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Pretty good fractional revival via diagonal
perturbation: theory and examples

Whitney Drazen, Mark Kempton & Gabor Lippner

Abstract We develop the theory of pretty good quantum fractional revival in arbitrary sized
subsets of a graph, including the theory for fractional cospectrality of subsets of arbitrary size.
We use this theory to give conditions under which diagonal perturbation can induce pretty
good fractional revival, and give several examples.

1. Introduction
“Fractional revival is a quantum transport phenomenon important for entanglement
generation in spin networks” [2]. In a continuous time quantum walk fractional revival
(FR) refers to the situation when the walk “preserves” a subset at a certain moment
in time. That is, there is a subset K of the nodes and a time t such that if the initial
state of the walk is supported on K then it is also supported on K at time t. For
entanglement generation one would, typically, be interested in starting the walk from
a single vertex v ∈ K and obtaining a superposition of the nodes in K at time t. For
more background and a comprehensive characterization of FR see [1].

Fractional revival is, in a sense, a relaxation of perfect state transfer (PST). Nev-
ertheless, finding examples of FR turned out to be nearly as difficult as for PST. This
naturally led to the study of further relaxations of the phenomenon. Just as with
PST, one can introduce an asymptotic variant that has now been routinely dubbed
“pretty good ” in the literature [10, 5]. Informally, pretty good fractional revival
(PGFR) requires a sequence of times at which the walk is closer and closer to actu-
ally preserving the subset K. A complete characterization of PGFR between a pair
of nodes on paths and cycles was given in [3].

In a series of papers [7, 8, 4] (some of) the present authors have developed methods
to construct examples of pretty good (or even perfect) state transfer using a diagonal
perturbation of the matrix—sometimes referred to as a magnetic field in the context
of quantum spin networks. The goal of the current paper is to extend these ideas to
the case of PGFR. In particular, we further develop the theory of PGFR to obtain
a practical, verifiable condition that guarantees that a subset of nodes will exhibit
pretty good fractional revival after adding a “generic” constant diagonal perturbation
to the matrix.

In order to achieve this goal, we
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• devise a way to split the characterization of PGFR into somewhat separate
“eigenvector” and “eigenvalue” conditions,

• introduce the notion of fractional cospectrality and provide a comprehensive
characterization of it in order to construct families of graphs that satisfy the
eigenvector part of the condition,

• prove a suitable generalization of the well-known Kronecker condition for
pretty good state transfer to the case of pretty good fractional revival,

• extend the field-trace method of [8] into a tool that allows one to verify this
new Kronecker-type condition if certain factors of the characteristic polyno-
mial are irreducible,

• prove that under a generic diagonal perturbation the relevant factors are
indeed irreducible.

The paper is structured as follows: in Section 2 we introduce pretty good frac-
tional revival (PGFR) and provide a spectral characterization. Then we generalize
Kronecker’s criterion to our setting and, using the field-trace method developed in [8],
we derive a sufficient condition for PGFR based on the irreducibility of certain factors
of the characteristic polynomial together with a trace and degree condition on these
factors.

In Section 3 we explain our generalization of the idea of cospectrality to the frac-
tional setting, and prove a theory analogous to the characterizations of the original
notion. This allows us to prove that for fractionally cospectral subsets, under suit-
able diagonal perturbations of the adjacency matrix, the factors of the characteristic
polynomial relevant to PGFR are indeed irreducible.

Finally, in Section 4 we construct examples where we can prove fractional cospec-
trality of certain subsets and also verify the trace and degree condition of Theo-
rem 2.11, thereby guaranteeing PGFR in these graphs.

2. Pretty good fractional revival
We work in the following general setting: fix an index set X and consider a real
symmetric matrix M ∈ RX×X .

Definition 2.1. Let K ⊂ X be a subset of indices. We say that the X ×X matrix M
exhibits pretty good fractional revival with respect to K if

cl{exp(itM)K×K : t ⩾ 0} ∩ U(K) ⊈ {ρ IdK×K : ρ ∈ C},

that is, if we take the family of K×K submatrices of exp(itM) for all t ⩾ 0, then the
closure of this family contains a unitary matrix with at least two distinct eigenvalues.

Equivalently, there is a K×K unitary matrix H with at least two distinct eigenval-
ues, and a sequence 0 < t1 ⩽ t2 ⩽ · · · such that limk→∞ exp(itkM)K×K = H. This
includes fractional revival if t = t1 = t2 = · · · . The convergence can be understood
entry wise or, equivalently, with respect to any standard matrix norm.

Since the K × K submatrix of a unitary matrix A is unitary if and only if A is
block-diagonal relative to K, a further equivalent way to describe pretty good fractional
revival is to require that there is a sequence 0 < t1 ⩽ t2 ⩽ · · · and a matrix A that
is block-diagonal relative to K such that limk→∞ exp(itkM) = A, and AK×K has at
least two distinct eigenvalues.

Remark 2.2. This generalizes the concept of pretty good fractional revival on 2 nodes
of a graph from [3]: Two vertices u and v of a graph G with adjacency matrix A exhibit
pretty good fractional revival if, for all ϵ > 0 there is some time t > 0 such that

|eitA(u, u)|2 + |eitA(u, v)|2 > 1 − ϵ.
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Remark 2.3. It would be perhaps more natural to require a non-diagonal K × K
unitary matrix in the closure of exp(itM)K×K instead of simply one that’s not the
multiple of the identity. However, it turns out that for primitive matrices (eg for
adjacency matrices of connected graphs) this stronger requirement is equivalent to
the one in Definition 2.1. See the second part of Theorem 2.7 for an explanation of
this.

Notice that {exp(itM) : t ⩾ 0} ⊂ ⟨M⟩ is a bounded subset of the (finite dimen-
sional) polynomial algebra generated by M . Hence if M exhibits pretty good fractional
revival with respect to K and limk→∞ exp(itkM)K×K = H then there is a unitary
matrix Ĥ ∈ ⟨M⟩ that is block diagonal relative to K, and IdK×K ̸= H = ĤK×K .

2.1. Non-degenerate partition of the spectrum. Here we provide a spectral
characterization of pretty good fractional revival that can be summarized as follows:
the subset K induces a natural partition PK of the eigenvalues of M , and pretty good
fractional revival is exhibited with respect to K if and only if a certain simultaneous
approximation problem is solvable in this partition.

Let us start by recalling some important notions and facts from [1].

Definition 2.4. Let M =
∑d

i=1 θiEi be the spectral decomposition of M , and K ⊂ X
a non-empty set of indices.

