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On the Kronecker product of Schur
functions of square shapes

Chenchen Zhao

Abstract Motivated by the Saxl conjecture and the tensor square conjecture, which states
that the tensor squares of certain irreducible representations of the symmetric group contain all
irreducible representations, we study the tensor squares of irreducible representations associated
with square Young diagrams. We give a formula for computing Kronecker coefficients, which
are indexed by two square partitions and a three-row partition, specifically one with a short
second row and the smallest part equal to 1. We also prove the positivity of square Kronecker
coefficients for particular families of partitions, including three-row partitions and near-hooks.

1. Introduction
Given partitions λ, µ ⊢ n, we can decompose the internal product of Schur functions
as

sλ ∗ sµ =
∑
ν⊢n

g(λ, µ, ν)sν ,

where g(λ, µ, ν) are the Kronecker coefficients. The Kronecker coefficients can also be
interpreted as the multiplicities of an irreducible representation of Sn in the tensor
product of irreducible representations of Sn corresponding to λ and µ. Therefore, the
Kronecker coefficients are certainly non-negative integers, which naturally suggests
that there may be a combinatorial interpretation of the coefficients. The problem of
finding a non-negative combinatorial interpretation for the Kronecker coefficients was
explicitly stated by Stanley in 2000 ([25] Problem 10) as a major open problem in
Algebraic Combinatorics. The Kronecker coefficients have recently gained prominence
within the context of algebraic complexity theory, particularly in the realm of Geo-
metric Complexity Theory (GCT). However, as addressed by Panova in [20], despite
the increasing interest in the problem, little progress has been made: The Kronecker
product problem is still poorly understood, and deriving an explicit combinatorial
formula to solve the Kronecker product remains as an outstanding open problem in
the field of Algebraic Combinatorics.

The number of irreducible representations of the symmetric group Sn is equal
to the number of conjugacy classes, which is the number of integer partitions of n.
Given µ ⊢ n, let Sµ denote the Specht module of the symmetric group Sn, indexed
by partition µ. It is worth noting that these Specht modules provide us with a way to
study the irreducible representations, with each representation being uniquely indexed
by an integer partition (see e.g. [23]).
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In [8], Heide, Saxl, Tiep, and Zalesski proved that with a few exceptions, every
irreducible character of a simple group of Lie type is a constituent of the tensor square
of the Steinberg character. They conjectured that for n ⩾ 5, there is an irreducible
character χ of An, whose tensor square χ ⊗ χ contains every irreducible character as
a constituent. The following is the symmetric group analog of this conjecture:
Conjecture 1.1 (Tensor Square Conjecture). For every n except 2,4,9, there exists
an irreducible representation V of the symmetric group Sn such that the tensor square
V ⊗ V contains every irreducible representation of Sn as a summand with positive
multiplicity. In terms of the correspondence of partitions, there exists a partition λ ⊢ n
such that the Kronecker coefficient g(λ, λ, µ) is positive for any µ ⊢ n.

In 2012, Jan Saxl conjectured that all irreducible representations of Sn over C occur
in the decomposition of the tensor square of irreducible representation corresponding
to the staircase shape partition [19]. This conjecture is as follows:
Conjecture 1.2 (Saxl Conjecture). Let ρm denote the staircase partition of size
n :=

(
m+1

2
)
. Then g(ρm, ρm, µ) > 0 for every µ ⊢ n.

Previous work made progress towards the Tensor Square Conjecture, and specifi-
cally towards the Saxl Conjecture, see e.g. [19, 9, 15, 2, 12]. Attempts have also been
made to understand the Kronecker coefficients from different aspects: combinatorial
interpretations for some known special shapes, see e.g. [21, 22, 1, 3, 14]; from the
perspective of the computational complexity of computing or deciding positivity of
the Kronecker coefficients, see e.g. [4, 18, 10].

In [2], Bessenrodt, Bowman, and Sutton proposed a generalized Saxl Conjecture
for arbitrary n ∈ N related to p-cores. In 2020, Bessenrodt and Panova made the fol-
lowing conjecture concerned with the shape of partitions satisfying the tensor square
conjecture:
Conjecture 1.3 ([20], Bessenrodt–Panova 2020). For every n, there exists k(n) such
that the tensor square of every self-conjugate partition whose Durfee size is at least
k(n) and is not the k × k partition satisfies the Tensor Square Conjecture.

In [19], Pak, Panova, and Vallejo suggested that caret partitions may satisfy the
tensor square conjecture. Many of the arguments on staircase shape could also be
adapted for caret shapes and chopped-square shapes.

Most approaches to proving the positivity of a certain family of Kronecker coeffi-
cients use the semigroup property, see Section 2, which relies on breaking the partition
triple into smaller partitions. The minimal elements in this procedure are the rect-
angular shapes, and thus understanding Kronecker positivity in general starts from
understanding Kronecker coefficients of rectangular shapes.

In this paper, we study the tensor squares of irreducible representations corre-
sponding to square Young diagrams, denoted □m. We show that the Kronecker
coefficients g(□m,□m, µ) in the case where □m = (mm) has square shape and
µ = (m2 − k, k − 1, 1) vanish if and only if k ⩽ 4 when m ⩾ 5. We give an explicit
formula for g(□m,□m, µ) when µ = (m2 − k, k − 1, 1) has a short second row:
Theorem 1.4 (Theorem 3.5). Let f(k) be the number of partitions of k with no parts
equal to 1 or 2. Let ℓ1(α) denote the number of different parts of a partition α. Then
for 2 ⩽ k ⩽ m,

g(□m,□m, (m2 − k, k − 1, 1)) =
∑

α⊢k−1
α1=α2

ℓ1(α) − f(k).

We also study the positivity of square Kronecker coefficients for certain three-row
partitions and near-hooks. We state our main results as follows:
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Theorem 1.5 (Corollary 3.6, 3.8, Theorem 4.3, 4.12). For every integer m ⩾ 7, let
µ ⊢ m2 be a partition of length at most 3, we have g(□m,□m, µ) > 0 if and only if
µ /∈ {(m2 − 3, 2, 1), (m2 − 4, 3, 1), (m2 − 2, 1, 1), (m2 − 1, 1)}.

Theorem 1.6 (Corollary 5.9). Let m be an integer and assume that m ⩾ 20. Define
near-hook partitions µi(k, m) := (m2 − k − i, i, 1k). Then for every i ⩾ 2, we have
g(□m,□m, µi(k, m)) > 0 for all k ⩾ 0 except in the following cases: (1) i = 2 with
k = 1 or k = m2 − 5, (2) i = 3 and k = 1.

Based on our main results, we propose the following conjecture about Kronecker
coefficients of square shapes.

Conjecture 1.7. For every integer m ⩾ 7, let µ ⊢ m2 be a partition of Durfee size
at most 3, then g(□m,□m, µ) = 0 if and only if µ ∈ S or µ′ ∈ S, where

S := {(m2 − 3, 2, 1), (m2 − 4, 3, 1), (m2 − j, 1j) | j ∈ {1, 2, 4, 6}}.

The rest of this paper is structured as follows. In Section 2, we equip the reader
with some required background information and notations. In Section 3, we present
the partitions that do not occur in tensor squares of square partitions. In Section 4 and
Section 5, we present the results on the positivity of square Kronecker coefficients for
certain families of partitions. In Section 6, we will discuss some additional remarks
and related further research. In Appendix A, we provide a list of vanished square
Kronecker coefficients for small side lengths using Sage.

2. Background
2.1. Partitions. A partition λ of n, denoted as λ ⊢ n, is a finite list of weakly
decreasing positive integers a (λ1, . . . , λk) such that

∑k
i=1 λi = n. Given a partition

λ, the size |λ| is defined to be
∑k

i=1 λi. The length of λ is defined to be the number
of parts of the partition and we denote it by ℓ(λ). We use P (n) to denote the set of
all partitions of n.

We associate each partition λ = (λ1, . . . , λk) ⊢ n with a Young diagram, which is a
left justified array of n boxes with λi boxes in row i. Denote by λ′ the conjugate (or
transpose) of a partition λ. For instance, below are the Young diagrams corresponding
to partition λ = (5, 3, 2) and its transpose λ′ = (3, 3, 2, 1, 1).

The Durfee size of a partition λ, denoted by d(λ) is the number of boxes on the main
diagonal of the Young diagram of λ. For the sake of convenience, we will refer to the
irreducible representation corresponding to λ be λ.

Definition 2.1. For m ⩾ 1, we define the square-shaped partition □m ⊢ m2 to be
□m := (mm).

For n ∈ N, we denote the symmetric group on n symbols by Sn. Let λ, µ ⊢ n. We
say that λ dominates µ, denoted by λ ⊵ µ, if

∑j
i=1 λi ⩾

∑j
i=1 µi for all j.

Let pk(a, b) denote the number of partitions of k that fit into an a × b rectangle.
We denote the number of partitions of k that fit into an m × m square by Pk(m).
Note that Pk(m) = pk(m, m).

Given µ ⊢ n, let χµ denote the irreducible character of the symmetric group Sn

and let χµ[α] denote the value of χµ(ω) on any permutation ω of cycle type α. The
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characters can be computed using the Murnaghan-Nakayama Rule (see e.g. [24] for
more details about the rule).

Theorem 2.2 (Murnaghan-Nakayama Rule). We have

χλ[α] =
∑

T

(−1)ht(T ),

summed over all border-strip tableaux of shape λ and type α and ht(T ) is the sum of
the heights of each border-strip minus ℓ(α).

2.2. The Kronecker coefficients. When working over the field C, the Specht
modules are irreducible, and they form a complete set of irreducible representations
of the symmetric group. Polytabloids associated with the standard Young tableaux
form a basis for the Specht modules and hence, the Specht modules can be indexed
by partitions. Given µ ⊢ n, let Sµ denote the Specht module of the symmetric group
Sn, indexed by partition µ (see e.g. [23] for more details on the construction of Specht
modules).

The Kronecker coefficients g(µ, ν, λ) are defined as the multiplicity of Sλ in the
tensor product decomposition of Sµ ⊗ Sν . In particular, for any µ, ν, λ ⊢ n, we can
write

Sµ ⊗ Sν = ⊕λ⊢ng(µ, ν, λ)Sλ.

We can also write
χµχν =

∑
λ⊢n

g(µ, ν, λ)χλ,

and it follows that

g(µ, ν, λ) = ⟨χµχν , χλ⟩ = 1
n!
∑

ω∈Sn

χµ[ω]χν [ω]χλ[ω].

