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Matroidal mixed Eulerian numbers

Eric Katz & Max Kutler

Abstract We make a systematic study of matroidal mixed Eulerian numbers which are certain
intersection numbers in the matroid Chow ring generalizing the mixed Eulerian numbers intro-
duced by Postnikov. These numbers are shown to be valuative and obey a log-concavity relation.
We establish recursion formulas and use them to relate matroidal mixed Eulerian numbers to the
characteristic and Tutte polynomials, reproving results of Huh–Katz and Berget–Spink–Tseng.
Generalizing Postnikov, we show that these numbers are equal to certain weighted counts of
binary trees. Lastly, we study these numbers for perfect matroid designs, proving that they
generalize the remixed Eulerian numbers of Nadeau–Tewari.

1. Introduction
Eulerian numbers, which count permutations with a certain number of descents, are
a classical part of algebraic combinatorics. Postnikov, in his study of the volumes
of permutohedra, introduced mixed Eulerian numbers which are mixed volumes of
hypersimplexes. Inspired by this work, Berget–Spink–Tseng [3] defined hypersimplex
classes γk (perhaps motivated by the observation [18, Remark 3.6]) in the matroidal
Chow ring A∗(M) and related their intersection numbers to TM (1, y), a particular
specialization of the Tutte polynomial of a rank r + 1 matroid M on the set E =
{0, 1, . . . , n}, satisfying

TM (1, y) =
∑

S⊆E:rk(S)=r+1

(y − 1)|S|−r−1.

This is a somewhat surprising result: TM (1, y) is sensitive to the size of flats; the
matroid Chow ring vanishes for matroids with loops and otherwise depends only
on the simplification of the matroid. In this paper, we make a systematic study of
the intersection numbers of hypersimplex classes, which we dub the matroidal mixed
Eulerian numbers, in hopes of getting a better sense of the information contained in
them. These numbers arise as degrees in the matroidal Chow ring for a rank r + 1
matroid M on E:

Ac1,...,cn(M) = degM (γc1
1 . . . γcn

n )
for nonnegative integers c1, . . . , cn satisfying c1 + c2 + · · · + cn = r. They specialize
to the usual mixed Eulerian numbers in the case where M is the Boolean matroid
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Un+1,n+1. By expressing the hypersimplex classes in the matroid Chow ring according
to Lemma 2.2, we see that the hypersimplex classes are a sum of flats weighted by a
rational number depending on their size:

γk =
∑
S⊂E

OI(S, T )xS =
∑
S⊂E

multE(|S|, k)xS ,

where OI is an integer called the over-intersection and multE is a particular rational
number. For that reason, matroidal mixed Eulerian numbers are sensitive to more
than just the lattice of flats.

The matroidal mixed Eulerian numbers obey many recursion relations, allowing us
to get a handle on some of their values. As their combinatorics are quite involved, we
find them most accessible in the contiguous or flatly contiguous case, that is, when the
set {i | ci ̸= 0} involves a range of consecutive integers or a range of consecutive sizes
of flats. In these cases, the matroidal mixed Eulerian numbers satisfy an analogue of
the classical Eulerian recursion A(n, k) = (n−k+1)A(n−1, k−1)+kA(n−1, k) and a
certain deletion/recursion relation. These relations immediately yield expressions for
the characteristic and Tutte polynomial, reproducing results of Huh–Katz [19] and
Berget–Spink–Tseng [3]:

degM (γk
1γ

r−k
n ) = µk(M)

Cv(M,y) = TM (1, y)Cv(Ur+1,r+1, y)

where µk is a coefficient of the reduced characteristic polynomial, Cv is a polynomial
built out of matroidal mixed Eulerian numbers, and TM (x, y) is the Tutte polynomial
of M .

Postnikov gave a description of the mixed Eulerian numbers as a sum indexed
by certain decorated binary trees. We give the analogous description for matroidal
mixed Eulerian numbers, which immediately follows from a monomial expansion in
the matroid Chow ring. We consider some cases where these trees are particularly
explicit and can be related to counts of flags of flats.

Degrees in the matroid Chow ring can be computed by equivariant localization by
virtue of Berget–Eur–Spink–Tseng’s equivariant lift of the Bergman class [2]. This
allows us to observe that that matroidal mixed Eulerian numbers are valuative over
matroids and that they have an expression in terms of counts of permutations (The-
orem 6.9):

degM (λd1
1 . . . λdn

n ) =
∑

w

(−1)n−r+des(w)

where λ’s are certain classes in A∗(M) related to γk’s and the sum is over permutations
satisfying a certain descent condition. This hints at connections between permutation
statistics and matroids.

A particular case where the analogies between the matroidal and usual mixed
Eulerian numbers are especially clear is that of perfect matroid designs, i.e. matroids
for which there are integers

1 = n1 < n2 < · · · < nr

such that every flat of rank i contains exactly ni elements. These include uniform
matroids, projective geometries, and certain sporadic examples. In this case, the ma-
troidal mixed Eulerian numbers involving only the classes γni

are of particular interest.
These numbers obey a recursion coming from a relation in the matroid Chow ring
between γ2

ni
, γniγni+1 , and γni−1γni . We write

A(c1,...,cr)n
(M) = degM (γc1

n1
. . . γcr

nr
)
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when M is a perfect matroid design on E. The constant

VM =
(

r∏
i=1

Ni
ni+1 − ni

ni+1

)

appears when computing these numbers, where Ni is the number of rank i flats in a
given i+ 1 flat (which itself is expressible in terms of the ni’s). We verify that (up to
a power of q) the remixed Eulerian numbers of Nadeau–Tewari [22] are the matroidal
mixed Eulerian numbers of the projective geometry PG(r, q), when q is a prime power.

Postnikov observed that the mixed Eulerian numbers obey the following properties
among many others:

(1) The numbers Ac1,...,cn
are positive integers defined for c1, . . . , cn ⩾ 0 such

that c1 + · · · + cn = n.
(2) For 1 ⩽ k ⩽ n, the number A0k−1,n,0n−k is the usual Eulerian number A(n, k−

1), equal to the number of permutations of {1, . . . , n} with exactly k − 1
descents. Here and below 0l denotes the sequence of l zeros.

(3) We have
∑ 1

c1!···cn! Ac1,...,cn
= (n+1)n−1, where the sum is over c1, . . . , cn ⩾ 0

with c1 + · · · + cn = n.
(4) We have Ak,0,...,0,n−k =

(
n
k

)
.

(5) We have A1,...,1 = n!.
(6) We have Ac1,...,cn = 1c12c2 · · ·ncn if c1 + · · · + ci ⩾ i for i = 1, . . . , n− 1, and

c1 + · · · + cn = n.

We establish the following analogues, some of which are very straightforward in
our setting:

(1) The numbers Ac1,...,cn(M) are nonnegative integers, defined for c1, . . . , cn ⩾ 0
such that c1 + · · · + cn = r.

(2) The flatly contiguous matroidal mixed Eulerian numbers obey an analogue of
the Eulerian recurrence (Proposition 3.4).

(3) We have
∑

r!
c1!···cn! Ac1,...,cn = PVol(M), where the sum is over c1, . . . , cn ⩾ 0

with c1+· · ·+cn = r and PVol(M) is the permutohedral volume of M (Lemma
2.8).

(4) We have Ak,0,...,0,n−k(M) = µk(M) (Proposition 4.1).
(5) We have A1,...,1(M) = r!TM (1, 0) (Corollary 4.3).
(6) For a perfect matroid design M , we have A(c1,...,cr)n

(M) = VMnc1
1 n

c2
2 · · ·ncr

r

if c1 + · · · + ci ⩾ i for i = 1, . . . , r − 1, and c1 + · · · + cn = r (Lemma 7.7).

Here, (1), a consequence of the nefness (i.e. convexity) of the hypersimplex classes
by Theorem [1, Theorem 8.9], was noted in [3]. Item (4) was proven in [19] while (5)
is a special case of [3, Corollary 1.6]. Item (3) is immediate from definitions. Items (2)
and (6) appear to be new.

Our work is closely related to that of Horiguchi [17] who studied the connection
between mixed Eulerian numbers in various Coxeter types and the Petersen Schubert
Calculus.

In section 2, we review matroid Chow rings and hypersimplex classes, giving new
representatives for them. The relations between these classes coming from evaluation
and deletion/contraction, described in section 3, are employed to give new proofs of
expressions for the characteristic and Tutte polynomials in section 4. We describe the
tree expansion in section 5. Valuativity and formulas in terms of permutations are
given by means of localization in section 6. Section 7 studies perfect matroid designs.
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2. Matroid Chow rings and hypersimplex classes
2.1. Matroids and matroid Chow rings. We begin by reviewing some notions
of matroids following [1]. Let E denote the set {0, 1, . . . , n}. Let SE denote the group
of bijections from E to itself. Usually, we will take M to be a rank r + 1 matroid on
E given by a rank function rk : 2E → Z⩾0. We will denote the Boolean matroid on E
by Un+1,n+1; it is characterized by rk(I) = |I|, that is, every subset of E is a flat. For
I ⊆ E, let I denote the closure of I with respect to M . All matroids will be loopless
unless otherwise noted. For a flat F , let MF denote the contraction of M at F , i.e.
the matroid whose underlying lattice of flats is the interval [F, 1̂]. Let MF denote the
restriction to F , which has lattice [0̂, F ]

In RE , let e0, . . . , en denote the standard unit basis vectors. Write 1 = e0 + · · ·+en.
Set NR = RE/R1 where we will conflate the ei’s with their images in NR. For a subset
S ⊂ E, write

eS =
∑
i∈S

ei ∈ NR.