(1) We denote by DK the X ×X diagonal matrix whose entries on the diagonal
are 1 in K and 0 outside of K.

(2) The eigenvalue support of K is the binary relation
ΦK = {(θr, θs) : ErDKEs ̸= 0}.

(3) Define PK = (Π0,Π1, . . . ,Πs) to be the partition of {1, 2, . . . , d} where
Π0 = {i : (Ei)K×K = 0},

and Π1, . . . ,Πs are the remaining equivalence classes of the transitive closure
of ΦK .

Lemma 2.5 (Lemma 2.5 and Theorem 2.10 from [1]).A =
∑

j cjEj is block-diagonal
relative to K if and only if the cjs are equal to each other within each part Πr : 1 ⩽
r ⩽ s.

Definition 2.6. The partition PK is non-degenerate if there is a mod 1 non-constant
vector (ρ1, . . . , ρs) ∈ Rs such that for all ε > 0 there is a t > 0 so that for any
1 ⩽ r ⩽ s

(1) ∀j ∈ Πr : ∥t · θj − ρr∥ < ε.

where ∥x∥ = min{|x − n| : n ∈ Z} is the distance of x to the nearest integer. In
particular, s ⩾ 2 is required.

Theorem 2.7. The matrix M exhibits pretty good fractional revival with respect to
K if and only if the partition PK is non-degenerate. Furthermore, if M is primitive
then pretty good fractional revival also implies that cl{exp(itM)K×K : t ⩾ 0} ∩ U(K)
contains a non-diagonal matrix.

Proof. First assume M exhibits pretty good fractional revival with respect to K, that
is, there is a block-diagonal matrix A such that H = AK×K has at least two distinct
eigenvalues, and a sequence 0 < t1 ⩽ t2 ⩽ · · · such that limk→∞ exp(2πitkM) = A.
Since exp(2πitM) =

∑
j exp(2πitθj)Ej , it follows that µj = limk→∞ exp(2πitkθj)

exists for all j, and that A =
∑
µjEj . By Lemma 2.5 this implies that there exist

reals ρ1, . . . , ρs such that µj = exp(2πiρr) for all j ∈ Πr. Thus ∥tkθj − ρr∥ → 0 as
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k → ∞ for all j ∈ Πr. Finally, since H has at least two distinct eigenvalues, all the
µjs can’t be identical, which implies that all the ρr cannot be congruent mod 1. This
proves the only if part.

Conversely, if we are given (ρ1, . . . , ρs) that proves the non-degenerateness
of PK , let tk be the time for which (1) holds for ε = 1/k. Then, clearly,
limk→∞ exp(2πitkθj) = exp(2πiρr) for all j ∈ Πr. Choose a subsequence for
which γj = limk→∞ exp(2πitkθj) also exists for all j ∈ Π0. (This can be done simply
by compactness.) Then

(2) A = lim
k→∞

exp(2πitkM) =
∑

j∈Π0

γjEj +
s∑

r=1

exp(2πiρr)
∑

j∈Πr

Ej


is block-diagonal by Lemma 2.5, and since not all the ρrs are congruent mod 1, the
restriction H = AK×K is not a scalar multiple of the identity.

To prove that the non-degeneracy of PK implies the existence of non-diagonal
matrices in cl{exp(itM)K×K : t ⩾ 0} ∩ U(K), it suffices to show that H = AK×K

is non-diagonal. The argument below is adapted from the proof of Lemma 2.9 in [1].
Let x ∈ X and let ex denote the corresponding standard basis vector. Then, for any
j ∈ Πr we can write

H(x, x)Ejex = EjAev = exp(2πiρr)Ejex,

which implies that Ejex = 0 unless exp(2πiρr) = H(x, x). By symmetry the same
holds for eT

xEj .
Now suppose, for a contradiction, thatH is diagonal. Since it is not a scalar multiple

of the identity according to the first half of the theorem, we can find two elements
x, y ∈ X such that H(x, x) ̸= H(y, y). Thus eT

y Ejex = 0 for all j, since exp(2πiρr)
can’t equal to both H(x, x) and H(y, y). Then, however, eT

y M
nex =

∑
j θ

s
je

T
y Ejex = 0

for any integer n ⩾ 0 which contradicts the primitivity of M . □

2.2. A number theoretic characterization. In this section we develop a
method to verify that a partition is degenerate. This can be considered as the
generalization of previous results for the case of pretty good state transfer. Its basis,
as in earlier results, is the following number theoretic lemma due to Kronecker.

Lemma 2.8 (Kronecker). Let θ1, . . . , θk and ζ1, . . . , ζk be arbitrary real numbers. For
an arbitrarily small ε > 0, the system of inequalities

∥θjy − ζj∥ < ε (j = 1, . . . , k),

has a solution y if and only if, for integers ℓ1, . . . , ℓk,

ℓ1θ1 + · · · + ℓkθk = 0,

implies
∥ℓ1ζ1 + · · · + ℓkζk∥ = 0.

Lemma 2.9. Given a sequence of real numbers θ1, . . . , θk and a partition P =
(Π1, . . . ,Πs) of {1, 2, . . . , k}, the following are equivalent:

i) P is non-degenerate in the sense of Definition 2.6.
ii) There is a pair of indices 1 ⩽ r1, r2 ⩽ s such that no sequence integers

ℓ1, ℓ2, . . . , ℓk satisfies all of the following:
a)

∑k
1 ℓjθj = 0,

b)
∑

j∈Πr
ℓj = 0 for all r ̸= r1, r2,

c)
∑

j∈Πr1
ℓj = −1 and

∑
j∈Πr2

ℓj = 1.
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Remark 2.10. Note that this lemma is a direct generalization of [3, Theorem 2.4]
which only considers the s = 2 case. The only essential new ingredient in the following
proof is the use of integer lattices in place of subgroups of Z.

Proof. First, suppose that P is non-degenerate as witnessed by the sequence
(ρ1, . . . , ρs) where ∥ρr1 − ρr2∥ > 0 for some r1, r2. Assume, for the same r1, r2, that
there exists integers ℓ1, . . . , ℓk satisfying the above criteria. Let ε = ε0/(kmax{|ℓj |}),
and choose t such that for any 1 ⩽ r ⩽ s

∀j ∈ Πr : ∥t · θj − ρr∥ < ε.

Then for all j ∈ Πr

∥tℓjθj − ℓjρr∥ < ε0/k

and thus ∥∥∥∥∥∥
k∑
1
tℓjθj −

s∑
r=1

ρr

∑
j∈Πr

ℓj

∥∥∥∥∥∥ < ε0.