It follows that the Kronecker coefficients have full symmetry over its three parameters
µ, ν, λ ⊢ n. Further, since 1n is the sign representation, we have χµχ1n = χµ′ and
therefore the Kronecker coefficients have the transposition property, namely

g(µ, ν, λ) = g(µ′, ν′, λ) = g(µ′, ν, λ′) = g(µ, ν′, λ′).

2.3. Symmetric functions. For main definitions and properties of symmetric func-
tions, we refer to [24] Chapter 7. Let hλ denote the homogeneous symmetric functions
and sλ denote the Schur functions. The Jacobi-Trudi Identity (see e.g. [24]) is a pow-
erful tool in our work:

Theorem 2.3 (Jacobi-Trudi Identity). Let λ = (λ1, . . . , λn). Then
sλ = det(hλi+j−i)1⩽i,j,⩽n and sλ′ = det(eλi+j−i)1⩽i,j,⩽n.

Let cλ
µν , where |λ| = |µ| + |ν|, denote the Littlewood-Richardson coefficients. Us-

ing the Hall inner product on symmetric functions, one can define the Littlewood-
Richardson coefficients as

cλ
µν = ⟨sλ, sµsν⟩ = ⟨sλ/µ, sν⟩.

Namely, the Littlewood-Richardson coefficients are defined to be the multiplicity of
sλ in the decomposition of sµ ·sν . It is well-known that the Littlewood-Richardson co-
efficients have a combinatorial interpretation in terms of certain semistandard Young
tableaux (see e.g. [24, 23]).

Using the Frobenius map, one can define the Kronecker product of symmetric
functions as

sµ ∗ sν =
∑
λ⊢n

g(µ, ν, λ)sλ.
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In [13], Littlewood proved the following identity, which is used frequently in our
calculations:

Theorem 2.4 (Littlewood’s Identity). Let µ, ν, λ be partitions. Then

sµsν ∗ sλ =
∑

γ⊢|µ|

∑
δ⊢|ν|

cλ
γδ(sµ ∗ sγ)(sν ∗ sδ),

where cλ
γδ is the Littlewood-Richardson coefficient.

Another useful tool to simplify our calculations is Pieri’s rule:

Theorem 2.5 (Pieri’s rule). Let µ be a partition. Then

sµs(n) =
∑

λ

sλ,

summed is over all partitions λ obtained from µ by adding n boxes, with no two added
elements in the same column.

2.4. Semigroup property. Semigroup property, which was proved in [5], has been
used extensively to prove the positivity of some families of partitions.

For two partitions λ = (λ1, λ2, . . . λk) and µ = (µ1, µ2, . . . µl) with k ⩽ l, the
horizontal sum of λ and µ is defined as λ+H µ = µ+H λ = (λ1 +µ1, λ2 +µ2, . . . , λk +
µk, µk+1, . . . , µl). The vertical sum of two partitions can be defined analogously, by
adding the column lengths instead of row lengths. We define the vertical sum λ +V µ
of two partitions λ and µ to be (λ′ +H µ′)′.

Theorem 2.6 (Semigroup Property [5]). If g(λ1, λ2, λ3) > 0 and g(µ1, µ2, µ3) > 0,
then
g(λ1 +H µ1, λ2 +H µ2, λ3 +H µ3) > 0.

Corollary 2.7. If g(λ1, λ2, λ3) > 0 and g(µ1, µ2, µ3) > 0, then g(λ1 +V µ1, λ2 +V

µ2, λ3 +H µ3) > 0.

Note that by induction, we can extend the semigroup property to an arbitrary
number of partitions and a modified version of the semigroup property allows us to
use an even number of vertical additions.

3. Missing partitions in tensor squares of square partitions
In this section, we will show the absence of partitions in the tensor squares of square
partitions by discussing the occurrences of two special families of partitions. Note
that it follows immediately that the square shape partitions do not satisfy the Tensor
Square Conjecture.

3.1. Near two-row partitions (m2 −k, k −1, 1). Recall that we let Pk(m) denote
the number of partitions of k that fit into an m × m square and let n = m2. The
following lemma is proved in [16], see also [28].

Lemma 3.1 ([16, 28]). For 1 ⩽ k ⩽ n, g(□m,□m, (n − k, k)) = Pk(m) − Pk−1(m).

Let λ∗ denotes the mn-complement of λ with m = λ1 and n = λ′
1. We define a

π-rotation of a partition λ is the shape obtained by rotating λ by 180◦. Following
Thomas and Yong ([27]), let the mn-shortness of λ denote the length of the shortest
straight line segment of the path of length m + n from the southwest to the northeast
corner of m × n rectangle that separates λ from the π-rotation of λ∗.
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Examples. Consider λ = (8, 4, 2, 2, 1), m = λ1 = 8 and n = λ′
1 = 5. Then λ∗ =

(7, 6, 6, 4). Figure 1 is a demonstration for the path of length m+n from the southwest
to the northeast corner of a 8 × 5 rectangle that separates (8, 4, 2, 2, 1) from the
π-rotation of (7, 6, 6, 4). The shortest straight line segment of the blue path is 1.
Therefore, the 85-shortness of (8, 4, 2, 2, 1) is 1.

Figure 1. A path of length 8+5 from the southwest to the northeast
corner of a 8×5 rectangle separating (8, 4, 2, 2, 1) from the π-rotation
of (7, 6, 6, 4)

Now consider λ = (8, 8, 8, 3, 3), m = λ1 = 8 and n = λ′
1 = 5. Then λ∗ = (5, 5).

From Figure 2, we can see the lengths of straight line segments of the blue path are
2, 2, 6, 3, and hence the shortest straight line segment of the blue path is 2. Therefore,
the 85-shortness of (8, 8, 8, 3, 3) is 2.

Figure 2. A path of length 8+5 from the southwest to the northeast
corner of a 8×5 rectangle separating (8, 8, 8, 3, 3) from the π-rotation
of (5, 5)

For the following theorem, jointly due to Gutschwager, Thomas and Yong, we
follow [6]:

Theorem 3.2 ([7, 27]). The basic skew Schur function sλ/µ is multiplicity-free if and
only if at least one of the following is true:

(i) µ or λ∗ is the zero partition 0;
(ii) µ or λ∗ is a rectangle of mn-shortness 1;
(iii) µ is a rectangle of mn-shortness 2 and λ∗ is a fat hook (or vice versa);
(iv) µ is a rectangle and λ∗ is a fat hook of mn-shortness 1 (or vice versa);
(v) µ and λ∗ are rectangles;

where λ∗ denotes the mn-complement of λ with m = λ1 and n = λ′
1.

Corollary 3.3. Let λm = (mm−1, m − 1) denote the chopped square partition of size
m2 −1. For every pair of partitions β and µ such that |β|+ |µ| = m2 −1, cλm

βµ ∈ {0, 1}.

Proof. Let λ∗
m denote the mm-complement of λm. Then λ∗

m = (1). The lengths of
straight line segments of the path from the southwest to the northeast corner that
separates λm from λ∗

m are m − 1, 1, 1, m − 1, and therefore the mm-shortness of λ∗
m is

1. Let β ⊢ k ⩽ m2 − 1. Then, sλm/β is a basic skew Schur function as the difference
between consecutive rows in λm is at most 1. By Theorem 3.2 (i), sλm/β is multiplicity-
free, which implies that cλm

βµ ∈ {0, 1} for any µ ⊢ m2 − 1 − k. □
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Lemma 3.4. Let ℓ1(α) denote the number of different parts of partition α. For 1 ⩽
k ⩽ m, ∑

β⊢k−1

∑
µ⊢m2−k

cλm

βµ = Pk−1(m) +
∑

β⊢k−1
ℓ1(β).

Proof. Let 1 ⩽ k ⩽ m. Since cλm

βµ = 1 > 0, partitions β, µ ⊆ λm ⊆ □m. Let β∗

and λ∗
m denote the complements of β and λm inside the m × m square, respectively.

Since cλm

βµ depends only on µ and the skew partition λm/β, and the skew partitions
λm/β and β∗/λ∗

m are identical when rotated, we have cλm

βµ = cβ∗

λ∗
mµ = cβ∗

(1)µ. By the
Pieri’s rule (Theorem 2.5), cβ∗

(1)µ = 1 if and only if µ is a partition obtained from β∗

by removing 1 element. Since the number of ways to obtain a partition by removing
an element from β∗ is ℓ1(β∗), we have∑

β⊢k−1

∑
µ⊢m2−k

cλm

βµ =
∑

β⊢k−1
β⊆λm

∑
µ⊢m2−k

cβ∗

(1)µ =
∑

β⊢k−1
β⊆λm

ℓ1(β∗).

Note that ℓ1(β∗) = ℓ1(β) − 1 if β1 = ℓ(β) = m; ℓ1(β∗) = ℓ1(β) if exactly one of
β1, ℓ(β) is m; otherwise, ℓ1(β∗) = ℓ1(β) + 1. Hence, when 1 ⩽ k ⩽ m, we have∑

β⊢k−1
β⊆λm

ℓ1(β∗) = Pk−1(m) +
∑

β⊢k−1
ℓ1(β).

□

Proposition 3.5 (near two-row partitions). Let 2 ⩽ k ⩽ m. Let f(k) denote the
number of partitions of k with no parts equal to 1 or 2, and ℓ1(α) denote the number
of different parts of partition α. Then

g(□m,□m, (n − k, k − 1, 1)) =
∑

α⊢k−1
α1=α2

ℓ1(α) − f(k).

Proof. Letting sλ denote the Schur function indexed by a partition λ, we have

g(□m,□m, (n − k, k − 1, 1)) =
〈
s□m

, s(n−k,k−1,1) ∗ s□m

〉
.

Observe that, by Pieri’s rule (Theorem 2.5), we have

s(n−k,k−1)s(1) = s(n−k,k−1,1) + s(n−k+1,k−1) + s(n−k,k).

Rewriting the above identity gives us that g(□m,□m, (n − k, k − 1, 1)) can be inter-
preted as〈
s□m

, (s(n−k,k−1)s(1)) ∗ s□m

〉
−
〈
s□m

, s(n−k+1,k−1) ∗ s□m

〉
−
〈
s□m

, s(n−k,k) ∗ s□m

〉
.

We first note that the last two terms give two Kronecker coefficients g(□m,□m, (n −
k + 1, k − 1)) and g(□m,□m, (n − k, k)). Notice that by Lemma 3.1, we have

g(□m,□m, (n − k + 1, k − 1)) = Pk−1(m) − Pk−2(m)

and
g(□m,□m, (n − k, k)) = Pk(m) − Pk−1(m).

