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On f - and h-vectors of relative simplicial
complexes

Giulia Codenotti, Lukas Katthän & Raman Sanyal

Abstract A relative simplicial complex is a collection of sets of the form ∆rΓ, where Γ ⊂ ∆ are
simplicial complexes. Relative complexes have played key roles in recent advances in algebraic,
geometric, and topological combinatorics but, in contrast to simplicial complexes, little is known
about their general combinatorial structure. In this paper, we address a basic question in this
direction and give a characterization of f -vectors of relative (multi)complexes on a ground set of
fixed size. On the algebraic side, this yields a characterization of Hilbert functions of quotients
of homogeneous ideals over polynomial rings with a fixed number of indeterminates.

Moreover, we characterize h-vectors of fully Cohen–Macaulay relative complexes as well as
h-vectors of Cohen–Macaulay relative complexes with minimal faces of given dimensions. The
latter resolves a question of Björner.

1. Introduction
A simplicial complex ∆ is a collection of subsets of a finite ground set, say [n] :=
{1, . . . , n}, such that σ ∈ ∆ and τ ⊆ σ imply τ ∈ ∆. Simplicial complexes are
fundamental objects in algebraic, geometric, and topological combinatorics; see, for
example, [2, 3, 19]. A basic combinatorial statistic of ∆ is the face vector (or
f-vector)

f(∆) = (f−1, f0, . . . , fd−1) ,
where fk = fk(∆) records the number of faces σ ∈ ∆ of dimension k, where dim σ :=
|σ| − 1 and d − 1 = dim ∆ := max{dim σ : σ ∈ ∆}. Notice that we allow ∆ =
∅, the void complex, which is the only complex with fk(∆) = 0 for all k > −1.
A relative simplicial complex Ψ on the ground set [n] is the collection of sets
∆ r Γ = {τ ∈ ∆ : τ 6∈ Γ}, where Γ ⊂ ∆ ⊆ 2[n] are simplicial complexes. In general,
the pair of simplicial complexes (∆,Γ) is not uniquely determined by Ψ, and we call
Ψ = (∆,Γ) a presentation of Ψ. We set dim Ψ := max{dim σ : σ ∈ ∆rΓ}. Relative
complexes were introduced by Stanley [18] and made prominent recent appearances
in, for example, [1, 9, 15, 16]. The f -vector of a relative complex is given by

f(Ψ) := f(∆)− f(Γ) ,
where we set fk(Γ) := 0 for all k > dim Γ. When Γ = ∅, then Ψ is simply a simplicial
complex and we write ∆ instead of Ψ. We call Ψ a proper relative complex if Γ 6= ∅
or, equivalently, if f−1(Ψ) = 0.
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In contrast to simplicial complexes, much less is known about the combinatorics of
relative simplicial complexes. The first goal of this paper is to address the following
basic question:

Which vectors f = (0, f0, . . . , fd−1) ∈ Zd+1
>0 are f -vectors of proper relative

simplicial complexes?
For simplicial complexes, this question is beautifully answered by the Kruskal–Katona
theorem [12, 13]. Björner and Kalai [5] characterized the pairs (f(∆), β(∆)) where
∆ is a simplicial complex and β(∆) is the sequence of Betti numbers of ∆ (over a
field k). Duval [8] characterized the pairs (f(∆), f(Γ)) where ∆ ⊆ Γ but, as stated
before, the presentation Ψ = ∆ r Γ is generally not unique. Moreover, the following
example shows that a characterization of f -vectors of relative complexes is trivial
without further qualifications.

Example 1.1. If ∆ = 2[k+1] is a k-dimensional simplex and ∂∆ := ∆r{[k+1]} denotes
its boundary complex, then fi(∆, ∂∆) = 1 if i = k and is zero otherwise. Hence, by
observing that relative simplicial complexes are closed under disjoint unions, any
vector f = (0, f0, . . . , fd−1) ∈ Zd+1

>0 can occur as the f -vector of a proper relative
simplicial complex.

The main difference between f -vectors of complexes and relative complexes is that
f0(Ψ) does not reveal the size of the ground set and the construction outlined in
Example 1.1 produces relative complexes with given f -vectors on large ground sets.
Restricting the size of the ground set is the key to a meaningful treatment of f -vectors
of relative complexes. Therefore, we are going to characterize the f -vectors of relative
complexes Ψ = ∆ r Γ with Γ ⊂ ∆ ⊆ 2[n] for fixed n. To state our characterization,
we need to recall the binomial representation of a natural number: For any r, k ∈ Z>0
with k > 0, there are unique integers rk > rk−1 > · · · > r1 > 0 such that

(1) r =
(
rk
k

)
+
(
rk−1

k − 1

)
+ · · ·+

(
r1

1

)
.

