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Modular law through GKM theory

Tatsuya Horiguchi, Mikiya Masuda & Takashi Sato

Abstract The solution of Shareshian-Wachs conjecture by Brosnan-Chow and Guay-Paquet
tied the graded chromatic symmetric functions on indifference graphs (or unit interval graphs)
and the cohomology of regular semisimple Hessenberg varieties with the dot action. A similar
result holds between unicellular LLT polynomials and twins of regular semisimple Hessenberg
varieties. A recent result by Abreu-Nigro enabled us to prove these results by showing the
modular law for the geometrical objects, and this is indeed done by Precup-Sommers and
Kiem-Lee. In this paper, we give elementary and simpler proofs to the modular law through
GKM theory.

1. Introduction
Let n be a positive integer and [n] the set of integers from 1 to n. A function h : [n] →
[n] is called a Hessenberg function if it is non-decreasing and h(j) ⩾ j for all j ∈ [n].
One may think of a Hessenberg function as a Dyck path.

A graph Gh (called an indifference graph) is associated to h as follows:
(1) the vertex set V (Gh) is [n],
(2) the edge set E(Gh) is {{i, j} | j < i ⩽ h(j)}.

Let P be the set of positive integers. A map κ : [n] → P is called a P-coloring on Gh

and it is proper if κ(i) ̸= κ(j) whenever {i, j} ∈ E(Gh). Let z1, z2, . . . be infinitely
many variables. We set zκ := zκ(1)zκ(2) · · · zκ(n) for a coloring κ on Gh. Then Stanley’s
chromatic symmetric function csfh of Gh is defined by

csfh :=
∑

κ∈P C(Gh)

zκ,

where PC(Gh) denotes the set of all proper P-colorings on Gh. The long-standing
Stanley-Stembridge conjecture is known to be equivalent to csfh being e-positive,
that is, when csfh is expressed as a polynomial in the elementary symmetric functions
of z1, z2, . . . , all the coefficients are non-negative.

Shareshian-Wachs [18] introduced a graded version of csfh as follows:

(1.1) csfh(q) :=
∑

κ∈P C(Gh)

zκq
asc(κ),

where
asc(κ) := #{{i, j} ∈ E(Gh) | j < i, κ(j) < κ(i)}.
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They show that the coefficients of csfh(q) as a polynomial in q are symmetric functions
in z1, z2, . . . . A strong version of the Stanley-Stembridge conjecture is that those
coefficients of csfh(q) are all e-positive.

On the other hand, a regular semisimple Hessenberg variety X(h) is associated
with the Hessenberg function h. It is a subvariety of the flag variety Fl(n) defined by

X(h) := {V• = (V1 ⊂ V2 ⊂ · · · ⊂ Vn = Cn) ∈ Fl(n) | SVi ⊂ Vh(i) for i ∈ [n]},

where S is a linear endomorphism of Cn with distinct eigenvalues. It is known that
X(h) is nonsingular and its smooth structure is independent of the choice of S. Since
we are only concerned with its cohomology, we suppress S in the notation of X(h).
The cohomology H∗(X(h)) of X(h) concentrate on even degrees and is a graded
module over the symmetric group Sn on [n] (see Section 3).

The following remarkable fact, which ties seemingly unrelated two objects above,
was conjectured by Shareshian-Wachs [18] and proved by Brosnan-Chow [6] and Guay-
Paquet [10].

Theorem 1.1 ([6, 10]). Let the situation be as above. Then

ω(csfh(q)) =
∞∑

i=0
ch

(
H2i(X(h))

)
qi,

where ω denotes the involution on symmetric functions sending the i-th elementary
symmetric function to the i-th complete symmetric function and ch denotes Frobenius
characteristic sending Sn-modules to symmetric functions of degree n.

Recently, it was noticed in [16] and [17] that a similar fact holds for unicellular
LLT polynomials and the twin of X(h). LLT polynomials were originally introduced
by Lascoux, Leclerc, and Thibon in [15]. It can be seen as a q-deformation of the
product of skew Schur functions and it is indexed by a tuple of skew Young diagrams.
An LLT polynomial is called unicellular if each skew Young diagram in its index is a
single box. It is observed in [7] that a unicellular LLT polynomial is associated with
a Hessenberg function h and can be expressed in terms of P-coloring as

LLTh(q) =
∑

κ∈C(Gh)

zκq
asc(κ),

where C(Gh) denotes the set of all P-colorings on Gh (the properness is not required).
On the other hand, Ayzenberg-Buchstaber [5] introduced a closed smooth subman-

ifold Y (h) of Fl(n), which they call the twin of X(h). The twin Y (h) resembles X(h),
e.g. H∗(Y (h)) is isomorphic to H∗(X(h)) as groups and H∗(Y (h)) is also a graded
Sn-module. However, they are not isomorphic as rings and as Sn-modules in general.

Theorem 1.2 ([16, 17]). Let the situation be as above. Then

LLTh(q) =
∞∑

i=0
ch

(
H2i(Y (h))

)
qi,

where ch denotes Frobenius characteristic as before.

The proof of Theorem 1.1 by Brosnan-Chow [6] uses deep results in algebraic
geometry and that by Guay-Paquet [10] uses Hopf algebra on Dyck paths. The proof
of Theorem 1.2 by Masuda-Sato [16] is based on Theorem 1.1. Precup-Sommers [17]
prove both Theorems 1.1 and 1.2 using intersection cohomology. In fact, they prove
that the right hand sides (i.e. the geometric sides) of the identities in Theorems 1.1
and 1.2 satisfy the modular law. Here a function F on the set of Hessenberg functions
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taking values in a polynomial ring Λ[q] over a ring Λ is said to satisfy the modular
law if

(1 + q)F (h) = F (h+) + qF (h−)
for every modular triple (h−, h, h+) of Hessenberg functions, see Definition 2.1 for
modular triples. Abreu-Nigro [1] show that a function F satisfying the modular law
is uniquely determined by its “initial conditions”, see Section 2 for details. In The-
orems 1.1 and 1.2, the left hand sides (i.e. the algebraic sides) of the identities are
known to satisfy the modular law (see Appendices), and the left-hand side and the
right-hand side coincide for “initial” h’s (see [13, Proposition 2.15 and (2.17)] and [1,
Theorem 1.1] for Theorem 1.1, and see [14, Lemma 3.11 and (3.20)] and [2, Theorem
2.4] for Theorem 1.2). Hence, once the modular law is established for the geometric
sides, Theorems 1.1 and 1.2 follow.

Recently, Kiem-Lee ([13, 14]) also proved the modular law for the geometric sides.
Their proofs are elementary in the sense that their main tool is blow-up. However
they took different approaches between when proving Theorem 1.1 and when proving
Theorem 1.2. Abreu-Nigro [3, Example 3.5] also proved Theorem 1.1, but they omitted
the details.

