
ALGEBRAIC
 COMBINATORICS

Joseph Johnson & Ricky Ini Liu
Birational rowmotion and the octahedron recurrence
Volume 7, issue 5 (2024), p. 1453-1477.
https://doi.org/10.5802/alco.385

© The author(s), 2024.

This article is licensed under the
CREATIVE COMMONS ATTRIBUTION (CC-BY) 4.0 LICENSE.
http://creativecommons.org/licenses/by/4.0/

Algebraic Combinatorics is published by The Combinatorics Consortium
and is a member of the Centre Mersenne for Open Scientific Publishing

www.tccpublishing.org www.centre-mersenne.org
e-ISSN: 2589-5486

https://doi.org/10.5802/alco.385
http://creativecommons.org/licenses/by/4.0/
https://www.tccpublishing.org/
www.tccpublishing.org
www.centre-mersenne.org
http://www.centre-mersenne.org/


Algebraic Combinatorics
Volume 7, issue 5 (2024), p. 1453–1477
https://doi.org/10.5802/alco.385

Birational rowmotion and the octahedron
recurrence

Joseph Johnson & Ricky Ini Liu

Abstract We use the octahedron recurrence to give a simplified statement and proof of a
formula for iterated birational rowmotion on a product of two chains, first described by Musiker
and Roby. Using this, we show that weights of certain chains in rectangles shift in a predictable
way under the action of rowmotion. We then define generalized Stanley–Thomas words whose
cyclic rotation uniquely determines birational rowmotion on the product of two chains. We also
discuss the relationship between rowmotion and birational RSK and give a birational analogue
of Greene’s theorem in this setting.

1. Introduction
For any poset P , (combinatorial) rowmotion is the action on the set of order ideals

of P that sends I to the ideal generated by the minimal elements of P ∖I. This action
is well studied in the dynamical algebraic combinatorics literature; for background on
rowmotion, see [27]. On certain classes of posets (triangles, skeletal posets, rectangles,
root posets, and others), rowmotion has a surprisingly small period, and it also some-
times exhibits other interesting phenomena such as homomesy and cyclic sieving: see
[5, 12, 15, 19, 23, 28].

Rowmotion also has a description in terms of local, involutive transformations
called toggles [2]. Reinterpreting these toggles as acting on lattice points in Rn, one
can lift toggles and hence rowmotion to piecewise-linear maps. One can then lift
these further to the birational realm by replacing max with addition, addition with
multiplication, and subtraction with division [4, 5]. Surprisingly, many results from
the combinatorial level remain true on the birational level. For instance, for some
posets, the period of birational rowmotion remains small, even though a priori it need
not even be finite [9, 10].

The main poset of interest in this paper is the product of two chains, called the
rectangle poset. Grinberg and Roby [9] show that birational rowmotion on the r × s
rectangle has the same order as combinatorial rowmotion, r+s. Musiker and Roby [19]
then give an explicit combinatorial formula for all powers of birational rowmotion on
rectangles in terms of nonintersecting lattice paths. However, their impressive formula
is notationally dense, and their proof requires a rather intricate bijection on lattice
paths. The main result of this paper is a simplified statement and proof of Musiker
and Roby’s iterated birational rowmotion formula for rectangles. (This essentially

Manuscript received 7th September 2022, revised 25th March 2024, accepted 20th June 2024.
Keywords. rowmotion, RSK correspondence, octahedron recurrence, Stanley–Thomas words.
Acknowledgements. R. I. Liu was partially supported by National Science Foundation grants
DMS-1700302 and CCF-1900460.

ISSN: 2589-5486 http://algebraic-combinatorics.org/

https://doi.org/10.5802/alco.385
http://algebraic-combinatorics.org/


J. Johnson & R. I. Liu

gives a new proof of periodicity of birational rowmotion on rectangles.) Our proof
relies mainly on the connections between rowmotion, the octahedron recurrence, the
solid minors of a matrix, and nonintersecting lattice paths via the Lindström–Gessel–
Viennot Lemma.

We also touch upon a number of topics related to this work. For instance, associated
to any antichain of the r × s rectangle poset is a certain 0/1-sequence of length r + s
called the Stanley–Thomas word. Rowmotion on order ideals equivariantly induces
a rowmotion action on antichains, which cyclically shifts the Stanley–Thomas word
[23, 26]. Previously, the Stanley–Thomas word has been defined in the birational
realm to prove homomesy results [15], but this word alone is not enough to uniquely
specify a general labeling of a rectangle. In this article, we define generalized Stanley–
Thomas words in terms of certain sums of weights of chains and show that birational
rowmotion is the unique function that cyclically shifts all of them.

Finally, we discuss the relationship between the birational version of the Robinson–
Schensted–Knuth (RSK) correspondence [3, 20] and rowmotion by defining birational
RSK in terms of toggles. We use the iterated birational rowmotion formula to show
that this definition satisfies a birational version of Greene’s theorem and also compare
it to existing constructions in the literature.

Road map of the paper. In Section 2 we review background on birational rowmo-
tion, the octahedron recurrence, and the relationship between the two. In Section 3
we state and prove our main result, the iterated birational rowmotion formula on
rectangles, using the Lindström–Gessel–Viennot Lemma and the octahedron recur-
rence. Using this framework we prove a chain shifting lemma in Section 4 and define
generalized Stanley–Thomas words. Finally in Section 5 we define birational RSK
and prove a birational analogue of Greene’s theorem, which we then use to show
that the cyclic shifting of the generalized Stanley–Thomas words uniquely determines
birational rowmotion.

2. Background
2.1. Posets and rectangles. We first review some basic terminology about posets.
Typically we represent a finite poset P = (P,⩽) by its Hasse diagram, a directed graph
with vertex set P and edges x → y when y covers x, which we denote x⋖ y. Since all
edges are directed upward in the Hasse diagram, we omit the direction in figures.

Definition 2.1. Let P be a poset. A chain in P is a sequence of elements p1 < p2 <
· · · < pk. An antichain in P is a set A ⊆ P such that for any distinct p, q ∈ A, neither
p ⩽ q nor q ⩽ p.

The antichains are related to the order ideals (and order filters) of a poset.

Definition 2.2. Let P be a finite poset.
(1) An order ideal of P is a set I ⊆ P such that if p ⩽ q in P and q ∈ I, then

p ∈ I.
(2) An order filter of P is a set F ⊆ P such that if p ⩽ q in P and p ∈ F , then

q ∈ F .
(3) An interval of P is a subset of the form [p, q] = {x | p ⩽ x ⩽ q}.

Let [r] be the chain with r elements 1 < 2 < · · · < r. Of particular interest is the
rectangle poset given by the Cartesian product of two chains R = [r] × [s]. We will
distinguish between a rectangle poset and general posets by using R exclusively for
the rectangle.

Definition 2.3. Let R = [r] × [s] be a rectangle poset.
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(1, 1)

(1, 2)

(1, 3)

(2, 1)

(2, 2)

(2, 3)

Figure 1. The rectangle [2] × [3].

• For fixed i, the ith row of R is the set of all elements in R of the form (i, j).
• For fixed j, the jth column of R is the set of all elements in R of the form

(i, j).
• The kth rank of R is the set of all elements (i, j) such that i + j = k.
• The kth file of R is the set of all elements (i, j) such that j − i = k.

We will typically draw rectangles oriented as in Figure 1, so that rows run southwest
to northeast, columns run southeast to northwest, ranks are aligned horizontally, and
files are aligned vertically. (As a word of caution, note that the minimum element has
rank 2.)

2.2. Rowmotion. An important object of study in dynamical algebraic combina-
torics is a certain dynamical process on order ideals called combinatorial rowmotion.

Definition 2.4. Let I be an order ideal of P . Combinatorial rowmotion is the map ρ
that sends I to the order ideal generated by the minimal elements of P ∖ I.

Cameron and Fon-der-Flaass [2] give another description of rowmotion in terms of
combinatorial toggles. Let J(P ) denote the set of order ideals of P . For each p ∈ P ,
we associate a toggle map tp : J(P ) → J(P ) by

tp(I) =


I ∪ {p} if p ̸∈ I and I ∪ {p} ∈ J(P ),
I ∖ {p} if p ∈ I and I ∖ {p} ∈ J(P ),
I otherwise.