We refer the reader to Greene–Kleitman’s excellent article [10, Section 8] for details
and combinatorial motivations for this and the following definition. For the represen-
tation given in (1) we define

∂k(r) :=
(

rk
k − 1

)
+
(
rk−1

k − 2

)
+ · · ·+

(
r1

0

)
.

The Kruskal–Katona theorem characterizes f -vectors of simplicial complexes in
terms of these ∂k(r), see Theorem 2.1. We prove the following characterization of
f -vectors of proper relative complexes in Section 2.

Theorem 1.2. Let f = (0, f0, . . . , fd−1) ∈ Zd+1
>0 and n > 0 and define two sequences

(a0, . . . , ad−1) and (b0, . . . , bd−1) by ad−1 := fd−1 and bd−1 := 0 and continue recur-
sively

ak−1 := max(∂k+1(ak), fk−1 + ∂k+1(bk))
bk−1 := max(∂k+1(bk), ∂k+1(ak)− fk−1)

for k > 0. Then there is a proper relative simplicial complex Ψ on the ground set [n]
with f = f(Ψ) if and only if a0 6 n.

The two sequences (1, a0, . . . , ad−1) and (1, b0, . . . , bd−1) are the componentwise-
minimal f -vectors of simplicial complexes ∆ and Γ such that Γ ⊆ ∆ and fk−1 =
fk−1(∆)− fk−1(Γ) for all 0 6 k < d.
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(Relative) simplicial complexes can be generalized to (relative) multicomplexes by
replacing sets with multisets. The notion of an f -vector of a multicomplex is imme-
diate (by taking into account multiplicities) and the question above carries over to
relative multicomplexes on a ground set of fixed size. Multicomplexes are more natural
from an algebraic perspective: If S := k[x1, . . . , xn] is the polynomial ring over a field
k with n indeterminates and I ⊆ S is a monomial ideal, then the monomials outside
I form a (possibly infinite) multicomplex on ground set [n] and every multicomplex
over [n] arises this way. In particular, the f -vector of a multicomplex is the Hilbert
function of S/I. By appealing to initial ideals it is easy to see that f -vectors of (in-
finite) multicomplexes are exactly the Hilbert functions of standard graded algebras,
which were characterized by Macaulay [14]. In Section 3 we give precise definitions
and Theorem 3.1 is the corresponding analogue of Theorem 1.2 for proper, possibly
infinite, relative multicomplexes. The corresponding algebraic statement character-
izes Hilbert functions of I/J where J ⊂ I ⊆ S are pairs of homogeneous ideals; see
Corollary 3.3.

The h-vector h(Ψ) = (h0, . . . , hd) of a (d − 1)-dimensional relative complex Ψ is
defined through

(2)
d∑
k=0

fk−1(Ψ)td−k =
d∑
i=0

hi(Ψ)(t+ 1)d−i .

Note that if dim ∆ = dim Γ, then h(Ψ) = h(∆) − h(Γ). The h-vector clearly carries
the same information as the f -vector but it has been amply demonstrated that h-
vectors often times reveal more structure; see [19] for example. In particular, if ∆
is a Cohen–Macaulay simplicial complex (or CM complex, for short) over some
field k, then hi(∆) > 0 for all i > 0. Stanley [17] showed that Macaulay’s theorem
characterizing Hilbert functions of standard graded algebras yields a characterization
of h-vectors of CM complexes akin to the Kruskal–Katona theorem. Stronger even,
Björner, Frankl, and Stanley [4] showed that all admissible h-vectors can be realized
by shellable simplicial complexes, a proper subset of CM complexes.

In Section 4, we recall the definition of a Cohen–Macaulay relative complex and we
give a characterization of h-vectors of fully CM relative complexes. We call a relative
complex Ψ fully Cohen–Macaulay over a ground set [n] if it has a presentation
Ψ = (∆,Γ) with Γ ⊂ ∆ ⊆ 2[n], dim Γ = dim Ψ, and Ψ as well as ∆ and Γ are
Cohen–Macaulay.

For r, k ∈ Z>0 with k > 0, let rk > · · · > r1 > 0 as defined by (1). We define

∂̃k(r) :=
(
rk − 1
k − 1

)
+
(
rk−1 − 1
k − 2

)
+ · · ·+

(
r1 − 1

0

)
.

Note that Ψ is proper if and only if h0(Ψ) = 0. Our characterization of h-vectors of
fully CM complexes parallels that of CM complexes in that it suffices to consider fully
shellable relative complexes; see Section 4 for a definition.