In this paper, we prove the modular law for the geometric sides through GKM
theory. Our proof is motivated by the blow-up idea of Kiem-Lee and may be regarded
as graph analogue of their proofs. However ours is more elementary and simpler.
Moreover, our proofs for X(h) and Y (h) proceed in the same way. Indeed, we blow-up
the GKM graph ofX(h+) (or Y (h+)) along the GKM graph ofX(h−) (or Y (h−)). The
resulting graph, which corresponds to a roof manifold in [14], is a labeled graph but not
a GKM graph. We consider its graph cohomology satisfying a certain condition and
compute it in two ways. The modular law for the geometric sides follows by comparing
the two expressions of the graph cohomology. We also provide a simple elementary
proof to the modular law for the algebraic sides for the reader’s convenience in the
appendix.

This paper is organized as follows. In Section 2 we explain a modular triple. We
also recall the uniqueness result of Abreu-Nigro [1]. In Section 3 we briefly review
GKM theory which is our main tool. In Section 4 we set up notations used for our
proof of the modular law for the geometric sides. We give the proof of the modular law
for X(h) in Section 5. In Section 6 we point out the necessary change for the proof
of the modular law for Y (h). All cohomology groups are taken with C coefficients
throughout this paper unless otherwise stated.

2. Modular triple and modular law
We denote the set of all Hessenberg functions on [n] by H(n). We often express
h ∈ H(n) as a vector (h(1), . . . , h(n)) by listing its values. It is also convenient to
visualize h by drawing a configuration of the shaded boxes on a square grid of size
n×n, which consists of boxes in the i-th row and the j-th column satisfying i ⩽ h(j).
Since h(j) ⩾ j for any j ∈ [n], the essential part is the shaded boxes below the
diagonal, see Figure 1 below.

If we flip the configuration of h along the anti-diagonal, then the resulting one is
again a configuration of a Hessenberg function, denoted by ht. We call ht the transpose
of h. For example, the two Hessenberg functions in Figure 1 are the transposes of each
other.

We introduce the following terminology used in [14].

Definition 2.1 (Modular triple). Let h−, h, h+ be elements in H(n). The triple
(h−, h, h+) is called a modular triple if it satisfies one of the following.
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Figure 1. The configurations for h =
(2, 5, 6, 8, 9, 9, 11, 11, 11, 11, 11) and (5, 5, 7, 8, 8, 9, 10, 10, 10, 11, 11).

(C) If h(d) = h(d+ 1) and h−1(d) = {d0} for some 1 ⩽ d0 < d < n, then h− and
h+ are defined by

h−(j) =
{
d− 1 for j = d0

h(j) otherwise
and h+(j) =

{
d+ 1 for j = d0

h(j) otherwise.

(R) If h(d′) + 1 = h(d′ + 1) ̸= d′ + 1 and h−1(d′) = ∅ for some 1 ⩽ d′ < n, then
h− and h+ are defined by

h−(j) =
{
h(d′) for j = d′ + 1
h(j) otherwise

and h+(j) =
{
h(d′) + 1 for j = d′

h(j) otherwise.

Remark 2.2. In Definition 2.1, (C) stands for column and (R) stands for row. The
statements (C) and (R) seem unrelated but they are related through h → ht, e.g. (C)
for ht implies (R) for h.

Example 2.3. For the left h in Figure 1, (d, d0) = (5, 2), (8, 4) satisfy (C) while d′ = 4
satisfies (R). For the right h in Figure 1, (d, d0) = (7, 3) satisfies (C) while d′ = 3, 6
satisfy (R). Since they are the transposes to each other, the (d+ 1)-th column of the
left h corresponds to the d′-th row of the right h by n + 1 − d′ = d + 1, that is,
d+ d′ = n, where n = 11 in this case. In other words, d′ = w0(d+ 1), where w0 is the
longest element of Sn.

Definition 2.4. Let Λ[q] be a polynomial ring over a ring Λ (in fact, we take Λ to be
the ring of symmetric functions in z1, z2, . . . ). We say that a function F : H(n) → Λ[q]
satisfies the modular law if
(2.1) (1 + q)F (h) = F (h+) + qF (h−)
for every modular triple (h−, h, h+).

Remark 2.5. If F (ht) = F (h) for any h ∈ H(n), then it suffices to check the modular
relation (2.1) for modular triples of type (C) for F by Remark 2.2.

Given h1 ∈ H(n1) and h2 ∈ H(n2), their product h1h2 ∈ H(n1 +n2) can naturally
be defined by

h1h2(j) =
{
h1(j) for 1 ⩽ j ⩽ n1

h2(j − n1) + n1 for n1 + 1 ⩽ j ⩽ n1 + n2.

Theorem 2.6 (Abreu-Nigro [1]). A function F : H(n) → Λ[q] which satisfies the mod-
ular law is determined by its values at products h1h2 · · ·hr of all tuples (h1, . . . , hr)
such that hi ∈ H(ni), hi(j) = ni for ∀j ∈ [ni], and

∑r
i=1 ni = n.
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3. Graph cohomology of a labeled graph and GKM theory
Let T be the compact torus (S1)n where S1 is the unit circle of C. The classifying
space BT of T is (CP∞)n. We choose a generator of H2(CP∞) obtained as the first
Chern class of the tautological line bundle over CP∞ and let t1, . . . , tn be a generator
of H2(BT ) coming from the factors of BT = (CP∞)n. Then H∗(BT ) is a polynomial
ring in t1, . . . , tn.

Definition 3.1. A labeled graph Γ = (V,E, α) is a graph with an edge labeling, where
V is a vertex set, E is an edge set, and α : E → H2(BT ) is a labeling on E. For e ∈ E,
we denote by e± the endpoints of e. Then the (equivariant) graph cohomology of the
labeled graph Γ is defined by
(3.1)
H∗

T (Γ) := {f ∈ Map(V,H∗(BT )) | f(e+) ≡ f(e−) (mod α(e)) for any e ∈ E}.

Any constant map on V taking a value t in H∗(BT ) is an element of H∗
T (Γ), which

we also denote by t, and H∗
T (Γ) is a module over H∗(BT ) in a natural way. We define

(3.2) H∗(Γ) := H∗
T (Γ)/(t1, . . . , tn),

where ( ) denotes the ideal generated by the elements in it.
Graph cohomology often arises as the equivariant cohomology

H∗
T (X) := H∗(ET ×T X)

of a nice T -space X called a GKM manifold (see [12]), where ET → BT is the
universal principal T -bundle and ET ×T X is the orbit space of ET × X by the
diagonal T -action. The first projection ET ×X → ET induces a fibration

X → ET ×T X
π−→ ET/T = BT,

so H∗
T (X) is a module over H∗(BT ) through π∗ : H∗(BT ) → H∗

T (X). If H∗(X)
concentrate on even degrees, then the Serre spectral sequence of the fibration above
collapses; so the restriction map H∗

T (X) → H∗(X) is surjective and its kernel is the
ideal generated by π∗(H>0(BT )), so that we obtain an isomorphism

(3.3) H∗
T (X)/(π∗(t1), . . . , π∗(tn)) ∼= H∗(X).