By Littlewood’s Identity (Theorem 2.4),

(s(n−k,k−1)s(1)) ∗ s□m
=
∑

γ⊢n−1
c□m

γ,(1)(s(n−k,k−1) ∗ sγ)(s(1) ∗ s(1))

= (s(n−k,k−1) ∗ sλm)(s(1)),
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as c□m

γ,(1) = 1 if γ = λm and c□m

γ,(1) = 0 for all the other partitions of size n − 1. Taking
inner product with s□m

on both sides, we have〈
s□m

, (s(n−k,k−1)s(1)) ∗ s□m

〉
=
〈
s□m

, (s(n−k,k−1) ∗ sλm)(s(1))
〉

=
〈
s□m∖(1), (s(n−k,k−1) ∗ sλm)

〉
= ⟨sλm , s(n−k,k−1) ∗ sλm⟩.

By Littlewood’s Identity (2.4), Jacobi-Trudi Identity (2.3), together with Corollary
3.3, cλm

µβ ∈ {0, 1}, we have〈
sλm

, s(n−k,k−1) ∗ sλm

〉
=
∑

β⊢k−1

∑
µ⊢n−k

(cλm

µβ )2 −
∑

α⊢k−2

∑
γ⊢n−k+1

(cλm
αγ )2

=
∑

β⊢k−1

∑
µ⊢n−k

cλm

µβ −
∑

α⊢k−2

∑
γ⊢n−k+1

cλm
αγ .

Putting the pieces together, we then have
g(□m,□m, (n − k, k − 1, 1))

=
〈
sλm , s(n−k,k−1) ∗ sλm

〉
− g(□m,□m, (n − k + 1, k − 1)) − g(□m,□m, (n − k, k))

= ⟨sλm
, s(n−k,k−1) ∗ sλm

⟩ − (Pk−1(m) − Pk−2(m)) − (Pk(m) − Pk−1(m))

=
∑

β⊢k−1

∑
µ⊢n−k

cλm

µβ −
∑

α⊢k−2

∑
γ⊢n−k+1

cλm
αγ − (Pk(m) − Pk−2(m))

= Pk−1(m) +
∑

β⊢k−1
ℓ1(β) −

(
Pk−2(m) +

∑
α⊢k−2

ℓ1(α)
)

− (Pk(m) − Pk−2(m))

=
∑

β⊢k−1
ℓ1(β) −

∑
α⊢k−2

ℓ1(α) − (Pk(m) − Pk−1(m))

=
∑

β⊢k−1
β1=β2

ℓ1(β) +

 ∑
β⊢k−1
β1>β2

ℓ1(β) −
∑

α⊢k−2
ℓ1(α)

− (Pk(m) − Pk−1(m))

=
∑

β⊢k−1
β1=β2

ℓ1(β) +
∑

β⊢k−2
β1=β2

1 − (Pk(m) − Pk−1(m))

=
∑

β⊢k−1
β1=β2

ℓ1(β) −

Pk(m) − Pk−1(m) −
∑

β⊢k−2
β1=β2

1


=

∑
α⊢k−1
α1=α2

ℓ1(α) − f(k).

□

The following result, which provides a necessary and sufficient condition for a near
two-row partition with a short second row to vanish in the tensor square of square
partitions, follows from Theorem 3.5.

Corollary 3.6. Let 2 ⩽ k ⩽ m. Then g(□m,□m, (n − k, k − 1, 1)) = 0 if and only
if k ⩽ 4.

Proof. We can easily verify that
∑

α⊢k−1
α1=α2

ℓ1(α) = f(k) for k ∈ {2, 3, 4}. Then by
Proposition 3.5, we conclude that g(□m,□m, (n − k, k − 1, 1)) = 0 when k ⩽ 4.
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Next, we consider the case when k ⩾ 5. We can establish an injection from the set
of all partitions of k whose parts are at least 3 to the set of partitions of k − 1 whose
first two parts are the same, that is from

S = {β ⊢ k | βi /∈ {1, 2} for all i}
to

T = {α ⊢ k − 1 | α1 = α2}.

This injection is achieved by removing one box from the last row of β ∈ S and taking
the transpose. When k ⩾ 5, it follows that

∑
α⊢k−1
α1=α2

ℓ1(α) > |T | ⩾ |S| = f(k). Hence,
we conclude that g(□m,□m, (n − k, k − 1, 1)) > 0. □

3.2. Hooks. The following results on hook positivity are due to Ikenmeyer and
Panova:

Theorem 3.7 ([11]). Let b ⩾ 7. Assume that m ⩾ b. We have g((mb−k, 1k), b×m, b×
m) > 0 for k ∈ [0, b2 − 1]∖{1, 2, 4, 6, b2 − 2, b2 − 3, b2 − 5, b2 − 7} and is 0 for all other
values of k.

By Theorem 3.7 and results in the previous section, we prove the forward direction
of Conjecture 1.7:

Corollary 3.8. For m ⩾ 7, g(□m,□m, µ) = 0 if µ ∈ S or µ′ ∈ S, where
S = {(m2 − 3, 2, 1), (m2 − 4, 3, 1), (m2 − j, 1j) | j ∈ {1, 2, 4, 6}}.

Proof. It follows directly from Theorem 3.7 and Corollary 3.6. □

4. Constituency of families of partitions of special shapes
In this section, we will discuss the constituency of three families of special shapes
in tensor squares of square partitions, including two-row partitions, near two-row
partitions, and three-row partitions.

4.1. Two-row partitions. The following Theorem shown in [17] is a generalization
of Lemma 3.1 and it tells us how to compute the Kronecker coefficients of the form
g(ml, ml, (lm − k, k)).

Theorem 4.1 ([17]). Let n = lm, τk = (n − k, k), where 0 ⩽ k ⩽ n/2 and set
p−1(l, m) = 0. Then

g(ml, ml, τk) = pk(l, m) − pk−1(l, m).
Furthermore, when l, m ⩾ 8, g(ml, ml, τk) > 0 when k ⩾ 2.

Corollary 4.2. Let m ⩾ 7. For any 1 ⩽ k ⩽ m2 − 2, g(□m,□m, (m2 − k, k)) > 0.

Proof. By direct computation using the formula in Theorem 4.1, we can verify that
the statement holds for m = 7. By strict unimodality of q-binomial coefficients as
shown in [16], we can obtain positivity of the Kronecker coefficients of the form
g(□m,□m, (m2 − k, k)) for every m ⩾ 8. □

4.2. Near two-row partitions. We will first consider the occurrences of near two-
row partitions (m2 − k, k − 1, 1) with a second row longer than m − 1. The following
is one of our main results and is proven by considering different cases depending on
different values of k and the parity of m.

Theorem 4.3. Let m be an integer. For every m ⩾ 5, g(□m,□m, (m2 −k, k−1, 1)) >
0 if and only if k ⩾ 5.

The following is a well-known result on tensor square of 2 × n rectangles from [22]:
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Theorem 4.4 ([22]). The Kronecker coefficient g((n, n), (n, n), µ) > 0 if and only if
either ℓ(µ) ⩽ 4 and all parts even or ℓ(µ) = 4 and all parts odd.

When m is even and 5 ⩽ k ⩽ m2

2 , we decompose □m as □m = (□m−2 +V (m −
2, m − 2)) +H (2m). We can find a horizontal decomposition (m2 − k, k − 1, 1) =
µ1 +H µ2 +H µ3 where µ1 is a three-row partition with the second row longer than 4
and the third row equal to 1, and µ2 and µ3 are partitions of 2m and 2m − 4 with all
parts even. Then by induction and semigroup property, we have:

Proposition 4.5. For every even number m ⩾ 6, g(□m,□m, (m2 − k, k − 1, 1)) > 0
for every m + 1 ⩽ k ⩽ m2

2 .

Proof. For an even integer m ⩾ 6, we can write m = 2r where r ⩾ 3. We shall proceed
by induction on r. Based on computational evidence, we observe that g(□6,□6, (62 −
k, k − 1, 1)) > 0 for every 7 ⩽ k ⩽ 18.

Let r ⩾ 4. Assume the inductive hypothesis that g(□2(r−1),□2(r−1), (4(r − 1)2 −
i, i − 1, 1)) for any 2r − 1 ⩽ i ⩽ 2(r − 1)2. Let 2(r + 1) ⩽ k ⩽ 2r2. We can decompose
the square partition with side length 2r as follows:

□2r =
(
□2(r−1) +V (2r − 2, 2r − 2)

)
+H (22r).

Note that by Theorem 4.4 and the transposition property of Kronecker coefficients,
we obtain that g((22r), (22r), (2(r + a), 2(r − a))) > 0 for any 0 ⩽ a ⩽ r, and g((2r −
2, 2r − 2), (2r − 2, 2r − 2), (2(r − 1 + b), 2(r − 1 − b))) > 0 for any 0 ⩽ b ⩽ r − 1.

Consider the following system of inequalities:
4r2 − k − 2(r + a) ⩾ k − 1 − 2(r − a)
4r2 − k − 2(r + a) − 2(r − 1 + b) ⩾ k − 1 − 2(r − a) − 2(r − 1 − b) ⩾ 1
k − 1 − 2(r − a) − 2(r − 1 − b) ⩾ 5

.

Suppose that 0 ⩽ a ⩽ r, 0 ⩽ b ⩽ r − 1 is a pair of solutions to the system. We define
partition α(a, b) := (4r2 −k−2(r+a)−2(r−1+b), k−1−2(r−a)−2(r−1−b), 1). By
inductive hypothesis, together with Corollary 3.6, g(□2(r−1),□2(r−1), α(a, b)) > 0.
Note that we can decompose the near two-row partition as

(4r2 − k, k − 1, 1) = α(a, b) +H (2(r − 1 + b), 2(r − 1 − b) +H (2(r + a), 2(r − a)).
Then by semigroup property (Theorem 2.6), g

(
□2r,□2r, (4r2 − k, k − 1, 1)

)
> 0. By

the Principle of Mathematical Induction, the statement holds for all even m ⩾ 6.
Hence, it suffices to show the system of inequalities has integral solutions 0 ⩽ a ⩽

r, 0 ⩽ b ⩽ r − 1. By simplifying and rearranging, we can further reduce this system
of inequalities to: {

a ⩽ r2 − k
2 + 1

4
2r + 2 − k

2 ⩽ a + b ⩽ r2 − k
2 + 1

4 .

Notice that when k ⩽ (2r−1)2

2 , the values a = r and b = max{⌈r +2− k
2 ⌉, 0} provide a

feasible solution to the system. When (2r−1)2

2 ⩽ k ⩽ 2r2, the values a = ⌊r2 − k
2 + 1

4 ⌋
and b = 0 provide a feasible solution to the system. □

Example. Let m = 6 and k = 10. Figure 3 illustrates a way to decompose partitions
□6 and (26, 9, 1). Since g(□4,□4, (8, 7, 1)) > 0, g(26, 26, (10, 2)) > 0 by Theorem 4.4
and g((4, 4), (4, 4), (8)) > 0, we conclude that g(□6,□6, (26, 9, 1)) > 0 by semigroup
property.