Theorem 1.3. Let h = (0, h1, . . . , hd) ∈ Zd+1
>0 and n > 0. Then the following are

equivalent:
(a) There is a fully CM relative complex Ψ on ground set [n] with h = h(Ψ);
(b) There is a fully shellable relative complex Ψ on ground set [n] with h = h(Ψ);
(c) Let (a0, . . . , ad−1) and (b0, . . . , bd−1) be the sequences defined through

ad−1 := hd and bd−1 := 0 and recursively continued

ai−1 := max(∂̃i+1(ai), hi + ∂̃i+1(bi))

bi−1 := max(∂̃i+1(bi), ∂̃i+1(ai)− hi)
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for i > 1. Then a0 6 n− d.

In Section 5, we discuss the difference between CM and fully CM relative complexes.
In particular, we show in Theorem 5.4 that every (d − 1)-dimensional CM relative
complex has a presentation as a fully CM relative complex if we allow the ground set
to grow by at most d elements. From this, we derive the following necessary condition
on h-vectors of proper CM relative complexes.

Corollary 1.4. Let h = (0, h1, . . . , hd) ∈ Zd+1
>0 and n > 0. Further, let (a0, . . . , ad−1)

and (b0, . . . , bd−1) be the sequences defined in Theorem 1.3(c). If there exists a CM
relative complex Ψ on ground set [n] with h = h(Ψ), then a0 6 n.

We conjecture that it actually suffices to extend the ground set by a single new
vertex. This would strengthen the bound of Corollary 1.4 to n− d+ 1.

Finally, Theorem 5.7 gives a characterization of h-vectors of relative multicom-
plexes if the dimensions of the minimal faces of Ψ = ∆ r Γ are given. This resolves a
question of A. Björner stated in [18].

2. f-vectors of relative simplicial complexes
The proof of Theorem 1.2 follows the same ideas as that of the classical Kruskal–
Katona theorem given in [10, Section 8]. A simplicial complex ∆ ⊂ 2[n] is called
compressed if its set of k-faces forms an initial segment with respect to the reverse
lexicographic order on the (k+ 1)-subsets of [n], for each k. Note that if ∆ and Γ are
both compressed simplicial complexes and fk(Γ) 6 fk(∆) for all k, then Γ ⊆ ∆. The
Kruskal–Katona theorem now states that f is the f -vector of a simplicial complex if
and only if it is the f -vector of a compressed simplicial complex, which can be checked
by numerical conditions.

Theorem 2.1 (Kruskal [13], Katona [12]). For a vector f = (1, f0, . . . , fd−1) ∈ Zd+1
>0 ,

the following conditions are equivalent:
(a) f is the f -vector of a simplicial complex;
(b) f is the f -vector of a compressed simplicial complex;
(c) ∂k+1(fk) 6 fk−1 for all k > 1.

The shadow of a family of k-sets consists of all (k − 1)-subsets of the k-sets of the
family. The Kruskal–Katona theorem tells us that ∂k+1(r) is the minimum size of the
shadow of a family k-sets of size r. Actually, this minimum is always achieved if the
family is compressed. Note that this implies in particular that the functions ∂k are
monotone.

With these preparations, we can now give the proof of our Theorem 1.2.

Proof of Theorem 1.2. Let us recall the definition of the sequences (a0, . . . , ad−1) and
(b0, . . . , bd−1). We have that ad−1 = fd−1, bd−1 = 0 and

ak−1 = max(∂k+1(ak), fk−1 + ∂k+1(bk))
= ∂k+1(ak) + max(0, fk−1 − (∂k+1(ak)− ∂k+1(bk)));

bk−1 = max(∂k+1(bk), ∂k+1(ak)− fk−1)
= ∂k+1(bk) + max(0, (∂k+1(ak)− ∂k+1(bk))− fk−1),

for 1 6 k 6 d− 1. From the second expression for ak−1 and bk−1 it is easy to see that
ak−1 − bk−1 = fk−1. In particular, we have that ak > bk for k > 0.

We now show the sufficiency of the condition, so assume that a0 6 n. As
both sequences (1, a0, . . . , ad−1) and (1, b0, . . . , bd−1) satisfy the condition of the
Kruskal–Katona theorem (Theorem 2.1), there exist compressed simplicial complexes
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Γ,∆ ⊂ 2[n] whose respective f -vectors equal the two sequences. In particular, since
both complexes are compressed and fk(Γ) = bk 6 ak = fk(∆), it holds that Γ ⊂ ∆,
and the relative complex Ψ := (∆,Γ) has f -vector f .