We say that the labeled graph Γ is 2-independent if, for any p ∈ V and edges
e1, . . . , em incident to p, α(e1), . . . , α(em) are pairwise linearly independent. The equi-
variant cohomology ring of a GKM manifold X is recovered from its fixed point set
and 1-dimensional orbits, and they form a 2-independent labeled graph called a GKM
graph (see [12] for details).

Recall that

(3.4) X(h) = {V• = (V1 ⊂ V2 ⊂ · · · ⊂ Vn = Cn) ∈ Fl(n) | SVi ⊂ Vh(i) for i ∈ [n]},

where S is a linear endomorphism of Cn with distinct eigenvalues. As remarked in the
introduction, the diffeomorphism type of X(h) is independent of the choice of S. We
take S to be a linear operator defined by a diagonal matrix with distinct eigenvalues.
For later use, we assume that they are real numbers. Then S commutes with the
standard action of T = (S1)n on Cn defined by coordinate-wise multiplication, so
the induced T -action on Fl(n) leaves X(h) invariant. One can easily check that the
T -fixed point sets X(h)T and Fl(n)T consist of permutation flags V•(w) associated
with elements w ∈ Sn;

V•(w) = (⟨ew(1)⟩ ⊂ ⟨ew(1), ew(2)⟩ ⊂ · · · ⊂ ⟨ew(1), . . . , ew(n)⟩ = Cn),
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where e1, . . . , en denotes the standard basis of Cn and ⟨ ⟩ denote the linear subspace of
Cn spanned by the elements in it. In the following, we make the following identification

X(h)T = Fl(n)T = Sn.

The GKM graph GX(h) = (Sn, E(h), αX) associated to X(h) with the T -action is
given by

E(h) = {{w,w(i, j)} | w ∈ Sn, j < i ⩽ h(j)}
and

(3.5) αX({w,w(i, j)}) = tw(i) − tw(j),

where (i, j) denotes the transposition exchanging i and j, see [19]. In fact, to well-
define αX , one need to choose the sign ±(tw(i) − tw(j)) of the label of each edge
{w,w(i, j)} = {w′, w′(i, j)}, where w′ = w(i, j). However the (equivariant) cohomol-
ogy of GX(h) does not depend on the signs. Hence we do not take care the ambiguity
of the signs. Then H∗

T (GX(h)) consists of all f ∈ Map(V,H∗(BT )) satisfying

f(w) − f(w(i, j)) ≡ 0 mod (tw(i) − tw(j))

for any i < j ⩽ h(i) and w ∈ Sn. Note that any edge {w,w(i, j)} of GX(h) corresponds
to CP 1 in X(h) which contains V•(w) and V•(w(i, j)), see [13, Subsection 2.2]. It is
known that H∗(X(h)) concentrate on even degrees (see [8]), so the restriction map

ι∗ : H∗
T (X(h)) → H∗

T (X(h)T ) =
⊕

w∈Sn

H∗
T (w) = Map(Sn, H

∗(BT ))

is injective. GKM theory ([9]) tells us that the image of ι∗ is H∗
T (GX(h)), so we have

an isomorphism

(3.6) ι∗ : H∗
T (X(h))

∼=−→ H∗
T (GX(h)).

Through ι∗, π∗(ti) in (3.3) corresponds to the constant map ti on Sn. Therefore, it
follows from (3.2) and (3.3) that the isomorphism (3.6) reduces to an isomorphism

(3.7) H∗(X(h))
∼=−→ H∗(GX(h)).

We consider an action of σ ∈ Sn on H∗(BT ) induced by sending ti to tσ(i) for
i ∈ [n], and define an action of σ ∈ Sn on Map(Sn, H

∗(BT )) by

(3.8) (σ · f)(w) := σ(f(σ−1w)) for f ∈ Map(Sn, H
∗(BT )) and w ∈ Sn.

This action was considered by Tymoczko [19]. It preserves not only H∗
T (GX(h)) but

also the ideal (t1, . . . , tn) in H∗
T (GX(h)), so the action descends to an action of Sn on

H∗(GX(h)). Thus we obtain actions of Sn on H∗
T (X(h)) and H∗(X(h)) through the

isomorphisms (3.6) and (3.7). These actions are called the dot action.
A similar story holds for the twin Y (h) of X(h) introduced by Ayzenberg-

Buchstaber [5]. The twin Y (h) is defined as follows. We regard Fl(n) as the
homogeneous space U(n)/T where U(n) is the unitary group of size n and T
is the torus consisting of diagonal matrices in U(n). Indeed, a unitary matrix
g = [v1, . . . , vn] ∈ U(n) associates a flag

(3.9) ⟨v1⟩ ⊂ ⟨v1, v2⟩ ⊂ · · · ⊂ ⟨v1, . . . , vn⟩ = Cn

and this correspondence induces the identification U(n)/T = Fl(n). In particular,
the permutation matrix P (w) corresponds to the permutation flag V•(w), where the
(w(k), k)-components of P (w) are 1 for any k and the others components are 0. If the
flag V• in (3.4) is of the form (3.9), then the condition SVi ⊂ Vh(i) for i ∈ [n] in (3.4)
can be written as

Sg ∈ gH i.e. g−1Sg ∈ H,
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where H is the vector subspace consisting of n × n matrices (aij) with aij = 0 for
i > h(j). Therefore

(3.10) X(h) = {gT ∈ U(n)/T | g−1Sg ∈ H}.

The twin Y (h) of X(h) is simply defined as

(3.11) Y (h) := {Tg ∈ T\U(n) | g−1Sg ∈ H}.

It is a closed smooth manifold but not necessarily an algebraic variety. The cohomol-
ogy H∗(Y (h)) is isomorphic to H∗(X(h)) as groups. In particular H∗(Y (h)) concen-
trate on even degrees. However, they are not isomorphic as rings in general. See [5,
Theorem 3.10 and Remark 3.11]. Note that Ayzenberg-Buchstaber write the twin as
Xh and the regular semisimple Hessenberg variety as Yh.

Remark 3.2. By taking inverse matrices, Y (h) can be defined as

Y (h) = {gT ∈ U(n)/T | gSg−1 ∈ H},

and the second and the third authors adopted this definition in [16].

The right multiplication by T on U(n) induces the action of T on T\U(n) which
leaves Y (h) invariant. One can check that

Y (h)T = (T\U(n))T = {TP (w) | w ∈ Sn} = Sn.

According to [5, Proposition 5.3], Y (h) with the T -action is a GKM manifold and
its GKM graph GY (h) is (Sn, E(h), αY ), where the labeling αY : E(h) → H2(BT ) is
given by

(3.12) αY ({w,w(i, j)}) = ti − tj .