For a chain of subsets
S = {∅ ⊊ S1 ⊊ · · · ⊊ Sk ⊊ E},

write σS ⊂ NR for the cone
σS = Span⩾0(eS1 , . . . , eSk

).
The permutohedral fan ∆E is the fan in NR whose cones are σS as S ranges over
all chains of subsets. Attached to ∆E is the permutohedral toric variety X(∆E). For
w ∈ SE , let σw be the cone in ∆E given by

Span⩾0(eS1 , . . . , eSn
),

where S1 ⊊ · · · ⊊ Sn is the chain of subsets
{w(0)} ⊊ {w(0), w(1)} ⊊ · · · ⊊ {w(0), w(1), . . . , w(n)}.

The matroid Chow ring [15], A∗(M) = Z[xF ]/(I+J), is generated by xF for proper
non-empty flats F with relations

I = ⟨xF1xF2 | F1, F2 are not comparable⟩

J =
〈∑

F ∋i

xF −
∑
F ∋j

xF | i, j ∈ E

〉
.

There is a natural homomorphism
A∗(Un+1,n+1) → A∗(M)

given by

xS 7→

{
xS if S is a flat of M
0 else.

We will sometimes write xS for the image of xS under this homomorphism even when
S is not a flat of M . For a chain of subsets

S = {∅ ⊊ S1 ⊊ · · · ⊊ Sk ⊊ E},
we will write xS := xS1 . . . xSk

. By [1], A∗(M) is a Poincaré duality ring of dimension
r equipped with a degree map

degM : Ar(M) → Z,

characterized by the property that for any full flag of flats
{∅ ⊊ F1 ⊊ F2 ⊊ · · · ⊊ Fr ⊊ E},
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we have deg(xF1xF2 . . . xFr
) = 1.

Write θi : A∗(M ∖ i) → A∗(M) for the pullback defined in [5, Section 3] as
θi(xF ) = xF + xF ∪i.

If i is not a coloop of M , then θi commutes with the degree map in the sense
degM ◦θi = degM∖i .

If i is a coloop, for dimensional reasons, degM ◦θi = 0. Henceforth, we will write
A∗(M) for A∗(M) ⊗ R.

2.2. Hypersimplex classes. Let SE act on the standard unit basis vectors in RE .
The standard k-hypersimplex, ∆(n + 1, k), is the convex hull of all vectors in the
orbit of e{0,...,k−1} under this action. It lies in the hyperplane x0 + x1 + · · · + xn = k.
Attached to it is a class

γn+1−k ∈ A1(X(∆E))
in the Chow cohomology ring of the permutohedral toric variety. It arises as the non-
equivariant restriction of the support function to any translate ∆(n+ 1, k) − w for a
vector w with w0 + · · · +wn = k. By [8, Section 6.1], this corresponds to the class in
the equivariant Chow ring A1

T (∆E) given by the support function on NR,
φ(u) = min

v∈∆(n,k)−w
(u · v) = min

|T |=k
(u · eT ) − u · w.

The corresponding non-equivariant class is obtained as

−
∑

S

φ(eS)xS .

We use the convention that γk = 0 for k ⩽ 0 or k ⩾ n+ 1.

Definition 2.1. For a vector (c1, . . . , cn) of nonnegative integers with c1+· · ·+cn = r,
we define the matroidal mixed Eulerian number

Ac1,...,cn
(M) = degM (γc1

1 . . . γcn
n ).

Because the γk’s are given by convex functions and hence are nef, Ac1,...,cn
(M)

is always nonnegative. For M = Un+1,n+1, these specialize to Postnikov’s mixed
Eulerian numbers. Indeed, those numbers are described as mixed volumes of hyper-
simplexes. The matroidal mixed Eulerian numbers specialize to intersection numbers
in A∗(Un+1,n+1) = A∗(X(∆E)). The connection then follows from the relationship
between toric intersection theory and the polytope algebra [16].

For a finite set U and S, T ⊆ U , the over-intersection of S and T in U is
OIU (S, T ) = |S ∩ T | − max(0, |S| + |T | − |U |),

i.e. the quantity by which the size of S ∩ T exceeds that which is expected for a
“generic” choice of S and T . Let multU (|S|, k) = min(|S|, k) − k

|U | |S|.

Lemma 2.2. We have the following identities for γk (as elements of A1(M)):
(1) γk =

∑
S⊂E OIE(S, T )xS for any set T with |T | = n+ 1 − k, and

(2) γk =
∑

S⊂E multE(|S|, k)xS.

Proof. For the first identity, take w = eT . Observe that that eS · w = |S ∩ T | and
min

|U |=n−k+1
(eS · eU ) = max(0, |S| + (n− k + 1) − n).

Consequently,
−
∑

S

φ(eS)xS = OIE(S, T )xS .

For the second identity, take w = n+1−k
n+1 eE , and note that eS · w = n+1−k

n+1 |S|. □
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Because the classes γk arise from the normal fan to a polytope, they are convex.
Alternatively one can verify that they are submodular (see [1, p. 397]), e.g. for the
OI-description:

OIE(∅, T ) = 0,
OIE(E, T ) = 0, and

OIE(S1, T ) + OI(S2, T ) ⩾ OI(S1 ∩ S2, T ) + OI(S1 ∪ S2, T ).

Remark 2.3. Observe that for k = 1, we may pick T = E ∖ {i} for any i ∈ E. Then
γ1 =

∑
F ̸∋i xF . For k = n, we can pick T = {i} and see γn =

∑
F ∋i xF . Thus γ1 and

γn are the classes called β and α, respectively, in [1]. Consequently, the coefficient of
the reduced characteristic polynomial µi = deg(αiβr−i) is a matroidal mixed Eulerian
number. We will provide an alternative proof of this fact in Proposition 4.1.

We will find the following expression for the hypersimplex classes helpful:

Lemma 2.4. We have the following identity in A1(M):

γk = (n+ 1 − k)γn −
∑

F
|F |⩾k+1

(|F | − k)xF .

Proof. Fix T ⊂ E with |T | = n+ 1 − k. First observe

(n+ 1 − k)γn =
∑
i∈T

(∑
F ∋i

xF

)
=
∑

F

|F ∩ T |xF .

Now, note

γk =
∑

F

OIE(F, T )xF

=
∑

F

(|F ∩ T | − max(0, |F | + |T | − (n+ 1)))xF

= (n+ 1 − k)γn −
∑

F
|F |⩾k+1

(|F | − k)xF . □

By convexity of the γk’s and the Hodge theory for A∗(M) [1, Lemma 9.6], the
matroidal mixed Eulerian numbers satisfy a log-concavity property:

Theorem 2.5. Let c1, . . . , cn be nonnegative integers with c1 + · · · + cn = r − 2. Let
1 ⩽ i, j ⩽ n. Then,

deg(γc1
1 . . . γcn

n γ2
i ) deg(γc1

1 . . . γcn
n γ2

j ) ⩽ deg(γc1
1 . . . γcn

n γiγj)2.

For a flag of flats
∅ ⊊ F1 ⊊ F2 ⊊ · · · ⊊ Fc ⊊ E,

by inducting on [5, Prop 2.25], there is an isomorphism ψF ,

A∗(M)/ ann(xF1xF2 . . . xFc) ∼= A∗(MF1) ⊗A∗(MF2
F1

) ⊗ · · · ⊗A∗(MFc

Fc−a
) ⊗A∗(MFc)

induced by multiplication by xF1xF2 . . . xFc
. Here, MFj+1

Fj
is a matroid on Fj+1 ∖ Fj

with lattice of flats [Fj , Fj+1]. Moreover, if one equips A∗(M)/ ann(xF1xF2 . . . xFc
)

with the degree map
deg : Ar−c(M)/ ann(xF1xF2 . . . xFc

) → Z, y 7→ degM (yxF1xF2 . . . xFc
),
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and equips A∗(MF1) ⊗A∗(MF2
F1

) ⊗ · · · ⊗A∗(MFc

Fc−a
) ⊗A∗(MFc

) with
degMF1 ⊗ deg

M
F2
F1

⊗ · · · ⊗ degMFc
,

then ψF commutes with degree maps.
We now compute the images ψF (γk) following [3, Lemma 6.5].

Lemma 2.6. The image of γk under ψF is{
0 if k = |Fj | for some j
1⊗j ⊗ γk−|Fj | ⊗ 1⊗(c−j) if |Fj | < k < |Fj+1| for some j.

Proof. There is a unique j such that |Fj | ⩽ k < |Fj+1|. Pick T ′ ⊂ Fj+1 ∖ Fj of size
|Fj+1| − k, and set T = (E ∖ Fj+1) ∪ T ′. Then,

xF1xF2 . . . xFc
γk = xF1xF2 . . . xFc

(∑
F

OIE(F, T )xF

)

= xF1xF2 . . . xFc

 ∑
F : Fj⊆F ⊂Fj+1

OIE(F, T )xF


= xF1xF2 . . . xFc

 ∑
F : Fj⊆F ⊂Fj+1

OIFj+1∖Fj
(F ∖ Fj , T

′)xF


where the second equality is a consequence of our choice of T . The conclusion follows
from noting that the sum is a description of γk−|Fj | in A∗(MFj+1

Fj
). □

The following is immediate from the above Lemma and Poincaré duality of A∗(M).
Corollary 2.7. For any flat F with |F | = k, xF γk = 0.

Write ζ =
∑n

i=1 γi. The volume of this class, i.e. PVol(M) = degM (ζr) is called
the (standard) permutohedral volume and is described in terms of the Dilworth trun-
cation of M in [14, Theorem 7.1.6]. Because the Minkowski sum of the hypersim-
plexes

∑n
i=1 ∆(n + 1, i) is the standard permutohedron, we have PVol(Un+1,n+1) =

n!(n + 1)n−1, where (n + 1)n−1 is the volume of this permutohedron. The following
is an immediate consequence of the multinomial expansion of ζr:
Lemma 2.8. We have ∑

(c1,...,cn)

r!
c1! . . . cn!Ac1,...,cn

(M) = degM (ζr)

where the sum is over nonnegative c1, . . . , cn with c1 + · · · + cn = r.