Now we turn to the necessity of our condition. Assume that we are given a relative
complex Ψ = (∆,Γ) on the ground set [n] with f(Ψ) = f . We show by induction on
k that ak 6 fk(∆) and bk 6 fk(Γ) for k > 0.

The base case k = d − 1 is obvious. For the inductive step, it follows from
Theorem 2.1 that fk−1(∆) > ∂k+1(fk(∆)), and further fk(∆) > ak implies that
∂k+1(fk(∆)) > ∂k+1(ak). Similarly, it holds that fk−1(∆) = fk−1 + fk−1(Γ) >
fk−1 + ∂k+1(fk(Γ)) > fk−1 + ∂k+1(bk). Together, this implies that

fk−1(∆) > max(∂k+1(ak), fk−1 + ∂k+1(bk)) = ak−1 .

Moreover, the last inequality together with the fact that fk−1(∆)−fk−1(Γ) = ak−1−
bk−1 implies that fk−1(Γ) > bk−1. In particular, a0 6 f0(∆) 6 n. �

3. f-vectors of relative multicomplexes

A k-multiset is a set with repetitions allowed. A multicomplex ∆̃ is a collection
of multisets closed under taking (multi-)subsets. We denote a k-multisubset of [n] by
F = {s1, s2, . . . , sk}6 where 1 6 s1 6 s2 6 · · · 6 sk 6 n. We say that the dimension
of F is k − 1 and in the same way as for simplicial complexes, one defines f -vectors
of multicomplexes. Note that multicomplexes can be infinite, even if the ground set
is finite.

The sequences which arise as f -vectors of multicomplexes are called M-sequences
and they have a well-known classification due to Macaulay. Namely, a sequence
(1, f0, f1, . . . ) is an M -sequence if and only if fk−1 > ∂̃k+1(fk). Moreover, as in the
simplicial case, for eachM -sequence f there exists a unique compressed multicomplex
∆̃ with f = f(∆̃). Here, being compressed is defined as in the simplicial case. We
refer the reader to [10, Section 8] or [19, Section II.2] for details.

Using compressed multicomplexes and the characterization of M -sequences, the
same proof as for Theorem 1.2 also yields the following characterization for f -vectors
of finite proper relative multicomplexes Ψ̃ = (∆̃, Γ̃).

Theorem 3.1. Let f = (0, f0, . . . , fd−1) ∈ Zd+1
>0 and n > 0 and define two sequences

(a0, . . . , ad−1) and (b0, . . . , bd−1) by ad−1 := fd−1 and bd−1 := 0 and continue recur-
sively

ak−1 := max(∂̃k+1(ak), fk−1 + ∂̃k+1(bk))

bk−1 := max(∂̃k+1(bk), ∂̃k+1(ak)− fk−1)

for k > 0. Then there is a proper (finite) relative multicomplex Ψ̃ on the ground set
[n] with f = f(Ψ̃) if and only if a0 6 n.

Now we turn to the classification of f -vectors of not necessarily finite multicom-
plexes. In the proof of Theorem 1.2, it was crucial that relative simplicial complexes
have bounded dimension, so that we could proceed by induction from the top dimen-
sion downwards. For general relative multicomplexes, we will instead proceed from
dimension 0 upwards. This requires some new notation. For r, k ∈ Z>0 with k > 0,
let rk > · · · > r1 > 0 as defined by (1). We define

∂̃k(r) :=
(
rk + 1
k + 1

)
+
(
rk−1 + 1
k + 2

)
+ · · ·+

(
r1 + 1

2

)
.
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It is not difficult to see that ∂̃k+1(∂̃k(r)) = r and ∂̃k−1(∂̃k(r)) > r. Therefore,
M -sequences can be equivalently characterized as those sequences (f−1, f0, . . . ) which
satisfy fk+1 > ∂̃k+1(fk) for all k.

Theorem 3.2. Let f = (0, f0, f1, . . . ) be a sequence of non-negative integers and n > 0
and define two sequences (a0, a1, . . . ) and (b0, b1, . . . ) by a0 := n, b0 := n − f0 and
continue recursively

ak+1 := min(∂̃k+1(ak), fk+1 + ∂̃k+1(bk))
bk+1 := min(∂̃k+1(bk), ∂̃k+1(ak)− fk+1)

for k > 0. Then, there is a proper relative multicomplex Ψ̃ on the ground set [n] with
f = f(Ψ̃) if and only if bk > 0 for all k > 0.

