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Abstract Much of dynamical algebraic combinatorics focuses on global dynamical systems
defined via maps that are compositions of local toggle operators. The second author and Roby
studied such maps that result from toggling independent sets of a path graph. We investigate
a “toric” analogue of this work by analyzing the dynamics arising from toggling independent
sets of a cycle graph. Each orbit in the dynamical system can be encoded via a grid of 0s and
1s; two commuting bijections on the set of 1s in this grid produce torsors for what we call
the infinite snake group and the finite ouroboros groups. By studying related covering maps,
we deduce precise combinatorial properties of the orbits. Because the snake and ouroboros
groups are abelian, they define tilings of cylinders and tori by parallelograms, which we also
characterize. Many of the ideas developed here should be adaptable both to other toggle actions
in combinatorics and to other cellular automata.

1. Introduction
1.1. A motivating example. It has been said that mathematics is the study of
patterns, and this paper is all about understanding and analyzing interesting patterns
that arise from a simple combinatorial action. Rather than write this paper in a
traditional format starting with an overview of the background followed by a list
of necessary definitions, we will begin with an example that illustrates the types of
curious patterns and structures that attracted us to this problem in the first place.
The action we are studying is elementary enough that it can be easily understood by
a student in elementary school, yet the mathematical ideas that arise come from the
interplay of combinatorics, group theory, number theory, and algebraic topology. The
commuting bijections that make this all possible—they define torsors and tilings from
orbits of independent sets—also appear in other actions of combinatorial objects and
certain cellular automata.

An independent set of the cycle graph Cn can be viewed as a cyclic binary string
v1, . . . , vn such that no two adjacent entries are both 1, where “cyclic” means that
v1 and vn are adjacent. The toggle operation at position k is the function τk that
“attempts to flip” the kth bit. Specifically, if vk = 1, then τk flips it to 0. On the other
hand, if vk = 0, then τk flips it to 1 if doing so does not introduce consecutive 1s;
otherwise, it fixes the kth bit. In this paper, we will study the action of iteratively
toggling the bits of our binary string in the order τ1, . . . , τn, and we will denote this by
the map τ = τn ◦ · · · ◦ τ1. Given an initial cyclic binary string x(0), let x(1) = τ

(
x(0)),
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x(2) = τ
(
x(1)), and so on. Eventually, after some m ⩾ 1 number of steps, we will

return to our original string. That is, x(m+i) = x(i) for all i. An example of an orbit
x(0), . . . , x(m−1) of this action with n = 12 and m = 15 is shown in Figure 1.

x v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
x(0) 1 0 1 0 1 0 0 0 1 0 1 0
x(1) 0 0 0 0 0 1 0 0 0 0 0 1
x(2) 0 1 0 1 0 0 1 0 1 0 0 0
x(3) 0 0 0 0 1 0 0 0 0 1 0 1
x(4) 0 1 0 0 0 1 0 1 0 0 0 0
x(5) 0 0 1 0 0 0 0 0 1 0 1 0
x(6) 1 0 0 1 0 1 0 0 0 0 0 0
x(7) 0 1 0 0 0 0 1 0 1 0 1 0
x(8) 0 0 1 0 1 0 0 0 0 0 0 1
x(9) 0 0 0 0 0 1 0 1 0 1 0 0
x(10) 1 0 1 0 0 0 0 0 0 0 1 0
x(11) 0 0 0 1 0 1 0 1 0 0 0 1
x(12) 0 1 0 0 0 0 0 0 1 0 0 0
x(13) 0 0 1 0 1 0 1 0 0 1 0 1
x(14) 0 0 0 0 0 0 0 1 0 0 0 0
Sum: 3 4 5 3 4 5 3 4 5 3 4 5

Figure 1. An orbit of size 15 consisting of independent sets of the
cycle graph C12.