3. Relations
The relations satisfied by the matroidal mixed Eulerian numbers are complicated but
simplify significantly when one considers some special cases.
Definition 3.1. The support of a vector (c1, . . . , cn) of nonnegative integers is the
set

Supp(c1, . . . , cn) := {i | ci ̸= 0}.

Definition 3.2. A support set is contiguous if there exist positive integers a and b
such that Supp(c) = {k | a ⩽ k ⩽ b}.

A support set is flatly contiguous (with respect to the matroid M) if there exist
positive integers a and b such that Supp(c) ⊆ {k | a ⩽ k ⩽ b}, and for any flat F with
a ⩽ |F | ⩽ b, then |F | ∈ Supp(c).
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To write relations, it will be helpful to describe matroidal mixed Eulerian numbers
a bit differently. Let s ⩽ r be a nonnegative integer, and let v = (v1, . . . , vr−s) ∈ Nr−s

be a vector of positive integers. Write

Cv,s(M) = degM (γv1γv2 . . . γvr−sγ
s
n).

Then Ac1,...,cn
(M) = Cv,0(M) for v = 1c12c2 . . . (n − 1)cn−1ncn , where ici means i

appears in ci consecutive components. Observe that Cv,s(M) = Cv,0(Trs(M)) where
Trs(M) denotes the s-fold truncation of M . We may write γv or γv1γv2 . . . γvr−s . For
a positive integer k, write

v − k1 = (v1 − k, . . . , vr−s − k).

The vector v is sorted if v1 ⩽ v2 ⩽ · · · ⩽ vr−s. Write R(v, k) ∈ Nr−s−1 for the vector
obtained by removing the kth component of v.

We can define the support of v to be

Supp(v) = {v1, v2, . . . , vr−s}.

We say v is (flatly) contiguous if its support is (flatly) contiguous, in which case, we
also say the matroidal mixed Eulerian number Cv,s(M) is (flatly) contiguous. Observe
that even then, Cv,s(M) = degM (γvγ

s
n) is the degree of a product that may not have

contiguous support.
Write fj = 1j0r−s−j . It is easily seen that if v is contiguous and sorted, then

R(v, k)+fk−1 is contiguous. We extend the definition of Cv,s(M) to vectors of integers
with the convention that Cv,s(M) = 0 if any of the components of v are non-positive.

Lemma 3.3. Let F be a flat of M , and let (v1, . . . , vr−1) ∈ Nr−1 be flatly contiguous.
Then,

degM (xF γv) = 0
unless rk(F ) = 1 or rk(F ) = r.

Proof. Pick a, b as in the definition of contiguity. If |F | ∈ Supp(v), then degM (xF γv) =
0 by Corollary 2.7. Hence |F | < a or |F | > b. Consider the case |F | < a. Now,

degM (xF γv) = degMF (1) degMF
(γv−|F |1).

This quantity is 0 unless MF is of rank 1 which occurs only if rk(F ) = 1. The
argument for |F | > b is analogous. □

3.1. Eulerian relation. The classical Eulerian recurrence

A(n, k − 1) = (n− k + 1)A(n− 1, k − 2) + kA(n− 1, k − 1)

can be rewritten as

degUn+1,n+1(γn
k ) = (n− k + 1) degUn,n

(γn−1
k−1 ) + k degUn,n

(γn−1
k ).

This recurrence generalizes to contiguous matroidal mixed Eulerian numbers.

Proposition 3.4. Let v = (v1, . . . , vr) ∈ Nr be a sorted flatly contiguous vector. Let
j ∈ {1, . . . , r} be chosen such that the positive integer vj occurs at least twice among
the components of v. Let T ⊂ E be a subset of size (n+ 1) − vj. Then

Cv,0(M) =
∑

F
rk(F )=1

OIE(F, T )CR(v,j)−1,0(MF )

+
∑

F
rk(F )=r

OIE(F, T )CR(v,j),0(MF )
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Also,

Cv,0(M) = multE(|F |, vj)CR(v,j)−1,0(MF )

+
∑

F
rk(F )=r

multE(|F |, vj)CR(v,j),0(MF )

Proof. Observe that R(v, j) is still sorted and flatly contiguous. Now,

γv = γvjγR(v,j) =
∑

F

OIE(F, T )xF γR(v,j).

By Lemma 3.3, the only nonzero terms in the sum correspond to flats of rank 1 and
rank r. The conclusion follows from Lemma 2.6.

The second formula follows from applying the second description of γvj in
Lemma 2.2. □

We can also make sense of matroidal mixed Eulerian numbers coming from
(v1, . . . , vr) whose support consists of two flatly contiguous blocks, one containing 1
and the other containing the size of the largest proper flat.

Lemma 3.5. Let v ∈ Nℓ and w ∈ Nr−ℓ be sorted flatly contiguous vectors such that
(1) Supp(v) ∩ Supp(w) = ∅,
(2) 1 ∈ Supp(v), and
(3) if F is a proper flat of maximal size, then |F | ∈ Supp(w).

Let w′ = (w2, . . . , wr−ℓ). Then,

degM (γvγw) =
∑

F :rk(F )=ℓ+1

OIE(|F |, T ) degMF (γv) degMF
(γw′−|F |1)

for any T ⊂ E with |T | = n+ 1 − w1.

Proof. We write

degM (γvγw) =
∑

F

OIE(|F |, T ) deg(γvxF γw′).

The only terms that contribute must satisfy max(Supp(v)) < |F | < min(Supp(w′))
by Lemma 2.6. Therefore, the sum equals∑

F

OIE(|F |, T ) degMF (γv) degMF
(γw′−|F |1)

which, by dimension considerations, only has contributions from F with rk(F ) =
ℓ+ 1. □

3.2. Deletion/contraction relations. We study how the hypersimplex classes
behave under θi to prove a deletion/contraction relation.

Lemma 3.6. For 1 ⩽ ℓ ⩽ n, we have the identities

γℓ = θi(γℓ−1) +
∑
S ̸∋i

|S|⩾ℓ

xS , γℓ = θi(γℓ) +
∑
S∋i

|S|⩽ℓ

xS .
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Proof. Without loss of generality, we may suppose i = n. Let S, T ⊆ E\n. The
following are straightforward verifications.

OIE(S, T ) =
{

OIE\n(S, T ) if |S| + |T | − |E\n| ⩽ 0
OIE\n(S, T ) + 1 if |S| + |T | − |E\n| ⩾ 1

OIE(S ∪ {n}, T ) = OIE\n(S, T )
OIE(S, T ∪ {n}) = OIE\n(S, T )

OIE(S ∪ {n}, T ∪ {n}) =
{

OIE\n(S, T ) + 1 if |S| + |T | − |E\n| ⩽ −1
OIE\n(S, T ) if |S| + |T | − |E\n| ⩾ 0

Pick a set T ⊆ E\n with |T | = n− ℓ. Then,

θn(γℓ) =
∑

S⊆E\n

OIE\n(S, T )xS +
∑

S⊆E\n

OIE\n(S, T )xS∪{n}

=
∑

S⊆E\n

OIE(S, T )xS −
∑

S⊆E\n
|S|⩾ℓ+1

xS +
∑

S⊆E\n

OIE(S ∪ {n}, T )xS∪{n}

=
∑

S

OIE(S, T )xS −
∑
S ̸∋n

|S|⩾ℓ+1

xS

= γℓ+1 −
∑
S ̸∋n

|S|⩾ℓ+1

xS ,

which is equivalent to the first identity. Similarly,

θn(γℓ) =
∑

S⊆E\n

OIE\n(S, T )xS +
∑

S⊆E\n

OIE\n(S, T )xS∪{n}

=
∑

S⊆E\n

OIE(S, T ∪ {n})xS

+
∑

S⊆E\n

OIE(S ∪ {n}, T ∪ {n})xS∪{n} −
∑

S⊆E\n
|S|⩽ℓ−1

xS∪{n}

=
∑

S

OIE(S, T ∪ {n})xS −
∑
S∋n

|S|⩽ℓ

xS

= γℓ −
∑
S∋n

|S|⩽ℓ

xS ,

giving the second identity. □

Lemma 3.7. We have the following identities:
(1) for a flat F with |F | ⩽ ℓ and i ∈ F ,

θi(γℓ−1)xF = γℓxF ;
(2) for a flat F with |F | ⩾ ℓ and i ̸∈ F ,

θi(γℓ)xF = γℓxF ;

Proof. For the first identity, Lemma 3.6 gives

γℓ − θi(γℓ−1) =
∑
S ̸∋i

|S|⩾ℓ

xS
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All flats on the right side must be incomparable with F . The proof of the second
identity is similar. □

The deletion/contraction relation for contiguous matroidal mixed Eulerian num-
bers is the following:
Proposition 3.8. Let M be a loopless matroid of rank at least 3. Let 0 ⩽ s ⩽ r,
and let v = (v1, . . . , vr−s) ∈ Nr−s be a contiguous sorted vector. Let i ∈ E, and set
p = |{i}|. Suppose s = 0 or v1 = 1. If i is not a coloop of M , then

Cv,s(M) = Cv,s(M\i) +
r−s∑
k=1

CR(v,k)+fk−1−p1,s(M{i})

If i is a coloop of M , then

Cv,s(M) = Cv,s−1(M\i) +
r−s∑
k=1

CR(v,k)+fk−1−1,s(M{i}).

Proof. We will rewrite degM (γvγ
s
n) applying the second formula in Lemma 3.6 to γvi

and the first formula to γs
n. Observe that for 1 ⩽ j ⩽ r − s,

degM (θi(γv1 . . . γvj−1)γvj
. . . γvr−s

γs
n) = degM (θi(γv1 . . . γvj

)γvj+1 . . . γvr−s
γs

n)

+
∑
F ∋i

|F |⩽vj

degM (xF θi(γv1 . . . γvj−1)γvj+1 . . . γvr−s
γs

n).