The proof is almost the same as the proof of Theorem 1.2, using the characterization
ofM -sequences in terms of ∂̃k. The only difference is that to prove necessity, one needs
to start the induction at k = 0 and proceed in increasing order.

The classical theorem by Macaulay characterizes Hilbert functions of standard
graded algebras, and Theorem 3.2 has a similar interpretation. We denote the
Hilbert function of a finitely generated graded module M over the polynomial ring
k[x1, . . . , xn] by H(M,k) := dimk Mk.

Corollary 3.3 (Macaulay for quotients of ideals). Let H : Z>0 → Z>0 with H(0) = 0
and n > H(1). Furthermore, let (a0, a1, . . . ) and (b0, b1, . . . ) be the two sequences of
Theorem 3.2, where we set fk = H(k+ 1). Then, there exist two proper homogeneous
ideals J ⊂ I ( k[x1, . . . , xn] with H(k) = H(I/J, k) for all k, if and only if bk > 0
for all k > 0.

Proof. Consider a homogeneous ideal I ⊆ k[x1, . . . , xn]. For any fixed term order
�, the collection of standard monomials, that is, the monomials not contained in the
initial ideal of I with respect to �, is naturally identified with a multicomplex ∆̃. Since
the standard monomials form a vector space basis of k[x1, . . . , xn]/I that respects the
grading, the f -vector of ∆̃ coincides with the Hilbert function of k[x1, . . . , xn]/I.
Moreover, if J ⊆ I ⊆ k[x1, . . . , xn] are two homogeneous ideals, then passing to
the initial ideals (with respect to �) preserves the inclusion. Therefore, any Hilbert
function of a quotient of ideals also arises as f -vector of a relative multicomplex.

For the converse we associate to any multicomplex ∆̃ the monomial ideal corre-
sponding to all multisets not in ∆̃. �

4. h-vectors of relative Cohen–Macaulay complexes
Let Ψ = (∆,Γ) be a (d−1)-dimensional relative simplicial complex and let σ1, . . . , σm
be some ordering of the inclusion-maximal faces (i.e., the facets) of Ψ. Define

Ψj := (2σ1 ∪ 2σ2 ∪ · · · ∪ 2σj ) ∩ (∆ r Γ)
for j > 1 and set Ψ0 := ∅. We call the ordering of the facets a shelling order
if Ψj r Ψj−1 has a unique inclusion-minimal element R(σj) for all j = 1, . . . ,m.
Consequently, Ψ is shellable if it has a shelling order. If Γ = ∅ and hence Ψ is a
simplicial complex, this recovers the usual notion of shellability. The h-vector h(Ψ)
of a shellable relative complex has a particularly nice interpretation:

hi(Ψ) = |{j : |R(σj)| = i}| ,

for 0 6 i 6 d. It is shown in [19, Section III.7] that a shellable relative complex is
Cohen–Macaulay but the converse does not need to hold.
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We will call a relative complex Ψ fully shellable if it has a presentation Ψ = (∆,Γ)
such that dim Ψ = dim Γ and Ψ as well as ∆ and Γ are shellable. By the above remarks,
it is clear that fully shellable relative complexes are fully Cohen–Macaulay and, again,
the converse does not necessarily hold.

In light of Theorem 3.1, condition (c) of Theorem 1.3 states that h is the f -vector of
a proper relative multicomplex. In order to prove the implication (c) =⇒ (b), we will
show that for every relative multicomplex on the ground set [n−d] with given f -vector
h = (0, h1, . . . , hd), there is a fully shellable relative complex Ψ with h(Ψ) = h.

Let Ψ̃ = (∆̃, Γ̃) be a proper relative (d−1)-dimensional multicomplex on ground set
[n− d] and assume that ∆̃ and Γ̃ are compressed. To turn Ψ̃ into a relative complex,
we follow the construction in [4]. Order the collection of multisets of size 6 d on the
ground set [n− d] by graded reverse lexicographic order, and the collection of d-sets
on [n] by reverse lexicographic order. There is a unique bijection Φd between these
two collections which preserves the given orders. Explicitly, the map is

Φd({b1, b2, . . . , bk}6) := {1, 2, . . . , d− k, b1 + d− k + 1, b2 + d− k + 2, . . . , bk + d}.

We denote by ∆ the simplicial complex with facets {Φd(F ) : F ∈ ∆̃} and Γ likewise.
Since Γ̃ is a submulticomplex of ∆̃, it follows that Γ ⊂ ∆ and Ψ = (∆,Γ) is a relative
complex with dim Ψ = dim ∆ = dim Γ = d− 1.