Combinatorial rowmotion can then be defined as the composition of toggles on P in
the order of a linear extension L : P → [n] (where n = |P |) from top to bottom, that
is,

ρ = tL−1(1) ◦ · · · ◦ tL−1(n).

We note that tp ◦ tq = tq ◦ tp if and only if p and q do not form a cover relation.
Consequently this description is independent of the choice of linear extension.

In [26], Stanley gives a bijection (also discovered independently by Thomas) be-
tween the order ideals of R = [r] × [s] and 0/1-sequences with r zeroes and s ones.

Definition 2.5. Let A be an antichain of R = [r] × [s]. The Stanley–Thomas word
of A is w(A) = (w1, . . . , wr+s), where

wi =


1 if 1 ⩽ i ⩽ r and A has an element in row i,

1 if r + 1 ⩽ i ⩽ r + s and A has no element in column i − r,

0 otherwise.

Rowmotion performs a cyclic shift of the Stanley–Thomas word [23]. Since the map
w is a bijection, this gives a simple proof of the following result, originally proved by
Brouwer and Schrijver [1].
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Theorem 2.6 ([1]). The order of ρ on R = [r] × [s] is r + s.

Note that r + s is one more than the number of distinct ranks of R. This is
the smallest possible order that rowmotion can have on a graded poset: iteratively
applying rowmotion to the empty order ideal simply adds one rank of elements at a
time to the order ideal until arriving at the entire poset, which is then mapped back
to the empty order ideal.

2.3. Piecewise-linear rowmotion. In [25], Stanley defines two polytopes related
to a finite poset.

Definition 2.7. Let P be a finite poset.
(1) The order polytope O(P ) ⊆ RP is the set of all x ∈ RP satisfying the in-

equalities 0 ⩽ xp ⩽ 1 for all p ∈ P , and xp ⩽ xq for all p, q ∈ P satisfying
p ⩽ q.

(2) The chain polytope C(P ) ⊆ RP is the set of all x ∈ RP satisfying the in-
equalities xp ⩾ 0 for all p ∈ P , and

∑
p∈C xp ⩽ 1 for all (maximal) chains

C ⊆ P .

The vertices of O(P ) and C(P ) are the indicator vectors of the order filters and
antichains of P , respectively. We may also identify the vertices of O(P ) with the order
ideals of P by complementation.

In [25], Stanley defines a piecewise-linear, continuous, and volume-preserving bi-
jection ϕ : O(P ) → C(P ) called the transfer map, defined by

ϕ(x)p = xp − max
q⋖p

xq,

where we interpret an empty max as 0. The inverse of this map is given by

ϕ−1(x)p = max
c1<c2<···<ck=p

(
k∑

i=1
xci

)
.

The transfer map can be thought of as a piecewise-linear extension of the map that
sends an order filter to its minimal elements.

Combinatorial rowmotion permutes order ideals and so can also be thought of as a
permutation of the vertices of O(P ). As is the case with the transfer map, there is a
natural piecewise-linearization of this bijection described by Einstein and Propp [5].

Definition 2.8. The piecewise-linear toggle on the order polytope O(P ) corresponding
to an element p ∈ P is the map tp : O(P ) → O(P ) that changes the pth coordinate by

xp 7→ min
q⋗p

xq + max
q⋖p

xq − xp

and fixes all other coordinates, where an empty min is interpreted as 1 and an empty
max is interpreted as 0.

(We will abuse notation and use the same symbol for combinatorial toggles and
piecewise-linear toggles.) Note that tp only depends on the coordinates in the neigh-
borhood of p ∈ P in the Hasse diagram. Consequently for p, q ∈ P , tp ◦ tq = tq ◦ tp if
and only if neither p ⋖ q nor p ⋗ q as in the combinatorial realm.

We then define piecewise-linear rowmotion ρ : O(P ) → O(P ) using piecewise-linear
toggles by

ρ = tL−1(1) ◦ · · · ◦ tL−1(|P |),

where L is any linear extension of P .
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Rowmotion and the octahedron recurrence

2.4. Birational rowmotion. Piecewise-linear rowmotion can be lifted even fur-
ther to a birational analogue that uses addition, multiplication, and division in place
of max, addition, and subtraction, respectively. This lifting process is called detropi-
calization. (See [4, 5, 20] for more detailed discussion.) The functions resulting from
detropicalization are generally subtraction-free and therefore well-defined on positive
labelings of P .

As an example, the birational transfer map ϕ acts on positive labelings x ∈ RP
>0

via coordinate functions
ϕ(x)p = xp∑

q⋖p
xq

where an empty sum is interpreted as 1.
Since min(a, b) = − max(−a, −b), detropicalizing min yields the parallel sum ∥−

defined by

a ∥− b = 1
1
a + 1

b

= ab

a + b
.

Parallel sum is associative and commutative. For a finite multiset S ⊆ R>0, we denote
the parallel sum of all elements in S by

∑ ∥−

s∈S

s.

Definition 2.9. The birational toggle on RP
>0 corresponding to an element p ∈ P is

the birational map tp : RP
>0 → RP

>0 that changes the pth coordinate by

xp 7→

(∑ ∥−

q⋗p

xq

)(∑
q⋖p

xq

)
· 1

xp

and fixes all other coordinates, where an empty sum or parallel sum is interpreted as
1.

(We again abuse notation by using the same notation for birational toggles as
piecewise-linear toggles.) Similarly to piecewise-linear rowmotion, we define birational
rowmotion as

ρ = tL−1(1) ◦ · · · ◦ tL−1(|P |)

for any linear extension L of P . From the birational setting, we can obtain the
piecewise-linear analogue via a valuation or tropicalization: see, for instance, [4, 5].

For any poset, one can compute birational rowmotion in terms of the dual transfer
map.

Definition 2.10. Let P be a poset and x ∈ RP
>0 be a labeling. The dual transfer map

is the birational function ϕ∗ : RP
>0 → RP

>0 with coordinate functions

ϕ∗(x)p = xp∑
q⋗p

xq

for all p ∈ P , where an empty sum is interpreted as 1.

In other words, ϕ∗ acts on labelings of P in the same way that ϕ acts on the
associated labeling of the dual of P .

The following lemma is due to Einstein and Propp (see for instance [4, 14]). We
include a short proof for completeness.

Lemma 2.11. Let P be a finite poset. Then for any x ∈ RP
>0 and p ∈ P ,

ρ ◦ ϕ−1(x)p = 1
(ϕ∗)−1 (x)p

.

Algebraic Combinatorics, Vol. 7 #5 (2024) 1457



J. Johnson & R. I. Liu

Proof. Let y = ϕ−1(x) and z = (ϕ∗)−1(x). For any p ∈ P , suppose that ρ(y)q = 1
zq

for all q > p. When applying the toggle at p in the computation of ρ(y), the elements
at or below p are labeled as in y while those above p are labeled as in ρ(y). Hence by
the definition of tp,

ρ(y)p =
(∑ ∥−

q⋗p

1
zq

)(∑
q⋖p

yq

)
· 1

yp
= 1∑

q⋗p
zq

· 1
xp

= 1
zp

.

The result follows easily by induction starting at the top of P . □

Computing iterated applications of rowmotion is more difficult. However, one can
sometimes prove results about rowmotion using an associated combinatorial construc-
tion instead. As mentioned previously, one such example is the Stanley–Thomas word,
which lifts to the birational level.

Definition 2.12. Let R = [r] × [s]. The birational Stanley–Thomas word w for x is
the word of length r + s defined by

wi =


s∏

j=1
xij if 1 ⩽ i ⩽ r,

r∏
j=1

x−1
j,i−r if r + 1 ⩽ i ⩽ r + s.

In [15] it is shown that ϕ ◦ ρ ◦ ϕ−1 cyclically shifts the birational Stanley–Thomas
word. Though this is not sufficient to show that the order of birational rowmotion
on the product of two chains has finite order, it can be used to extend other results
(such as instances of homomesy) to the birational level. In Section 4 we will define
a collection of generalized Stanley–Thomas words, and in Section 5 we show that the
cyclic rotation of these words uniquely determines rowmotion.