We claim that only the summands with rk(F ) = 1 contribute. Suppose rk(F ) ⩾ 2.
Let 0 ⩽ k ⩽ j be the largest index such that vk < |F |. If k ⩾ 1, there is ℓ with
k ⩽ ℓ ⩽ j − 1 with vℓ = |F | − 1, and θi(γvℓ

)xF = γ|F |xF = 0 by Corollary 2.7.
Otherwise, k = 0 and we must be in the case v1 > 1, so s = 0. Now,

degM (xF θi(γv1 . . . γvj−1)γvj+1 . . . γvr ) = degM (xF γv1+1 . . . γvj−1+1γvj+1 . . . γvr ).
Because this product is contiguous, by Lemma 3.3, the degree vanishes unless rk(F ) =
1 or rk(F ) = r. If rk(F ) = r, the degree vanishes by Lemma 2.6. Indeed. the degree
is equal to

degMF (1) degMF
(γv1+1 . . . γvj−1+1γvj+1 . . . γvr )

which vanishes for dimensional reasons, since MF is a rank 1 matroid. The condition
rk(F ) = 1 and i ∈ F forces F = {i}. Thus, the sum is 0 unless v1 ⩾ p = |F | in which
case it equals

degM (xF γv1+1 . . . γvj−1+1γvj+1 . . . γvr−s
γs

n)
= degMF

(γv1+1−p . . . γvj−1+1−pγvj+1−p . . . γvr−s−pγ
s
n−p)

= C(v1+1−p,...,vj−1+1−p,vj+1−p,...,vr−s−p),s(MF )
by applying Lemma 3.7. By combining the above identities for varying j, we obtain

degM (γv1 . . . γvr−s
γs

n) = degM (θi(γv1 . . . γvr−s
)γs

n) +
r−s∑
k=1

CR(v,k)+fk−1−p1,s(MF ).

If s = 0, the conclusion follows. Otherwise, consider the case when i is not a coloop.
Then E ∖ i is not a flat and we have

γs
n = (θi(γn−1) + xE∖i)s = θi(γs

n−1).
Again, take degrees. On the other hand, if i is a coloop, then p = 1, and

γn = θi(γn−1) + xE\i

where E\i is a flat of size n. We note that
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(1) γnxE\i = 0 by Lemma 2.6, and
(2) θi(γℓ)xE\i = γℓxE\i by Lemma 3.7.

Consequently,

degM (θi(γv)γs
n) = degM (θi(γvγ

s
n−1)) + degM (θi(γvγ

s−1
n−1)xE\i)

= degM\i(γvγ
s−1
n−1)

where we used degM ◦θi = 0, (2), and Lemma 2.6. □

4. The characteristic and Tutte polynomials
We relate the characteristic and Tutte polynomial (see, for example, [7]) to the ma-
troidal mixed Eulerian numbers, reproving results of [19, 3]. We begin with the reduced
characteristic polynomial,

χM (λ) = χM (λ)/(λ− 1)

where χM (λ) is the usual characteristic polynomial. We express its coefficients as

χM (λ) =
r∑

k=0
(−1)kµk(M)λr−k.

We can specialize the definition of the reduced characteristic polynomial to loopless
matroids to obtain the following characterization by deletion/contraction:

(1) χU1,1(q) = 1,
(2) if i is not a coloop of M , then

χM (λ) =
{
χM\i(λ) − χM/i(λ) if {i} is a flat
χM\i(λ) otherwise,

(3) and if i is a coloop of M , then

χM (λ) = (λ− 1)χM\i(λ).

The following was established in [19], and we provide an alternative proof by
deletion-contraction here.

Proposition 4.1. For an integer k with 0 ⩽ k ⩽ r,

µk(M) = degM (γk
1γ

r−k
n ).

Proof. For U1,1, this is trivial. For the general case, by repeatedly applying

γ1 = θi(γ1) + x{i}, γ1x{i} = 0

from Lemma 3.6 and Corollary 2.7, we obtain

γk
1 = θi(γk

1 ) + x{i}θi(γk−1
1 ).

Similarly, we obtain
γr−k

n = θi(γr−k
n−1) + xE\iθi(γr−k−1

n−1 ).
Here, we treat x{i} and xE\i as zero if the subscript is not a flat. Thus,

γk
1γ

r−k
n = θi(γk

1γ
r−k
n−1) + x{i}θi(γk−1

1 γr−k
n−1) + xE\iθi(γk

1γ
r−k−1
n−1 )

= θi(γk
1γ

r−k
n−1) + x{i}(γk−1

2 γr−k
n ) + xE\i(γk

1γ
r−k−1
n−1 )
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where we made use of the incomparability relation in the matroid Chow ring and
Lemma 3.7. We can, thus, rewrite degM (γk

1γ
r−k
n ) as

degM\i(γk
1γ

r−k
n−1) + degM{i}

(γk−1
1 γr−k

n−1) + degM\i(γk
1γ

r−k−1
n−1 )

=
{

degM\i(γk
1γ

r−k
n−1) + degM{i}

(γk−1
1 γr−k

n−1) if i is not a coloop
degM{i}

(γk−1
1 γr−k

n−1) + degM\i(γk
1γ

r−k−1
n−1 ) if i is a coloop

.

In any case, this is equal to µk(M\i) + µk−1(M/i) which, in turn, equals µk(M). □

We can specialize the definition of the Tutte polynomial TM (x, y) to loopless ma-
troids M and obtain the following characterization: the Tutte polynomial TM (x, y) ∈
Z[x, y] of a loopless matroid M is a polynomial characterized by the following prop-
erties:

(1) TU1,1(x, y) = x,
(2) if i is not a coloop of M ,

TM (x, y) = TM∖i(x, y) + yp−1TM{i}
(x, y),

where p = |{i}|, and
(3) if i is a coloop of M , then

TM (x, y) = xTM∖i(x, y).

The reduced characteristic polynomial is related to the Tutte polynomial by

χM (λ) = (−1)r+1TM (1 − λ, 0)/(λ− 1)

We have the following, which was first proven as [3, Theorem 1.5].

Proposition 4.2. For v = (v1, . . . , vr) ∈ Nr, let

Cv(M,y) =
∞∑

k=0
Cv+k1,0(M)yk.

If v is contiguous and sorted with v1 = 1, then

Cv(M,y) = TM (1, y)Cv(Ur+1,r+1, y)

Proof. Before we begin the proof, we record the following observation: if w =
(w1, . . . , wr−s) is contiguous and sorted with w1 ⩽ 1, then

Cw−ℓ1(M,y) = yℓCw(M,y).

We induct on the number of non-coloops in M by deletion/contraction. If there are no
non-coloops, the M = Ur+1,r+1. In that case TM (1, y) = 1, and the result is trivial.
Otherwise, let i ∈ E be a non-coloop of M . Set F = {i} and p = |F |. Then, by
applying Proposition 3.8 to M ,

Cv(M,y) = Cv(M\i, y) +
r∑

k=1
CR(v,k)+fk−1−p1(MF , y).

By induction, we have

Cv(M,y) = TM\i(1, y)Cv(Ur+1,r+1, y) +
r∑

k=1
TMF

(1, y)CR(v,k)+fk−1−p1(Ur,r, y)

= TM\i(1, y)Cv(Ur+1,r+1, y) + yp−1TMF
(1, y)

r∑
k=1

CR(v,k)+fk−1−1(Ur,r, y).
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Here, the second equality follows from observing that

min(Supp(R(v, k) + fk−1 − 1)) ⩽ 1

because v is contiguous and sorted with v1 = 1. Now, applying Proposition 3.8 to
Ur+1,r+1 yields

Cv(M,y) =
(
TM\i(1, y) + yp−1TMF

(1, y)
)
Cv(Ur+1,r+1, y)

= TM (1, y)Cv(Ur+1,r+1, y).

□

By combining the above proposition with Theorem 2.5, Berget–Sping–Tseng [3]
were able to resolve a conjecture of Dawson [9].

Corollary 4.3. We have the following formulas:
(1) [3, Corollary 1.6] for v = (1, 2, . . . , r), we have Cv(M,y) = r!TM (1, y);
(2) degM (γ1 . . . γr) = r!TM (1, 0);
(3) for v contiguous and sorted with v1 = 1, Cv(M, 1) = r!TM (1, 1); and
(4) the sum of all contiguous sorted matroidal mixed Eulerian numbers Cv,0(M)

with v1 = 1 is
r!2r−1TM (1, 1).

Proof. By [23, Theorem 16.3] (or Lemma 7.7 applied to Ur+1,r+1), Cv(Ur+1,r+1, y) =
r! for v = (1, 2, . . . , r). The second identity follows by substituting y = 0.

For v contiguous and sorted with v1 = 1,

Cv(M, 1) = TM (1, 1)Cv(Ur+1,r+1, 1) = r!TM (1, 1)

where the final equality follows from [23, Theorem 16.4]. The final formula comes from
summing the above over contiguous sorted v with v1 = 1, noting that such choices of
v are in bijective correspondence with compositions of r. □

Proposition 4.2 allows us to write any contiguous matroidal mixed Eulerian num-
bers as a convolution of Tutte polynomial coefficients with ordinary mixed Eulerian
numbers. Let v = (v1, . . . , vr) be contiguous and sorted, and set v′ = v − (v1 − 1)1.
Then v′ has first coordinate 1 and is also sorted and contiguous. The matroidal mixed
Eulerian number Cv,0(M) is the coefficient of yv1−1 in Cv′(M,y). By Proposition 4.2,
this evaluates to

Cv,0(M) = [yv1−1]Cv′(M,y)
= [yv1−1](TM (1, y)Cv′(Ur+1,r+1, y)

=
v1−1∑
j=0

(
[yj ]TM (1, y)

)
Cv′+(v1−1−j)1,0(Ur+1,r+1)

=
v1−1∑
j=0

(
[yj ]TM (1, y)

)
Cv−j1,0(Ur+1,r+1),

where [yj ] denotes taking the coefficient of yj . Note that Cv−j1,0(Ur+1,r+1) = 0 if
j < vr − r.