In particular, the underlying graphs of GX(h) and GY (h) are the same but the labelings
αX and αY are different. Compare (3.5) and (3.12). The isomorphisms (3.6) and (3.7)
hold for Y (h) and GY (h). However, the dot action (3.8) on Map(Sn, H

∗(BT )) does
not preserve H∗

T (GY (h)). As for Y (h) and GY (h), we consider the action of σ ∈ Sn

on Map(Sn, H
∗(BT )) defined by

(3.13) (σ † f)(w) := f(σ−1w) for f ∈ Map(Sn, H
∗(BT )) and w ∈ Sn.

This action preserves H∗
T (GY (h)) and induces actions of Sn on H∗

T (Y (h)) and
H∗(Y (h)), called the dagger action in [16].

Remark 3.3. Let J be the anti-diagonal matrix with all entry 1. Note that the anti-
diagonal transpose of a matrix A is given by J(tA)J , where tA is the ordinary transpose
of A. In the sense of (3.10), the correspondence gT 7→ gJT gives a diffeomorphism
X(h) ∼= X(ht), since g−1 = tḡ, S = tS, S̄ = S, and H̄ = H. This correspondence
means the orthogonal complement of flags; for orthogonal v1, . . . , vn,

({0} ⊂ ⟨v1⟩ ⊂ ⟨v1, v2⟩ ⊂ · · · ⟨v1, . . . , vn−1⟩ ⊂ Cn)
7→ (Cn ⊃ ⟨v2, . . . , vn⟩ ⊃ ⟨v3, . . . , vn⟩ ⊃ · · · ⟨vn⟩ ⊃ {0}).

In terms of GKM graphs, an edge {w,w(i, j)} corresponds to {ww0, w(i, j)w0} and
they have the same label. Then this gives an isomorphism between GKM graphs
of X(h) and X(ht). In particular, this induces an H∗(BT )-algebra isomorphism
H∗

T (X(ht)) → H∗
T (X(h)) which commutes with the dot action.
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The label on black edges is td − td+1 = t2 − t3, that on cyan edges is t1 − t2, and that on magenta edges is t1 − t3.

Figure 2. GKM graphs G−, G, and G+ when h = (2, 3, 3) and d = 2.

4. Setting for the proof of the modular law
In this section we set up notations for the proof of the modular law for X(h). The same
argument works for Y (h) with a little modification and we point out the modification
in Section 6.

Since H∗
T (X(h)) is isomorphic to H∗

T (X(ht)) as graded Sn-modules (see Remark
3.3), it suffices to check the modular relation (2.1) for modular triples (h−, h, h+) of
type (C) in Definition 2.1 (see Remark 2.5); so

h(d) = h(d+ 1) and h−1(d) = {d0} for some 1 ⩽ d0 < d < n

and

h−(j) =
{
d− 1 for j = d0

h(j) otherwise
and h+(j) =

{
d+ 1 for j = d0

h(j) otherwise.

To simplify the notations, we set
G− := GX(h−), G := GX(h), G+ := GX(h+)

where the vertex sets are all Sn and the edge sets are respectively
• E(G−) = {{w,w(i, j)} | w ∈ Sn, j < i ⩽ h−(j)} = E(G) ∖ {{w,w(d, d0)} |
w ∈ Sn},

• E(G) = {{w,w(i, j)} | w ∈ Sn, j < i ⩽ h(j)},
• E(G+) = {{w,w(i, j)} | w ∈ Sn, j < i ⩽ h+(j)} = E(G)∪{{w,w(d+1, d0)} |
w ∈ Sn},

and the labelings on them are the same as αX in (3.5), see Figure 2.
We consider two more labeled graphs ◦G and G̃ defined as follows:
(1) V (◦G) = {◦w | w ∈ Sn} where ◦w is a copy of w,
(2) E(◦G) = {{◦w, ◦w(i, j)} | j < i ⩽ h−(j)} ∪ {{◦w, ◦w(d + 1, d0)}}, where

w ∈ Sn and the label on {◦w, ◦w(i, j)} is tw(i) − tw(j),
and

(1) V (G̃) = V (G) ∪ V (◦G),
(2) E(G̃) = E(G) ∪ E(◦G) ∪ {{w, ◦w} | w ∈ Sn}, where the label on the edge

{w, ◦w} is tw(d+1) − tw(d),
see Figure 3.

As a labeled graph, G̃ is considered as blowing up G+ along the subgraph G− (cf.
[11, Example 7]). Note that G, ◦G, and G− are full subgraphs of G̃. We denote

τ = (d+ 1, d) ∈ Sn
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123◦123

321◦321

213

◦213

231

◦231

132

◦132

312

◦312

Figure 3. Labeled graph G̃ with emphasized 4-gons when h =
(2, 3, 3) and d = 2.

in the following.

Lemma 4.1. The map Φ: G → ◦G sending w ∈ V (G) to ◦wτ ∈ V (◦G) gives a bijection
between their edges preserving the labels, so G and ◦G are isomorphic as labeled graphs.

Proof. Noting (i, j)τ = τ(τ(i), τ(j)), one can easily check that {w,w(i, j)} is an edge
of G if and only if {◦wτ, ◦w(i, j)τ} is an edge of ◦G and that the label on the edge
{◦wτ, ◦w(i, j)τ} of ◦G is tw(i) − tw(j) which agrees with the label on {w,w(i, j)} of G.
This proves the lemma. □

Unfortunately, G̃ is not a GKM graph of any GKM manifold since G̃ is not 2-
independent. Indeed, the four edges

{w,wτ}, {◦w, ◦wτ}, {w, ◦w}, {wτ, ◦wτ},

which form a 4-gon, have the same label tw(d+1) − tw(d) for each w ∈ Sn, see Figure
3. We shall assign G̃ an additional data. It is a map s : V (G̃) → {±1} defined by

s(w) = +1, s(◦w) = −1 for any w ∈ Sn.

The geometrical meaning of this sign is explained in Appendix A.

Definition 4.2. The equivariant cohomology ring of the pair (G̃, s) is defined as fol-
lows. Let Kw be the 4-gon with vertex set {w, ◦w,wτ, ◦wτ}. Then

H∗
T (G̃, s) =

f ∈ H∗
T (G̃)

∑
v∈V (Kw)

s(v)f(v) ≡ 0 mod (tw(d) − tw(d+1))2 ∀w ∈ Sn

 .

In other words, H∗
T (G̃, s) consists of all f ∈ H∗

T (G̃) satisfying

(4.1) f(w) − f(◦w) + f(wτ) − f(◦wτ) ≡ 0 mod (tw(d+1) − tw(d))2,

for any w ∈ Sn.

The dot actions on H∗
T (◦G) and H∗

T (G̃, s) are defined in the same way as that on
H∗

T (G), that is, (σ · f)(◦w) = σ(f(◦σ−1w)) for σ ∈ Sn.
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Let xi be an element of Map(Sn ∪ ◦Sn,C[t1, . . . , tn]) defined by

xi(◦wτ) = xi(w) = tw(i)

for w ∈ Sn. Then xi ∈ H∗
T (G̃, s). We write xi also for the restriction of xi onto

G or ◦G. On G, xi is the equivariant Euler class of the tautological line bundle
{(V•, v) v ∈ Vi/Vi−1} over X(h).