Proposition 4.1. Let Ψ̃ = (∆̃, Γ̃) be a (d−1)-dimensional relative multicomplex such
that ∆̃ and Γ̃ are compressed. Let Ψ = (∆,Γ) be the corresponding relative simplicial
complex constructed above. Given an ordering ≺ of the faces of ∆̃ such that F ≺ F ′

whenever |F | < |F ′|, the induced ordering on the facets Φd(F ) of ∆ is a shelling order
for ∆, Γ, and Ψ.

Proof. It was shown in [4] that any such ordering gives a shelling order for ∆ with
restriction sets

R(σ) = σ r {1, 2, . . . , d− k} = {s1 + d− k + 1, . . . , sk + d}
if σ = Φd({s1, . . . , sk}6). We are left to prove that restricting this order to the facets
of ∆rΓ yields a shelling order for Ψ. It suffices to show that if σ is a facet of Ψ, i.e.,
a facet of ∆ not contained in Γ, then R(σ) 6∈ Γ.

Let F = {s1, . . . , sk}6 be the face of ∆̃ such that σ = Φd(F ). We will show that
any facet σ′ of ∆ which contains R := R(σ) does not belong to Γ. By construction,
the facets of Γ are a subset of the facets of ∆, and thus R /∈ Γ.

Let σ′ be a facet of ∆ which contains R and let F ′ be the corresponding element
of ∆̃ with σ′ = Φd(F ′). Observe that either σ′ = σ or t = |F ′| > |F | = k. Indeed, if
t < k, {1, 2, . . . , d− k+ 1} ⊆ σ′, and since R∩ {1, 2, . . . , d− k+ 1} = ∅, R cannot be
a subset of σ′. If t = k, then σ′ ⊇ R implies σ′ = σ.

So, let us assume that t > k. Let G = {r1, . . . , rt}6 be the smallest t-multiset in ∆̃
in reverse lexicographic order such that τ = Φd(G) ⊇ R. Now τ = {1, . . . , d− t} ∪ S,
with S = {d− t+ 1 + r1, . . . , d+ rt}. As before, observe that R ∩ {1, . . . , d− t} = ∅.
Since Φd preserves the reverse lexicographic order on t-multisets, S is also minimal
with respect to reverse lexicographic order. Therefore the elements of R are the largest
elements in S and

G = {1, . . . , 1︸ ︷︷ ︸
t−k

, s1, . . . , sk}6.

Then F = {s1, . . . , sk}6 ⊆ G, and since F /∈ Γ̃ and Γ̃ is a multicomplex, it follows
that G /∈ Γ̃. Since Γ̃ is compressed and G is smaller than F ′, F ′ also does not belong
to Γ̃. This implies σ 6∈ Γ. �
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Proof of Theorem 1.3: (c) =⇒ (b) =⇒ (a). By Theorem 3.1, condition (c) guarantees
the existence of a proper relative multicomplex Ψ̃ with f -vector h. By Proposition 4.1,
the construction above yields a fully shellable relative simplicial complex Ψ with
h = h(Ψ). This proves (c) =⇒ (b). Theorem 2.5 for relative complexes in [19] asserts
that Ψ is fully Cohen–Macaulay and hence proves (b) =⇒ (a). �

In order to prove the implication (a) =⇒ (c), we make use of the powerful ma-
chinery of Stanley–Reisner modules. Let k be an infinite field. For a fixed n > 0,
let S := k[x1, . . . , xn] be the polynomial ring. For a simplicial complex ∆ ⊆ 2[n], its
Stanley–Reisner ideal is I∆ := 〈xτ : τ 6∈ ∆〉 and we write k[∆] := S/I∆ for its
Stanley–Reisner ring. If Γ ⊂ ∆ is a pair of simplicial complexes, then k[∆]� k[Γ]
and the Stanley–Reisner module of Ψ = (∆,Γ) is

M[Ψ] := ker(k[∆]� k[Γ]) = IΓ/I∆ .

This is a graded S-module and Ψ is a Cohen–Macaulay relative complex if M[Ψ]
is a Cohen–Macaulay module over S. In particular, any choice of generic linear forms
θ1, . . . , θd ∈ S for d = dim Ψ + 1 is a regular sequence for M[Ψ] and

dimk(M[Ψ]/〈θ1, . . . , θd〉M[Ψ])i = hi(Ψ) ,

for all i > 0.

Proof of Theorem 1.3: (a) =⇒ (c). Let (∆,Γ) be a presentation of Ψ such that
dim Γ = dim Ψ and ∆ and Γ are CM. Consider the short exact sequence

(3) 0→ M[Ψ]→ k[∆]→ k[Γ]→ 0

of S-modules. Let θ ∈ S be a generic linear form. Tensoring (3) with S/θ yields

(4) TorS1 (k[Γ], S/θ)→ M[Ψ]/θM[Ψ]→ k[∆]/θk[∆]→ k[Γ]/θk[Γ]→ 0 .