Example 4.4 (Uniform matroids). When M = Ur+1,n+1 is a uniform matroid, we
have

TUr+1,n+1(1, y) =
n−r∑
j=0

(
n− j

r

)
yj .
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Thus, for any contiguous sorted vector v,

Cv,0(Ur+1,n+1) =
v1−1∑
j=0

(
n− j

r

)
Cv−j1,0(Ur+1,r+1).

In particular, the pure powers of the γk evaluate to

degUr+1,n+1(γr
k) =

k−1∑
j=0

(
n− j

r

)
A(r, k − j − 1),

where the A(r, k − j − 1) are usual Eulerian numbers. For k ⩾ r, we get

degUr+1,n+1(γr
k) =

k−1∑
j=k−r

(
n− j

r

)
A(r, k − j − 1),

=
r−1∑
j=0

(
n+ 1 − k + j

r

)
A(r, j)

= (n+ 1 − k)r

by Worpitzky’s identity

xr =
r∑

j=0

(
x+ j

r

)
A(r, j).

Example 4.5 (Sparse paving matroids). Let M be a sparse paving matroid on E of
rank r + 1 with exactly m circuit-hyperplanes. Then TM (1, y) = TUr+1,n+1(1, y) −m.
Consequently, for a contiguous sorted vector v,

Cv,0(M) =
{
Cv(Ur+1,n+1) −mCv(Ur+1,r+1) if vr ⩽ r

Cv(Ur+1,n+1) otherwise.

5. Postnikov trees
In [23, Section 17], Postnikov gave a combinatorial interpretation of mixed Eulerian
numbers as weighted counts of certain binary trees. We extend this construction to
express an arbitrary product of the γi’s in A∗(M) as a weighted sum of monomials
xF , for F a flag of flats of M .

Let T be a finite binary tree. The binary search order on the vertices of T is the
transitive closure of the relations

(1) b ∈ La implies b < a and
(2) b ∈ Ra implies a < b,

where La and Ra denote the left and right branches, respectively, under a. Let
desc(a, T ) := La ∪ {a} ∪Ra be the set of all descendants of a.

An increasing labeling of the vertex set of T is a bijection
σ : V (T ) → {1, . . . , k}

such that σ(b) ⩾ σ(a) whenever b ∈ desc(a, T ). An increasing binary tree is a pair
(T, σ) where T is a binary tree with increasing labeling of σ. It is well-known that
increasing binary trees on the vertex set {1, . . . , k} are in bijection with permutations
of {1, . . . , k} [24, Section 1.5].

Let L(M) denote the lattice of flats of M . A flat-filling of T is a function
F : V (T ) → L(M) ∖ {∅, E}

such that a < b implies F (a) ⊊ F (b). Consequently, the image of a flat-filling must
be a k-step flag of flats F(T, F ).
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b2

b1 b4

b3

1

3 2

4

Figure 5.1. An increasing binary tree. The increasing labeling is
given by the numbers next to each vertex.

A flat-filled increasing binary tree is a triple (T, σ, F ), where (T, σ) is an increasing
binary tree and F : V (T ) → L(M) is a flat-filling. We will give a necessary compatibil-
ity condition for (T, σ, F ) to contribute a multiple of xF(T,F ) in a particular monomial
expansion of γv1 . . . γvk

where k = |V (T )|. This will allow us to construct a flat-filled
increasing binary tree vertex-by-vertex in an order determined by σ. For i ∈ {1, . . . , k},
write T⩽i for the subgraph of T induced by the vertex set σ−1({1, . . . , i}). We will also
write F for the flat-filling on T⩽i given by restricting F from T . Observe that T⩽i is
also a binary tree, and the binary search order on T⩽i is the restriction of the binary
search order on T . For a vertex b, let ℓ(b) and r(b) denote b’s immediate predecessor
and successor, respectively, in the binary search order on T⩽σ(b).

For a vector v = (v1, . . . , vk), we define a flat-filled increasing binary tree (T, σ,F)
to be v-compatible if for all b ∈ V (T )

|F (ℓ(b))| < vσ(b) < |F (r(b))|
where if b is the minimal (resp. maximal) element in the binary search order on T ,
we set F (ℓ(b)) = ∅ (resp. F (r(b)) = E). In light of Lemma 2.6 and the discussion
above, this will translate to the condition that γvσ(b) could have added the flat F (b)
to F(T⩽σ(b)−1, F ) to create F(T⩽σ(b), F ).

We define a one-vertex extension of a flat-filled increasing tree (T, σ, F ) on k vertices
to be a flat-filled increasing tree (T ′, σ′, F ′) on k+1 vertices such that T ′

⩽k = T , σ′|T =
σ, and F ′|V (T ) = F . If the new vertex is called b, then F ′(ℓ(b)) ⊊ F ′(b) ⊊ F ′(r(b)).

We can choose between two possible natural weights for a v-compatible flat-filled
increasing binary tree (T, σ, F ):

wtOI
v (T, σ, F ) :=

∏
b∈V (T )

OIF (r(b))∖F (ℓ(b))(F (b) ∖ F (ℓ(b)), Ub)

where Ub is the set of the largest |F (r(b))| − vσ(b) elements of F (r(b)) ∖ F (ℓ(a)), or

wtmult
v (T, σ, F ) :=

∏
b∈V (T )

multF (r(b))∖F (ℓ(b))(F (b) ∖ F (ℓ(b)), vσ(b) − |F (ℓ(a))|).

We set the weight of the empty binary tree to be 1.

Example 5.1. Let M = U6,10 be the uniform matroid of rank 6 on ground set
{0, 1, . . . , 9}. Let v = (2, 3, 1, 4) and consider the increasing binary tree (T, σ) on
vertex set {b1, b2, b3, b4} pictured in Figure 5.1. A flat-filling of T is a a flag

F (b1) ⊊ F (b2) ⊊ F (b3) ⊊ F (b4)
of non-empty proper flats. Such a flat-filling is v-compatible if and only if |F (b2)| = 2
and |F (b4)| = 5.

In order for a v-compatible flat-filling to have nonzero OI-weight, each of the fol-
lowing conditions must be satisfied:
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• F (b2) ̸= {0, 1}.
• The minimum element of E ∖ F (b2) is not contained in F (b4).
• F (b1) consists of the maximum element of F (b2).
• F (b3) ∖ F (b2) must contain the maximum element of F (b4) ∖ F (b2).

The resulting OI-weight will then be equal to 2 − |F (b2) ∩ {0, 1}|.
For instance, the flag

{5} ⊊ {3, 5} ⊊ {3, 5, 8} ⊊ {1, 2, 3, 5, 8}
gives a v-compatible flat-filling with OI-weight 2, whereas the flag

{5} ⊊ {0, 5},⊊ {0, 3, 5, 8} ⊊ {0, 2, 3, 5, 8}
yields a v-compatible flat-filling with OI-weight 1.

Theorem 5.2. Let v = (v1, . . . , vk) ∈ Nk. Then we have the following equality in
A∗(M):

γv1 · · · γvk
=

∑
(T,σ,F )

wtv(T, σ, F )xF(T,F ),

(for either set of weights) where the sum is over all v-compatible flat-filled increasing
binary trees on k vertices.

Proof. We will state the proof for the weight function wtOI
v . The proof using wtmult

v

is identical. The proof is by induction on k. For k = 0, it is trivially true.
We first claim that for any flat-filled increasing binary tree (T, σ, F ) with k vertices,

γvk+1xF(T,F ) =
∑

(T ′,σ′,F ′)

OIF ′(r(b))∖F ′(ℓ(b))(F ′(b) ∖ F ′(ℓ(b)), Ub)xF(T ′,F ′)

where the sum is over one-vertex extensions of (T, σ, F ) by a vertex b for which
|F ′(ℓ(b))| < vk+1 < |F ′(r(b))|. Write

F(T, F ) = {∅ = F0 ⊊ F1 ⊊ F2 ⊊ · · · ⊊ Fk ⊊ E}.
If vk+1 = |Fj | for any j, then γvk+1xF(T ′,F ′) = 0 and there are no one-vertex extensions
(T ′, σ′, F ′) with |F ′(ℓ(b))| < vk+1 < |F ′(r(b))|. Otherwise, if |Fj | < vk+1 < |Fj+1|, by
Lemma 2.6,

γvxF(T,F ) =
∑

G : Fj⊊G⊊Fj+1

OIFj+1∖Fj
(G∖ Fj , U)xGxF(T ′,F ′)

where U denotes the set of the largest |Fj+1| − vk+1 elements of Fj+1 ∖ Fj . To each
G occurring in the above sum, we produce a one-vertex extension of (T, σ, F ) by
adjoining a vertex b such that F−1(Fj) < b < F−1(Fj+1) in the binary search or-
der and setting σ(b) = k + 1, F (b) = G. All one-vertex extensions by b for which
|F ′(ℓ(b))| < vk+1 < |F ′(r(b))| arise in this fashion.

Now, we give the inductive step. For v′ = (v1, . . . , vk+1), set v = (v1, . . . , vk). Write

γv1 . . . γvk
=

∑
(T,σ,F )

wtOI
v (T, σ, F )xF(T,F ).