We consider the following four maps. We show in Lemma 4.3 below that the image
of each map is contained in H∗

T (G̃, s).

(1) φ : H∗
T (◦G) → H∗

T (G̃, s) is an H∗(BT )-algebra map defined by

φ(f)(w) := f(◦wτ), φ(f)(◦w) := f(◦w).

(2) ψ! : H∗−2
T (G) → H∗

T (G̃, s) is an H∗(BT )-module map defined by

ψ!(f)(w) := ((xd+1 − xd)f)(w), ψ!(f)(◦w) := 0.

(3) η : H∗
T (G+) → H∗

T (G̃, s) is an H∗(BT )-algebra map defined by

η(f)(w) = η(f)(◦w) := f(w).

(4) ρ! : H∗−2
T (G−) → H∗

T (G̃, s) is an H∗(BT )-module map defined by

ρ!(f)(w) := ((xd − xd0)f)(w), ρ!(f)(◦w) := ((xd+1 − xd0)f)(w).

One can easily check that all the maps above commute with the dot action.

Lemma 4.3. The images of all the four maps above are contained in H∗
T (G̃, s).

Proof. E(G̃) consists of three classes E(G), E(◦G), and {{w, ◦w} | w ∈ Sn}. We check
the congruence relation in (3.1) for each class, and the congruence relation (4.1).

(1) The congruence relation in (3.1) for E(G) follows from Lemma 4.1 and is
obvious for E(◦G) since f ∈ H∗

T (◦G). As for {w, ◦w}, we have

φ(f)(w) − φ(f)(◦w) = f(◦wτ) − f(◦w) ≡ 0 mod (tw(d+1) − tw(d))

because f ∈ H∗
T (◦G) and τ = (d+ 1, d). The congruence relation (4.1) follows

from

φ(f)(w)−φ(f)(◦w)+φ(f)(wτ)−φ(f)(◦wτ) = f(◦wτ)−f(◦w)+f(◦w)−f(◦wτ) = 0.

(2) The congruence relation in (3.1) for E(G) and {w, ◦w} is obvious and that for
E(◦G) is trivial. The congruence relation (4.1) follows from

ψ!(f)(w) − ψ!(f)(◦w) + ψ!(f)(wτ) − ψ!(f)(◦wτ)
= (tw(d+1) − tw(d))f(w) + (twτ(d+1) − twτ(d))f(wτ)
≡ (tw(d+1) − tw(d))(f(w) − f(wτ)) ≡ 0 mod (tw(d+1) − tw(d))2,

where the last congruence relation holds because f ∈ H∗
T (G) and τ = (d+1, d).

(3) The congruence relations in (3.1) and (4.1) are obvious from the definition of
η(f).

(4) The congruence relations in (3.1) for E(G) ∖ {w,w(d0, d)} and E(◦G) ∖
{◦w, ◦w(d0, d + 1)} are easily checked as in the case of ψ!. Those for
{w,w(d0, d)} and {◦w, ◦w(d0, d + 1)} are obvious by the definition of ρ!. As
for {w, ◦w}, we have

ρ!(f)(w) − ρ!(f)(◦w) = (tw(d) − tw(d0))f(w) − (tw(d+1) − tw(d0))f(w)
= (tw(d) − tw(d+1))f(w) ≡ 0 mod (tw(d+1) − tw(d)).
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The congruence relation (4.1) follows from

ρ!(f)(w) − ρ!(f)(◦w) + ρ!(f)(wτ) − ρ!(f)(◦wτ)
= (tw(d) − tw(d+1))f(w) + (twτ(d) − twτ(d+1))f(wτ)
= (tw(d) − tw(d+1))(f(w) − f(wτ)) ≡ 0 mod (tw(d+1) − tw(d))2.

The last congruence relation holds because f ∈ H∗
T (G−) and τ = (d+ 1, d).

□

5. Proof of the modular law for geometric sides
Under the set up in Section 4, we prove the following.

Theorem 5.1. The homomorphisms

φ+ ψ! : H∗
T (◦G) ⊕H∗−2

T (G) → H∗
T (G̃, s), (φ+ ψ!)(f, g) = φ(f) + ψ!(g)

and

η + ρ! : H∗
T (G+) ⊕H∗−2

T (G−) → H∗
T (G̃, s), (η + ρ!)(f+, f−) = η(f+) + ρ!(f−)

are both isomorphisms as Sn-modules.

Since ◦G is isomorphic to G as labeled graphs by Lemma 4.1, we obtain the following
corollary.

Corollary 5.2. There is an isomorphism

H∗(G) ⊕H∗−2(G) ∼= H∗(G+) ⊕H∗−2(G−)

as Sn-modules. Therefore H∗(X(h)) satisfies the modular law.

The rest of this section is devoted to the proof of Theorem 5.1.

Proof of the former part in Theorem 5.1. Clearly φ(H∗
T (◦G)) ∩ ψ!(H∗−2

T (G)) = {0}
and φ,ψ! are injective, so it suffices to show the surjectivity of φ+ ψ!.

Take any element f̃ ∈ H∗
T (G̃, s) and denote its restriction to ◦G by f . Then f ∈

H∗
T (◦G) and f̃ − φ(f) vanishes on V (◦G) by definition of φ. Therefore, there is g ∈

Map(V (G), H∗(BT )) such that

(5.1) (f̃ − φ(f))(w) = (tw(d+1) − tw(d))g(w) for w ∈ V (G) = Sn.

We show that g ∈ H∗−2
T (G). Then (5.1) means that f̃ − φ(f) = ψ!(g), proving the

surjectivity of φ+ ψ!.
We shall check that g satisfies the congruence relation in (3.1) for G. It follows from

(5.1) and the definitions of φ and f that

(5.2) (tw(d+1) − tw(d))g(w) = (f̃ − φ(f))(w) = f̃(w) − f(◦wτ) = f̃(w) − f̃(◦wτ).

Let j < i ⩽ h(j) and set v = w(i, j). We note that since xd and xd+1 ∈ H∗
T (G) and

v = w(i, j), we have

tv(d+1) − tv(d) = xd+1(v) − xd(v)(5.3)
≡ xd+1(w) − xd(w) = tw(d+1) − tw(d) mod (tw(i) − tw(j)).

We also note that

(5.4) f̃(w) − f̃(v) ≡ 0 ≡ f̃(◦wτ) − f̃(◦vτ) mod (tw(i) − tw(j))

Algebraic Combinatorics, Vol. 7 #5 (2024) 1443



T. Horiguchi, M. Masuda & T. Sato

since f̃ ∈ H∗
T (G̃, s) and the labels on {w, v} and {◦wτ, ◦vτ} are the same, namely

tw(i) − tw(j), by Lemma 4.1. Then, it follows from (5.3), (5.2), and (5.4) that

(tw(d+1) − tw(d))(g(w) − g(v)) ≡ (tw(d+1) − tw(d))g(w) − (tv(d+1) − tv(d))g(v)
= f̃(w) − f̃(◦wτ) − (f̃(v) − f̃(◦vτ))
≡ 0 mod (tw(i) − tw(j)).