We will next prove the positivity of g(□m,□m, (m2 − k, k − 1, 1)) when m is odd
using the semigroup property.
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Figure 3. Decomposition of partitions (6, 6, 6, 6, 6, 6) and (26, 9, 1)

Proposition 4.6. For every odd integer m ⩾ 7 and k ⩾ 5 such that k ⩽ (m−1)2+1
2 ,

g(□m,□m, (m2 − k, k − 1, 1)) > 0.

Proof. Let m ⩾ 7 and k ⩾ 5. Note that when k ⩽ (m−1)2+1
2 , we have (m2 − k) − (k −

1) ⩾ 2m − 1 and we can consider the decomposition
(m2 − k, k − 1, 1) = (m2 − k − 2m + 1, k − 1, 1) +H (m − 1) +H (m)

and
□m = (□m−1 +V (m − 1)) +H (1m).

Then by semigroup property and Proposition 4.5, we have g(□m,□m, (m2 − k, k −
1, 1)) > 0 in this case. □

Note that the previous proof only establishes the constituency of near two-row
partitions with a relatively short second row in the tensor square of square partitions
with an odd side length. Now we aim to demonstrate the constituency of near two-row
partitions whose first part and second part have similar sizes. To accomplish this, we
will first establish the constituency of an extreme case where the second row has a
maximal length:

Lemma 4.7. For every odd integer m ⩾ 3, g
(
□m,□m,

(
m2−1

2 , m2−1
2 , 1

))
> 0.

Proof. We can write odd integers m as m = 2k + 1, and we will proceed with a proof
by induction on k ⩾ 1.

We can verify the statement directly for m ∈ {3, 5, 7} through direct computations.
When k = 4, we have m = 2k + 1 = 9. In this case, the square partition □9 can

be expressed as
□9 = ((55) +V (54)) +H (49).

Furthermore, we can write
(40, 40, 1) = (12, 12, 1) +H (10, 10) +H (18, 18).

By assumption, we have g((55), (55), (12, 12, 1)) > 0. Using computer software, we can
verify the positivity of g((54), (54), (10, 10)) and g((49), (49), (18, 18)). Therefore, by
the semigroup property, we conclude that g (□9,□9, (40, 40, 1)) > 0.

Now let k ⩾ 5 and m = 2k + 1. By the inductive hypothesis, we assume that

g

(
□m′ ,□m′ ,

(
m′2 − 1

2 ,
m′2 − 1

2 , 1
))

> 0,
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holds for all m′ = 2k′ + 1 < 2k + 1. We can express □m as

□m = (((m − 8)(m−8)) +V ((m − 8)8)) +H (8m).
Furthermore, we have(

m2 − 1
2 ,

m2 − 1
2 , 1

)
=
(

(m − 8)2 − 1
2 ,

(m − 8)2 − 1
2 , 1

)
+H (4(m − 8), 4(m − 8)) +H (4m, 4m).

Using Theorem 4.1, we know that g((8m), (8m), (4m, 4m)) > 0. In the case of k = 5,
where m = 11, we can directly compute and show the positivity of g((m − 8)8, (m −
8)8, (4(m − 8), 4(m − 8))). For k ∈ {6, 7}, we can use the semigroup property and
Theorem 4.4 to establish the positivity of g((m − 8)8, (m − 8)8, (4(m − 8), 4(m − 8)))
since g((8, 8), (8, 8), (8, 8)) > 0. For k ⩾ 8, the positivity of g((m−8)8, (m−8)8, (4(m−
8), 4(m − 8))) follows from Theorem 4.1. Additionally, by the inductive hypothesis,
we have

g

(
□m−8,□m−8,

(
(m − 8)2 − 1

2 ,
(m − 8)2 − 1

2 , 1
))

> 0.

By the semigroup property (2.6), we conclude that

g

(
□m,□m,

(
m2 − 1

2 ,
m2 − 1

2 , 1
))

> 0,

which completes the induction. □

Corollary 4.8. For every pair of odd integers l, m ⩾ 11,

g(m × l, m × l, (ml − 1
2 ,

ml − 1
2 , 1)) > 0.

Proof. By Lemma 4.7, we know that g(□m,□m, ( m2−1
2 , m2−1

2 , 1)) > 0 for any odd
integer m ⩾ 3.

Let m, l be odd integers. Without loss of generality, assume that m ⩾ l. If |m−l| ≡ 0
mod 4, then we can write the square partition of shape m× l as □l +V (l(m−l)). Since
m − l is a multiple of 4, by Lemma 4.9 and the semigroup property, we conclude that
g(m × l, m × l, ( ml−1

2 , ml−1
2 , 1)) > 0. If |m − l| ≡ 2 mod 4, we can write m × l as

m × l = 10 × l +V (m − 10) × l. Note then (m − 10 − l) ≡ 0 mod 4, and by Theorem
4.1, g(10 × l, 10 × l, (5l, 5l)) > 0. Hence, by semigroup property, we conclude that
g(m × l, m × l, ( ml−1

2 , ml−1
2 , 1)) > 0 for any odd integers m, l ⩾ 11. □

Lemma 4.9. For every integer m ⩾ 2, g(m4, m4, (2m, 2m)) > 0.

Proof. If m is even, it follows from Theorem 4.4. If m is odd, we first note that
with the help of the computer, one can check that g(34, 34, (6, 6)) > 0. Then we can
decompose the partition m4 as m4 = 34 +H (m − 3)4. Since m − 3 is even, we have
g((m − 3)4, (m − 3)4, (2m − 6.2m − 6)) > 0. By semigroup property, we can conclude
that g(m4, m4, (2m, 2m)) > 0. □

Lemma 4.10. For every odd integer m ⩾ 3, g
(
□m,□m,

(
m2+1

2 , m2−3
2 , 1

))
> 0.

Proof. We can check by direct computation that the statement holds for m = 3
and m = 5. Let m ⩾ 7. Suppose that the statement holds for odd numbers less
than m. Consider the decomposition □m = (□m−4 +V (m − 4)4) +H (4m−4). Since
g(4m−4, 4m−4, (2m, 2m)) > 0 and g((m − 4)4, (m − 4)4, (2m − 8, 2m − 8)) > 0 by
Lemma 4.9, by semigroup property, we have that g

(
□m,□m,

(
m2+1

2 , m2−3
2 , 1

))
> 0.

By induction, g
(
□m,□m,

(
m2+1

2 , m2−3
2 , 1

))
> 0 for any odd integer m ⩾ 3. □
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We will use Lemma 4.7 and Lemma 4.10 as ingredients to establish the positivity
in the case where m is an odd integer and the first part and second part of the near
two-row partition are of similar sizes.

Proposition 4.11. For every odd integer m ⩾ 7 and k ⩾ 5 such that k ⩾ (m−1)2

2 + 1,
g(□m,□m, (m2 − k, k − 1, 1)) > 0.

Proof. We shall prove the statement by induction on odd integers m ⩾ 7. Note that
we can check by semigroup property and computer that the statement holds for
m = 7. Let m ⩾ 9 be an odd integer. Suppose that the statement holds for m − 2.
Consider the decomposition that □m = (□m−2 +V (m − 2, m − 2)) +H (2m). Let
a := (m2 − k) − (k − 1). Since k ⩾ (m−1)2

2 + 1, we have (m2 − k) − (k − 1) ⩽ 2m − 2.
We will discuss three cases as follows.
Case 1: If a = 0, by Lemma 4.7, we know that g

(
□m,□m,

(
m2−1

2 , m2−1
2 , 1

))
> 0.

Case 2: If a = 2, by Lemma 4.10, we know that g
(
□m,□m,

(
m2+1

2 , m2−3
2 , 1

))
> 0.

Case 3: If a > 0 and a ≡ 0 mod 4, consider the following decomposition of (m2 −
k, k − 1, 1):(

(m − 2)2 − 1
2 ,

(m − 2)2 − 1
2 , 1

)
+H (m+1+2x, m−1−2x)+(m−1+2y, m−3−2y),

where x ⩽ m−1
2 , y ⩽ m−3

2 are non-negative integers such that 4(x+y+1) = a.
By Lemma 4.7, Theorem 4.4 and semigroup property, we can conclude that
g(□m,□m, (m2 − k, k − 1, 1)) > 0 in this case.

Case 4: If a > 2 and a ≡ 2 mod 4, consider the following decomposition of (m2 −
k, k − 1, 1):(

(m − 2)2 + 1
2 ,

(m − 2)2 − 3
2 , 1

)
+H (m+1+2x, m−1−2x)+(m−1+2y, m−3−2y),

where x ⩽ m−1
2 , y ⩽ m−3

2 are non-negative integers such that 4(x + y + 1) =
a − 2. By the inductive hypothesis, Theorem 4.4 and semigroup property, we
can conclude that g(□m,□m, (m2 − k, k − 1, 1)) > 0 in this case.

□

We now put the above pieces together to prove Theorem 4.3.

Proof of Theorem 4.3. One can check by direct computation that the proposition
holds for m = 5 and m = 7. Then the statement follows directly from Corollary 3.6,
Proposition 4.5, Proposition 4.6 and Proposition 4.11. □

4.3. Three-row partitions. Next, we consider the case when µ is a three-row
partitions with µ3 ⩾ 2. Below is one of our main results. We will prove it by discussing
different cases according to the parity of m and different values of k.

Theorem 4.12. For every odd integer m ⩾ 5, g(□m,□m, µ) > 0 for any three-row
partition µ ⊢ m2 with µ3 ⩾ 2.

Below are some results that will be used to prove the positivity of g(□m,□m, µ)
when m is an even integer.

Proposition 4.13. Let l, k, m be positive integers such that lk = m2. Then
g(□m,□m, kl) > 0 if l | k.
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Proof. Let l, k, m be positive integers such that lk = m2. Suppose that l | k. Then,
l2 | m2 and hence l | m. It follows that we can decompose □m as

□m =
∑
+H

(∑
+V

□l

)
.

By semigroup property, we can conclude that g(□m,□m, kl) > 0 □

Corollary 4.14. If m is a multiple of 3, then g
(
□m,□m,

(
m2

3 , m2

3 , m2

3

))
> 0.

Proof. It follows from Proposition 4.13. □

Lemma 4.15. For k ⩾ 3, g(3k, 3k, k3) = g(k3, k3, k3) > 0.