Multiply both sides by γvk+1 . Each choice of (T, σ, F ) contributes a sum over one-
vertex extensions (T ′, σ′, F ′) with |F ′(ℓ(b))| < vk+1 < |F ′(r(b))| weighted by an
over-intersection term. The condition on the size of flats adjacent to b is exactly v-
compatibility. Because the product of wtOI

v (T, σ, F ) with the over-intersection term is
exactly wtOI

v′ (T ′, σ′, F ′), the conclusion follows.
□

By taking degrees when k = r, we obtain the following:
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bk

...
b2

b1

1

k − 1

k

(a)

bk

...
b2

b1

bk+1

. . .
br−1

br

1

k − 1

k

k + 1

r − 1

r

(b)

Figure 5.2. Two increasing binary trees. The increasing labeling
is given by the numbers next to each vertex. The unique increasing
binary tree compatible with v = 1k is shown in (a), and the unique
increasing binary tree compatible with v = 1knr−k is shown in (b).

Corollary 5.3. Let v = (v1, . . . , vr) ∈ Nr. Then,

Cv,0(M) =
∑

(T,σ,F )

wtv(T, σ, F )

(for either set of weights) where the sum is over all v-compatible flat-filled increasing
binary trees on k vertices.

Postnikov trees give a perspective on the special cases that we have been able to
treat in this paper. If v = (v1, . . . , vr) is a sorted contiguous vector, by Lemma 3.3, the
only binary trees appearing in the above expansion have a path as their underlying
tree. It would be interesting to relate such expansions to lattice paths where the two
choices of step directions correspond to left and right children.

Example 5.4. Consider the case of v = (1, . . . , 1) ∈ Nk, corresponding to the product
γk

1 . Suppose that (T, σ, F ) is a v-compatible flat-filled increasing binary tree. The
v-compatibility condition

|F (ℓ(b))| < 1 < |F (r(b))|
can only be satisfied if b is the minimal vertex in the binary search order on T⩽σ(b),
so that F (ℓ(b)) = ∅. Suppose this holds for all b ∈ V (T ). Then σ−1(1) is the root
of T , and for i ∈ {2, . . . , k}, σ−1(i) is the left child of σ−1(i − 1). That is, T must
be the binary tree which is a path with all edges going to the left and σ is the
unique increasing labeling of V (T ). If we let the vertices of T be b1, b2, . . . , bk so that
b1 < b2 < · · · < bk in the binary search order, then we have σ(bi) = k + 1 − i. The
tree T is pictured in Figure 5.2(a).

Now, consider a flat filling F of (T, σ). In computing the weight wtOI
v (T, σ, F ),

the factor corresponding to bk is OIE(F (bk), Ubk
), where Ubk

= {1, . . . , n} consists
of the largest n elements of E. This over-intersection is 0 if 0 ∈ F (bk) and it is 1 if
0 /∈ F (bk). Similarly, for 1 ⩽ i ⩽ k− 1, the over-intersection OIF (bi+1)(F (bi), Ubi

) is 0
unless min(F (bi+1)) /∈ F (bi), in which case it is 1.

Consequently, the flat-fillings F of (T, σ) which have a non-zero weight are precisely
those for which min(F (b1)) > min(F (b2)) > · · · > min(F (bk)), i.e. those for which
the flag F(T, F ) is descending. For each such F , the weight wtOI

v (T, σ, F ) is 1. Thus,
Theorem 5.2 recovers the expansion of γk

1 given by [1, Lemma 9.4].
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Example 5.5. Similarly, we compute the degree of γk
1γ

r−k
n for 0 ⩽ k ⩽ r, which is a

coefficient of the reduced characteristic polynomial. We take v = 1knr−k.
We observe that, again, there is a unique increasing binary tree for which (T, σ, F )

can be v-compatible. Indeed, by reasoning identical to that used in Example 5.4, the
vertices σ−1(1), . . . , σ−1(k) must form a path from the root σ−1(1) to σ−1(k), with all
edges going to the left. Compatibility with v then requires that F (r(b)) = E for the
remaining vertices, and therefore these vertices form a path descending from the root
with all edges going to the right. If we label the vertices b1, . . . , br with b1 < · · · < br

in the binary search order, then we have

σ(bi) =
{
k + 1 − i if 1 ⩽ i ⩽ k

i if k + 1 ⩽ i ⩽ r

The tree (T, σ) is shown in Figure 5.2(b). We note that the tree T possesses
(

n
k

)
distinct increasing labelings.

We now compute the weight of a flat filling (T, σ, F ). For 1 ⩽ i ⩽ k, the over-
intersection factor coming from bi is equal to that computed in Example 5.4. Thus,
in order to have wtOI

v (T, σ, F ) ̸= 0, it must be that

{∅ ⊊ F (b1) ⊊ · · · ⊊ F (bk) ⊊ E}

is a descending flag which is initial, meaning that rk(F (bi)) = i for all 1 ⩽ i ⩽ k.
The remaining over-intersection factors are OIE∖F (bi−1)(F (bi) ∖ F (bi−1), Ubi

), where
k + 1 ⩽ i ⩽ r, Ubi = max(E ∖ Fi−1). Since rk(F (bi)) = rk(F (bi−1)) + 1, this over-
intersection will be non-zero (and equal to 1) precisely when

F (bi) = F (bi−1) ∪ max(E ∖ F (bi−1).

Hence, each initial descending k-step flag uniquely determines a summand with weight
1 in the expansion of γk

1γ
r−k
n . We thus recover [1, Proposition 9.5], which states that

degM (γk
1γ

r−k
n ) is equal to the number of intial descending flags of length k.

6. Localization, valuativity and permutations
6.1. Equivariant localization. In this section, we will use equivariant localization
on the toric variety X(∆E) to show that matroidal mixed Eulerian numbers are
valuative and to relate them to permutation statistics. Our main tool will be the
equivariant lift of the Bergman fan from [2].

Definition 6.1. Let M be a matroid on E, and let w be a permutation in the sym-
metric group on E, SE. The flag of flats attached to w is the unique complete flag of
flats,

Fw = {∅ = F0 ⊊ F1 ⊊ · · · ⊊ Fr ⊊ Fr+1 = E}.
obtained from ordering the following set of flats by inclusion:{

{w(0)}, {w(0), w(1)}, . . . {w(0), . . . , w(n)}
}
.

Define an increasing sequence of nonnegative integers

K(w) = {k1,w, . . . , kr+1,w} ⊆ E

by kj,w = min(w−1(Fj ∖ Fj−1)), that is, kj,w has the property that

{w(0), . . . , w(kj,w − 1)} ≠ {w(0), . . . , w(kj,w)}.

Hence, k1,w = 0. We will suppress w in the notation when it’s understood.
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The set w ({k1,w, . . . , kr+1,w}) makes up a basis Bw(M), called the lex-minimal
basis. Given a flag of flats F and K ⊂ E with |K| = r + 1, we may write

SM (F ,K) = {w ∈ SE | Fw = F , K(w) = K}
SM (F) = {w ∈ SE | Fw = F}

Then {SM (F ,K)}(F,K) partitions SE as does {SM (F)}F .
Observe that SM (F ,K) is the set of w ∈ SE such that for all j with 1 ⩽ j ⩽ r,

w(kj), . . . , w(kj+1 − 1) ∈ Fj , and w(kj) ∈ Fj ∖ Fj−1.
We have the following straightforward:

Lemma 6.2. Let w ∈ SE. Then w ∈ SM (F) if and only if(
min(w−1(Fj ∖ Fj−1)

)
j=1,...,r+1

forms an increasing sequence.

Localization techniques make use of piecewise polynomials [6] on ∆E which can
be interpreted as classes in the equivariant Chow ring A∗

T (M). By [13], there is a
non-equivariant restriction map ι∗ : A∗

T (X(∆E) → A∗(X(∆E)) which can be inter-
preted as a map PP∗(∆E) → A∗(Un+1,n+1) where PP∗(∆E) denotes the piecewise
polynomial functions on ∆E . See [20] for additional references for equivariant localiza-
tion on toric varieties. By composing this homomorphism with the natural surjection
A∗(Un+1,n+1) → A∗(M), we may attach elements of the matroid Chow ring to piece-
wise polynomials on ∆E . For a piecewise-linear function φ ∈ PP1(∆n), this is just
the assignment

φ 7→ −
∑

F

φ(eF )xF .

We will introduce some piecewise polynomials λ0, . . . , λn on ∆E

Definition 6.3. For 0 ⩽ i ⩽ n, we define λi : RE → R by

λi(x0, . . . , xn) =
(
(i+ 1)st highest component of (x0, . . . , xn)

)
− xn.

Because this is invariant under translation by 1, it descends to a piecewise-linear
function on ∆E.

Note that on σw, λi restricts to xw(i) − xn.

Lemma 6.4. We have the following non-equivariant restrictions to A1(Un+1,n+1):

ι∗λn = γn;

ι∗(λk − λn) = −
∑

S : |S|⩾k+1

xS ;

ι∗λk = γk − γk+1.

Proof. We observe that

λn(eS) =
{

−1 if n ∈ S

0 else.

Consequently ι∗λn =
∑

S∋n xS = γn.
Similarly,

(λk − λn)(eS) =
{

1 if |S| ⩾ k + 1
0 else.
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Finally, using Lemma 2.4, we see

γk − γk+1 = (n+ 1 − k)γn − (n+ 1 − (k + 1))γn

+
∑

S
|S|⩾k+1

(|S| − k)xS −
∑

S
|S|⩾k+1

(|S| − (k + 1))xS

= γn −
∑

S
|S|⩾k+1

xS

= γn + (ι∗λk − ι∗λn)
= ι∗λk. □

Consequently, we obtain

γk = ι∗λk + · · · + ι∗λn.

We will now use the following equivariant localization formula which employs an
equivariant lift ctop(QM ) of the Bergman class [∆M ] :

Theorem 6.5. Let M be a rank r + 1 matroid on E. Let φ1, . . . , φr ∈ PP1(∆E) be
piecewise-linear functions on ∆E. For w ∈ SE, write

eσw
= (xw(0) − xw(1))−1 . . . (xw(n−1) − xw(n))−1,

ctop(QM )σw = (−1)n−r
∏

i ̸∈K(w)

(xw(i) − xn).