Since H∗(BT ) is a polynomial ring, the congruence relation above implies

(5.5) g(w) ≡ g(v) mod (tw(i) − tw(j)) when (i, j) ̸= (d+ 1, d).

When (i, j) = (d+ 1, d), we have v = wτ . Then, since (τ(d+ 1), τ(d)) = (d, d+ 1),
we have

(tw(d+1) − tw(d))(g(w) − g(wτ))
= (tw(d+1) − tw(d))g(w) + (twτ(d+1) − twτ(d))g(wτ)
= f̃(w) − f̃(◦wτ) + f̃(wτ) − f̃(◦w) ≡ 0 mod (tw(d+1) − tw(d))2,

where the second identity follows from (5.2) and the last congruence relation follows
from (4.1) for f̃ ∈ H∗

T (G̃, s). Hence we obtain

g(w) ≡ g(wτ) mod (tw(d+1) − tw(d)).

This together with (5.5) shows that g ∈ H∗−2
T (G). □

Proof of the latter part in Theorem 5.1. It is easy to see η(H∗
T (G+))∩ρ!(H∗−2

T (G−)) =
{0} and η, ρ! are injective, so it suffices to prove the surjectivity of η + ρ!.

Take any element f̃ ∈ H∗
T (G̃, s). Since the label on the edge {w, ◦w} is tw(d+1) −

tw(d), there is p ∈ Map(Sn, H
∗(BT )) such that

(5.6) f̃(w) − f̃(◦w) = (tw(d+1) − tw(d))p(w) for w ∈ Sn.

We show that p ∈ H∗
T (G−). The argument is the same as in the former case for g in

(5.1) being in H∗−2
T (G).

For a transposition (i, j) with j < i ⩽ h−(j), we set v = w(i, j) as before. Then,
since f̃ ∈ H∗

T (G̃, s), we have

(5.7) f̃(w) − f̃(v) ≡ 0 ≡ f̃(◦w) − f̃(◦v) mod (tw(i) − tw(j)).

It follows from (5.3), (5.6) and (5.7) that
(tw(d+1) − tw(d))(p(w) − p(v)) ≡ (tw(d+1) − tw(d))p(w) − (tv(d+1) − tv(d))p(v)

= f̃(w) − f̃(◦w) − (f̃(v) − f̃(◦v))
≡ 0 mod (tw(i) − tw(j)).

Therefore,

(5.8) p(w) ≡ p(v) mod (tw(i) − tw(j)) when (i, j) ̸= (d+ 1, d).

When (i, j) = (d+ 1, d), we have v = wτ and it follows from (5.6) and (4.1) for f̃
that

(tw(d+1) − tw(d))(p(w) − p(wτ)) = f̃(w) − f̃(◦w) + f̃(wτ) − f̃(◦wτ)
≡ 0 mod (tw(d+1) − tw(d))2.

Hence we obtain
p(w) ≡ p(wτ) mod (tw(d+1) − tw(d)).

This together with (5.8) shows that p ∈ H∗−2
T (G−).
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Figure 4. Labeled graph G̃Y with emphasized 4-gons when h =
(2, 3, 3) and d = 2.

We shall observe that f̃ + ρ!(p) ∈ η(H∗
T (G+)), which implies the surjectivity of

η + ρ!. It follows from the definition of ρ! that

(f̃ + ρ!(p))(w) = f̃(w) + (tw(d) − tw(d0))p(w),
(f̃ + ρ!(p))(◦w) = f̃(◦w) + (tw(d+1) − tw(d0))p(w)

= f̃(w) − (tw(d+1) − tw(d))p(w) + (tw(d+1) − tw(d0))p(w) (by (5.6))
= f̃(w) + (tw(d) − tw(d0))p(w).

Therefore,

(5.9) (f̃ + ρ!(p))(w) = (f̃ + ρ!(p))(◦w) for any w ∈ Sn.

Moreover, since f̃ + ρ!(p) ∈ H∗
T (G̃, s), f̃ + ρ!(p) restricted to the subgraphs G and ◦G

satisfies the congruence relation for them and hence for G+. This together with (5.9)
shows that f̃ + ρ!(f) ∈ η(H∗

T (G+)), proving the surjectivity of η + ρ!. □

6. The case of twins
In this section we point out how our argument changes for the proof of the modular
law for twins Y (h).

The following remark corresponds to Remark 3.3 and it is sufficient to consider the
modular triple of type (C).

Remark 6.1. The correspondence Tg 7→ TgJ gives a diffeomorphism Y (h) ∼= Y (ht).
In terms of GKM graphs, an edge {w,w(i, j)} corresponds to {ww0, w(i, j)w0}. This
gives an isomorphism between GKM graphs of Y (h) and Y (ht) with a change of the
labels ti − tj 7→ w0(ti − tj) = tn+1−i − tn+1−j . This induces a weakly H∗(BT )-algebra
isomorphism H∗

T (Y (ht)) → H∗
T (Y (h)) which commutes with the dagger action (3.13).

We define labeled graphs ◦GY and G̃Y as follows: the underlying graphs are the
same as in the case of X(h), and the label on each edge is changed from tw(i) − tw(j)
to ti − tj .

Algebraic Combinatorics, Vol. 7 #5 (2024) 1445



T. Horiguchi, M. Masuda & T. Sato

Lemma 6.2. The map Φ: w 7→ ◦wτ gives an isomorphism from GY to ◦GY through
the automorphism τ that exchanges td and td+1. In particular, H∗

T (◦GY ) ∼= H∗
T (GY )

as Sn-modules by f 7→ τ(f ◦ Φ).

In the case of Y (h), s changes to

sY (w) = (−1)l(w), sY (◦w) = (−1)l(w)+1 for any w ∈ Sn,

where l is the length function. Then we have

H∗
T (G̃Y , sY ) =

f ∈ H∗
T (G̃Y )

∑
v∈V (Kw)

sY (v)f(v) ≡ 0 mod (td − td+1)2 ∀w ∈ Sn

 .

In other words, H∗
T (G̃Y , sY ) consists of all f ∈ H∗

T (G̃Y ) satisfying

f(w) − f(◦w) + f(◦wτ) − f(wτ) ≡ 0 mod (td+1 − td)2

for any w ∈ Sn.
In Section 4, we defined 4 maps φ,ψ!, η, ρ!. The necessary changes for them are

replacing x with t and redefining φ(f)(w) := τ(f(◦wτ)). This change arises from the
change of labels. Note that φ is a weakly H∗(BT )-algebra map in this case. Then
all the maps commute with the dagger action. The dagger actions on H∗

T (◦GY ) and
H∗

T (G̃Y , sY ) are defined in the same way as that on H∗
T (GY ), that is, (σ † f)(◦w) =

f(◦σ−1w) for σ ∈ Sn.