Proof. With the help of the computer, we can check that g(k3, k3, k3) > 0 for k ∈
{3, 4, 5}. For any k ⩾ 6, we can write k = 3j + r for some non-negative integers
j, r such that r ∈ {0, 4, 5}. Then, we can write the partition (k, k, k) as a horizontal
sum of j square partitions of side length 3, and the rectangular partition (r, r, r). The
generalized semigroup property shows that g(k3, k3, k3) > 0 for k ⩾ 6. Furthermore,
by the transposition property, we have g(3k, 3k, k3) = g(k3, k3, k3) > 0 for k ⩾ 3. □

Lemma 4.16, 4.17 and 4.18 will be used in the proof of Proposition 4.19. These
specific cases are addressed individually due to their different decomposition approach,
setting them apart from the remaining cases of the proposition’s proof.

Lemma 4.16. The Kronecker coefficient g
(
□m,□m,

(
m2+2

3 , m2−1
3 , m2−1

3

))
> 0 for

any positive integer m ⩾ 5 such that m ≡ 2 mod 3.

Proof. For any positive integer m ⩾ 5 such that m ≡ 2 mod 3, we can write
m = 3r + 2 for some r ⩾ 1. We will prove the proposition by induction on r.
When r = 1, 3r + 2 = 5 and with the help of the computer, we can check that
g
(
□5,□5,

(
52+2

3 , 52−1
3 , 52−1

3

))
> 0. Let r ⩾ 2. Assume the statement is true for

r − 1. We can decompose □3r+2 as

□3r+2 =
(
□3r−1 +V (3r − 1)

)
+H (33r+2),

and we can decompose the partition
(

(3r+2)2+2
3 , (3r+2)2−1

3 , (3r+2)2−1
3

)
as(

(3r + 2)2 + 2
3 ,

(3r + 2)2 − 1
3 ,

(3r + 2)2 − 1
3

)
=
(

(3r − 1)2 + 2
3 ,

(3r − 1)2 − 1
3 ,

(3r − 1)2 − 1
3

)
+H (3r − 1, 3r − 1, 3r − 1) +H (3r + 2, 3r + 2, 3r + 2).

Then, by the inductive hypothesis, Lemma 4.15 and semigroup property, we can
conclude that g

(
□3r+2,□3r+2,

(
(3r+2)2+2

3 , (3r+2)2−1
3 , (3r+2)2−1

3

))
> 0. Thus, by the

principle of mathematical induction, g
(
□m,□m,

(
m2+2

3 , m2−1
3 , m2−1

3

))
> 0 for ev-

ery positive integer m ⩾ 5 such that m ≡ 2 mod 3. □

Lemma 4.17. For any positive integer m ⩾ 7 such that m ≡ 1 mod 3, the Kronecker
coefficients g (□m,□m, λ) > 0 for λ in the set{(

m2 + 5
3 ,

m2 − 1
3 ,

m2 − 4
3

)
,
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(
m2 + 5

3 ,
m2 + 5

3 ,
m2 − 10

3

)
,(

m2 + 5
3 ,

m2 + 2
3 ,

m2 − 7
3

)}
.

Proof. For any positive integer m ⩾ 7 such that m ≡ 1 mod 3, we can write m =
3r + 1 for some r ⩾ 2. We will prove the proposition by induction on r. When r = 2,
3r + 1 = 7, and with the help of the computer, we can verify the statement holds
true for r = 2. Let r ⩾ 3, and assume that the statement is true for r − 1. We can
decompose □m(r) as

□m(r) =
(
□m(r−1) +V (m(r − 1)3)

)
+H 3m(r),

and we can decompose the partition
(

m(r)2+i
3 , m(r)2+j

3 , m(r)2+k
3

)
as(

m(r)2 + i

3 ,
m(r)2 + j

3 ,
m(r)2 + k

3

)
=
(

m(r − 1)2 + i

3 ,
m(r − 1)2 + j

3 ,
m(r − 1)2 + k

3

)
+H (m(r − 1), m(r − 1), m(r − 1))
+H (m(r), m(r), m(r)),

where (i, j, k) ∈ {(5, −1, −4), (5, 5, −10), (5, 2, −7)}. Then, by the inductive hypothe-
sis, Lemma 4.15 and semigroup property, we have

g

(
□m(r),□m(r),

(
m(r)2 + i

3 ,
m(r)2 + j

3 ,
m(r)2 + k

3

))
> 0,

where (i, j, k) ∈ {(5, −1, −4), (5, 5, −10), (5, 2, −7)}, for any positive integer m ⩾ 7
such that m ≡ 1 mod 3 □

Lemma 4.18. The Kronecker coefficient g
(
□m,□m,

(
m2+3

3 , m2

3 , m2−3
3

))
> 0 and

g
(
□m,□m,

(
m2+3

3 , m2+3
3 , m2−6

3

))
for any positive integer m ⩾ 6 such that m ≡ 0

mod 3.
Proof. For any positive integer m ⩾ 6 such that m ≡ 0 mod 3, we can write m(r) =
3r for some r ⩾ 2. We will prove the proposition by induction on r. When r = 2,
m(r) = 6, and with the help of the computer, we can verify the statement holds
true for r = 2. Let r ⩾ 3, and assume that the statement is true for r − 1. We can
decompose □m(r) as

□m(r) =
(
□m(r−1) +V (m(r − 1)3)

)
+H 3m(r),

and we can decompose the partition
(

m(r)2+3
3 , m(r)2

3 , m(r)2−3
3

)
as(

m(r)2 + 3
3 ,

m(r)2

3 ,
m(r)2 − 3

3

)
=
(

m(r − 1)2 + 3
3 ,

m(r − 1)2

3 ,
m(r − 1)2 − 3

3

)
+H (m(r − 1), m(r − 1), m(r − 1))
+H (m(r), m(r), m(r)).

Then, by the inductive hypothesis, Lemma 4.15 and semigroup property, we can con-
clude that g

(
□m(r),□m(r),

(
m(r)2+3

3 , m(r)2

3 , m(r)2−3
3

))
> 0. By a completely analo-

gous argument, we can show that g
(
□m,□m,

(
m2+3

3 , m2+3
3 , m2−6

3

))
for any positive

integer m ⩾ 6 such that m ≡ 0 mod 3 □
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When m is even, we decompose □m as (□m−2 +V (m, m)) +H (2m). By analyzing
various cases based on the values and parities of λ1, λ2, λ3, we are able to prove the
following result:

Proposition 4.19. For every even number m ⩾ 6, g(□m,□m, λ) > 0 for any three-
row partition λ ⊢ m2 with λ3 ⩾ 2.

Proof. If λ ⊢ m2 is a three-row rectangular partition, then 3 | m. By Corollary 4.14,
we conclude that g(□m,□m, λ) > 0. Now we assume that λ is not a rectangular
partition.

For any even integer m ⩾ 6, we can write m = 2r where r ⩾ 3. We will prove this
statement by induction on r. First, consider the base case r = 3. In this case, m = 6,
and we can check that g(□6,□6, λ) > 0 for every three-row partition λ ⊢ 36 with
λ3 ⩾ 2 with the help of computer.

Next, let r ⩾ 4 and assume the statement holds for r − 1. We will prove it for
r. By the inductive hypothesis, we assume that g(□2(r−1),□2(r−1), λ) > 0 for any
three-row partition λ ⊢ 4(r − 1)2 with λ3 ⩾ 2. Note that we can decompose □2r as

□2r = (□2(r−1) +V (2r − 2, 2r − 2)) +H (22r).

By Theorem 4.4,

g((22r), (22r), (2a, 2b, 2(2r − a − b))) = g((2r, 2r), (2r, 2r), (2a, 2b, 2(2r − a − b))) > 0

for all integers a, b satisfying that 0 ⩽ 2r − a − b ⩽ b ⩽ a ⩽ 2r, and

g((2r − 2, 2r − 2), (2r − 2, 2r − 2), (2x, 2y, 2(2r − 2 − x − y))) > 0

for all integers x, y such that 0 ⩽ 2r − 2 − x − y ⩽ y ⩽ x ⩽ 2r − 2.
Let τ := (2u, 2v, (8r−4)−2u−2v) be a non-rectangular three-row partition of 8r−4

with all parts even. Then, we can write (2u, 2v, 2w) as a horizontal sum of partitions
(2a, 2b, 2(2r − a − b)) ⊢ 4r and (2x, 2y, 2(2r − 2 − x − y)) ⊢ 4r − 4, where a = ⌈ u

2 ⌉,
b = ⌈ v

2 ⌉, x = ⌊ u
2 ⌋ and y = ⌊ v

2 ⌋. Hence, it suffices to show that we can rewrite a non-
rectangular three-row partition of m2 as a horizontal sum of a three-row partition of
(m − 2)2 appearing in the tensor square of □m−2 and a non-rectangular three-row
partition τ ⊢ 8r − 4 whose parts are all even. We will consider the following cases for
the partition λ = (λ1, λ2, λ3) with λ3 ⩾ 2.
Case 1: λ2 − λ3 ⩾ 4r − 2. In this case, we can write λ as a horizontal sum of (4r −

2, 4r − 2) and a partition (λ1 − 4r + 2, λ2 − 4r + 2, λ3).
Case 2: λ2 − λ3 < 4r − 2 and λ1 − λ2 ⩾ 8r − 4 − 4⌊ λ2−λ3

2 ⌋. If these conditions hold,
we can define τ = (8r − 4 − 2⌊ λ2−λ3

2 ⌋, 2⌊ λ2−λ3
2 ⌋) ⊢ 8r − 4. Then, we can write

λ as a horizontal sum of τ and a three-row partition of (m − 2)2.
Case 3: λ2 −λ3 < 4r−2 and λ1 −λ2 < 8r−4−4⌊ λ2−λ3

2 ⌋. In this case, we observe that
2(λ2−λ3)+(λ1−λ2) < 8r−4 if λ2−λ3 is even, and 2(λ2−λ3)+(λ1−λ2) < 8r−2
if λ2 − λ3 is odd. Therefore, we can conclude that λ3 ⩾ ⌊ (m−2)2

3 ⌋ under the
given conditions. We further consider the following subcases:
(1) If 3 | (m − 2)2, then we can write (m − 2)2 = 3k for some k even.

(a) If λ has all parts even, then consider τ = (λ1 − k, λ2 − k, λ3 − k).
(b) If the parities of λ1, λ2, λ3 are odd, odd, even, respectively, and

λ1 > λ2,
consider τ = (λ1 − k − 1, λ2 − k − 1, λ3 − k + 2).