Toggle actions on combinatorial objects are important in the field of dynamical
algebraic combinatorics; in the next subsection, we will provide some context, back-
ground, and motivation for studying them, and we will discuss why independent sets
are of interest. For now, let us return to the example in Figure 1 and point out that for
this particular orbit, the cyclic string · · · 345345 · · · consisting of the column sums has
period 3. Our computational experiments suggested that this period must be odd in
any orbit. This was the first curious property that we wanted to understand. Another
pattern we observed is that if one reads the orbit table as one reads a book—across
each row, from top to bottom—the resulting string (called the orbit vector) consists
of several repeating copies of a shorter string. For example, the table in Figure 1
has 180 entries, but it is easy to check that it is simply four repeated copies of the
first 45 entries. For each fixed n, we also saw certain orbit sizes arise more often than
others, and we wanted to better understand this. Finally, we saw patterns within the
1s which held for any orbit table. Specifically, for every 1, there is another 1 either
two positions to the right or one position diagonally down and to the right (where we
allow “wrapping around” the end of the table and from bottom to top). Additionally,
many local patterns of 1s seemed to repeat throughout the tables. Notice how Figure 1
has many examples of 10101 substrings, as well as three consecutive diagonal 1s. This
regularity of patterns suggested that there could be some hidden algebraic structure.
Indeed, there turns out to be a simply transitive action of a particular abelian group
on the live entries (the 1s) in any orbit table. In other words, the live entries are
endowed with a group structure, but there is no distinguished identity element; this
is called a torsor. This group, which is an invariant of the orbit, encodes a number
of combinatorial properties of the original action. The fact that this group is abelian
means that the it defines a regular tiling of an infinite cylinder by parallelograms.
The combinatorial patterns that we initially saw, and much more, can be explained
through this algebraic lens. In this paper, we will develop the theory of these actions,
and we will prove a number of theorems about them.
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This paper is organized as follows. We will conclude the introduction in Section 1.2
by reviewing the notion of toggling and further discussing how we became interested
in this problem. This can be considered “optional,” but it gives the rest of the paper
context and should be helpful for the non-expert. In Section 2, we formalize the or-
bits generated by toggling independent sets in two ways: as bi-infinite strings called
ticker tapes and as bi-infinite tables called scrolls, which naturally live on cylinders.
We introduce commuting bijections called the successor functions and co-successor
functions, which define equivalence classes called snakes and co-snakes. These corre-
spond to cosets of an infinite abelian snake group, which acts simply transitively on
the set of live entries. Studying this group and its actions—both on the scrolls and
on their universal covers—helps us understand toggling dynamics. Not only does this
group make the set of live entries into a torsor, but its action gives the (co-)snakes a
regular “shape” called their (co-)slither. These are invariants of the orbit, and they
associate to the orbit tilings of the cylinder and the plane (its universal cover) by
parallelograms. In Section 3, we completely classify the dynamics of the action (The-
orem 3.11) by characterizing the possible orbits (Corollary 3.9). In Section 4, we take
various quotients of our scrolls to obtain finite orbit tables that naturally embed into
tori. The (co-)snakes merge into equivalence classes called (co-)ouroboroi, inducing
a homomorphism from the snake group to the finite abelian ouroboros group. The
snake group action descends to a simply transitive action on the live entries in the
quotient tables, endowing them with a torsor structure for the ouroboros group. In
Section 5, we return to the original topic that drew us to this problem: the period
of the so-called sum vector. The odd periodicity (Corollary 5.4) is a straightforward
consequence of the theory developed in the previous sections. However, we prove a
much stronger result by characterizing which odd numbers arise as the period of the
sum vector of some orbit for a given n (Theorem 5.6). We conclude this paper in
Section 6 with discussions of open problems, how this framework can be broadened
to other actions from dynamical algebraic combinatorics, and how it arises in certain
cellular automata [3]. The crux of why all this works is due to the existence of com-
muting bijections that act simply transitively on the live entries. The fact that this
phenomenon appears in other problems from combinatorics and other fields such as
cellular automata suggests that the theory is of general interest.

1.2. Why toggle independent sets? The notion of toggling has recently gained
considerable interest within the field of dynamical algebraic combinatorics; for sur-
veys, see [15, 17]. Toggles yield an action on a collection L of subsets of a finite set.
Common examples of the set L are the set of order ideals of a poset [18], the set of
antichains of a poset [9], the set of noncrossing partitions [7], or the set of independent
sets of a path graph [10]. In what follows, we may assume L is a collection of subsets
of the set [n] := {1, . . . , n}. For k ∈ [n], the toggle τk : L → L is defined by

(1) τk(E) =


E ∪ {k} if k ̸∈ E and E ∪ {k} ∈ L
E ∖ {k} if k ∈ E and E ∖ {k} ∈ L
E otherwise.