Appendix A. Geometrical counterpart
We shall show a geometrical object corresponding to G̃ for geometrical understanding.
It is X̃(h) defined as follows. When V• ∈ X(h+), the dimension of SVd0/(Vd−1 ∩SVd0)
is 1 or 0 since SVd0−1 ⊂ Vh(d0−1) ⊂ Vd−1. In particular, dimSVd0/(Vd−1 ∩ SVd0) = 0
implies SVd0 ⊂ Vd−1 and then V• ∈ X(h−). Hence

X̃(h) = {(V•, l) V• ∈ X(h+), l ∈ P (Vd+1/Vd−1), SVd0 ⊂ l + Vd−1}
is the blow-up of X(h+) along X(h−). Moreover, for (V•, l), the correspondence
(A.1) (V•, l) 7→ (V0 ⊂ V1 ⊂ · · · ⊂ Vd−1 ⊂ l + Vd−1 ⊂ Vd+1 ⊂ · · · ⊂ Vn),

that is, replacing Vd by l + Vd−1 gives a map X̃(h) → X(h) and it is a fiber bundle
with fiber CP 1 since h(d) = h(d + 1). This fiber CP 1 means the direction of a line
Vd/Vd−1 in a plane Vd+1/Vd−1. The torus T acts on X̃(h) naturally and the fixed
point set is

X̃(h)T =
{

(V•(w), l) w ∈ Sn, l = ⟨ew(d)⟩ or ⟨ew(d+1)⟩
}
,

where V•(w) denotes the permutation flag associated with w. We denote the fixed
point (V•(w), ⟨ew(d)⟩) as w and (V•(w), ⟨ew(d+1)⟩) as ◦w in G̃. The 4-gon Kw with
vertex set {w, ◦w,wτ, ◦wτ} in G̃ corresponds to CP 1 × CP 1 in X̃(h) which is the
inverse image of {V• | Vk = Vk(w) for k ̸= d} = CP 1 ⊂ X(h) under (A.1). See Figure
5, and note that

• taking V• = V•(w) or V•(wτ) leads us to {0,∞}×CP 1 which connects w with
◦w and wτ with ◦wτ ,

• taking l = ⟨ew(d)⟩ or ⟨ew(d+1)⟩ leads us to CP 1 × {0,∞} which connects w
with ◦wτ and wτ with ◦w,

• taking l = Vd/Vd−1 or (Vd/Vd−1)⊥ leads us to the “diagonal” CP 1’s which
connect w with wτ and ◦w with ◦wτ .

This geometrical situation warrants the signs of vertices in (4.1).
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l = ⟨ew(d)⟩
(V•(w), ⟨ew(d)⟩) ↔ w

(V•(w), ⟨ew(d+1)⟩) ↔ ◦w

wτ ↔ (V•(wτ), ⟨ewτ(d)⟩)

◦wτ ↔ (V•(wτ), ⟨ewτ(d+1)⟩)
= ew(d)

Figure 5. Kw and the geometrical counterpart.

Remark A.1. The labeled graph G̃Y corresponds to the blow-up Ỹ (h) of Y (h+) along
Y (h−), where Kiem and Lee write Y (h) as Yh and Ỹ (h) as Ỹh in [14]. See [14, (4.10)
and (4.12)] for CP 1 × CP 1 in Ỹ (h) to warrant sY in Section 6.

Remark A.2. At the end of this appendix, we mention an interesting phenomenon.
Recall that we have a fiber bundle

CP 1 → X̃(h) → X(h).

On the other hand, according to Kiem and Lee [14], there is a “reverse” fiber bundle

Y (h) → Ỹ (h) → CP 1.

These fibrations can be described as homomorphisms of the corresponding labeled
graphs. A graph homomorphism may collapse an edge to a vertex. Note that, for
f ∈ H∗

T (G̃), we have

f(w) − f(◦wτ) = f(w) − f(wτ) + f(wτ) − f(◦wτ) ≡ 0 mod (tw(d+1) − tw(d)).

In this remark, we redefine G̃ so that it has additional edges {{w, ◦wτ} | w ∈ Sn} with
label tw(d+1) − tw(d). This modification does not change its (equivariant) cohomology
ring. The labeled graph homomorphism corresponding to X̃(h) → X(h) defined by
(A.1) is given by

p : G̃ → G, p(w) = p(◦wτ) = w

with a fiber GKM graph which is the induced labeled subgraph on {w, ◦wτ} (see
Figure 5). The fiber is the GKM graph of CP 1 = P (⟨ew(d), ew(d+1)⟩). On the other
hand, let Γτ be the GKM graph of CP 1 = P (⟨ed, ed+1⟩) with vertices 0 and ∞. Then
we have

q : G̃Y → Γτ , q(w) = 0, q(◦w) = ∞
with a fiber GKM graph GY

∼= ◦GY .

Appendix B. Unicellular LLT polynomials
It is known that unicellular LLT polynomials satisfy the modular law. For example,
see [4, Proposition 18]. We give an elementary proof for readers’ convenience.

Theorem B.1. Unicellular LLT polynomials satisfy the modular law.

Proof. Let 1 ⩽ d0 < d < n and h be a Hessenberg function which satisfies the
condition (C), that is, h(d) = h(d + 1) and h−1(d) = {d0}. Then h− and h+ are as
follows

h−(j) =
{
d− 1 (j = d0)
h(j) (j ̸= d0)

and h+(j) =
{
d+ 1 (j = d0)
h(j) (j ̸= d0)

.
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For this modular triple (h−, h, h+), what we have to show is

(B.1) LLTh+(q) − LLTh(q) = q(LLTh(q) − LLTh−(q)).

Let C = C(Gh−) be the set of all colorings of Gh− , that is, all maps [n] → P. Then
C is decomposed into the following four subsets:

• C<< = {κ ∈ C κ(d0) < κ(d), κ(d0) < κ(d+ 1)}
• C<⩾ = {κ ∈ C κ(d0) < κ(d), κ(d0) ⩾ κ(d+ 1)}
• C⩾< = {κ ∈ C κ(d0) ⩾ κ(d), κ(d0) < κ(d+ 1)}
• C⩾⩾ = {κ ∈ C κ(d0) ⩾ κ(d), κ(d0) ⩾ κ(d+ 1)}.

Let
Asc−(κ) =

{
{i, j} ∈ E(Gh−) j < i, κ(j) < κ(i)

}
.

For a coloring κ of Gh− , we write asc−(κ) instead of asc(κ) in Appendices to avoid
confusions. By definition

asc−(κ) = |Asc−(κ)|.