(c) If the parities of λ1, λ2, λ3 are odd, odd, even, respectively, and
λ1 = λ2, then we must have λ2 − λ3 ⩾ 5 as otherwise m2 or
m2 + 1 is a multiple of 3, which is impossible. Consider τ =
(λ1 − k − 1, λ2 − k − 1, λ3 − k + 2).
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(d) If the parities of λ1, λ2, λ3 are odd, even, odd, respectively,
consider τ = (λ1 − k − 1, λ2 − k, λ3 − k + 1).

(e) If the parities of λ1, λ2, λ3 are even, odd, odd, respectively, and
λ2 > λ3,
consider τ = (λ1 − k − 2, λ2 − k + 1, λ3 − k + 1).

(f) If the parities of λ1, λ2, λ3 are even, odd, odd, respectively, λ2 = λ3,
and λ1 − λ2 ⩾ 5, consider τ = (λ1 − k − 2, λ2 − k + 1, λ3 − k + 1).
(Note that λ1 − λ2 ̸= 3 as m ≡ 2 mod 3.)

(g) If the parities of λ1, λ2, λ3 are even, odd, odd, respectively, λ2 = λ3,
and λ1 − λ2 = 1, then by Lemma 4.16, we can prove the positivity
of
g
(
□m,□m,

(
m2+2

3 , m2−1
3 , m2−1

3

))
.

(2) If (m − 2)2 ≡ 1 mod 3, then we can write (m − 2)2 = 3k + 1 for some
odd integer k.

(a) If λ has all parts even, consider
τ = (λ1 − k − 1, λ2 − k − 1, λ3 − k + 1).

(b) If the parities of λ1, λ2, λ3 are odd, odd, even, respectively, λ1 −
λ2 > 2 or λ2 − λ3 > 1,
consider τ = (λ1 − k − 2, λ2 − k, λ3 − k + 1).

(c) If the parities of λ1, λ2, λ3 are odd, odd, even, respectively, λ1 =
λ2 + 2 = λ3 + 3, then m ≡ 1 mod 3. By Lemma 4.17, we can
obtain the positivity of g

(
□m,□m,

(
m2+5

3 , m2−1
3 , m2−4

3

))
.

(d) If the parities of λ1, λ2, λ3 are odd, odd, even, respectively, λ1 = λ2
and λ2 − λ3 = 3, then 3 | m. By Lemma 4.18, we can obtain
the positivity of g

(
□m,□m,

(
m2+3

3 , m2+3
3 , m2−6

3

))
by semigroup

property.
(e) If the parities of λ1, λ2, λ3 are odd, odd, even, respectively, λ1 = λ2

and λ2 − λ3 = 5, then m ≡ 1 mod 3. By Lemma 4.17, we can
obtain the positivity of g

(
□m,□m,

(
m2+5

3 , m2+5
3 , m2−10

3

))
.

(f) If the parities of λ1, λ2, λ3 are odd, odd, even, respectively, λ1 = λ2
and λ2 − λ3 ⩾ 7, consider τ = (λ1 − k − 2, λ2 − k − 2, λ3 − k + 3).

(g) If the parities of λ1, λ2, λ3 are odd, even, odd, respectively, and
λ2 − λ3 > 3 or λ1 − λ2 > 1, consider
τ = (λ1 − k − 2, λ2 − k − 1, λ3 − k + 2).

(h) If the parities of λ1, λ2, λ3 are odd, even, odd, respectively, and
λ1 = λ2 + 1 = λ3 + 4, then m ≡ 1 mod 3. By Lemma 4.17, we can
obtain the positivity of g

(
□m,□m,

(
m2+5

3 , m2+2
3 , m2−7

3

))
.

(i) If the parities of λ1, λ2, λ3 are odd, even, odd, respectively, λ2 −
λ3 = 1 and λ1−λ2 < 5, then λ1 = λ2+1. Note that if λ1 = λ2+3, it
implies that m2 ≡ 2 mod 3, which is impossible. Thus, 3 | m2, and
we can obtain the positivity of g

(
□m,□m,

(
m2+3

3 , m2

3 , m2−3
3

))
by Lemma 4.18.

(j) If the parities of λ1, λ2, λ3 are even, odd, odd, respectively and
λ2 > λ3, consider τ = (λ1 − k − 1, λ2 − k, λ3 − k).

(k) If the parities of λ1, λ2, λ3 are even, odd, odd, respectively, λ2 = λ3
and λ1 − λ2 ⩾ 9, consider τ = (λ1 − k − 5, λ2 − k + 2, λ3 − k + 2).

(l) If the parities of λ1, λ2, λ3 are even, odd, odd, respectively, λ2 = λ3
and λ1 − λ2 ∈ {1, 7}, then m ≡ 1 mod 3 and we can prove the
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positivity of g(□m,□m, λ) by a similar argument as in the proof
of Lemma 4.17.

(m) If the parities of λ1, λ2, λ3 are even, odd, odd, respectively, λ2 = λ3
and λ1 − λ2 = 3, then m ≡ 0 mod 3. We can show the positivity
of g(□m,□m, λ) by a similar argument as in the proof of Lemma
4.18.

For each of the cases above, τ is a non-rectangular three-row partition of 8r − 4
with all parts even, and we can write λ as a horizontal sum of τ and a three-row
partition with a long third-row of (m − 2)2. Then, by the semigroup property and
the inductive hypothesis, we can conclude that the statement holds true for r. By
induction, we therefore know that for m ⩾ 6, g(□m,□m, λ) > 0 for any three-row
partition λ ⊢ m2 with λ3 ⩾ 2.

□

Next, we will prove the positivity of g(□m,□m, µ) when m is an odd integer.

Proposition 4.20. For every odd integer m ⩾ 5, g(□m,□m, µ) > 0 for any three-row
partition λ ⊢ m2 with µ3 ⩾ 2m − 1.

Proof. Let m ⩾ 5 be an odd integer. With the help of the computer, we can verify
the statement when m ∈ {5, 7}. Now consider the case where m ⩾ 9. Note that we
can decompose □m as

□m = (□m−3 +V (m − 3)3) +H 3m,

and µ as
µ = (m − 3)3 +H (m3) +H (µ1 − 2m + 3, µ2 − 2m + 3, µ3 − 2m + 3).

Notice that g(□m−3,□m−3, (µ1 −2m+3, µ2 −2m+3, µ3 −2m+3)) > 0 by Theorem
4.19, g((m−3)3, (m−3)3, (m−3)3) > 0 and g(3m, 3m, m3) > 0 by Lemma 4.15. Then
by semigroup property, we have g(□m,□m, µ) > 0 for every three-row partition
λ ⊢ m2 with µ3 ⩾ 2m − 1. □

Proposition 4.21. For any odd integer m ⩾ 5, g(□m,□m, µ) > 0 for any three-row
partition µ ⊢ m2 with 2 ⩽ µ3 ⩽ 2m − 2.

Proof. We can verify that the statement holds for m ∈ {5, 7, 9} by semigroup property,
together with the help of the computer.

Let m ⩾ 5. Notice that when µ1 − µ2 ⩾ 2m − 1, we can decompose □m as
□m = (□m−1+V (m−1))+H 1m and µ as µ = (m)+H (m−1)+H (µ1−2m+1, µ2, µ3).
By Theorem 4.19 and the semigroup property, we conclude that g(□m,□m, µ) > 0
for any three-row partition µ ⊢ m2 with 2 ⩽ µ3 ⩽ 2m − 2 and µ1 − µ2 ⩾ 2m − 1.

We shall prove the statement by induction. Let m ⩾ 11 be an odd integer. Suppose
the statement is true for any odd integer less than m. Let µ ⊢ m2 be a three-row
partition such that µ1 − µ2 ⩽ 2m − 2 and 2 ⩽ µ3 ⩽ 2m − 2.
Case 1: If µ1−µ2 ∈ {0, 1}, consider the decomposition □m = (□m−4+V (m−4)4)+H

4m. If (m − 4)2 ⩾ 3µ3, we can decompose µ as
µ = µ1 +H (2m, 2m) +H (2m − 8, 2m − 8),

where µ1 :=
(⌈

(m−4)2−µ3
2

⌉
,
⌊

(m−4)2−µ3
2

⌋
, µ3

)
. Otherwise, we know that

µ3 ⩾ 16, and we can decompose µ as
µ = µ2 +H (2m − 2, 2m − 2, 4) +H (2m − 8, 2m − 8),

where µ2 :=
(⌈

(m−4)2−µ3
2

⌉
+ 2,

⌊
(m−4)2−µ3

2

⌋
+ 2, µ3 − 4

)
. Then we have the

following:
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• By inductive hypothesis, we have g
(
□m−4,□m−4, µ1) > 0 and

g
(
□m−4,□m−4, µ2) > 0.

• By semigroup property, Theorem 4.4 and the fact that

g((3, 3, 3, 3), (3, 3, 3, 3), (6, 6)) > 0,

we have g((m−4)4, (m−4)4, (2m−8, 2m−8)) > 0, g(4m, 4m, (2m, 2m)) >
0, and g(4m, 4m, (2m − 2, 2m − 2, 4)) > 0.

Hence, by semigroup property, we can conclude that g(□m,□m, µ) > 0 when
µ1 − µ2 ∈ {0, 1}.

Case 2: If µ1−µ2 ∈ {2, 3}, consider the decomposition □m = (□m−4+V (m−4)4)+H

4m. If (m − 4)2 ⩾ 3(µ3 − 2), we can decompose µ as

µ = µ1 +H (2m, 2m − 2, 2) +H (2m − 8, 2m − 8),

where µ1 :=
(⌈

(m−4)2−µ3
2

⌉
+ 1,

⌊
(m−4)2−µ3

2

⌋
+ 1, µ3 − 2

)
. Otherwise, it im-

plies that µ3 ⩾ 18 and we can decompose µ as

µ = µ2 +H (2m, 2m − 2, 2) +H (2m − 10, 2m − 10, 4),

where µ2 :=
(⌈

(m−4)2−µ3
2

⌉
+ 3,

⌊
(m−4)2−µ3

2

⌋
+ 3, µ3 − 6

)
. Then we have the

following:
• By inductive hypothesis and Theorem 4.3, we have

g
(
□m−4,□m−4, µ1) > 0 and g

(
□m−4,□m−4, µ2) > 0.

• By semigroup property and Theorem 4.4, we have g((m − 4)4, (m −
4)4, (2m−8, 2m−8)) > 0, g((m−4)4, (m−4)4, (2m−10, 2m−10, 4)) > 0,
and g(4m, 4m, (2m, 2m − 2, 2)) > 0.

Hence by semigroup property, we can conclude that g(□m,□m, µ) > 0 when
µ1 − µ2 ∈ {2, 3}.