2.5. Dodgson condensation and the octahedron recurrence. Given a ma-
trix A = (aij)n

i,j=1, let A
(k)
ij denote the k×k submatrix of A formed by the intersection

of rows i through i+k−1 and columns j through j+k−1 whenever 1 ⩽ i, j ⩽ n−k+1.
These minors satisfy the following algebraic relation known as the Desnanot-Jacobi
identity, which forms the basis of a recursive algorithm for computing the determinant
of a matrix called Dodgson condensation.

Proposition 2.13. For k ⩾ 0,

det(A(k+1)
ij ) det(A(k−1)

i+1,j+1) = det(A(k)
ij ) det(A(k)

i+1,j+1) − det(A(k)
i,j+1) det(A(k)

i+1,j).

(By convention, we set det(A(0)
ij ) = 1 and det(A(−1)

ij ) = 0 for all integers i and j.)

We visualize this relation by placing the values det(A(k)
ij ) into a three-dimensional

array. In all figures containing such an array, we place the entries det(A(k)
ij ) at height

k so that, for k > 1, det(A(k)
ij ) lies directly above the center of the submatrix at height

1 for which it is the determinant. See Figure 2.
Proposition 2.13 then implies that the entries M

(k)
ij = det(A(k)

ij ) satisfy the following
octahedron recurrence:

M
(k)
ij M

(k)
i+1,j+1 = M

(k−1)
i+1,j+1M

(k+1)
ij + M

(k)
i+1,jM

(k)
i,j+1.

The elements in this relation lie at the vertices of an octahedron that is a translation
of the one shown in Figure 2. By convention, we extend the array M = (M (k)

ij ) to all
integers i, j, and k by setting any undefined values equal to 0, which does not violate
the octahedron recurrence.
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ij

k

x
x′

a

bc

d

xx′ = ad + bc

Figure 2. The coordinate system we will use for figures depicting
three-dimensional arrays (M (k)

ij ). (Note that the k direction does not
point vertically but rather along the edge of the pyramid.) The oc-
tahedron recurrence involves the vertices of translations of the octa-
hedron as shown on the right.

x

x′

y

y′

a

bc

de

f

z
(k)
i,j−1 = a

c z
(k)
i−1,j = b

d

z
(k−1)
i,j = x

y → z
(k)
i,j = x′

y′

z
(k−1)
i+1,j = c

e
z

(k−1)
i,j+1 = d

f

Figure 3. The relationship between the octahedron recurrence and
birational toggles as described in Lemma 2.14. Two labelings of the
poset by quotients of entries in the octahedron recurrence are related
by a birational toggle at the central element.

We now demonstrate the known relationship between toggles and the octahedron
recurrence appearing in [9]. A visualization of this lemma is shown in Figure 3. If part
of the rectangle poset is labeled via the quotients z

(k)
ij as shown, then Lemma 2.14

shows that a toggle at (i, j) transforms z
(k−1)
ij to z

(k)
ij .

Lemma 2.14. Suppose M = (M (k)
ij ) is an array of indeterminates satisfying the octa-

hedron recurrence, and let z
(k)
ij = M

(j−1)
k+2,i+k+1

M
(j)
k+1,i+k+1

. Then as rational functions in the entries
of M ,

z
(k)
ij =

(z(k)
i,j−1 + z

(k)
i−1,j)(z(k−1)

i+1,j ∥− z
(k−1)
i,j+1 )

z
(k−1)
ij

.
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Proof. For ease of notation, we relabel the relevant part of the array as in Figure 3.
(For instance, x = M

(j−1)
k+1,i+k and y = M

(j)
k,i+k, so z

(k−1)
ij = x

y .) Applying the octahedron
recurrence to the two octahedra shown and dividing gives

xx′

yy′ = ad + bc

cf + de
=

a
c + b

d
f
d + e

c

=
(

a

c
+ b

d

)(
d

f
∥− c

e

)
.

Solving for x′

y′ yields the desired identity

x′

y′ =

(
a
c + b

d

) (
c
e ∥− d

f

)
x
y

. □

Remark 2.15. In most cases when we apply Lemma 2.14, all quantities will specialize
to well-defined values. There are two exceptions: if we set e = M

(j)
k,i+k+1 = 0 (which

would make c
e = z

(k−1)
i+1,j undefined), then in the proof we instead have

xx′

yy′ = ad + bc

cf
=

a
c + b

d
f
d

=
(

a

c
+ b

d

)(
d

f

)
,

which yields the same result as Lemma 2.14 but with the undefined term z
(k−1)
i+1,j

removed from the parallel sum. A similar result holds if we instead set f = M
(j+1)
k,i+k = 0

(which would make d
f = z

(k−1)
i,j+1 undefined).

Lemma 2.14 suggests that toggling/rowmotion should be thought of as transla-
tion with respect to the octahedron recurrence. In the next section, we will see how
this relationship can be used to prove the iterated birational rowmotion formula for
rectangles.

3. Birational rowmotion in the rectangle poset
In this section, we will use the relationship between the octahedron recurrence

and toggles to prove a formula for any power of birational rowmotion on a rectangle
similar to one given by Musiker–Roby [19]. This formula will be described in terms of
nonintersecting paths inside a certain graph GR. We will begin by proving a lemma
that relates nonintersecting paths in GR to nonintersecting paths in R.

3.1. Nonintersecting paths. Let R = [r] × [s], and let the element (i, j) have
weight xij . For 1 ⩽ k ⩽ s, define P(k)

R to be the set of all collections L of k noninter-
secting (i.e. vertex disjoint) paths traveling up along the edges of the Hasse diagram
of R, starting at {(1, 1), (1, 2), . . . , (1, k)} and ending at {(r, s−k +1), . . . , (r, s)}. The
weight w(L) is the product of the weights of the elements in the paths of L. We will
write w

(k)
R = w

(k)
R (x) for the sum of the weights of all collections of paths in P(k)

R . We
also write wR = w

(s)
R for the product of all weights in R. Similarly, if I is any interval

in R, then we define P(k)
I , w

(k)
I (x), and wI in an analogous manner.

Note that while the definition of P(k)
R is asymmetric in r and s, if k ⩽ min{r, s},

then the paths in any L ∈ P(k)
R must pass through all k elements at rank k + 1 as

well as those at rank r + s − k + 1. Thus in this case w
(k)
R will remain unchanged if

we transpose R. We will generally assume that k ⩽ min{r, s} when considering P(k)
R .

Define GR to be the graph with vertex set [r + 1] × [s], directed edges from (i, j)
to (i + 1, j) of weight x−1

ij , and directed edges from (i, j) to (i + 1, j − 1) of weight 1.
(The vertices of R are in bijection with the edges of GR whose weights are not 1.) As
an example, Figure 4 shows R = [2] × [3] and the corresponding graph GR.
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x11

x12

x13

x21

x22

x23

P1

P2

P3

P4

P5

Q1

Q2

Q3

Q4

Q5

x−1
11

x−1
21 x−1

12

x−1
22 x−1

13

x−1
23

Figure 4. The poset R and graph GR for r = 2 and s = 3. Edges are
directed up and to the left in GR, and unlabeled edges have weight
1. The highlighted paths correspond via the bijection in Lemma 3.3.

Figure 5. Bijection between P(k)
R and S(s−k)

k+1,r+1 as in Lemma 3.1.
Tiles on the left are replaced with the corresponding tiles on the
right.

We label the vertices on the boundary of GR as follows: for 1 ⩽ i ⩽ r and 1 ⩽ j ⩽ s,
define

Pj = (1, j), Ps+i = (i + 1, s), Qi = (i, 1), Qr+j = (r + 1, j).

We then define S(k)
ij to be the set of all collections L′ of k nonintersecting paths

starting from {Pi, . . . , Pi+k−1} and ending at {Qj , . . . , Qj+k−1}. The weight w(L′) of
L′ is the product of the weights of the edges in the paths of L′. Let W

(k)
ij = W

(k)
ij (x)

be the total weight of all L′ ∈ S(k)
ij . (By convention, W

(0)
ij = 1 and W

(k)
ij = 0 when

k < 0.)
The following result relates paths in R to paths in GR.

Lemma 3.1. There exists a bijection from P(k)
R to S(s−k)

k+1,r+1 that divides weight by wR.