Here the left and the right sums are both ρr1 − ρr2 and the middle is 0. Thus ∥ρr1 −
ρr2∥ < ε0. Since this holds for any ε0, we get that ∥ρr1 − ρr2∥ = 0, contradicting the
choice of r1, r2. This proves the i) ⇒ ii) implication.

Next, we prove ii) ⇒ i). Assume, without loss of generality, that r1 = 1 and r2 = 2
is a pair of indices for which ii) holds. Further assume, again without loss of generality,
that θ1 ∈ Π1. Let θ̃j = θj − θ1 : j = 2, . . . , k. Note that

(3)
k∑

j=2
ℓj θ̃j = 0 implies

k∑
1
ℓjθj = 0 and

k∑
1
ℓj = 0 where ℓ1 = −

∑k
2 ℓj .

Consider the following integer lattice

S =

(a2, . . . , as) ∈ Zs−1

∣∣∣∣∣∣∣∣
there exist ℓ2, . . . , ℓk ∈ Z such that

k∑
2
ℓj θ̃j = 0 and ar =

∑
j∈Πr

ℓj for all 2 ⩽ r ⩽ s

 .

By (3) we see that (1, 0, 0, . . . , 0) ̸∈ S hence S ⊊ Zs−1. This implies that the dual
lattice S∗ ⊋ Zs−1. (For instance, because the determinant of S has to be greater than
1, and thus the determinant of the dual has to be less than 1 in absolute value so it
can’t be an integer lattice.) In other words, there exists vector (ρ̃2, . . . , ρ̃s) that is not
congruent to (0, 0, . . . , 0) mod 1, such that

∑s
2 ρ̃rar ∈ Z for all (a2, . . . , as) ∈ S.

Now let
ζj =

{
ρ̃r if j ∈ Πr, r ⩾ 2,
0 if j ∈ Π1.

If ℓ2, . . . , ℓk are integers such that
∑k

2 ℓj θ̃j = 0, then (a2, . . . , as) ∈ S for ar =∑
j∈Πr

ℓr : r = 2, . . . , s. Hence

k∑
2
ℓjζj =

s∑
r=1

ρ̃r

∑
j∈Πr

ℓj

 = 0 +
s∑

r=2
ρ̃rar ∈ Z

by the choice of (ρ̃2, . . . , ρ̃s) ∈ S∗. So Lemma 2.8 implies that for any ε > 0 there is a
t = t(ε) such that we have |tθ̃j − ρ̃r| < ε (mod 1) for all j = 2, . . . , k where Πr is the
partition containing the index j. To finish the proof, let ρ1 be a mod 1 accumulation
point of the sequence t(ε)θ1 as ε → 0. Then for any ε > 0 there is a t = t(ε)
such that ∥tθ1 − ρ1∥ < ε and |tθ̃j − ρ̃r| < ε (mod 1) for all j, simultaneously. Set
ρr = ρ̃r +ρ1. Then (ρ1, . . . , ρs) is not the constant vector mod 1. Since ∥t(ε)θj −ρr∥ ⩽
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∥t(ε)θ̃j − ρ̃r∥+∥t(ε)θ1 −ρ1∥ < 2ε for j = 2, . . . , k where Πr is the partition containing
the index j. Thus the partition is non-degenerate. □

In general, verifying ii) is difficult. Here we generalize a tool from [4] that allows
to show ii) holds under certain conditions that are easy to verify.

Theorem 2.11. Fix a field F , a sequence of real numbers θ1, . . . , θk and a partition
P = (Π1, . . . ,Πs) of {1, 2, . . . , k}. Suppose there are polynomials P1, P2, . . . , Ps ∈ F [x]
that are irreducible over F and such that Πr is exactly the set of roots of Pr for each
1 ⩽ r ⩽ s.

If for some pair of integers 1 ⩽ r1, r2 ⩽ s

Tr(Pr1)
deg(Pr1) ̸= Tr(Pr2)

deg(Pr2) ,

where Tr denotes the trace (i.e. the sum of roots) of a polynomial, then the partition
P is non-degenerate.

Proof. We verify ii) of Lemma 2.9 for r1, r2 via the field trace a method introduced
in [8]. For a field extension K of F , the field trace is a linear functional TrK/F : K → F
defined for each element α ∈ K as the trace of the F-linear map x 7→ αx. See [9] for
details about the field trace.

For each 1 ⩽ r ⩽ s let Lr denote the splitting field of Pr over F . Since Pr is
irreducible, for any j ∈ Πr we have

TrLr/F (θj) = [Lr : F ]
degPj

∑
j∈Πr

θj = [Lr : F ]
degPj

Tr(Pr)

according to Lemma A.1 of [4]. Let us suppose for a contradiction that there are
integers ℓj ∈ Z : j = 1, . . . , k satisfying

k∑
j=1

ℓjθj = 0(4)

∑
j∈Πr1

ℓj = 1 and
∑

j∈Πr2

ℓj = −1(5)

∑
j∈Πr

ℓj = 0 for all r ̸= r1, r2.(6)

Let K/F be the smallest field extension containing L1, . . . ,Ls. We apply TrK/F
to (4). Then, according to (5), (6), and the basic properties of the field trace from
Lemma A.1 in [4],

0 = TrK/F ′

 k∑
j=1

ℓjθj

 =
s∑

r=1
[K : Lr] TrLr/F

 ∑
j∈Πr

ℓjθj


=

s∑
r=1

[K : Lr]
∑

j∈Πr

ℓj TrLr/F (θj)


=

s∑
r=1

 [K : Lr][Lr : F ]
deg(Pr) Tr(Pr)

∑
j∈Πr

ℓj


= [K : F ]

s∑
r=1

Tr(Pr)
deg(Pr)

∑
j∈Πr

ℓj = [K : F ′]
(

Tr(P1)
deg(P1) − Tr(P2)

deg(P2)

)
.
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This contradicts Tr(P1)
deg(P1) ̸= Tr(P2)

deg(P2) hence ii) of Lemma 2.9 holds for r1, r2, and thus P
is non-degenerate.

□

3. Generalized cospectrality
It is now a well-known fact that perfect state transfer can be characterized by an
eigenvector and an eigenvalue condition. The eigenvector condition is called strong
cospectrality (see [6]), a strengthening of the classical notion of cospectrality of two
nodes. In [8, 4] cospectrality was used as a starting point to construct examples for
pretty good state transfer.

In [1] the study of fractional revival between two nodes led to a generalization
of both cospectrality and strong cospectrality of two nodes to the fractional setting.
Further, decomposability was identified as the correct generalization of strong (frac-
tional) cospectrality to arbitrary subsets. However, the analogous extension of the
theory of cospectrality was not discussed.