Then,

(6.1) degM (ι∗(φ1 . . . φr)) =
∑

w∈SE

(φ1 . . . φrctop(QM ))σweσw .

Proof. This is very slight modification of [2, Theorem 7.6]) which considers the ac-
tion of the algebraic torus T = (Gm)E on the permutohedral toric variety X(∆E)
induced through the projection RE → RE/R1. There is an equivariant K-class
[QM ] ∈ K0

T (X(∆E)) whose top Chern class (considered as an element of A∗
T (X(∆E)),

described as a piecewise polynomial) that has the following restriction to σw:

ctop(QM )σw
= (−1)n−r

∏
i ̸∈K(w)

ti

where ti is the character on T corresponding to a coordinate Ti of (Gm)E . By [2, The-
orem 7.6]), the non-equivariant restriction of ctop(QM ) to A∗(X(∆E)) is the Bergman
class [∆M ], i.e. one has for all c ∈ Ar(X(∆E)),

degX(∆E)(c ∪ [∆M ]) = degM (c).

Let T ′ = (Gm)[E]/Gm be the quotient of T by the diagonal subtorus. The action
of T on X(∆E) factors through T ′. Write Z0, . . . , Zn−1 for the coordinates of T ′ given
by Zi = TiT

−1
n . The quotient homomorphism T → T ′ has a splitting given by Ti 7→ Zi

for i = 0, . . . , n−1 and Tn 7→ 1. Let e denote the trivial group, so the homomorphisms

e ↪→ T ′ ↪→ T

induce the restriction maps

A∗
T (X(∆E)) → A∗

T ′(X(∆E)) → A∗(X(∆E)).

The image of ctop(QM ) ∈ An−r
T (X(∆E)) under the first map is the class in the

statement of this Lemma, and it maps to [∆M ] under the second. □
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Observe that ctop(QM )σw
can be written in terms of (λi)σw

:

ctop(QM )σw = (−1)n−r
∏

i ̸∈K(w)

(λi)σw .

In the above, the restriction (φi)σw
is a linear function and so (φ1 . . . φrcr(QM ))σw

is a polynomial, i.e. an element of Sym∗ N∨
R . A priori, the right side of the degree

formula (6.1) is only a rational function, i.e. an element of the field of fractions of
Sym∗ N∨

R . However, it is in fact equal to an integer (under integrality assumptions on
the φ’s) by localization.

6.2. Valuativity. We begin by reviewing valuativity of matroid invariants [10]. Re-
call that for a matroid M on E, the matroid polytope is

P (M) = Conv({eB | B is a basis for M}).

Write 1P (M) : RE → R for the characteristic function of P (M). Let M(E) denote
the set of all matroids on E. A function ϕ : M(E) → A to an abelian group A
is valuative if for any matroids M1, . . . ,Mℓ on E and integers a1, . . . , aℓ for which∑ℓ

i=1 ai1P (Mi) = 0, we have
∑ℓ

i=1 aiϕ(Mi) = 0.

Theorem 6.6. Let c1, . . . cn be nonnegative integers with c1 + · · · + cn = r. The Z-
valued invariant

M 7→ degM (γc1
1 . . . γcn

n )

is valuative.

Proof. By [2, Proposition 5.6], M 7→ ctop(QM ) is a valuative invariant in A∗
T (X(∆E)).

Consequently, because hypersimplex classes are obtained from piecewise-linear func-
tions, degM (γc1

1 . . . γcn
n ) can be computed by Theorem 6.5 and is thus valuative. □

6.3. Permutation statistics. We discuss the relationship between intersection
numbers in the matroid Chow ring and permutation statistics generalizing the results
in [23, Section 3] on the usual mixed Eulerian numbers. It would be very interesting
to compare these arguments to the shelling techniques for the order complex of a
matroid [4, Section 7.6] in which permutation statistics also enter.

Recall that for a permutation w ∈ SE , the descent set is

Des(w) = {i | w(i) > w(i+ 1)},

and we have the descent statistic des(w) = | Des(w)|.

Definition 6.7. Given integers c0, . . . , cn with c1 + · · · + cn = n, let

Ic0,...,cn
= {i | c0 + · · · + ci < i+ 1}.

Given integers d0, . . . , dn with d0 + · · ·+dn = r, and a set K ⊂ E with |K| = r+1,
let

ci =
{
di if i ∈ K

di + 1 else,

and set
I ′

(d0,...,dn),K = Ic0,...,cn
.

We include a slightly different treatment of the proof given in [23, Proposition 3.5]
to allow us to evaluate degrees by localization:
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Lemma 6.8. Let ξ0, . . . , ξn−1 with ξi = xi−xn be coordinates on RE/R1 (with ξn = 0).
Let w ∈ SE. Let c0, . . . , cn be integers with c0 + · · · + cn = n. The constant term of
the rational function

ξc0
w(0) . . . ξ

cn

w(n)

(ξw(0) − ξw(1)) . . . (ξw(n−1) − ξw(n))

expressed as a power series in Q[ξ±1
0 ]Jξ−1

0 ξ1, . . . , ξ
−1
n−1ξnK/(ξ−1

n−1ξn) is (−1)des(w) if
Des(w) = Ic0,...,cn and 0 otherwise.

Proof. The ring Q[ξ±1
0 ]Jξ−1

0 ξ1, . . . , ξ
−1
n−1ξnK/(ξ−1

n−1ξn) contains ξ−1
i ξj for any i < j. We

will eliminate powers of ξi in the order ξw(0), . . . , ξw(n). We prove by induction on i
that the constant term in the statement above is equal to the constant term of

(−1)| Des(w)∩{0,...,i−1}|
ξc0+···+ci−i

w(i) ξ
ci+1
w(i+1) . . . ξ

cn

w(n)

(ξw(i) − ξw(i+1)) . . . (ξw(n−1) − ξw(n))

if Des(w) ∩ {0, . . . , i− 1} = Ic0,...,cn ∩ {0, . . . , i− 1} and is 0 otherwise.
We explain the first step, i.e. that from i = 0 to i = 1. We note that

ξc0
w(0)(ξw(0) − ξw(1))−1 =

{∑∞
k=0 ξ

c0−k−1
w(0) ξk

w(1) if w(0) < w(1)
−
∑∞

k=0 ξ
c0+k
w(0) ξ

−k−1
w(1) if w(0) > w(1).

If w(0) < w(1), there is no summand without a negative power of ξw(0) unless c0 ⩾
1. In that case, one obtains the summand ξ0

w(0)ξ
c0−1
w(1) . Thus one obtains a contribution

exactly when 0 ̸∈ Des(w) and 0 ̸∈ Ic0,...,cn
.

If w(0) < w(1), there is no summand without a positive power of ξw(0) unless
c0 ⩽ 0. In that case, one obtains −ξ0

w(0)ξ
c0−1
w(1) . This occurs when 0 ∈ Des(w) and

0 ∈ Ic0,...,cn
.

Thus, if Des(w) ∩ {0} = Ic0,...,cn
∩ {0}, we obtain the expression

(−1)| Des(w)∩{0}|
ξc0+c1−1

w(1) ξc2
w(2) . . . ξ

cn

w(n)

(ξw(1) − ξw(2)) . . . (ξw(n−1) − ξw(n))
.

The general step is analogous. □

Theorem 6.9. Let M be a rank r + 1 matroid on E. Let d0, . . . , dn be nonnegative
integers with d0 + · · · + dn = r. Then,

degM (ι∗(λd0
0 . . . λdn

n )) =
∑

w

(−1)n−r+des(w)

where the sum is taken over w ∈ SE with Des(w) = I ′
(d0,...,dn,K(w))

Proof. By the above discussion, degM (ι∗(λd1
1 . . . λdn

n )) is equal to the constant term
of the rational function∑

w

(λd0
0 . . . λdn

n ctop(QM ))σw
eσw

= (−1)n−r
∑

w

(λc0
0 . . . λcn

n )σw
eσw

where the ci’s are described in Definition 6.7. On σw, the piecewise-linear function
λc0

0 . . . λcn
n restricts to ξc0

w(0) . . . ξ
cn

w(n). Thus, the contribution from w is

(−1)n−rξc0
w(0) . . . ξ

cn

w(n)/(ξw(0) − ξw(1)) . . . (ξw(n−1) − ξw(n)).

The result now follows from Lemma 6.8. □
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There may be some combinatorial significance in first summing over the flags of
flats, writing

degM (ι∗(λd0
0 . . . λdn

n )) =
∑

F

∑
w

(−1)n−r+des(w)

(where the inner sum is over w ∈ SM (F) with Des(w) = I ′
(d0,...,dn,K(w)), and using

the condition in Lemma 6.2 to interpret SM (F).

7. Perfect matroid designs
In this section, we study the matroidal mixed Eulerian numbers of perfect matroid
designs, noting that they encompass the remixed Eulerian numbers of Nadeau and
Tewari [22] when q is a prime power.

7.1. Background on perfect matroid designs.
Definition 7.1. A matroid M is said to be a perfect matroid design if there are
positive integers n1 < n2 < · · · < nr such that for any full flag of flats

∅ = F0 ⊊ F1 ⊊ F2 ⊊ · · · ⊊ Fr ⊊ E,

we have |Fj | = nj for 1 ⩽ j ⩽ r.
For convenience, we will suppose that the matroids in this section are simple, so

n1 = 1. We also set nr+1 = n + 1. Perfect matroid designs are surveyed in [11]. It is
observed in [11, Proposition 2.2.3], albeit with a misprint (compare with [12]), that
for 1 ⩽ i ⩽ r, the number of rank i flats contained in a given rank i + 1 flat in a
perfect matroid design is

Ni =
i−1∏
j=0

ni+1 − nj

ni − nj
.