Proof. In the drawing of L ∈ P(k)
R , extend the start and end of each path by a half-

edge from northwest to southeast. Such a drawing can be built by piecing together
square tiles centered at each vertex showing the five ways in which the paths can pass
through that vertex in such a way that the tiles match along sides—see Figure 5.
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We can replace each tile with a new tile containing edges/half-edges parallel to the
edges of GR in a way that preserves the exits along the southwest and northeast sides
but inverts the exits along the southeast and northwest sides as shown in Figure 5.
Placing vertices on the southeast and northwest edges of these new tiles, the resulting
drawing will then depict a collection of paths L′ in GR that forms an element of
S(s−k)

k+1,r+1. (This bijection also has the following alternate description: when the two
drawings are overlaid, each of the k horizontal steps in the ith path in L′ crosses the
ith northeast step in one of the k paths in L.)

The weighted edges in L′ correspond to elements of R not lying in any path of L.
Thus w(L′) is the inverse of the weight of the complement of L in R, which is exactly
w(L)
wR

. □

Let A = (aij)r+s
i,j=1 be the square matrix such that aij = W

(1)
ij , the total weight of

all paths from Pi to Qj in GR. By the Lindström–Gessel–Viennot Lemma [7, 18], each
minor det(A(k)

ij ) is equal to W
(k)
ij , the total weight of S(k)

ij , the set of all collections of
nonintersecting paths from {Pi, Pi+1, . . . , Pi+k−1} to {Qj , Qj+1, . . . , Qj+k−1}. By the
discussion in Section 2.5, the three-dimensional array W = (W (k)

ij ) formed by these
minors satisfies the octahedron recurrence. See Figure 7 for a depiction of W when
R = [2] × [3].

We will need a few simple properties of the array W .

Proposition 3.2. Let R = [r] × [s], and let W = (W (k)
ij ) be the corresponding three-

dimensional array. Assume k > 0 and 0 ⩽ i, j ⩽ r + s + 1 − k.
(a) If W

(k)
ij ̸= 0, then i ⩽ j ⩽ i + r.

(b) If i = j, then W
(k)
ij = 1.

(c) If i < j and k > s, then W
(k)
ij = 0.

Proof. All of these follow from the description of W
(k)
ij as the total weight of S(k)

ij .
For (a), there are no paths from Pi to Qj if i > j or j − i > r. For (b), if i = j, then
S(k)

ij has only one element consisting only of horizontal steps of weight 1.
For (c), if i < j and k > s, then the first s + 1 starting points Pi, . . . , Pi+s all lie

at or below row i + 1, while the ending points for these paths lie at or above row
j ⩾ i + 1. But row i + 1 only has s vertices, so it is impossible for there to be s + 1
nonintersecting paths passing through it. □

We can translate Lemma 3.1 into a statement expressing weights of certain col-
lections of nonintersecting paths in R in terms of the array of minors W = (W (k)

ij ).
In fact, we can formulate a similar result for paths inside certain intervals I ⊆ R,
specifically those for which the leftmost point of I lies on the left boundary of R and
the rightmost point of I lies on the right boundary of R.
Corollary 3.3. Let R = [r] × [s], and let I = [i1, i2] × [j1, j2] be an interval in R
such that i1 = 1 or j2 = s, and j1 = 1 or i2 = r.

(a) There exists a bijection from P(k)
I to S(j2−j1−k+1)

i1+j1+k−1,i2+j1
that divides weight by

wI , so that

W
(j2−j1−k+1)
i1+j1+k−1,i2+j1

= w
(k)
I

wI
.

(b) The following equality holds:

w
(k)
I =

W
(j2−j1−k+1)
i1+j1+k−1,i2+j1

W
(j2−j1+1)
i1+j1−1,i2+j1

.
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P6

P7

P8

P9

Q7

Q8

Q9

Q10

Figure 6. Illustration of GR and GI (dotted) for R = [5] × [7] and
I = [3, 5] × [2, 7] with k = 2 as in Corollary 3.3 (note j2 = s and
i2 = r). Nonintersecting paths from {P6, . . . P9} to {Q7, . . . , Q10} in
GR must contain the horizontal steps shown.

Proof. Any nonintersecting paths in GR starting at Pi1+j1+k−1, . . . , Pi1+j2−1 must
begin with horizontal steps until reaching row i1 at points (i1, j1 + k), . . . , (i1, j2). See
Figure 6. (This statement is trivial if i1 = 1.) Similarly, any nonintersecting paths
ending at Qi2+j1 , . . . , Qi2+j2−k must pass through row i2 + 1 at (i2 + 1, j1), . . . , (i2 +
1, j2 −k) and end with horizontal steps. (This is trivial if i2 = r.) The remaining parts
of the paths lie inside the subgraph of GR from rows i1 through i2 + 1 and columns
j1 through j2, which is isomorphic as a weighted graph to GI . Part (a) follows by
applying Lemma 3.1 to I and summing over all paths.

For part (b), setting k = 0 in part (a) gives W
(j2−j1+1)
i1+j1−1,i2+j1

= 1
wI

. Combining with
part (a) gives the result. □

In particular, note that the conditions of Corollary 3.3 hold whenever I is an order
ideal (when i1 = j1 = 1) or order filter (when i2 = r and j2 = s) of R.

3.2. Birational rowmotion formula. Using the relation between the octahedron
recurrence and toggles, we will prove the following birational rowmotion formula.

Theorem 3.4. Let R = [r] × [s], x ∈ RR
>0, and y = ϕ−1(x). Fix (i, j) ∈ R.

(a) If 0 ⩽ k ⩽ r + s − i − j, then

ρ−k(y)ij =
W

(j−1)
k+2,i+k+1

W
(j)
k+1,i+k+1

.

(b) For all k ∈ Z,

ρk(y)ij = 1
ρk−i−j+1(y)r+1−i,s+1−j

.

In particular, if 0 < k < i + j, then the right hand side can be computed using
part (a).

(c) For all k ∈ Z, ρk+r+s(y) = ρk(y). In other words, the action of rowmotion
on R has order r + s.
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a

c

e

b

d

f

P1

P2

P3

P4

P5

Q1

Q2

Q3

Q4

Q5

a

b c

d e

f

1
a

ab

0
0

0
1

b + c

cd

0

0
0

1
d + e

ef

0
0

0
1

f

0
0

0
0

1
1

ac

abcd

0

0
1

bd + be + ce

cdef

0
0

1
df

0
0

0
1

1
ace

abcdef

0
1

bdf

0
0

1

1
0 0

1

1

Q1

Q2

Q3

Q4

Q5

P1

P2

P3

P4

P5

Figure 7. R = [2]× [3], GR, and the corresponding array W = W
(k)
ij

for 1 ⩽ k ⩽ 5, where a denotes a−1 for readability. (All entries at
height 0 equal 1, and all other entries not shown are 0.) Red and
blue lines indicate quotients used to compute ρ0(y) = y = ϕ−1(x)
and ρ−1(y) (apart from the topmost label), respectively.

Theorem 3.4 can be used to find an explicit formula for the entries of any power of ρ
applied to y. (Using parts (a) and (b) one can compute ρk(y)ij whenever i+j−r−s ⩽
k < i + j, and part (c) can be used to bring k into this range.) While the birational
rowmotion formulas given in [19] are stated in terms of complements of paths in R,
the formulation given here can be seen to be equivalent using Corollary 3.3.

Geometrically, Theorem 3.4(a) states that one can find the values of ρ−k(y)ij as
quotients of nearby entries inside the array W , and increasing the value of k corre-
sponds to a translation in the direction (1, 1, 0) as long as these entries remain inside
the defined pyramidal region of W . Upon passing outside this region, one needs to use
part (b) to relocate inside the pyramid to the entries corresponding to the antipodal
point of R. See Figure 7.
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Example 3.5. Let R = [2] × [3]. Let x be the labeling of R as in Figure 7 with the
array (W (k)

ij ) as previously described. When (i, j) = (2, 2), Theorem 3.4(a) gives

ρ0(y)22 = W
(1)
23

W
(2)
13

= b−1 + c−1

(abcd)−1 = acd + abd,

ρ−1(y)22 = W
(1)
34

W
(2)
24

= d−1 + e−1

(cdef)−1 = cef + cdf.