Note that {d+ 1, d} is an edge of Gh− and then
• κ ∈ C<⩾ ⇒ κ(d) > κ(d+ 1) ⇔ {d+ 1, d} ̸∈ Asc−(κ) and
• κ ∈ C⩾< ⇒ κ(d) < κ(d+ 1) ⇔ {d+ 1, d} ∈ Asc−(κ).

Let τ = (d + 1, d) ∈ Sn. For a coloring κ of Gh− , the composition κ ◦ τ is also a
coloring of Gh− . Then the composition with τ gives a bijection C<⩾ → C⩾<. When
e ̸= d, d+ 1, we have

{d, e} ∈ Asc−(κ) ⇔ {d+ 1, e} ∈ Asc−(κ ◦ τ)

and
{d+ 1, e} ∈ Asc−(κ) ⇔ {d, e} ∈ Asc−(κ ◦ τ).

Hence, for κ ∈ C<⩾, we have

(B.2) asc−(κ) + 1 = asc−(κ ◦ τ)

since {d + 1, d} ̸∈ Asc−(κ) and {d + 1, d} ∈ Asc−(κ ◦ τ). Since the subscripts of the
decomposition of C corresponds to the ascents of the edges {d, d0} and {d + 1, d0}
which are not contained in Gh− , we have

LLTh+(q) = q2
∑

κ∈C<<

zκq
asc−(κ) + q

∑
κ∈C<⩾

zκq
asc−(κ)

+ q
∑

κ∈C⩾<

zκq
asc−(κ)+

∑
κ∈C⩾⩾

zκq
asc−(κ),

LLTh(q) = q
∑

κ∈C<<

zκq
asc−(κ) + q

∑
κ∈C<⩾

zκq
asc−(κ)

+
∑

κ∈C⩾<

zκq
asc−(κ)+

∑
κ∈C⩾⩾

zκq
asc−(κ),

LLTh−(q) =
∑

κ∈C<<

zκq
asc−(κ) +

∑
κ∈C<⩾

zκq
asc−(κ)

+
∑

κ∈C⩾<

zκq
asc−(κ)+

∑
κ∈C⩾⩾

zκq
asc−(κ).
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Now we compute each side of (B.1):

LLTh+(q) − LLTh(q) = (q2 − q)
∑

κ∈C<<

zκq
asc−(κ) + (q − 1)

∑
κ∈C⩾<

zκq
asc−(κ),

LLTh(q) − LLTh−(q) = (q − 1)
∑

κ∈C<<

zκq
asc−(κ) + (q − 1)

∑
κ∈C<⩾

zκq
asc−(κ).

By (B.2) and the bijection C<⩾ → C⩾<, we have

(B.3)
∑

κ∈C<⩾

zκq
asc−(κ) =

∑
κ∈C<⩾

zκq
asc−(κ◦τ)−1 = 1

q

∑
κ∈C⩾<

zκq
asc−(κ).

This shows (B.1).
The same argument shows the modular relation for modular triples of type (R). □

Remark B.2. Our proof is in the same way as Alexandersson’s proof for [4, Proposi-
tion 18] in essential.

Appendix C. Chromatic symmetric functions
We also give an elementary, direct proof of the modular law for csfh(q). As far as we
know, other proofs of the modular law for csfh(q) use the modular law for LLTh(q)
and the relation between csfh(q) and LLTh(q) by [7, Proposition 3.5].

Theorem C.1. Chromatic symmetric functions satisfy the modular law.

Proof. Let d, d0, h, h−, and h+ be the same ones in the the proof of Theorem B.1.
Then what we have to show is

(C.1) csfh+(q) − csfh(q) = q(csfh(q) − csfh−(q)).

Note that {d + 1, d} is an edge of Gh− . Let C = PC(Gh−) be the set of all proper
colorings of Gh− . Then C is decomposed into the following nine subsets.

• C<< = {κ ∈ C κ(d0) < κ(d), κ(d0) < κ(d+ 1)}
• C<= = {κ ∈ C κ(d0) < κ(d), κ(d0) = κ(d+ 1)} , κ ∈ C<= ⇒ κ(d) > κ(d+1)
• C<> = {κ ∈ C κ(d0) < κ(d), κ(d0) > κ(d+ 1)} , κ ∈ C<> ⇒ κ(d) > κ(d+1)
• C=< = {κ ∈ C κ(d0) = κ(d), κ(d0) < κ(d+ 1)} , κ ∈ C=< ⇒ κ(d) < κ(d+1)
• C== = {κ ∈ C κ(d0) = κ(d), κ(d0) = κ(d+ 1)} = ∅
• C=> = {κ ∈ C κ(d0) = κ(d), κ(d0) > κ(d+ 1)} , κ ∈ C=> ⇒ κ(d) > κ(d+1)
• C>< = {κ ∈ C κ(d0) > κ(d), κ(d0) < κ(d+ 1)} , κ ∈ C>< ⇒ κ(d) < κ(d+1)
• C>= = {κ ∈ C κ(d0) > κ(d), κ(d0) = κ(d+ 1)} , κ ∈ C>= ⇒ κ(d) < κ(d+1)
• C>> = {κ ∈ C κ(d0) > κ(d), κ(d0) > κ(d+ 1)}

Some proper colorings of Gh− are naturally considered as proper colorings of Gh or
Gh+ , that is,

the set of proper colorings of Gh is C<< ⊔ C<= ⊔ C<> ⊔ C>< ⊔ C>= ⊔ C>>

and the set of proper colorings of Gh+ is C<< ⊔ C<> ⊔ C>< ⊔ C>>.
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Then we have
csfh+(q) − csfh(q) = (q2 − q)

∑
κ∈C<<

zκq
asc−(κ) − q

∑
κ∈C<=

zκq
asc−(κ)(C.2)

+ (q − 1)
∑

κ∈C><

zκq
asc−(κ) −

∑
κ∈C>=

zκq
asc−(κ)

csfh(q) − csfh−(q) = (q − 1)
∑

κ∈C<<

zκq
asc−(κ) + (q − 1)

∑
κ∈C<=

zκq
asc−(κ)(C.3)

+ (q − 1)
∑

κ∈C<>

zκq
asc−(κ) −

∑
κ∈C=<

zκq
asc−(κ) −

∑
κ∈C=>

zκq
asc−(κ).

By a similar argument to that for (B.3) and the bijection C<= → C=< given by the
composition with τ , we have

q
∑

κ∈C<=

zκq
asc−(κ) −

∑
κ∈C=<

zκq
asc−(κ) = 0.

Hence these terms in (C.3) are cancelled and we obtain

csfh(q) − csfh−(q) = (q − 1)
∑

κ∈C<<

zκq
asc−(κ) −

∑
κ∈C<=

zκq
asc−(κ)

+ (q − 1)
∑

κ∈C<>

zκq
asc−(κ) −

∑
κ∈C=>

zκq
asc−(κ).

(C.4)

Then we obtain (C.1) from (C.2) and (C.4) by the two bijections C<> → C>< and
C=> → C>= given by the composition with τ .

The same argument shows the modular relation for modular triples of type (R). □
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