3.1. H-cospectrality. Since our goal is to construct examples that admit pretty
good fractional revival, in this section we complete the picture by developing the the-
ory of (fractional) cospectrality for arbitrary subsets. It turns out that most features
of the classical theory carry over to the general setting.

Let K ⊂ X be a subset of indices. For the sake of the applications later on, it
turns out to be simpler to work in the more general setting of complex vector spaces
and normal matrices. We consider CX and CK equipped the usual Hermitian scalar
product ⟨v, w⟩ := v∗w ∈ C. For a vector v ∈ CX (respectively a matrix A ∈ CX×X) we
denote ṽ = vK (respectively Ã = AK×K) its restriction to the subset K. Conversely,
given a vector v ∈ CK we denote v̂ ∈ CX its extension by 0s to the other coordinates
of X. Note that
(7) Ãv̂ = Ãv and ⟨Av̂, ŵ⟩ = ⟨Ãv, w⟩
for any A ∈ CX×X and v, w ∈ CK .

Let M ∈ CX×X and H ∈ CK×K be normal matrices with spectral decompositions
M =

∑d
i=1 θiEi and H =

∑r
j=1 ρjFj . The Ei and Fj are self-adjoint projections.

Definition 3.1. We say that K is H-cospectral in M (or H-cospectral, for short)
if there is an orthonormal (with respect to the Hermitian scalar product) eigenbasis
ψ1, . . . , ψ|X| such that the restriction ψ̃j to K is either 0 or an eigenvector of H for
all j = 1, . . . , |X|.
Remark 3.2.

• Clearly, the dependence on H is only via its spectral idempotents {Fj}. How-
ever, it is often more convenient to refer to the matrix H instead of a collection
of projectors.

• This generalizes fractional cospectrality between two nodes (the |K| = 2 case)
introduced in [1] to subsets of arbitrary size. In particular, if

(8) H =
(

0 1
1 0

)
then we recover the classical notion of cospectrality.

Theorem 3.3. Let K ⊂ X,M,H as above. The following are equivalent:
(1) K is fractionally cospectral with respect to H.
(2) HM̃k = M̃kH for all k.
(3) HẼi = ẼiH for all j.
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(4) FjẼi = ẼiFj for all i, j.
(5) For any v, w eigenvectors of H belonging to different eigenvalues, ⟨Ẽiv, w⟩ = 0

for all i.
(6) For each i, there is an orthonormal basis of ImEi that contains exactly

dim{Eiv̂ : v ∈ ImFj} vectors that satisfy 0 ̸= ψ̃ ∈ ImFj for each j, and
the rest of the basis elements satisfy ψ̃ = 0.

(7) For any v, w eigenvectors of H belonging to different eigenvalues, the sub-
spaces ⟨Mkv̂ : k = 0, 1, . . .⟩ and ⟨Mkŵ : k = 0, 1, . . .⟩ are orthogonal.

Proof. We prove implications in a cyclic order.
1 =⇒ 2. Let ψ1, . . . , ψ|X| as in Definition 3.1 with corresponding eigenvalues
λ1, . . . , λ|X|. Then Mk =

∑
λk

i ψiψ
∗
i and hence M̃k =

∑
λk

i ψ̃iψ̃i
∗. The ψ̃is are all

eigenvectors of H. If Hv = ρv then Hvv∗ = ρvv∗ = v(ρ̄v)∗ = v(H∗v)∗ = vv∗H by
the normality of H. Thus H commutes with all ψ̃iψ̃i

∗ terms, and in turn also with
M̃k for any k.
2 =⇒ 3. This follows since each Ei is a polynomial of M , and thus Ẽi is a linear
combination of the M̃ks.
3 =⇒ 4. This follows since each Fj is a polynomial of H.
4 =⇒ 5. Let v be an eigenvector in the Fj eigenspace of H. That is, Fjv = v. Then
Fjw = 0 since w is in a different eigenspace. Now, using the self-adjointness of the
Fj , we get ⟨Ẽiv, w⟩ = ⟨ẼiFjv, w⟩ = ⟨FjẼiv, w⟩ = ⟨Ẽiv, Fjw⟩ = 0 as claimed.
5 =⇒ 6. Let E = Ei for some fixed i. For any j consider the subspace Sj ⊂ ImE
defined as

Sj = {Ev̂ : v ∈ ImFj}.

If v ∈ ImFj1 and w ∈ ImFj2 for some j1 ̸= j2, then ⟨Ev̂,Eŵ⟩ = ⟨Ev̂, ŵ⟩ = ⟨Ẽv, w⟩ =
0 by the condition. Hence Sj1⊥Sj2 . Thus we can pick an orthonormal basis in each
of the Sjs as well as the orthogonal complement of ⊕Sj in ImE. We claim that the
union of these bases satisfies our requirements. To show this, consider u ∈ ImE that
is orthogonal to Sj , and take any v ∈ ImFj . Then

0 = ⟨u,Ev̂⟩ = ⟨Eu, v̂⟩ = ⟨u, v̂⟩ = ⟨ũ, v⟩

and thus ũ is orthogonal to ImFj . This means that if u ∈ Sj then it is orthogonal
to Sl for all l ̸= j, hence ũ is orthogonal to ImFl for all l ̸= j. That is only possible
if ũ ∈ ImFj . If u = Ev̂ ̸= 0, then 0 < ⟨Ev̂,Ev̂⟩ = ⟨v̂, Ev̂⟩ = ⟨v, ũ⟩, thus ũ ̸= 0 as
claimed. Lastly if u ∈ ImE is orthogonal to all Sjs, then by the same argument ũ is
orthogonal to all ImFjs, hence ũ = 0 in this case.
6 =⇒ 1. The union for all i of the bases defined in 6 obviously satisfies Definition 3.1.
5 ⇐⇒ 7. This follows since Ẽi is a linear combination of the M̃ks as we have seen
before, and vice versa: M̃k is obviously a linear combination of the Ẽis. Finally
⟨Mav̂,M bŵ⟩ = ⟨Ma+bv̂, ŵ⟩ = ⟨M̃a+bv, w⟩, so the latter is 0 for all a, b if and only if
the two subspaces are orthogonal. □

The following observation will be useful later, but we state it here since the com-
putation is essentially the same as in the proof of 5 =⇒ 6 above.