Case 3: If a := µ1 −µ2 ⩾ 4, consider the decomposition □m = (□m−2 +V (m−2, m−
2)) +H 2m and we will decompose µ as

µ =
(⌈

(m − 2)2 − µ3

2

⌉
+ δ(a),

⌊
(m − 2)2 − µ3

2

⌋
− δ(a), µ3

)
+H (m + 1 + 2x, m − 1 − 2x)
+H (m − 1 + 2y, m − 3 − 2y),

where δ(a) :=
{

0 if a ≡ 0 or 1 mod 4
1 if a ≡ 2 or 3 mod 4

and x, y are non-negative integers

such that 4(x + y + 1) = 4
⌊

a
4
⌋
. Then we have the following:

• By inductive hypothesis,

g

(
□m−2,□m−2,

(⌈
(m − 2)2 − µ3

2

⌉
+ δ(a),

⌊
(m − 2)2 − µ3

2

⌋
− δ(a), µ3

))
> 0.

• By Theorem 4.4, we have g((2m − 2, 2m − 2), (2m − 2, 2m − 2), (m − 1 +
2y, m − 3 − 2y)) > 0 and g(2m, 2m, (m + 1 + 2x, m − 1 − 2x)) > 0.

By semigroup property, we can conclude that g(□m,□m, µ) > 0 when µ1 −
µ2 ⩾ 4.

Hence, by induction, for any odd integer m ⩾ 5, we have g(□m,□m, µ) > 0 for any
three-row partition µ ⊢ m2 with 2 ⩽ µ3 ⩽ 2m − 2. □

We now have all the ingredients to prove our main theorem.
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proof of Theorem 4.12. With the help of computer and semigroup property, we check
that for m ∈ {7, 9, 11, 13, 15, 17}, g(□m,□m, µ) > 0 for any three-row partition
µ ⊢ m2 with 2 ⩽ µ3 ⩽ 2m − 2 and µ1 − µ2 ⩽ 2m − 2, as shown in the appendix. The
result then follows from Proposition 4.19, Proposition 4.20 and Proposition 4.21. □

5. Constituency of near-hooks (m2 − k − i, i, 1k)
In this section, we will discuss sufficient conditions for near-hooks to be constituents
in tensor squares of square partitions

In their work [11], Ikenmeyer and Panova employed induction and the semigroup
property to demonstrate the constituency of near-hooks with a second row of at most
6 in the tensor square of a rectangle with large side lengths.

Theorem 5.1 ([11] Corollary 4.6). Fix w ⩾ h ⩾ 7. We have that g(λ, h×w, h×w) > 0
for all λ = (hw − j − |ρ|, 1j +H ρ) with ρ ̸= ∅ and |ρ| ⩽ 6 for all j ∈ [1, h2 − Rρ]
where Rρ = |ρ| + ρ1 + 1, except in the following cases: λ ∈ {(hw − 3, 2, 1), (hw − h2 +
3, 2, 1h2−5), (hw − 4, 3, 1), (hw − h2 + 3, 2, 2, 1h2−7)}.

The positivity of certain classes of near-hooks can be directly derived from Theorem
5.1.

Corollary 5.2. Let m ⩾ 7. For all µi(k, m) = (m2 − k − i, i, 1k) with i ∈ [2, 7]
g(□m,□m, µi(k, m)) > 0 except in the following cases:

(1) i = 2 with k = 1 or k = m2 − 5
(2) i = 3 and k = 1.

In [19], Pak, Panova, and Vallejo developed another method for deciding the posi-
tivity of Kronecker coefficients, which can also be used here.

Theorem 5.3 ([19] Main Lemma). Let µ = µ′ be a self-conjugate partition of n, and
let ν = (2µ1 − 1, 2µ2 − 3, 2µ3 − 5, . . . ) ⊢ n be the partition whose parts are lengths of
the principal hooks of µ. Suppose χλ[ν] ̸= 0 for some λ ⊢ n. Then χλ is a constituent
of χµ

⊗
χµ.

We use Theorem 5.3 to present an alternative proof approach for finding suffi-
cient conditions under which two classes of near-hooks are constituents in the tensor
squares. Let µi(k, m) := (m2 −k−i, i, 1k) and αm = (2m−1, 2m−3, . . . , 1). By Theo-
rem 5.3, that |χµ(k,m)(αm)| ≠ 0 would imply g(□m,□m, µi(k, m)) > 0. In particular,
we will discuss the number of rim-hook tableaux of shape µ2(k, m) = (m2−k−2, 2, 1k)
and weight αm.

To use the Murnaghan-Nakayama rule to compute the characters, we consider
the construction of an arbitrary rim-hook tableau of shape µ2(k, m) and weight
(1, 3, . . . , 2m − 1). Observe that the 1-hook can only be placed at the upper left
corner, and there are three ways to place the 3-hook, as illustrated in the Figure 4.

1 3
3 3

1 3 3 3 1
3
3
3

Figure 4. Rim-hook tableaux of shape µ2(k, m) and weight αm
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Let PR(m)(k) denote the number of partitions of k whose parts are distinct odd
integers from the set

R(m) = {5, 7, . . . , 2m − 1}.

Observing the diagrams above, we can deduce that the height of any rim-hook tableau
with the shape µ2(k, m) and weight (1, 3, . . . , 2m − 1) is always an odd number. From
left to right, the quantities of rim-hook tableaux corresponding to the three diagrams
are PR(m)(k), PR(m)(k + 2), and PR(m)(k − 2), respectively. Thus, by Murnaghan-
Nakayama rule, we therefore have

χ(n−k−2,2,1k)(2m − 1, 2m − 3, . . . , 3, 1) = −PR(m)(k) − PR(m)(k + 2) − PR(m)(k − 2).

Thus, g(λm, λm, (n − k − 2, 2, 1k)) > 0 if PR(m)(k) + PR(m)(k + 2) + PR(m)(k − 2) > 0,
which is equivalent to that

max{PR(m)(k), PR(m)(k + 2), PR(m)(k − 2)} > 0.

Lemma 5.4. Let m ⩾ 8 be fixed, 0 ⩽ k ⩽ m2 − 4 and let

NK2(m) = {1, 2, 4, 6, 8, m2 − 12, m2 − 10, m2 − 8, m2 − 6, m2 − 5}.

Then PR(m)(k) + PR(m)(k + 2) + PR(m)(k − 2) > 0 if and only if k /∈ NK2(m).

Proof. By directly checking the values for k ∈ {1, 2, 4, 6, 8}, we find that

PR(m)(k) + PR(m)(k + 2) + PR(m)(k − 2) = 0

holds true. Note the sum of elements in R(m) is m2 − 4 and therefore PR(m)(k) =
PR(m)(m2 − 4 − k). It follows that if k ∈ {m2 − 12, m2 − 10, m2 − 8, m2 − 6, m2 − 5},
then PR(m)(k) + PR(m)(k + 2) + PR(m)(k − 2) = 0.

We shall prove the other direction by induction on m. We can check the statement
is true for m = 8. Now, assuming that the statement is true for m ⩾ 8, we will
show that it holds true for m + 1. Due to the symmetry of PR(m+1)(k), it suffices
to demonstrate that PR(m+1)(k) + PR(m+1)(k + 2) + PR(m+1)(k − 2) > 0 for any
k ∈ [⌈ (m+1)2−4

2 ⌉] ∖ {1, 2, 4, 6, 8}.
Since R(m) ⊂ R(m + 1) by construction, we can assert that

PR(m+1)(k) + PR(m+1)(k + 2) + PR(m+1)(k − 2)
⩾ PR(m)(k) + PR(m)(k + 2) + PR(m)(k − 2) > 0

for any k ∈ [m2 − 4] ∖ NK2(m) by inductive hypothesis. It is easy to see that
⌈ (m+1)2−4

2 ⌉ < m2 − 12 when m ⩾ 6.
Then by the inductive hypothesis, it follows that PR(m+1)(k) + PR(m+1)(k + 2) +

PR(m+1)(k − 2) > 0 for any k /∈ NK2(m + 1), which completes the induction. □

Theorem 5.5. Let m ⩾ 8 be fixed and 0 ⩽ k ⩽ m2 −4. Then, g(□m,□m, µ2(k, m)) >
0 if and only if k /∈ {1, m2 − 5}.

Proof. (⇒) If k = 1, by Corollary 3.6, g(□m,□m, (m2 − 3, 2, 1)) = 0. If k = m2 − 5,
by the transposition property, g(□m,□m, (m2 − k − 2, 2, 1k)) = 0.

(⇐) If k /∈ NK2(m), the result follows from Theorem 5.3, Murnaghan-Nakayama
rule, and Lemma 5.4. If k = 2, 4, 6, 8, we consider the decomposition (m2 − 4, 2, 12) =
(21, 2, 1, 1) +H (m2 − 25), (m2 − 6, 2, 14) = (19, 2, 14) +H (m2 − 25), (m2 − 8, 2, 16) =
(17, 2, 16)+H (m2 −25), (m2 −10, 2, 18) = (15, 2, 18)+H (m2 −25), respectively. Then
by the semigroup property, it follows that g(□m,□m, (m2 − k, 2, 1k)) > 0 for k ∈
{2, 4, 6, 8}. By the transposition property of Kronecker coefficients, g(□m,□m, (m2 −
k, 2, 1k)) > 0 for k ∈ {m2 − 6, m2 − 8, m2 − 10, m2 − 12}. □
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1 3
3 3

1 3 3 3

Figure 5. Rim-hook tableaux of shape µ3(k, m) and weight αm

Similarly, there are only two ways to place the 1-hook and 3-hook into a rim-hook
tableau of shape µ3(k, m) and weight αm, as illustrated in Figure 5. Therefore, we
have

χ(n−k−3,3,1k)(2m − 1, 2m − 3, . . . , 3, 1) = PR(m)(k) + PR(m)(k + 3).

It follows that g(□m,□m, (n − k − 3, 3, 1k)) > 0 if PR(m)(k) + PR(m)(k + 3) > 0.

Lemma 5.6. Let m ⩾ 5 be fixed, 0 ⩽ k ⩽ m2 − 7 and let
NK3(m) := {1, 3, m2 − 10, m2 − 8}.

Then PR(m)(k) + PR(m)(k + 3) > 0 if and only if k /∈ NK3(m).

Proof. By directly checking the values for k ∈ {1, 3}, we find that PR(m)(k) +
PR(m)(k + 3) = 0 holds true. Note the sum of elements in R(m) is m2 − 4 and
therefore PR(m)(k) = PR(m)(m2 − 4 − k). It follows that if k ∈ {m2 − 8, m2 − 10},
then PR(m)(k) + PR(m)(k + 3) = 0.