By resolving S/θ, it is easy to see that TorS1 (k[Γ], S/θ) = (0 :k[Γ] θ) = 0, so (4) is a
short exact sequence as well.

By our choice of presentation, k[Γ] is Cohen–Macaulay and we may repeat the
process for a full regular sequence Θ = (θ1, . . . , θd) to arrive at

(5) 0→ M[Ψ]/ΘM[Ψ]→ k[∆]/Θk[∆]→ k[Γ]/Θk[Γ]→ 0 .

Since Ψ is Cohen–Macaulay, the Hilbert function of M[Ψ]/ΘM[Ψ] is exactly the
h-vector of Ψ and, moreover, we can identify M[Ψ]/ΘM[Ψ] with a graded ideal in
k[∆]/Θk[∆]. By a linear change of coordinates, this yields a pair of homogeneous
ideals J∆ ⊂ JΓ ⊂ R := k[y1, . . . , yn−d] with difference of Hilbert functions exactly
h(Ψ). For any fixed term order �, we denote by in�(J∆), in�(JΓ) the corresponding
initial ideals. The passage to initial ideals leaves the Hilbert functions invariant and
in�(J∆) ⊆ in�(JΓ); c.f. [7, Proposition 9.3.9]. The corresponding collections of stan-
dard monomials are naturally identified with a pair of multicomplexes Γ̃ ⊂ ∆̃ with
f -vector h and this completes the proof. �

5. Cohen–Macaulay versus fully Cohen–Macaulay
Theorem 1.3 only addresses the characterization of h-vectors of fully CM relative
complexes. By definition, a relative simplicial complex Ψ is the set difference of a pair
Γ ⊂ ∆ ⊆ 2[n] of simplicial complexes. This presentation is by no means unique and
it is natural to ask if in the case that Ψ is Cohen–Macaulay, there are always CM
complexes Γ′ ⊆ ∆′ ⊆ 2[n] of dimension dim Ψ such that Ψ = ∆′ r Γ′. The following
example shows that this is not the case.
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Figure 1. The relative complexes of Example 5.1, Example 5.2, and
Example 5.3. In each case, Γ is drawn in bold.

Example 5.1. Let ∆ ⊂ 2[4] be the complete graph on 4 vertices, that is, the complex
consisting of all subsets of [4] of size at most 2. Let Γ ⊂ ∆ be a perfect matching,
see Figure 1. Then ∆rΓ is the relative complex consisting of 4 open edges. This is a
shellable relative complex. It is easy to check that on the fixed ground set [4], this is the
only presentation with dim ∆ = dim Γ = 1 and hence Ψ is not fully Cohen–Macaulay.

There are several possibilities to weaken the requirements on fully Cohen–
Macaulay, for example, the requirement that dim Γ = dim Ψ. The next example,
however, shows that the characterization of Theorem 1.3 then ceases to hold.

Example 5.2. Let ∆ ⊆ 2[4] be the 1-dimensional complex with facets {1, 2}, {2, 3},
{3, 4}, {1, 4} and let Γ be the complex composed of the vertices of ∆. Then Ψ = (∆,Γ)
is a relative complex isomorphic to the relative complex of Example 5.1. Both ∆ and
Γ are Cohen–Macaulay but dim Γ < dim Ψ. In particular, Ψ is shellable with h-vector
h := h(Ψ) = (0, 0, 4). However, h is not the f -vector of a relative multicomplex on
ground set [4 − 2], as any such (relative) multicomplex can have at most 3 faces of
dimension 1.

Nevertheless, it is possible to remedy the problem illustrated in Example 5.1 by
allowing more vertices.

Example 5.3. Let Ψ = (∆,Γ) be the relative complex of Example 5.1. Let ∆′ :=
∆ ∪ {{i, 5} : i ∈ [4]} be the graph-theoretic cone over ∆ and define Γ′ accordingly.
Then ∆ r Γ = ∆′ r Γ′ and, since ∆′ and Γ′ are connected graphs and hence Cohen–
Macaulay, this shows that Ψ is a fully Cohen–Macaulay relative complex over the
ground set [5].

The following result now shows that every Cohen–Macaulay relative complex is
fully Cohen–Macaulay if the ground set is sufficiently enlarged.