Proposition 3.4. Let v ∈ ImFj. Then

⟨Eiv̂, Eiv̂⟩ = ⟨v̂, Eiv̂⟩ = ⟨v, Ẽiv̂⟩ = ⟨v, Ẽiv⟩,

hence Eiv̂ ̸= 0 if and only if its restriction to K is non-zero. And in this case the
restriction, Ẽiv, contains a component parallel to v.
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Remark 3.5. In the case when |K| = 2 and H is a 2-by-2 matrix with eigenvec-
tors (p, q) and (−q, p), our definition of K-cospectral coincides with what is called a
fractionally cospectral pair of nodes in [1, Theorem 3.3, condition (ii)], hence this is
indeed a direct generalization of that notion.
3.2. A factorization of ϕ(M, t).
Definition 3.6. Let K be H-cospectral in M . Define bi,j = dim{Eiv̂ : v ∈ ImFj} for
any 1 ⩽ j ⩽ r, and bi,0 = dim{u ∈ ImEi : ũ = 0}. Let Pj(t) =

∏d
i=1(t− θi)bi,j : j =

0, . . . , r.
The following is immediate from 6 of Theorem 3.3:

Corollary 3.7. Let K be H-cospectral in M . Then the characteristic polynomial
ϕ(M) = ϕ(M, t) can be decomposed as

ϕ(M, t) =
r∏

j=0
Pj(t).

H-cospectrality becomes the most useful when H has |K| distinct eigenvalues. That
is, when all Fjs have rank 1. Let us fix an eigenvector vj ∈ ImFj of H for each j.
Lemma 3.8. Assume H has |K| distinct eigenvalues. Then

(1) Pj(t) = pvj
(t) for all 1 ⩽ j ⩽ r = |K|, where pvj

is the minimal polynomial
of M relative to vj, that is, the smallest degree monic polynomial p such that
p(M)v̂j = 0, or, equivalently, the characteristic polynomial of the action of
M restricted to the space ⟨vj ,Mvj ,M

2vj , . . . , ⟩.
(2) (θa, θb) ∈ ΦK , if and only if there is a j such that θa, θb are both roots of

Pj(t).
Proof. It is well-known that the relative minimal polynomial has only simple roots,
and pvj

(θi) = 0 if and only if Eiv̂j ̸= 0. Since dim ImFj = 1, the integers bi,j can
only be 0 or 1, so Pj has only simple roots. And θi is a root of Pj(t) if and only if
Eiv̂j ̸= 0. Thus pvj

and Pj have exactly the same roots, and they are both monic, so
they are equal.

To prove the 2nd part, note that (θa, θb) ∈ ΦK if and only if EaDKEb ̸= 0,
according to Definition 2.4. Here

EaDKEbw = Ea
̂̃
DKẼbw =

∑
j

EaF̂jẼbw.

Thus if EaDKEbw ̸= 0 then EaF̂jẼbw ̸= 0 for some j. Since ImFj is 1-dimensional,
this implies both that Eav̂j ̸= 0 and that FjẼbw ̸= 0. By Lemma 5.1 we see that there
exists a vector z ∈ RK such that Ẽbw = Ẽbẑ = Ẽbz, and so 0 ̸= FjẼbz = ẼbFjz,
which implies Ẽbvj ̸= 0 and hence Ebv̂j ̸= 0. We have already established Eav̂j ̸= 0,
and so we find that both θa and θb are roots of Pj(t).

To see the converse direction, first note that Proposition 3.4 implies Eiv̂j ̸= 0 if and
only if Ẽivj = Ẽiv̂j contains a component parallel to vj . But since Ẽivj = ẼiFjvj =
FjẼivj ∈ ImFj the latter of which is 1-dimensional, we find that Eiv̂j ̸= 0 if and only
if vj is an eigenvector of Ẽi. If θa and θb are both roots of Pj(t) then Eav̂j and Ebv̂j

are both non-zero. Hence DKEbv̂j = ̂̃Ebvj is a non-zero constant multiple of v̂j , and
then EaDKEbv̂j is also non-zero, implying that (θa, θb) ∈ ΦK . □

Corollary 3.9. If K is H-cospectral in M for some H that has no multiple eigen-
values, then PK is the most refined partition where for each j the roots of Pj(t) fall
in the same part.
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3.3. Gluing and diagonal perturbation.

Theorem 3.10. Let X = X1 ∪ X2 be a splitting of the index set X such that K =
X1 ∩ X2. Let M1 and M2 be two matrices supported on X1 and X2 respectively.
Suppose that K is H-cospectral in both M1 and M2 for some H ∈ CK×K . Then K is
also H-cospectral in M = M1 +M2.

Proof. By Theorem 3.3 it suffices to show that H commutes with M̃k for all k. Note
that Mk can be expressed as

Mk =
∑∑

(ai+bi)=k

Ma1
1 M b2

2 Ma2
1 M b2

2 · · ·

Let Π ∈ RK×X denote the projection ontoK, that is Π has 1 on its diagonal in S. Then
Ñ = ΠNΠT for any X ×X matrix N . Further, examining the matrix multiplication
one can see that for any matrices Ni supported on Xi for i = 1, 2, one has

N1N2ΠT = N1ΠTΠN2ΠT and N2N1ΠT = N2ΠTΠN1ΠT.

Thus
M̃k = ΠMkΠT =

∑∑
(ai+bi)=k

ΠMa1
1 ΠTΠM b2

2 ΠTΠMa2
1 ΠTΠM b2

2 ΠT · · ·

=
∑∑

(ai+bi)=k

M̃a1
1 M̃ b2

2 M̃a2
1 M̃ b2

2 · · · .

By assumption, H commutes with both M̃1 and M̃2, so it also commutes with M̃k. □

In the next section we will study a diagonal perturbation of M in the form of
M + QDK . Using the previous theorem with X1 = X,X2 = K,M1 = M,M2 = DK

and noting that K is H-cospectral in DK for any H, we get the following.

Corollary 3.11. If K is H-cospectral in M then it is also H-cospectral in M+QDK

for any Q ∈ R.

3.4. Diagonal perturbation. Let H be a normal matrix in CK×K that has |K|
distinct eigenvalues and an orthonormal eigenbasis v1, v2, . . . , v|K|. In this section we
assume that K is H-cospectral in M . Let F ⩾ Q denote the smallest number field
containing all entries of M and all roots of ϕ(H). Then v1, . . . , v|K| ∈ F |K|.

Let Q ∈ R denote a transcendental number that is algebraically independent of F ,
and consider MK = M +Q ·DK ∈ R[Q]X×X . Then, according to Corollary 3.11, K
is also H-cospectral in MK . In particular, according to Corollary 3.7 and Lemma 3.8,
we have the factorization

(9) ϕ(MK) = P0(t) ·
|K|∏
j=1

Pj(t)

where Pj is the minimal polynomial of MK relative to v̂j for j = 1, . . . , |K|.