To compute ρ−2(y)22, r + s − i − j = 1 < 2, so part (a) does not apply. Instead,
we apply parts (c) and (b) first to obtain

ρ−2(y)22 = ρ3(y)22 = 1
ρ0(y)12

= W
(2)
12

W
(1)
22

= (ac)−1,

ρ−3(y)22 = ρ2(y)22 = 1
ρ−1(y)12

= W
(2)
23

W
(1)
33

= (bd)−1 + (be)−1 + (ce)−1,

ρ−4(y)22 = ρ(y)22 = 1
ρ−2(y)12

= W
(2)
34

W
(1)
44

= (df)−1.

We will prove each part of Theorem 3.4 separately. Part (a) follows primarily from
Lemma 2.14, though some care is needed along the boundary of R.

Proof of Theorem 3.4(a). Let z
(k)
ij = W

(j−1)
k+2,i+k+1

W
(j)
k+1,i+k+1

, which we wish to equal ρ−k(y)ij for

0 ⩽ k ⩽ r + s − i − j. We proceed by induction on k. When k = 0, ρ0(y)ij = yij =
ϕ−1(x)ij is the total weight of all maximal chains in [i] × [j] (with respect to the

labeling x). By Corollary 3.3(b), this is W
(j−1)
2,i+1

W
(j)
1,i+1

= z
(0)
ij , as desired.

For the inductive step, assume k > 0 and suppose that the claim is true for ρ−k+1(y)
as well as for ρ−k(y)i′j′ when (i′, j′) < (i, j). The value of ρ−k(y) is obtained by
applying toggles from bottom to top on ρ−k+1(y), so the toggle at (i, j) gives

(∗) ρ−k(y)ij =

 ∑
(i′,j′)⋖(i,j)

ρ−k(y)i′j′

 ∑ ∥−

(i′,j′)⋗(i,j)

ρ−k+1(y)i′j′

 · 1
ρ−k+1(y)ij

,

where an empty sum is replaced with 1.
We claim that we can replace the first sum in (∗) with z

(k)
i,j−1 + z

(k)
i−1,j . If i > 1 and

j > 1, then this is immediate by induction. Otherwise note that

z
(k)
i0 =

W
(−1)
k+2,i+k+1

W
(0)
k+1,i+k+1

= 0
1 = 0, z

(k)
0j =

W
(j−1)
k+2,k+1

W
(j)
k+1,k+1

= δj1

1 = δj1

by Proposition 3.2(a) and (b). Thus if exactly one of i and j is 1, then one of z
(k)
i,j−1 and

z
(k)
i−1,j equals 0 while the other is the only term in the first sum in (∗) by induction. If

instead i = j = 1, then the empty sum in (∗) is replaced with 1 = 0+δ11 = z
(k)
10 +z

(k)
01

as needed.

Algebraic Combinatorics, Vol. 7 #5 (2024) 1465



J. Johnson & R. I. Liu

Similarly, we claim that we can replace the second (parallel) sum in (∗) with either
z

(k−1)
i,j+1 ∥−z

(k−1)
i+1,j , or just one of these terms if the other is undefined. If i < r and j < s,

then this is again immediate by induction (since the inequality k − 1 ⩽ r + s − (i +
j + 1) holds). If i = r and j < s, then z

(k−1)
r+1,j is undefined since W

(j)
k,r+k+1 = 0 by

Proposition 3.2(a), so we are left with z
(k−1)
r,j+1 = ρ−k+1(y)r,j+1 by induction. If instead

i < r and j = s, then z
(k−1)
i,s+1 is undefined since W

(s+1)
k,i+k = 0 by Proposition 3.2(c),

which leaves just z
(k−1)
i+1,s = ρ−k+1(y)i+1,s by induction. Finally, i = r and j = s cannot

both occur since 0 < k ⩽ r + s − i − j.
The final factor in (∗) is equal to 1

z
(k−1)
ij

by induction. The result then follows by

comparing (∗) to Lemma 2.14, using Remark 2.15 when needed. □

Next we prove part (b). In some sense, this reflects two symmetries: toggling is
respected by dualizing a poset and inverting each label, and the octahedron recurrence
is respected by reflecting over the plane perpendicular to the main diagonal.

Proof of Theorem 3.4(b). Note that if 0 < k < i + j, then 0 ⩽ i + j − k − 1 ⩽
r + s − (r + 1 − i) − (s + 1 − j), so the right hand side of (b) will satisfy the condition
of part (a), as claimed.

Via the change of coordinates z = ρk−1(y), it suffices to prove the case when k = 1.
By part (a),

ρ2−i−j(y)r+1−i,s+1−j =
W

(s−j)
i+j,r+j

W
(s−j+1)
i+j−1,r+j

.

By Corollary 3.3, this is the total weight of all maximal chains in [i, r] × [j, s] in R
(with respect to the labeling x). Thus

ρ2−i−j(y)r+1−i,s+1−j = (ϕ∗)−1 (x)ij = 1
ρ(y)ij

by Lemma 2.11. □

Finally, we deduce part (c) from part (b).

Proof of Theorem 3.4(c). Apply Theorem 3.4(b) twice:

ρk(y)i,j =
(
ρk−i−j+1(y)r+1−i,s+1−j

)−1

=
[(

ρk−i−j+1−(r+1−i)−(s+1−j)+1(y)i,j

)−1
]−1

= ρk−r−s(y)i,j . □

In the next two sections, we will show how to use the perspective relating rowmotion
and the octahedron recurrence to prove various identities about rowmotion.

4. A chain shifting lemma
In this section we will use the birational rowmotion formula to derive a chain

shifting lemma, which is a birational generalization of the rowmotion action on the
Stanley–Thomas word appearing in [15].
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a

c

e

b

d

f

ϕ ◦ ρ−1 ◦ ϕ−1

bc
b+c

de(b+c)
bd+cd+ce

f(bd+cd+ce)
ce

d(b+c)
b

f(bd+cd+ce)
d(b+c)

1
af(bd+cd+ce)

Figure 8. Two labelings x and z = ϕ ◦ ρ−1 ◦ ϕ−1(x).

4.1. Chain shifting. Recall from Section 3.1 that if I is an interval of R and x is a
labeling of R, then w

(k)
I (x) is the total weight of the collections of k nonintersecting

paths in P(k)
I . We will prove the following lemma relating these sums in two labelings

x and ϕ ◦ ρ−1 ◦ ϕ−1(x).

Lemma 4.1 (Chain shifting). Let R = [r] × [s] and let 1 < u ⩽ v ⩽ s. Define intervals
I = [r] × [u, v] and I ′ = [r] × [u − 1, v − 1] of R. Then for any labeling x ∈ RR

>0,

w
(k)
I (x) = w

(k)
I′ (ϕ ◦ ρ−1 ◦ ϕ−1(x)).

(The symmetric statement obtained by reflecting R also holds.)

Note that the intervals I and I ′ differ only by shifting by one unit in R.

Example 4.2. Consider the labeling x of R = [2]×[3] and its image z = ϕ◦ρ−1◦ϕ−1(x)
in Figure 8. Then

z11z21 = bc

b + c
· d(b + c)

b
= cd = x12x22.

Similarly, we can compute all of the products along the rows and columns of R:

z12z22 = x13x23 z13z23 = (x11x12x13)−1

(z11z12z13)−1 = (x21x22x23)−1 (z21z22z23)−1 = x11x21

From the above computation, we see that ϕ ◦ ρ−1 ◦ ϕ−1 rotates the birational
Stanley–Thomas word

(x11x21, x12x22, x13x23, (x11x12x13)−1, (x21x22x23)−1).

However, the shifting of chain sums happens more generally for sums of chains
within subrectangles of R. For instance, if I = [2] × [2, 3], I ′ = [2] × [1, 2], and k = 1,
then we have

z11z21z22 + z11z12z22 = bc

b + c
· f(bd + cd + ce)

d(b + c)

(
d(b + c)

b
+ de(b + c)

bd + cd + ce

)
= cf(bd + cd + ce)

b + c
+ bcef

b + c
= cdf + cef

= x12x22x23 + x12x13x22.

We now prove Lemma 4.1. As we will see, it can be thought of as a manifestation
of the translation invariance of the octahedron recurrence.