Note that N1 = n2.
Definition 7.2. The perfect matroidal mixed Eulerian numbers are defined to be

A(c1,...,cr)n
(M) = degM (γc1

n1
. . . γcr

nr
)

where (c1, . . . , cr) ∈ Zr
⩾0 with c1 + · · · + cr = r,

For perfect matroid designs, the matroidal mixed Eulerian numbers obey a recur-
rence that allows any perfect matroidal mixed Eulerian number to be expressed in
terms of A(1,...,1)n

(M) = degM (γn1 · · · γnr
). Before, we establish it, we identify the

matroidal mixed Eulerian numbers of rank 3 matroids.
Lemma 7.3. Let M be a rank 3 perfect matroid design on E where |Fi| = ni for all
flats Fi of rank i. Then we have the following matroidal mixed Eulerian numbers:

degM (γ2
n1

) = (n+ 1 − n1)(n+ 1 − n2)n1

n2
,(7.1)

degM (γn1γn2) = (n+ 1 − n1)(n+ 1 − n2),(7.2)
degM (γ2

n2
) = (n+ 1 − n2)2(7.3)

Proof. First,

γ2
n1

=
∑

G

multE(|G|, n1)xGγn1

=
∑

G : rk(G)=2

multE(|G|, n1)xGγn1

=
∑

∅⊊F⊊G⊊E

multG(|F |, n1) multE(|G|, n1)xFxG
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where the second equality follows from Lemma 2.6. Similarly,

γn1γn2 =
∑

∅⊊F⊊G⊊E

multE(|F |, n1) multE∖F (|G| − n1, n2 − n1)xFxG,

γ2
n2

=
∑

∅⊊F⊊G⊊E

multE(|F |, n2) multE∖F (|G| − n1, n2 − n1)xFxG,

γ2
n =

∑
∅⊊F⊊G⊊E

multE(|F |, n) multE∖F (|G| − n1, n− n1)xFxG.

Because the class xFxG in A2(M) and its coefficient is independent of the flag of
flats F ⊊ G, each of these sums is equal to the product of multiplicities with the
count of complete flags of flats. The result now follows by computing the ratios of
the multiplicities in γ2

n1
γ2

n
, γn1 γn2

γ2
n

, and γ2
n2

γ2
n

, and noting that deg(γ2
n) = 1 (by Proposi-

tion 4.1). □

Lemma 7.4. Let M be a perfect matroid design. Then in A∗(M), we have the relation

γ2
ni

= ni − ni−1

ni+1 − ni−1
γni

γni+1 + ni+1 − ni

ni+1 − ni−1
γni−1γni

.

Proof. Our proof follows the lines of the special case of Un+1,n+1 in [3, Corollary 7.9].
By Poincaré duality on A∗(M), it suffices to verify that the identity is true after
multiplying by any xF where F is a flag of flats of length r − 2. Write the flag F as
a subset of a full flag of flats

∅ ⊊ F1 ⊊ F2 ⊊ · · · ⊊ Fr ⊊ E

with two flats removed. Both sides of the identity are 0 unless the removed flats are
of size ni, ni+1 or of size ni−1, ni by Lemma 2.6. Consider first the case of ni, ni+1.
Write y for the difference of left and right side of the relation. Now, by Lemma 2.6,

degM (xFy) = deg
M

Fi+2
Fi−1

(y),

so we may work in A∗(MFi+2
Fi−1

), which is itself a perfect matroid design. The images of
γni−1 , γni , γni+1 in A∗(MFi+2

Fi−1
) are 0, γni−ni−1 , γni+1−ni−1 , respectively. We conclude

deg
M

Fi+2
Fi−1

(y) = 0 from Lemma 7.3 which yields

deg(γ2
ni−ni−1

) = ni − ni−1

ni+1 − ni−1
deg(γni−ni−1γni+1−ni−1)

from (7.1) and (7.2).
For the case of ni−1, ni, we make use of

deg(γ2
ni−ni−2

) = ni+1 − ni

ni+1 − ni−1
deg(γni−1−ni−2γni−ni−2).

from (7.2) and (7.3) □

We have the immediate relation among matroidal mixed Eulerian numbers:

Corollary 7.5. Let M be a perfect matroid design of rank r+1. Let c = (c1, . . . , cn) ∈
Zr
⩾0 satisfy c1 + · · · + cn = r. If cni

⩾ 2, then
(ni+1 − ni−1)Ac(M) = (ni − ni−1)Ac−eni

+eni+1
(M) + (ni+1 − ni)Ac−eni

+eni−1
(M).

For perfect matroidal mixed Eulerian numbers, this relation lends itself to “prob-
abilistic process” arguments for these numbers as in [22].

A particularly explicit case of perfect matroidal mixed Eulerian numbers are the
lopsided ones.
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Definition 7.6. A r-tuple of nonnegative integers (c1, . . . , cr) is lopsided if for all
j with 1 ⩽ j ⩽ r,

∑j
i=1 ci ⩾ j. The attached matroidal mixed Eulerian number is

A(c1,...,cr)n
= degM (γc1

n1
. . . γcr

nr
).

Lemma 7.7. Let M be a perfect matroid design and let

VM =
(

r∏
i=1

Ni
ni+1 − ni

ni+1

)
.

If (c1, . . . , cr) ∈ Zr
⩾0 is lopsided, then

degM (γc1
n1
. . . γcr

nr
) = VMnc1

1 . . . ncr
r .

Proof. Let ℓ be the largest index for which cℓ is positive, and write (d1, . . . , dr) =
(c1, . . . , cr) − eℓ. We begin by proving

degM (γc1
n1
. . . γcr

nr
) =

∑
F : rk(F )=r

multE(nr, nℓ) degMF (γd1
n1
. . . γdℓ

nℓ
).

Write
degM (γc1

n1
. . . γcℓ

nℓ
) =

∑
F

multE(|F |, nℓ) deg(xF γ
d1
n1
. . . γdℓ

nℓ
).

By Corollary 2.7, only summands for which |F | /∈ Supp(d) contribute a nonzero
term. We claim that moreover, summands for which |F | < nℓ do not contribute. Let
F /∈ Supp(d) be a flat of rank j for j < ℓ. Indeed,

D :=
j−1∑
i=1

di =
j∑

i=1
di ⩾ j > rk(MF ) − 1.

By Lemma 2.6, the summand labelled by F is a multiple of degMF (γd1
n1
. . . γ

drk(F )−1
rk(F )−1 ).

This must vanish since AD(MF ) = 0 by dimension considerations. Now the only
summands that contribute must have |F | ⩾ nℓ. Again by Lemma 2.6, the summand
corresponding to F is a multiple of degMF

(1) which vanishes for degree conditions
unless rk(F ) = r. Hence, the sum is equal to∑
F : rk(F )=r

multE(|F |, nℓ) deg(xF γ
d1
n1
. . . γdℓ

nℓ
) = Nr

(n+ 1 − nr)
n+ 1 nℓ degMF (γd1

n1
. . . γdℓ

nℓ
).

The result follows by induction because the perfect matroidal mixed Eulerian number
on the right is lopsided. □

It would be worthwhile to compute the degree of a product of λni ’s by equivariant
localization and compare the product with Nadeau–Tewari’s q-divided symmetrization
[22].

7.2. Remixed Eulerian numbers. In [21, 22], Nadeau and Tewari introduced a
q-deformation of mixed Eulerian numbers that they call remixed Eulerian numbers.
In this section, we identify them (up to a power of q) with matroidal mixed Eulerian
numbers of a projective geometry.

The projective geometry over the finite field Fq is the q-analogue of the Boolean
matroid. Recall that

(n)q = qn − 1
q − 1 = 1 + q + · · · + qn−1, (n)q! =

n∏
i=1

(i)q.

The projective geometry PG(r, q) is the matroid on the ground set Pr(Fq) where the
rank rk(S) of a subset S is dim(Span(S)) + 1, where dim(Span(S)) is the dimension
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of its projective span. Consequently, the rank k flats of PG(r, q) are the (k − 1)-
dimensional subspaces, and each has nk := (k)q elements. Hence, PG(r, q) is a perfect
matroid design of rank r + 1.

Definition 7.8. Let r be a positive integer, and let Wr = {(c1, . . . , cr) | c1 + · · ·+cr =
r}. The remixed Eulerian polynomials Ac(q) ∈ C[q] for c ∈ Wr are a collection of
polynomials characterized by

(1) A1,...,1(q) = (r)q! and
(2) if ci ⩾ 2, then (q + 1)Ac(q) = qAc−ei+ei−1(q) +Ac−ei+ei+1(q).

Theorem 7.9. For a prime power q and c ∈ Wr, we have the identity between ma-
troidal mixed Eulerian numbers and remixed Eulerian numbers:

A(c)n
(PG(q, r)) = q(

r+1
2 )Ac(q).

Proof. It is well-known that Ni = (i+ 1)q. Consequently, by Lemma 7.7,

A(1,...,1)q
(PG(r, q)) = q(

r+1
2 )(r)q!

The relation in Corollary 7.5 becomes the relation satisfied by the remixed Eulerian
numbers. □

Remark 7.10. In [21], Nadeau–Tewari study a q-deformed Klyachko algebra Kr+1
generated by indeterminants u1, . . . , ur subject to the relations

(q + 1)u2
i = uiui+1 + qui−1ui

where we take u0 = ur+1 = 0. Our arguments show that there is a natural homo-
morphism Kr+1 → Ar(PG(r, q)) given by ui 7→ γ(i)q

. The algebra is equipped with
a degree map defined by the q-divided symmetrization operation which, therefore,
coincides (up to a power of q) with the degree map on Ar(PG(r, q)). Nadeau and
Tewari [21, Section 7] give a geometric description of the q-Klyachko algebra in terms
of a Deligne–Lusztig variety. It would be interesting to find a geometric interpretation
of the above homomorphism by relating the Deligne–Lusztig variety to an iterated
blow-up of projective space Pr over Fq.
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