Proposition 3.12. P0 ∈ F [t] and Pj ∈ F [Q, t] for j = 1, . . . , |K|. Furthermore, the
Q-degree of Pj is 1 and TrPj −Q ∈ F for each j = 1, . . . , |K|

Proof. Since Pj , for j ⩾ 1, is a relative minimal polynomial of a matrix in F(Q)X×X

relative to a vector with entries in F , it is automatic that Pj ∈ F(Q)[t]. Then (9)
implies the same for P0. However, F(Q) is the quotient field of the ring F [Q] which
is a UFD. Hence by Gauss’s Lemma the factorization (9) is valid in F [Q, t].

The Q-degree of ϕ(MK) is obviously |K|. It is easy to see that each Pj : j ⩾ 1 is
at least linear in Q and, in fact, satisfies TrPj − Q ∈ F . (This follows from a short
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analysis of the Qs-terms in the linear combination of (MK)sv̂j vectors that define the
coefficients of Pj . See [4, Lemma 3.3] for a detailed proof.) This is only possible if the
Q-degree of P0 is 0, and the Q-degree of the other Pjs are exactly 1. □

Theorem 3.13. Pj is irreducible in F [Q, t] (and hence also in F(Q)[t]) for all j ⩾ 1.

Proof. Now suppose for a contradiction that, say, P1 is reducible in F [Q, t]. Since its
Q-degree is 1, this means P1(t) = R(t) · P̃1(t) for some non-constant R ∈ F [t] and
P̃1 ∈ F [t, Q]. Let θ be a root of R(t), and let m denote the multiplicity of θ as a root
of P0(t). Then θ is a root of ϕ(MK) with multiplicity at least m+1 for all values of Q.
Since DK is a projection matrix, Lemma 5.2 implies that there are m+ 1 orthogonal
eigenvectors of M (corresponding to the θ eigenvalue) that vanish on K. But then
the multiplicity of θ in P0 should have been at least m+ 1 according to its definition.
This is a contradiction, hence each Pj : j = 1, 2, . . . , |K| is indeed irreducible. □

4. Examples
In this section we apply the above techniques to provide explicit families of graphs
where diagonal perturbation can be shown to induce pretty good fractional revival.
We use the graph and its adjacency matrix interchangeably. The blueprint is the
following:

• Find a family of graphs and a subset K of the nodes which are H-cospectral
for some normal matrix H with only simple eigenvalues.

• Add a transcendental diagonal perturbation to the nodes in K.
• Identify the factorization Φ(MK , t) =

∏
Pj(t) of the characteristic polynomial

as the relative minimal polynomials of the eigenvectors of H.
• Using this, compute the degrees and traces of the Pj polynomials.
• The transcendentality of the diagonal perturbation guarantees that the Pj are

irreducible over a certain field, hence each part in the partition PK coincides
with the roots of one of the Pjs.

• Show that for some choice of i, j we have TrPi/ degPi ̸= TrPj/ degPj . This
implies that PK is non-degenerate, and hence there is pretty good state trans-
fer relative to K.

4.1. PGFR on two nodes. Here we present two infinite families of graphs, both of
which are built on a path of length 2k+ 1. In Sk,m we take a path with 2k+ 1 edges,
and add a loop edge of weight m at the k+1st node, that is, one of the nodes forming
the middle edge. In Tk we take a path with 2k+ 1 edges and add two new nodes. One
is going to be adjacent to nodes k and k + 1 on the path, the other is going to be
adjacent to node k + 3 on the path. See Figure 1.

In both families, the endpoints of the path exhibit pretty good fractional revival
when weighted loop edges are attached to them.

m

u v

k k

u
z

x

y

a

b

v

k k

Figure 1. Two families of graphs with cospectral pairs: Sk,m (left)
and Tk (right).
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Theorem 4.1. Let M denote the adjacency matrix of either Sk,m or Tk, and K =
{u, v} be the endpoints of the path, as in the figure. Let Q be a transcendental real
number. Then MK = M +Q ·DK exhibits PGFR with respect to K.

The proof of this result requires some preparation, as outlined in the blueprint
above. The first step is to verify fractional cospectrality of u and v.

Lemma 4.2. Let M denote the adjacency matrix of either Sk,m or Tk. Then for all
j ⩾ 0

(M j)u,u − (M j)v,v = c · (M j)u,v

where c = m in the case of Sk,m and c = 2 in the case of Tk.

Proof. Let n be the size of the matrix M . Since M j , for any j ⩾ n is a linear
combination of M0,M1, . . . ,Mn−1, it suffices to check the equation for j = 0, . . . , n−
1.

First we consider the Sk,m case. Here n = 2k + 2. For j = 0, 1, . . . , 2k it is clear
that (M j)u,u = (M j)v,v and (M j)u,v = 0. For j = 2k + 1 we have (M2k+1)u,u −
(M2k+1)v,v = m and (M2k+1)u,v = 1. Hence c = m satisfies the equation for all
j = 0, . . . , n− 1.

Next we consider Tk. Here n = 2k + 4. Clearly, (M j) counts walks of length j in
the graph. This graph is symmetric, except for the xy edge. For j < 2k+ 4 no v → v
walk of length j can use the xy edge, and for j < 2k + 1 no u → u walk of length
j can use the xy edge. Hence for j < 2k + 1 we have (M j)u,u = (M j)v,v, and for
2k+ 1 ⩽ j ⩽ 2k+ 3 we have (M j)u,u − (M j)v,v = the number of such u → u walks of
length j that do use the xy edge. For j = 2k + 1 this number is 2 since you can only
use this edge once and thus the rest of the walk has to be straight between u and x
(respectively between u and y). For j = 2k + 2 such a walk will have to use the xy
edge twice due to parity constraints. But then it has to use it twice back-to-back due
to distance constraints. Hence there are only two such walks: u → x → y → x → u
and u → y → x → y → u. For both j = 2k + 1 and j = 2k + 2 there is clearly
only a single u → v walk of this length. Hence (M j)u,u − (M j)v,v = 2 · (M j)u,v for
j = 0, 1, . . . , 2k + 2.

