qK (
α

α

)(
aqJ+K

11 + γqK

aqJ+K

21

)
− α

α
γaqJ

21 .

From this last equation, we have

(37) a11 =
(
β

β

)qK−I (
α

α

)q−I (
aq2K

11 + γqK−I

aq2K

21

)
−
(
α

α

)q−I

γq−I

aqK

21 .

From Equation (36), we obtain instead

aqI

11 = αβ

γ
aqI

21 + γα

γα
aqJ

11 − βqK

αqK+1

γα
aqJ+K

21 .

From this last equation, we then have

(38) a11 =
(
αβ

γ

)q−I

a21 +
(
γα

γα

)q−I

aqK

11 −

(
βqK

αqK+1

γα

)q−I

aq2K

21 .
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Now, with the notations introduced in (28), we can rewrite Equations (37)
and (38) as

(39)
{
a11 = ρqK

aq2K

11 + ϑqK

aq2K

21 + σqK

aqK

21

a11 = µqK

a21 + νqK

aqK

11 + ξqK

aq2K

21 .

If the system above has the unique solution (0, 0) in F2
qn , we also get a22 =

0 = a12 = a44 = a34 = a33, a contradiction to N ∈ GL(4,Fqn). □

To determine whether System (39) has a non-trivial solution in F2
qn is not an

easy task. In the following, we only provide an example which shows that non-trivial
solutions of (39) could yield the equivalence between two sets U I,J,n

α,β,γ and U I,J,n

α,β,γ
.

Corollary 3.11. Let U I,J,n
α,β,γ and U I,J,n

α,β,γ
be two scattered sets as above, with notations

as in Theorem 3.10. If ρ = νqK +1 and ν is a
(
qK − 1

)
-th power in Fqn , then U I,J,n

α,β,γ

and U I,J,n

α,β,γ
are GL(4, qn)-equivalent.

Proof. Since ρ = νqK+1 and ν is a
(
qK − 1

)
-th power in Fqn , (a11, a21) =(

qK −1
√

1/νqk , 0
)

is a solution of System (39). From (32) and (33)

a12 = a13 = a14 = a21 = a23 = a24 = a31 = a32 = a34 = a41 = a42 = a43 = 0
a33 = aqI

11, a33α = αaqJ

22 , a44γ = γaqJ

22 , a44 = aqJ

11 , a44β = βaqI

22,

that is, a33 = aqI

11, a44 = aqJ

11 , a22 =
(

γ
γ

)q−J

a11. The last two conditions read

aqK−1
11 = 1

νqK and aqK−1
11 =

(
β

β

)q−I (
γ

γ

)q−K−I

and they are compatible by our assumptions on ρ and ν. □

3.2. The “ordinary" duality. The map Trqn/q(X0X3 −X1X2) defines a quadratic
form of F4

qn (regarded as Fq-vector space) over Fq. The polar form associated with
such a quadratic form is Trqn/q(σ(X,Y )), where

σ(X,Y ) = ((X0, X1, X2, X3), (Y0, Y1, Y2, Y3)) = X0Y3 +X3Y0 −X1Y2 −X2Y1.

If f ∈ Ln,q[X] we will denote by f⊤ the adjoint of f with respect to the Fq-bilinear
form Trqn/q(xy) on Fqn , that is defined by

Trqn/q(xf(y)) = Trqn/q(yf⊤(x)) for any x, y ∈ Fqn .

Let h1, h2, g1, g2 ∈ Ln,q[X], and let
X = {(x, y, h1(x) + h2(y), g1(x) + g2(y)) : x, y ∈ Fqn}

be a 2n-dimensional Fq-subspace of F4
qn . Straightforward computations show that the

orthogonal complement Xτ ′ of X with respect to the Fq-bilinear form σ′(X,Y ) =
Trqn/q(σ(X,Y )) is

Xτ ′
=
{(
x, y, g⊤

2 (x) − h⊤
2 (y), h⊤

1 (y) − g⊤
1 (x)

)
: x, y ∈ Fqn

}
.

Hence, the orthogonal complement of

U I,J,n
α,β,γ :=

{(
x, y, xqI

+ αyqJ

, xqJ

+ βyqI

+ γyqJ
)

: x, y ∈ Fqn

}
is
(UI,J,n

α,β,γ)τ ′
:=
{(

x, y, βqn−I

xqn−I

+ γqn−J

xqn−J

− αqn−J

yqn−J

, yqn−I

− xqn−J
)

: x, y ∈ Fqn

}
,
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which is equivalent to{(
x, y, xqn−I

− yqn−J

, xqn−J

− βqn−I

αqn−J
yqn−I

− γqn−J

αqn−J
yqn−J

)
: x, y ∈ Fqn

}
= UI0,J0,n

α,β,γ
,

where

I0 := n− I, J0 := n− J, α := −1, β := − βqn−I

αqn−J , γ := −γqn−J

αqn−J .

4. Open problems
In this paper, we have provided an infinite family U I,J,n

α,β,γ , as in Definition 3.1, of
2n-dimensional (indecomposable) exceptional scattered subspaces in (Fqn)4; see The-
orem 3.2 and Theorem 3.7. We have also derived a condition on their evasivity with
respect to 2-dimensional Fqn -subspces in Theorem 3.5, depending on max{I, J}. All
these results need the additional hypothesis on the polynomial P I,J,n

α,β,γ(X) given in (7)
having no roots in Fqn . We have observed in Remark 3.3 that we can easily find some
conditions to ensure this. However, this is far from characterizing such polynomials
and finding the exact number of α, β, γ such that P I,J,n

α,β,γ(X) has no roots in Fqn .

Question 4.1. For any pair 1 ⩽ I, J < n, find explicit necessary conditions
on α, β, γ ∈ F∗

qn such that the polynomial P I,J,n
α,β,γ(X) has no roots in Fqn . Further-

more, determine the exact number of such triples.

Necessary and sufficient conditions for this to hold were given in [39, Theorem 8]
and [28, Theorem 9], but these are not explicit, and they do not seem to help in the
counting.

We have also showed, in Theorem 3.4, that the condition on the polyno-
mial P I,J,n

α,β,γ(X) not having roots in Fqn is necessary, when we are in the small
q-degree regime, that is, when 0 ⩽ I, J ⩽ n/4. The techniques used are not suitable
for showing that this result also holds for larger values of I, J . However, we have no
concrete counterexamples indicating that this is not true.

Question 4.2. Extend the result of Theorem 3.4 to larger q-degree regimes, that is
when 0 ⩽ I, J ⩽ n− 1.

Finally, in Section 3.1, we analyzed the GL(4, qn)-equivalence of the Fq-
subspaces U I,J,n

α,β,γ . In this paper we found some sufficient conditions for equivalence
(Theorem 3.10) and inequivalence (Corollary 3.11). However, the picture is far from
complete.

Question 4.3. Complete the study of GL(4, qn)-equivalence of the Fq-subspaces U I,J,n
α,β,γ .
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