Proof of Lemma 4.1. Let x be a labeling of R, let y = ϕ−1(x), and let (W (k)
ij ) be the

corresponding three-dimensional array. Also define x̃ = ϕ◦ρ−1 ◦ϕ−1(x), ỹ = ϕ−1(x̃) =
ρ−1(y), and (W̃ (k)

ij ) the corresponding array.
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We claim that W̃
(k)
ij = W

(k)
i+1,j+1 for 1 ⩽ i, j ⩽ r+s−k. Note that by the octahedron

recurrence/Dodgson condensation formula, it suffices to prove the case k = 1 since
the entries for k > 1 are determinants of submatrices of these entries at height 1.

Assume k = 1. If i ⩾ j, then the claim follows by Proposition 3.2. If i < j, then
applying Theorem 3.4 twice gives

W̃
(1)
ij = 1

ρ−i+1(ỹ)j−i,1
= 1

ρ−i(y)j−i,1
= W

(1)
i+1,j+1,

which proves the claim.
To complete the proof, we need only observe that applying Corollary 3.3(b) to the

two sides of the desired equality expresses them as quotients of two entries of the form
W

(k)
i+1,j+1 or W̃

(k)
ij , respectively, which are then equal by the claim. □

4.2. Generalized Stanley–Thomas words. Given Lemma 4.1, it is natural to
want to generalize the definition of the Stanley–Thomas word to include more words
that are cyclically shifted by the action of rowmotion.

The usual birational Stanley–Thomas word is obtained as the orbit of
∏s

j=1 x1j =
ϕ−1(x)1s under the action of ϕ ◦ ρ ◦ ϕ−1 on x, or, put another way, the orbit of y1s

under the action of ρ on y = ϕ−1(x). We can generalize this by replacing y1s with
any other value yis or yrj lying on the upper boundary of R.

Definition 4.3. Let x ∈ RR
>0, and let y = ϕ−1(x). A generalized Stanley–Thomas

word for x is a sequence of one of the following two forms:

STi(x) = (yis, ρ−1(y)is, ρ−2(y)is, . . . , ρ−r−s+1(y)is),
ST j(x) = (yrj , ρ−1(y)rj , ρ−2(y)rj , . . . , ρ−r−s+1(y)rj).

The usual birational Stanley–Thomas word is therefore ST1. The reason for choos-
ing these words in particular is that they have a clean description in terms of x. We
consider the case of STi below; the other case is similar.

Recall that yis = ϕ−1(x)is = w
(1)
[i]×[s](x). By Lemma 4.1,

ρ−1(y)is = w
(1)
[i]×[s](ϕ ◦ ρ−1(y)) = w

(1)
[2,i+1]×[s](x).

Iterating, we find that for 0 ⩽ k ⩽ r − i,

ρ−k(y)is = w
(1)
[k+1,k+i]×[s](x).

To find the remaining coordinates, we apply Theorem 3.4 (c), (b), and (a) in order to
find that, for r − i < k < r + s,

ρ−k(y)is = ρr+s−k(y)is = 1
ρr−i−k+1(y)r+1−i,1

= W
(1)
k+i−r,k+1.

While W
(1)
k+i−r,k+1 is defined in terms of paths in GR, it is also easy to describe it

in terms of the labeling x directly. Choosing the northwest edges in a path in GR from
Pk+i−r to Qk+1 corresponds to choosing elements of R at ranks k + i−r +1, . . . , k +1
traveling to the northwest (i.e. with increasing first coordinate), not necessarily using
the edges of R. In other words, define

ωab = ωab(x) =
∑

(xiaja
xia+1ja+1 · · · xibjb

)−1,

where the sum ranges over all sequences (ia, ja), (ia+1, ja+1), . . . , (ib, jb) ∈ R such that
it + jt = t for all t, and ia < ia+1 < · · · < ib (or equivalently ja ⩾ ja+1 ⩾ · · · ⩾ jb).
Then we have proved the following proposition.
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x11

x12

x13

x21

x22

x23

x31

x32

x33

Figure 9. Computation of ST2 in R = [3] × [3] as in Example 4.5.
In the first two diagrams, the sums of the weights of the maximum
length chains in the blue posets are w

(1)
[1,2]×[3] and w

(1)
[2,3]×[3], respec-

tively. In the remaining four diagrams, the sums of the reciprocals of
the weights of the maximum length chains in the red posets are ω23,
ω34, ω45, and ω56, respectively.

Proposition 4.4. For any x ∈ RR
>0, the generalized Stanley–Thomas word STi =

STi(x) is given by

STi = (w(1)
[1,i]×[s], w

(1)
[2,i+1]×[s], . . . , w

(1)
[k+1,k+i]×[s], ω2,r−i+2, ω3,r−i+3, . . . , ωi+s,r+s).

An analogous formula for ST j can be obtained by reflecting R.

Example 4.5. Let R = [3] × [3] and x ∈ RR
>0. The generalized Stanley–Thomas word

ST2 is
ST2 = (w(1)

[1,2]×[3], w
(1)
[2,3]×[3], ω23, ω34, ω45, ω56).

In the x-coordinates we have the following:

w
(1)
[1,2]×[3] = x11x21x22x23 + x11x12x22x23 + x11x12x13x23,

w
(1)
[2,3]×[3] = x21x31x32x33 + x21x22x32x33 + x21x22x23x33,

ω23 = 1
x11x21

,

ω34 = 1
x12x22

+ 1
x12x31

+ 1
x21x31

,

ω45 = 1
x13x23

+ 1
x13x32

+ 1
x22x32

,

ω56 = 1
x23x33

.

See Figure 9 for a visualization of this example.

As noted in [15], the cyclic rotation of ST1 is not sufficient to uniquely determine
birational rowmotion. However, the cyclic rotation of all STi and ST j does uniquely
determine birational rowmotion, and in fact the chain shifting lemma alone nearly
suffices. We make this statement precise in Section 5.
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A =


0 0 0 2
2 0 1 0
0 1 1 1
1 1 0 0

 P =
1 1 1 2 4
2 3
3 4
4

Q =
1 1 2 3 3
2 2
3 4
4

5 2 2 1
4 2 1

4 1
3

5 2 2 1
5 2 1

3 2
2

RSK(A) =


1 1 2 2
1 2 2 3
1 2 2 5
3 4 4 5


Figure 10. An example of the map A 7→ RSK(A) in the classical
setting. See Example 5.1.

5. Birational RSK and Greene’s theorem
In this section, we will define birational RSK in terms of toggles and show how our

perspective gives a simple proof of the birational version of Greene’s theorem.

5.1. Classical RSK. We first review some background on the classical RSK corre-
spondence, which gives a bijection between nonnegative integer matrices A and pairs
of semistandard tableaux (P, Q) of the same shape λ. (See, for instance, [24] for more
details.)

In the case when A is the matrix of a permutation π, Greene’s theorem [8] states
that λ1 + · · · + λk is the maximum size of a union of k increasing subsequences of
π. In fact, one can use Greene’s theorem to compute not just the shape of P and
Q but the entire tableaux: the shape P⩽m formed by the entries at most m in P
corresponds to the permutation formed by the letters 1, . . . , m in π, while the shape
Q⩽m corresponds to the permutation formed by the first m letters of π.

When A is a general n × n nonnegative integer matrix, a routine standardization
argument gives the following generalization of Greene’s theorem: λ1 + · · · + λk is
the maximum weight of k nonintersecting paths (traveling weakly southeast) from
(1, 1), . . . , (1, k) to (n, n − k + 1), . . . , (n, n) in A, where the weight of a path is the
sum of the entries it contains. (As noted in [6], this result appears to be somewhat
folklore, but see [20, Thm. 2.5] as well as [17, Thm. 12], [24, Thm. 4.8.10].) As in the
permutation case, this can be used to characterize the entire P and Q tableaux since
P⩽m (resp. Q⩽m) corresponds to the submatrix formed by the first m columns (resp.
rows) of A.

One way to see the impact of Greene’s theorem more directly is to transform P
and Q into Gelfand-Tsetlin patterns and glue them along their top rows to form an
n × n matrix with weakly increasing rows and columns that we denote by RSK(A).
By construction, this matrix has the property that, for 1 ⩽ k ⩽ i, j ⩽ n with either
i = n or j = n,

k−1∑
t=0

RSK(A)i−t,j−t

is the maximum weight of k nonintersecting paths from (1, 1), . . . , (1, k) to (i, j − k +
1), . . . , (i, j) in A.