It remains to check the same expression holds for j = 2k + 3. Due to parity and
length constraints, each u → u walk of length 2k + 3 must “go around” the xyz
triangle exactly once. Reversal of the walk yields a bijection between those walks that
go around clockwise and those that do so counterclockwise. By similar considerations,
each u → v walk of length 2k + 3 must traverse the zy edge in this direction. □

Corollary 4.3.
(1) According to Remark 3.5, in both families K = {u, v} is H-cospectral for a

2-by-2 matrix H whose eigenvectors are (p, q) and (−q, p) where p/q−q/p = c.
(2) Furthermore, according to Corollary 3.7 and Lemma 3.8, as long as c ̸= ±∞,

the characteristic polynomial factors as Φ(M, t) = P0(t)P1(t)P2(t) where
P1(t) (respectively P2(t)) is the minimal polynomial of M relative to v1 (re-
spectively v2) where these vectors are defined as

v1(x) =

p/q : x = u
1 : x = v
0 : x ̸= u, v

v2(x) =

 −q/p : x = u
1 : x = v
0 : x ̸= u, v

(3) Then, according to Corollary 3.11, K is also H-cospectral in MK = M +
QDK , and Φ(MK , t) = PK

0 (t)PK
1 (t, Q)PK

2 (t, Q) where PK
1 and PK

2 are de-
gree 1 in Q, and for any choice of a transcendental Q0, the one-variable
polynomials PK

i (t, Q0) : i = 1, 2 are irreducible over Q(p/q,Q0).
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Next, we show that the traces of PK
1 and PK

2 are not equal to each other.

Lemma 4.4. With the above notation, degPK
1 = degPK

2 but TrPK
1 ̸= TrPK

2 . In
particular they are not the same polynomial.

Proof. Since c in Lemma 4.2 is always an integer and p/q,−q/p are the roots of
x− 1/x = c, it follows that p/q and −q/p are always quadratic integers that are each
others’ conjugates. This conjugation maps v1 to v2 in Corollary 4.3 and thus also PK

1
to PK

2 . So these polynomials always have the same degree. They are both linear in
Q, and, by definition, substituting Q = 0 into them we get P1 and P2 respectively.
So it is sufficient to show that TrP1 ̸= TrP2. We will do so by examining specific
coordinates of M jv1 and M jv2 for j ⩽ k + 2 = n/2.

We outline the computation for the Tk case only, as the Sk,m case follows in a
similar but simpler way. For Tk we saw that c = 2 and thus p/q = 1 +

√
2 and

−q/p = 1 −
√

2. The following are easily checked by direct calculation of walk counts
in Tk:

(M j)u,y =


0 : j < k
1 : j = k
1 : j = k + 1

k + 3 :∗ j = k + 2

(M j)v,y =

 0 : j ⩽ k
1 : j = k + 1
0 : j = k + 2

(M j)u,b =0 : j ⩽ k + 2 (M j)v,b =


0 : j < k
1 : j = k
0 : j = k + 1

k + 1 :∗ j = k + 2
The entries marked by (∗) can be seen by noting that a walk of the appropriate length
will use exactly one edge more than once. Specifying which edge this is determines
the walk. In the u → y case this can be any of the edges on the uy path, the xz edge,
or any of the other two edges incident to y. In the v → b case this can be any of the
edges on the va path, or one of the other two edges incident to a.

Hence we get that

M jv1|y,b =


(0, 0) : j < k

(1 +
√

2, 1) : j = k

(2 +
√

2, 0) : j = k + 1
(k + 3 + (k + 3)

√
2, k + 1) : j = k + 2

M jv2|y,b =


(0, 0) : j < k

(1 −
√

2, 1) : j = k

(2 −
√

2, 0) : j = k + 1
(k + 3 − (k + 3)

√
2, k + 1) : j = k + 2

On one hand, these calculations imply that the degree of P1 and P2 are both at
least k + 2, but since their product has degree 2k + 4, their degrees must, in fact, be
equal to k + 2. If P1(t) = xk+2 + c1x

k+1 + c2x
k + · · · then k + 1 + c2 = 0 from the b

coordinate of 0 = P1(M)v1, and (k+3)(1+
√

2)+c1(2+
√

2)+c2(1+
√

2) = 0 from the
y coordinate of 0 = P1(M)v1. Hence c2 = −k− 1 and c1 = (2 + 2

√
2)/(2 +

√
2) =

√
2.

So TrP1 = −
√

2. Similarly TrP2 =
√

2. □

We are finally ready to prove the validity of our examples.

Proof of Theorem 4.1. According to Corollary 4.3 the polynomials PK
1 and PK

2 are ir-
reducible and distinct from PK

0 . By Lemma 4.4 they are distinct from each other, thus
it follows that none of these polynomials share roots. Then by part 2) of Lemma 3.8,
the eigenvalue support consists entirely of pairs of roots of PK

1 and pairs of roots of
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PK
2 . Thus, the partition PK = (Π0,Π1,Π2) is such that Π1 consists exactly of all

roots of PK
1 and Π2 consists exactly of all roots of PK

2 . Now, Lemma 4.4 combined
with Theorem 2.11 implies that the partition PK is non-degenerate. Hence, our result
follows by Theorem 2.7. □

4.2. Cyclic symmetry. Consider a graph G with an automorphism T : V (G) →
V (G) of order r. We denote its adjacency matrix by M . Let K ⊂ V (G) be an orbit
of cardinality r. In this section we establish certain conditions under which MK =
M + Q · DK exhibits PGFR relative to K. This turns out to be easier than for the
previous examples.

Since T has order r, it must act as a cyclic permutation on any orbit of cardinality
r, and on K in particular. Let H denote the K × K permutation matrix describing
the (cyclic) action of T on K. It is obvious then that H commutes with M̃k for any
k ⩾ 0, and thus K is H-cospectral in M , and also in MK by Corollary 3.11.

The eigenvalues of H are simple, with eigenvectors
(10) vk = (1, ρk, ρ2k, · · · , ρ(r−1)k) : k = 1, . . . , r,

where ρ = e
2πi

r . Thus Φ(MK , t) = P0(t)
∏r

k=1 Pk(t, Q) and according to Lemma 3.8,
for each k = 1, . . . , p the polynomial Pk(t) is the relative minimal polynomial of vk.
According to Theorem 3.13 the polynomials P1, . . . , Pr are irreducible, so they have
disjoint sets of roots unless they are the same polynomial. Hence in the partition PK

each part is the set of roots of one of the Pk polynomials.

Lemma 4.5. Let G,T,K be as above. If either degPi ̸= degPj or TrPi ̸= TrPj for
some i, j ⩾ 1 then MK exhibits PGFR relative to K.