Theorem 5.4. Let Γ ⊂ ∆ ⊆ 2[n] be simplicial complexes, such that Ψ = (∆,Γ) is
Cohen–Macaulay of dimension d − 1. Let e be the depth of k[Γ]. Then there exist
Γ′ ⊆ ∆′ ⊆ 2[n+d−e], such that ∆′ r Γ′ = ∆ r Γ, and both ∆′ and Γ′ are Cohen–
Macaulay of dimension d− 1.

Proof. Let Γ1 be the (d− e)-fold cone over Γ and set ∆1 := ∆∪ Γ1. Then ∆1 r Γ1 =
∆ r Γ. Further note that k[Γ1] = k[Γ][y1, . . . , yd−e], where the yi are new variables.
Thus, the depth of k[Γ1] is d. Finally, we define ∆′ and Γ′ to be the (d−1)-dimensional
skeleta of ∆1 and Γ1, respectively. Again, ∆′ r Γ′ = ∆ r Γ and thus Ψ ∼= (∆′,Γ′).
By [11, Corollary 2.6], Γ′ is Cohen–Macaulay. By assumption, Ψ = ∆′rΓ′ is Cohen–
Macaulay, and since dim Ψ = dim ∆′ = dim Γ′, it follows from [6, Proposition 1.2.9]
that ∆′ is also Cohen–Macaulay. �

In the construction given in the course of the proof, the complexes ∆ and Γ occur as
induced subcomplexes. If we are to abandon this requirement, then our computations
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suggest that it suffices to add a single new vertex. Based on this evidence, we offer
the following conjecture.

Conjecture 5.5. Every Cohen–Macaulay relative complex Ψ on ground set [n] is
a fully Cohen–Macaulay relative complex on ground set [n + 1]. That is, for every
(d− 1)-dimensional Cohen–Macaulay relative complex Ψ = (∆,Γ) on ground set [n],
there are Cohen–Macaulay simplicial complexes Γ′ ⊆ ∆′ ⊆ 2[n+1] of dimension d− 1,
such that ∆ r Γ = ∆′ r Γ′.

We also offer a more precise conjecture on how the complexes Γ′ ⊂ ∆′ can be
obtained.

Conjecture 5.6. Let ∅ 6= Γ ( ∆ ⊂ 2[n] be two simplicial complexes, such that the
relative complex (∆,Γ) is Cohen–Macaulay of dimension d − 1 over some field k. If
∆ and Γ have no common minimal non-faces, then the depth of k[Γ] is at least d− 1.

To see that Conjecture 5.6 implies Conjecture 5.5, let Ψ = (∆,Γ) be a given
presentation. We can assume that ∆ and Γ have no minimal non-faces in common.
Conjecture 5.6 then assures us that k[Γ] has depth d − 1 and Theorem 5.4 yields
Conjecture 5.5.

Instead of fixing the ground set, we may instead consider the dimensions of the
minimal faces in Ψ = (∆,Γ). For a sequence α = (α1, α2, α3, . . . ) of numbers and
i > 0 we set

Eiα := (0, . . . , 0︸ ︷︷ ︸
i

, α1, α2, α3, . . . ) .

Theorem 5.7. For a vector h = (h0, . . . , hd) ∈ Zd+1
>0 and numbers a1, . . . , ar ∈ Z>0,

the following are equivalent:
(i) h = h(∆,Γ) for a shellable relative complex (∆,Γ), whose minimal faces have

cardinalities a1, . . . , ar;
(ii) h = h(∆,Γ) for a Cohen–Macaulay relative complex (∆,Γ), whose minimal

faces have cardinalities a1, . . . , ar;
(iii) h is the h-vector of a graded Cohen–Macaulay module (over some polynomial

ring), whose generators have the degrees a1, . . . , ar;
(iv) There exist M-sequences ν1, . . . , νr such that

h = Ea1ν1 + Ea2ν2 + · · ·+ Earνr .

The implications (i) ⇒ (ii) ⇒ (iii) are clear, and (iii) ⇒ (iv) is Proposition 5.2
of [18]. In loc. cit. Anders Björner asked if the implication (iv)⇒ (iii) also holds.

Proof. We only need to show (iv)⇒ (i). For each i, we can find a shellable simplicial
complex ∆i whose h-vector is νi. Further, let vi1, . . . , viai

be new vertices and let
Ψi be the relative complex with faces {F ∪ {vi1, . . . , viai

} : F ∈ ∆i}. It is clear that
any shelling order on ∆i yields a shelling on Ψi, and that h(Ψi) = Eaiνi. Finally, by
taking cones if necessary, we may assume that all the Ψi have the same dimension.
Then the disjoint union of the Ψi is the desired shellable relative complex. �
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