Example 5.1. Figure 10 depicts a 4 × 4 matrix A = (aij) and its image under the
classical RSK correspondence as a pair of semistandard tableaux P and Q of the same
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y11

y12

y13

y14

y21

y22

y23

y24

y31

y32

y33

y34

ρ−1
[2]×[3]

y31

y32

y33

y34

y24

y14

ρ−1(y)11

ρ−1(y)12

ρ−1(y)13

ρ−1(y)21

ρ−1(y)22

ρ−1(y)23

ρ−1
[1]×[2]

y31

y32

y33

y34

y24

y14

ρ−1(y)13

ρ−1(y)21

ρ−1(y)22

ρ−1(y)23

ρ−2(y)11

ρ−2(y)12

Figure 11. Computing RSK(x) by applying toggles to y = ϕ−1(x).
At each step, the highlighted elements are toggled from bottom to
top.

shape. These tableaux are then turned into triangular Gelfand-Tsetlin patterns (the
rows of which give the shapes of the tableaux P⩽m and Q⩽m for m = 4, 3, 2, 1). These
two Gelfand-Tsetlin patterns are then glued together to form the matrix RSK(A).

By Greene’s theorem, the entries of RSK(A) tell us about weights of nonintersect-
ing paths in A. For example:

• RSK(A)34 = 5 is the maximum weight of a path from a11 to a34;
• RSK(A)34 + RSK(A)23 = 5 + 2 = 7 is the maximum weight of two noninter-

secting paths from a11 and a12 to a33 and a34; and
• RSK(A)34 + RSK(A)23 + RSK(A)12 = 5 + 2 + 1 = 8 is the maximum weight

of three nonintersecting paths from a11, a12, a13 to a32, a33, a34, which is just
the sum of all the entries in the first three rows of A.

In the next section, we will see how the map A 7→ RSK(A) can be generalized to
the birational setting.

5.2. Birational RSK. For any interval I ⊆ R, denote by ρI the map on labelings
of R given by the composition of toggles at the elements of I (applied in the order of
a linear extension from top to bottom).

Definition 5.2. Let R = [r] × [s], and let m = min{r, s} − 1. The birational RSK
map on labelings of R is given by

RSK = ρ−1
[r−m]×[s−m] ◦ · · · ◦ ρ−1

[r−2]×[s−2] ◦ ρ−1
[r−1]×[s−1] ◦ ϕ−1.

We will compare this to other formulations of birational RSK below, but for now,
this can be treated as a definition. We will abuse notation and denote the piecewise-
linear version of this map by RSK as well.

Example 5.3. Let R = [3] × [4], and let x ∈ RR
>0 and y = ϕ−1(x). Then

RSK(x) = ρ−1
[1]×[2] ◦ ρ−1

[2]×[3](y) = (t12 ◦ t11) ◦ (t23 ◦ t22 ◦ t21 ◦ t13 ◦ t12 ◦ t11)(y).

See Figure 11. Note that each toggle involves essentially the same calculation that is
done when applying some power of ρ−1 to y. As a result, each label of RSK(x) is
equal to a label in some ρ−k(y). These can then be computed using Theorem 3.4.

In general, one can always describe the entries of RSK(x) using the action of
rowmotion on all of R as in the following proposition.

Proposition 5.4. RSK(x)r−i,s−j = ρ− min{i,j} ◦ ϕ−1(x)r−i,s−j .

Proof. Let y = ϕ−1(x). We claim that ρ−1
[r−k]×[s−k] ◦ · · · ◦ ρ−1

[r−1]×[s−1](y) and ρ−k(y)
agree on [r − k] × [s − k]. Indeed, suppose inductively that the claim holds for k − 1.
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Since any neighbor of an element in [r − k] × [s − k] lies in [r − k + 1] × [s − k + 1],
applying ρ−1

[r−k,s−k] to both ρ−1
[r−k+1]×[s−k+1] ◦ · · · ◦ ρ−1

[r−1]×[s−1](y) and ρ−k+1(y) yields
labelings that agree on [r − k] × [s − k]. Then applying the remaining toggles in ρ−1

(at elements of R ∖ ([r − k] × [s − k])) to the latter also does not affect any of these
values, proving the claim.

If min{i, j} = k, then ρ−1
[r−k′]×[s−k′] does not affect the label at (r − i, s − j) for any

k′ > k, so the result follows from the claim. □

We are now ready to prove the following theorem, which will serve as a birational
analogue to Greene’s theorem as described in Section 5.1.

Theorem 5.5 (Birational Greene’s theorem). Let R = [r] × [s], and choose (i, j) ∈ R
such that either i = r or j = s. Then for any x ∈ RR

>0 and 1 ⩽ k ⩽ min{i, j} + 1,
k−1∏
t=0

RSK(x)i−t,j−t = w
(k)
[i]×[j](x).

Proof. Let x ∈ RR
>0 and let y = ϕ−1(x). By Proposition 5.4, since

min{r − (i − t), s − (j − t)} = min{r − i, s − j} + t = t,

we have
RSK(x)i−t,j−t = ρ−t(y)i−t,j−t.

Theorem 3.4(a) then gives

ρ−t(y)i−t,j−t =
W

(j−t−1)
t+2,i+1

W
(j−t)
t+1,i+1

.

We then have the telescoping product
k−1∏
t=0

RSK(x)i−t,j−t =
k−1∏
t=0

ρ−t(y)i−t,j−t =
W

(j−k)
k+1,i+1

W
(j)
1,i+1

= w
(k)
[i]×[j](x)

by Corollary 3.3. □

Note that Theorem 5.5 uniquely characterizes the map RSK in terms of the values
of w

(k)
[i]×[j](x) where i = r or j = s. To see why this can be considered to be a birational

version of Greene’s theorem, consider the tropicalization of Theorem 5.5:
k−1∑
t=0

RSK(x)i−t,j−t = max
L∈P(k)

[i]×[j]

∑
z∈L

xz.

This corresponds directly to the description of RSK(A) given in Section 5.1. We can
therefore treat this as a proof that the map RSK as defined above is a birational
analogue to the classical RSK correspondence.

Example 5.6. Suppose R = [4] × [4] and x ∈ RR
>0. According to Theorem 5.5, we can

compute the labels of RSK(x) in terms of the weights of nonintersecting paths in x.
For instance,

w
(1)
[3]×[4](x) = RSK(x)34,

w
(2)
[3]×[4](x) = RSK(x)34 · RSK(x)23,

w
(3)
[3]×[4](x) = RSK(x)34 · RSK(x)23 · RSK(x)12,

from which these three labels of RSK(x) can easily be determined by taking quotients.
Note that these three equations tropicalize to the description of the corresponding
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entries of the classical RSK map using Greene’s theorem as in Section 5.1. (Compare
to the bullet points in Example 5.1.)

This implies that we can compute the classical RSK map by using the piecewise-
linear version of Definition 5.2. For instance, treating the matrix A in Figure 10 as
a labeling of the rectangle R = [4] × [4], we can compute RSK(A) as follows. First
apply the inverse transfer map ϕ−1:

A =


0 0 0 2
2 0 1 0
0 1 1 1
1 1 0 0

 ϕ−1

−−→


0 0 0 2
2 2 3 3
2 3 4 5
3 4 4 5

 .

Then successively apply the partial rowmotion maps as indicated. (At each step, the
red entries are toggled starting in the upper left corner.)

0 0 0 2
2 2 3 3
2 3 4 5
3 4 4 5

 ρ−1
[3]×[3]−−−−→


0 0 2 2
0 1 2 3
1 2 2 5
3 4 4 5

 ρ−1
[2]×[2]−−−−→


0 1 2 2
1 2 2 3
1 2 2 5
3 4 4 5

 ρ−1
[1]×[1]−−−−→


1 1 2 2
1 2 2 3
1 2 2 5
3 4 4 5

 .

The resulting matrix RSK(A) is the same as in Figure 10.