Proof. By Proposition 3.12 each of the Pk : k = 1, . . . , r polynomials have TrPk −Q ∈
Q(ρ). Since Q is transcendental, if degPi ̸= degPj then TrPi/ degPi ̸= TrPj/ degPj .
On the other hand, if degPi = degPj but TrPi ̸= TrPj then again clearly
TrPi/ degPi ̸= TrPj/degPj . Thus, we are done by Theorem 2.11. □

4.2.1. Orbits of unequal size.

Theorem 4.6. Let G and T as above. Let d denote the largest distance between K
and any other node of G. If r(d+1) > |V (G)| then MK = M+Q ·DK exhibits PGFR
with respect to K for any transcendental Q ∈ R.

Remark 4.7. For this condition to hold, it is necessary that not all orbits of T have
size r.

Proof. Since there is a node of G that is d distance away from K, and since vr =
(1, 1, . . . , 1), we see that for each j = 0, 1, . . . , d the vectors (MK)jvp have strictly
growing support, hence they can’t be linearly dependent. Thus degPp ⩾ d + 1. Let
j0 be such that Pj has the smallest degree among P1, . . . , Pr−1. We have |V (G)| =
degP0 + degPp +

∑r−1
j=1 degPj ⩾ d + 1 + (p − 1) degPj0 , hence degPj0 ⩽ (|V (G)| −

d − 1)/(p − 1) < d + 1 according to the conditions on d and |V (G)|. Thus degPj0 <
d+ 1 ⩽ degPp and thus the statement follows from Lemma 4.5. □

4.2.2. Cycles with added diamond graphs. In this section, we consider another family
with general cyclic symmetry. We define Gr to be the graph obtain by starting with
a cycle Cr of order r, and attaching along each edge a diamond graph (two triangles
sharing an edge). The graph G5 is pictured in Figure 2. Note that Gr has the cyclic
group of order r as its automorphism group. There are three orbits of the automor-
phism group, consisting of the vertices of degree 5, the vertices of degree 3, and the
vertices of degree 2 respectively.
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Figure 2. The graph G5.

Theorem 4.8. Let K be the vertices of any single orbit, for instance the vertices of
the central cycle Cr, and as above MK = M + Q · DK for transcendental Q. Then
MK exhibits PGFR with respect to K.

Proof. By Lemma 4.5 it suffices to show that TrPr ̸= TrPk for some other 1 ⩽ k ⩽
r− 1, where Pk is the minimal polynomial of MK relative to the vk vector defined in
(10).

Let us define ACr
to be the adjacency matrix for Cr and

R =



1 1 0 0 · · · 0
0 1 1 0 · · · 0
0 0 1 1 · · · 0
...

...
...

. . . . . .
...

0 0 0 · · · 1 1
1 0 0 · · · 0 1


and note that

MK =

ACr
+Q · I R I
RT 0 I
I I 0

 .
Let λk = ρ−k + ρk and observe that simple calculation yields

ACn
vk = λkvk

Rvk = (1 + ρk)vk

RT vk = (1 + ρ−k)vk.

Thus we can verify that ACr
+Q · I R I
RT 0 I
I I 0

 avk

bvk

cvk

 =

a′vk

b′vk

c′vk


as an equation of 3r × 3 matrices, whereλk +Q 1 + ρk 1

1 + ρ−k 0 1
1 1 0

 ab
c

 =

a′

b′

c′

 .
It is easy to see that {(avk, bvk, cvk) : a, b, c ∈ R} is the subspace generated by

(MK)jvk : j = 0, 1, . . . , hence the roots of the relative minimal polynomial Pk are
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exactly the eigenvalues of

Nk :=

λk +Q 1 + ρk 1
1 + ρ−k 0 1

1 1 0

 .
Thus Pk has degree 3, and we can see that TrPk = TrNk = λk +Q for each k. Note in
particular that TrPr ̸= TrPk for k ̸= r, and hence Lemma 4.5 finishes the proof. □

5. Appendix
Lemma 5.1. Let E ∈ RX×X be a projection, and K ⊂ X. If v = Ew then there is a
w′ ∈ RK such that ṽ = Ẽw′. Here we used the notation from Section 3.1.

Proof. Let F = EK×X . Then {ṽ : v ∈ ImE} = ImF . So it is sufficient to show that
Im Ẽ = ImF . In fact, Im Ẽ ⩽ ImF by definition, so showing ImF ⩽ Im Ẽ suffices.

Since E is a projection, we can write E =
∑

j vjv
T
j , and Ẽ =

∑
j ṽj ṽj

T. Thus

(11) ker Ẽ = {w ∈ RK |∀j : ṽj
Tw = 0}.

Since Ẽ is self-adjoint, Im Ẽ is the orthogonal complement of ker Ẽ. From (11) it is
clear that Im Ẽ = ⟨ṽ1, ṽ2, . . .⟩. On the other hand, F =

∑
ṽjv

T
j , so clearly ImF ⩽

⟨ṽ1, ṽ2, . . .⟩ = Im Ẽ. □

Lemma 5.2. Let M be a symmetric matrix and N be a projection matrix. Suppose θ
has multiplicity k as an eigenvalue of M +Q ·N for all Q ∈ R. Then kerN contains
k orthonormal eigenvectors of M , each with eigenvalue θ.

Proof. Suppose we already exhibited 0 ⩽ j ⩽ k − 1 such orthonormal vectors,
w1, . . . , wj ∈ kerN . We exhibit one more as follows. Let vQ be a unit length eigen-
vector of M +Q ·N with eigenvalue θ that is orthogonal to w1, . . . , wj . Such vectors
exist because the multiplicity of θ is more than j, and w1, . . . , wj are all eigenvectors
of M +Q ·N as well. Let w be a subsequential limit of the vQs as Q → 0. Such a limit
exists because of compactness. From now on we restrict Q to such a subsequence.
Clearly w is unit length and orthogonal to w1, . . . , wj . Taking limit as Q → 0 in
(M +Q ·N)vQ = θvQ gives that Mw = θw. It remains to show that w ∈ kerN .

Taking the scalar product of both sides with w, and using the symmetry of M as
well as Mw = θw, we obtain

θ⟨vQ, w⟩ = ⟨MvQ, w⟩+Q⟨NvQ, w⟩ = ⟨vQ,Mw⟩+Q⟨NvQ, w⟩ = ⟨vQ, θw⟩+Q⟨NvQ, w⟩.

Hence ⟨NvQ, w⟩ = 0, from which we get ⟨Nw,w⟩ = ⟨Nw,Nw⟩ = 0 after passing to
the limit and using that N is idempotent. Thus Nw = 0 as claimed. □
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