We shall prove the other direction by induction on m. It is easy to check that the
statement is true for m = 7. Now, assuming that the statement is true for m ⩾ 7, we
will show that it is also true for m+1. Due to the symmetry of PR(m+1)(k), it suffices
to demonstrate that PR(m+1)(k)+PR(m+1)(k+3) > 0 for any k ∈ [⌊ (m+1)2−7

2 ⌋]∖{1, 3}.
Since R(m) ⊂ R(m + 1) by construction, we can assert that

PR(m+1)(k) + PR(m+1)(k + 3) ⩾ PR(m)(k) + PR(m)(k + 3) > 0

for any k ∈ [m2 − 4] ∖ NK3(m) by inductive hypothesis. We can verify that
⌊ (m+1)2−7

2 ⌋ < m2 − 10 when m ⩾ 5. Then by the inductive hypothesis, we conclude
that PR(m)(k) + PR(m)(k + 3) > 0 for any k /∈ NK3(m + 1), which completes the
induction. □

Theorem 5.7. Let m ⩾ 7 be fixed and 0 ⩽ k ⩽ m2 −6. Then, g(□m,□m, µ3(k, m)) >
0 if and only if k ̸= 1.

Proof. (⇒) If k = 1, by Corollary 3.6, g(□m,□m, (m2 − k − 3, 3, 1k)) = 0.
(⇐) Now assume that k ∈ {0, 2, 3, . . . , m2 − 6}. If k = 3, we can decom-

pose the partition (m2 − 6, 3, 13) as (3, 3, 1, 1, 1) +H (m2 − 9). Since we have
g((3, 3, 3), (3, 3, 3), (3, 3, 1, 1, 1)) > 0, by the semigroup property, it follows that
g(□m,□m, (m2 − 6, 3, 13)) > 0. If k = m2 − 10, we can decompose the partition
(7, 3, 1k) as (7, 3, 16) +V (1(m2−16)). Since g((4, 4, 4, 4), (4, 4, 4, 4), (7, 3, 16)) > 0,
by the semigroup property, it follows that g(□m,□m, (7, 3, 1k)) > 0. If k =
m2 − 8, we can decompose the partition (5, 3, 1k) as (5, 3, 18) +V (1(m2−16)).
Since g((4, 4, 4, 4), (4, 4, 4, 4), (5, 3, 18)) > 0, by semigroup property, it follows that
g(□m,□m, (5, 3, 1k)) > 0.

If k = m2 − 6, g(□m,□m, (3, 3, 1k)) = g(□m,□m, (m2 − 4, 2, 2)) > 0 by Theorem
4.12. If k < m2−6 and k /∈ NK3(m), the result follows from Theorem 5.3, Murnaghan-
Nakayama rule, and Lemma 5.6. □
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Next, we will discuss the constituency of near-hooks with a second row of length
of at least 8.

Proposition 5.8. For every i ⩾ 8, we have g(□m,□m, µi(k, m)) > 0 for all m ⩾ 20
and k ⩾ 0.

Proof. Let i ⩾ 8 be fixed. Suppose that m ⩾ 20.
If k ⩾ 7m + 9 − i, we can decompose the transpose of partition µi(k, m), that is

(k+2, 2i−1, 1m2−2i−k) as (k+2, 2i−1, 1m2−2i−k) = (k1, 1i−1)+H (k+2−k1, 1m2−i−k−1)
where k1 = 7m − i + 1. Since k ⩾ 7m + 9 − i, we have k + 2 − k1 ⩾ 10. Then by
Theorem 3.7, we have g(7m, 7m, (k1, 1i−1)) > 0 and g((m − 7)m, (m − 7)m, (k + 2 −
k1, 1m2−i−k−1)) > 0. We can use the Semigroup property to add the partition triples,
which implies that g(□m,□m, (k+2, 2i−1, 1m2−2i−k)) > 0. Then by the transposition
property, we have g(□m,□m, µi(k, m)) > 0.

If k ⩽ 7m+8− i, 2i+k ⩽ 2(7m+8) ⩽ 15m, we consider the decomposition □m =
□m1 +V (mm−m1

1 )+H ((m−m1)m), where m1 =
⌈√

k + 8
⌉
. Since m1 ⩽

⌈√
k + 8

⌉
and

m ⩾ 16, we have m2
1−(k+8) ⩽ k+8 ⩽ m2−k−2i, which implies that m2−m2

1−i+4 ⩾
i − 4. Moreover, since k ⩽ 7m and m ⩾ 20, we have m1 ⩽ m − 8. We will show that
there exists a decomposition µi(k, m) = µ4(k, m1) +H (a + d1, a) +H (b + d2, b) such
that (a+d1, a) ⊢ m1(m−m1), (b+d2, b) ⊢ m(m−m1) and a+ b = i−4. We consider
the following two cases:
Case 1: If m is odd, then m(m − m1) and m2 − m2

1 − 2(i − 4) always have the same
parity. If m2 − m2

1 − 2(i − 4) = m(m − m1) − 2, let d2 = m(m − m1) − 4 and it
follows that b = 2; otherwise, let d2 = min(m(m − m1), m2 − m2

1 − 2(i − 4)).
It is easy to check that a ̸= 1 and b ̸= 1 in this case.

Case 2: If m is even, then m1(m − m1) and m2 − m2
1 − 2(i − 4) always have the same

parity. If m2 −m2
1 −2(i−4) = m1(m−m1)−2, let d1 = m1(m−m1)−4 and it

follows that a = 2; otherwise, let d1 = min(m1(m − m1), m2 − m2
1 − 2(i − 4)).

It is easy to check that a ̸= 1 and b ̸= 1 in this case.
By Corollary 5.2, we have g(□m1 ,□m1 , µ4(k, m1) > 0. Since m, m1, m − m1 ⩾ 8,
by Theorem 4.1, we can conclude that g((mm−m1

1 ), (mm−m1
1 ), (a + d1, a)) > 0 and

g(((m − m1)m), ((m − m1)m), (b + d2, b)) > 0. Then, adding the partition triples
horizontally by semigroup property, we can conclude that g(□m,□m, µi(k, m)) > 0
for every m ⩾ 20. □

Corollary 5.9. Let m ⩾ 20 be an integer and assume that m ⩾ 20. Define
near-hook partitions µi(k, m) := (m2 − k − i, i, 1k). Then for every i ⩾ 2, we have
g(□m,□m, µi(k, m)) > 0 for all k ⩾ 0 except in the following cases: (1) i = 2 with
k = 1 or k = m2 − 5, (2) i = 3 and k = 1.

Proof. It follows directly from Corollary 5.2 and Proposition 5.8. □

6. Additional Remarks
Remark 6.1. We have proved the positivity of Kronecker coefficients indexed by pairs
of square Young diagrams and certain three-row partitions of special shapes. We could
further use the result of square Kronecker coefficients to investigate the behavior
of tensor squares of irreducible representations for rectangular Young diagrams and
explore the positivity properties for specific families of rectangular partitions.

Remark 6.2. Since the decomposition of a rectangular partition can only be achieved
by writing it as a horizontal or vertical sum of two rectangular partitions, it limits the
application of the semigroup property. For partitions with more rows or larger Durfee
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size, there are instances where the semigroup property fails to prove positivity. A spe-
cific example is the Kronecker coefficient g(□m,□m, ((m+1)m−1, 1)). Due to the par-
tition shapes involved, the only valid method to decompose them to satisfy number-
theoretical conditions is as follows: □m = ((m − 1)m) +H (1m) = (mm−1) +V (m)
and ((m + 1)m−1, 1) = (mm−1) +H (1m). However, g(1m, 1m, 1m) = g(m, m, 1m) = 0,
indicating that we cannot rely on this approach to prove positivity. This demonstrates
the limitations of the semigroup property in certain cases.

When m is even, we can establish through a recursive argument that there exists
no rim-hook tableau of shape ((m + 1)m−1, 1) with type αm. Note that there is a
unique arrangement for both the (2m − 1)-hook and the (2m − 3)-hook. These two
longest rim-hooks invariably occupy the skew-shape ((m + 1)m−1, 1)/((m − 1)m−3, 1),
as depicted in Figure 6. Then the problem is reduced to a search for a rim-hook tableau
with shape ((m − 1)m−3, 1) and type αm−2. By iterating this process, we know that a
rim-hook tableau with shape ((m + 1)m−1, 1) and type αm exists if and only if a rim-
hook tableau with shape (5, 4) and type (5, 3, 1) can be found. Therefore, there does
not exist a rim-hook tableau of shape ((m + 1)m−1, 1) and type αm, which implies
that χ((m+1)m−1,1)(αm) = 0 by Murnaghan-Nakayama Rule. Hence, the character
approach (Theorem 5.3) is also not applicable in this case.

• • • • • • •
• • • • • •
• • • • • •
• • • • • •

Figure 6. A rim-hook tableau of shape ((m + 1)m−1, 1) and weight αm

Appendix A. Missing partitions in tensor square of square with a
small side length

Sage is an open-source software system for mathematical computation, built on the
Python programming language [26]. Specifically, we can use its built-in library for
symmetric functions to compute the Kronecker product of Schur functions. Using
Sage, we find all partitions λ ⊢ m2 such that g(□m,□m, λ) = 0 for m = 4, 5, 6, 7:

(1) g(□4,□4, λ) = 0 if and only if λ or λ′ ∈ {(15, 1), (14, 1, 1), (13, 2, 1), (12, 3, 1)
, (12, 1, 1, 1, 1), (11, 5), (10, 1, 1, 1, 1, 1, 1), (9, 7), (8, 7, 1), (8, 2, 1, 1, 1, 1, 1, 1), (7,
7, 2), (7, 5, 4)};

(2) g(□5,□5, λ) = 0 if and only if λ or λ′ ∈ {(24, 1), (23, 1, 1), (22, 2, 1), (21, 3, 1)
, (21, 1, 1, 1, 1), (19, 1, 1, 1, 1, 1, 1), (14, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)};

(3) g(□6,□6, λ) = 0 if and only if λ or λ′ ∈ {(35, 1), (34, 1, 1), (33, 2, 1), (32, 3, 1)
, (32, 1, 1, 1, 1), (30, 1, 1, 1, 1, 1, 1), (23, 113), (19, 17)};

(4) g(□7,□7, λ) = 0 if and only if λ or λ′ ∈ {{(48, 1), (47, 1, 1), (46, 2, 1), (45, 3,
1), (45, 1, 1, 1, 1), (43, 1, 1, 1, 1, 1, 1)}.

Acknowledgements. I would like to thank my advisor Greta Panova for suggesting the
problem and for helpful guidance and insightful discussions throughout the project.
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