5.3. Relation to prior work. Our construction of birational RSK using the oc-
tahedron recurrence is very similar to the approach taken by Danilov–Koshevoy [3]
(although their construction differs from the standard one by a symmetry of A). Our
construction is also necessarily equivalent to the description of “tropical RSK” (some-
times also “geometric RSK”) given by Noumi–Yamada [20] (motivated by Kirillov
[16]) since their map is also constructed to satisfy Theorem 5.5. An analysis of the
Noumi–Yamada construction via local toggles can also be found in [21].

In [6], a birational version of RSK is described using the following piecewise-linear
analogue of RSK defined in [11, 22]. Let x ∈ C(R) be a point in the chain polytope of
R = [r] × [s]. We construct y = rsk(x) ∈ O(R) in the order polytope of R using the
following procedure.

(1) Set y11 = x11.
(2) Choose an element p ∈ R such that yq has been defined for all q < p. Set

yp = xp + max
q⋖p

yq, and then toggle y at all elements below p in the same file.
(3) Repeat the previous step until all coordinates of y have been defined.

In step (2), the elements p can be considered in the order of any linear extension of
R. It is straightforward to verify that the result is independent of the choice of linear
extension. We can also extend rsk in the obvious way to all of RR

⩾0.

Example 5.7. Consider the matrix A from Examples 5.1 and 5.6. We compute rsk(A)
by considering elements in order of rank, taking the elements at each rank simulta-
neously (entries colored in red are toggled at the following step):

0
 →


0 0
2

 →


0 0 0
2 2
2

 →


0 0 0 2
0 2 3
2 3
3



→


0 0 2 2
0 1 3 3
1 3 4
3 4

 →


0 1 2 2
1 1 2 3
1 2 4 5
3 4 4

 →


1 1 2 2
1 2 2 3
1 2 2 5
3 4 4 5

 .

Note that the result agrees with the computations of RSK(A) from earlier.
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In fact, this map is the same as the piecewise-linear version of the map RSK
defined in the previous section.

Proposition 5.8. RSK = rsk.

Proof. When performing step (2) above, none of the toggled elements form a cover
relation with any element that has yet to be considered. Since the value of each new
yp depends only on the values yq for q ⋖ p, the toggles at the previous steps do not
affect the initial value of yp. Hence we can apply all the toggles after first assigning
all yp, which is equivalent to first applying ϕ−1 to x.

Without loss of generality, we may assume r ⩽ s. If r = 1, then the rectangle is a
chain and no toggles are applied, so rsk = ϕ−1 = RSK.

Suppose inductively that on [r −1]× [s], rsk = ρ−1
[1]×[s−r+2] ◦ · · · ◦ρ−1

[r−2]×[s−1] ◦ϕ−1,
and consider the rectangle R = [r] × [s] for r ⩽ s. After applying rsk on the order
ideal [r − 1] × [s], to complete rsk for R we must apply toggles at all elements in
[r − 1] × [s] that lie in files 2 − r, 3 − r, . . . , s − r. Since toggles at elements that
are not adjacent commute, we can toggle row by row instead of file by file. Write
Ii = {i} × [s − r + i] ⊆ R for i < r. We then find that on R,

rsk =
(

ρ−1
I1

◦ ρ−1
I2

· · · ◦ ρ−1
Ir−1

)
◦ ρ−1

[1]×[s−r+2] ◦ · · · ◦ ρ−1
[r−2]×[s−1] ◦ ϕ−1

=
(
ρ−1

I1

)
◦
(

ρ−1
I2

◦ ρ−1
[1]×[s−r+2]

)
◦ · · · ◦

(
ρ−1

Ir−1
◦ ρ−1

[r−2]×[s−1]

)
◦ ϕ−1

= ρ−1
[1]×[s−r+1] ◦ ρ−1

[2]×[s−r+2] ◦ · · · ◦ ρ−1
[r−1]×[s−1] ◦ ϕ−1

= RSK. □

5.4. Relation to chain sums and Stanley–Thomas words. Since RSK is in-
vertible, any x ∈ RR

>0 is uniquely determined by RSK(x). From Theorem 5.5, it
follows that the values of w

(k)
I (x), where I has the form [r] × [j] or [i] × [s], determine

x.
Perhaps even more relevant for our work with rowmotion, we can also characterize

x using the types of chain sums that appear in Lemma 4.1 with k = 1.

Theorem 5.9. Let x ∈ RR
>0. The chain sums w

(1)
I (x), where I ranges over intervals

of the form [r] × [u, v] and [u, v] × [s], uniquely determine x.

Proof. By the Lindström–Gessel–Viennot Lemma on R (using vertex weights), we can
express any w

(k)
[r]×[j] as a determinant of a matrix with entries of the form w

(1)
[r]×[u,v],

and similarly any w
(k)
[i]×[s] is determined by the values w

(1)
[u,v]×[s]. By Theorem 5.5, each

entry of RSK(x) is a quotient of (or equal to) entries of the form w
(k)
[r]×[j] or w

(k)
[i]×[s],

so the result follows.
(In fact, we do not even need w

(1)
[r]×[u,s] for 2 ⩽ u ⩽ s since w

(k)
[r]×[s] can be computed

from the other chain sums.) □

Example 5.10. Let R = [2]× [3], and take x ∈ RR
>0 to be labeled as in Figure 8. From

Theorem 5.9, x is uniquely determined by the following chain sums:

w
(1)
[2]×[1,1] = ab, w

(1)
[2]×[1,2] = abd + acd, w

(1)
[2]×[2,2] = cd,

w
(1)
[1,1]×[3] = ace, w

(1)
[1,2]×[3] = abdf + acdf + acef, w

(1)
[2,2]×[3] = bdf.
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Indeed, from these we can compute

w
(2)
[2]×[1,2] =

∣∣∣∣∣w
(1)
[2]×[1,1] w

(1)
[2]×[1,2]

0 w
(1)
[2]×[2,2]

∣∣∣∣∣ = abcd,

w
(2)
[1,2]×[3] =

∣∣∣∣∣w
(1)
[1,1]×[3] w

(1)
[1,2]×[3]

0 w
(1)
[2,2]×[3]

∣∣∣∣∣ = abcdef.

We can then compute RSK(x) using Theorem 5.5:

RSK(x)11 =
w

(2)
[2]×[1,2]

w
(1)
[2]×[1,2]

= abcd

abd + acd
,

RSK(x)12 =
w

(2)
[1,2]×[3]

w
(1)
[1,2]×[3]

= abcdef

abdf + acdf + acef
,

RSK(x)13 = w
(1)
[1,1]×[3] = ace,

RSK(x)21 = w
(1)
[2]×[1,1] = ab,

RSK(x)22 = w
(1)
[2]×[1,2] = abd + acd,

RSK(x)23 = w
(1)
[1,2]×[3] = abdf + acdf + acef.

It follows that RSK(x) and hence x are uniquely determined.

In particular, since these chain sums all appear in the generalized Stanley–Thomas
words, the following corollary is immediate.

Corollary 5.11. The map ϕ ◦ ρ ◦ ϕ−1 is the unique function on RR
>0 that cyclically

shifts the generalized Stanley–Thomas words STi and ST j.

It follows that the cyclic shifting of the generalized Stanley–Thomas words could be
used to prove periodicity of birational rowmotion on rectangles. Of course, presently
our method of proving this cyclic shifting yielded a proof of periodicity more directly.
However, the techniques in our follow-up work [13] can be used to derive this cyclic
shifting in a manner that is more independent of periodicity.

By Lemma 4.1, most of the chain sums w
(1)
I considered above get sent to other

such sums. It follows that the chain shifting lemma determines “most” of rowmotion
in the following sense.

Corollary 5.12. The chain shifting property of ϕ ◦ ρ−1 ◦ ϕ−1 (stated in Lemma 4.1)
uniquely determines RSK(ϕ ◦ ρ−1 ◦ ϕ−1(x))ij, where j − i ̸= s − r.

Proof. To compute the (i, j)th coordinate of the RSK map where j − i < s − r, we
need only compute the values of w

(k)
[r]×[j+r−i] for k ⩽ r − i + 1 by Theorem 5.5. Since

j + r − i < s, by Lemma 4.1, w
(k)
[r]×[j+r−i](ϕ ◦ ρ−1 ◦ ϕ−1(x)) = w

(k)
[r],[2,j+r−i+1](x).

The entries with j − i > s − r can likewise be obtained using the reflected version
of Lemma 4.1. □
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