By construction, each toggle is a bijection, so this defines a group of permutations
Tog(L) = ⟨τ1, . . . , τn⟩

called the toggle group. Since each τk is an involution, Tog(L) is a quotient of a Coxeter
group. Following Coxeter theory, we will define a Coxeter element to be the product
of all toggles in some order. Though sometimes it can be of interest to classify this
group, work on toggling is usually focused elsewhere, such as understanding which
classical bijections can be decomposed as products of toggles, which combinatorial
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statistics are invariant or homomesic under toggling, and how the dynamics change
under different toggle orders.

The first objects to be toggled were order ideals of a poset P . In 1974, Brouwer
studied a bijection on the set J (P ) of order ideals that sends I to the order ideal
generated by the minimal elements of P ∖ I [1]. In 1995, Cameron and and Fon-Der-
Flaass showed that this bijection can be constructed in graded posets by toggling
each element of P once, in a particular order: by rows, from top-to-bottom [2]. In
2012, Striker and Williams observed that the conjugate Coxeter element, toggling by
columns, was closely related to the classic operation of promotion on semistandard
Young tableaux. This motivated them to name the aforementioned bijection rowmo-
tion, denoted RowJ , and also to formalize and name toggles and the toggle group.

In [2], Cameron and and Fon-Der-Flaass also studied what is now known as an-
tichain rowmotion: the map RowA sending A to the set of minimal element(s) of the
complement of the order ideal I(A) :=

{
x ∈ P | x ⩽P a for some a ∈ A

}
. Panyushev

studied this map on root posets [14]; this is one of the works that was a major impetus
for the development of dynamical algebraic combinatorics. The second author of the
present paper studied this bijection in the context of toggling [9]. Even though order
ideal and antichain rowmotion are conjugate via RowJ ◦I = I ◦ RowA, relating their
factorizations into individual toggles is surprisingly trickier.

The aforementioned work led to the notion of toggling other combinatorial ob-
jects [16], as discussed above and defined in Eq. (1). Since every antichain is an
independent set in a certain graph, toggling independent sets was a natural next step.
Additionally, the second and third author (with others) considered toggling noncross-
ing partitions, viewed as collections of arcs [7]. This revealed factorizations of existing
actions such as the Kreweras complement in terms of toggles. Like with antichains,
toggling noncrossing partitions is a special case of toggling independent sets. All of
this motivated the third author and Roby to investigate independent set toggling on
its own. This is a difficult problem in general, so they started with a path graph [10].
The goals of the authors of [10] were to study combinatorial statistics called homome-
sies arising from toggling independent sets of path graphs, as well as to prove several
conjectures of Propp. The actual toggle groups were later classified in [13].

In this article, we direct our attention to toggling independent sets of a cycle
graph.(1) When toggling independent sets of graphs, certain aspects of cycle graphs
end up being more complicated than path graphs, but others end up being nicer. For
example, when toggling independent sets of a path, all Coxeter elements are conjugate;
this simplifies certain arguments and makes some results hold for all Coxeter elements.
In contrast, when working with the independent sets of the cycle Cn, the Coxeter
elements fall into n − 1 conjugacy classes [6]. On the other hand, one nice property
of cycle graphs is that they are vertex-transitive. In the end, different patterns and
different questions arise over cycle graphs than over path graphs, in ways that were
initially not clear to us, and the extent of which ultimately surprised us. This problem
became much more algebraic in nature, and a broader mathematical theory emerged.

2. Dynamics and actions on infinite sets
2.1. Scrolls vs. ticker tapes. Let Cn denote the cycle graph with vertex set
V (Cn) = Zn (the integers modulo n) and edges {i, i + 1} (including {n, 1}). We often

(1)This transition from path graphs to cycle graphs explains our use of the word “toric” in the
title of this article. Indeed, the articles [4, 6] use the word “toric” to refer to cyclic analogues of
objects that has previously been considered in “linear” settings. The paper [4] also uses local “toggle
operators” to define an operator called toric promotion, although the toggles considered there are
different from the ones considered here.
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identify Zn with [n] := {1, . . . , n} or {0, . . . , n−1} in the obvious manner. Throughout
the paper, let n ⩾ 2. Though an independent set of Cn is a subset of [n], it will usually
be easiest for us to denote it as a length-n binary string, with the requirement that it
does not contain a pair of consecutive 1s, including those that “wrap around” the end
of the word. We write In for the collection of independent sets of Cn, regardless of
which notation we use. We will let F2 = {0, 1} denote the bits of the binary string, i.e.,
the states of the vertices. We may write a binary n-tuple either as a string v1 · · · vn

or as a vector (v1, . . . , vn) in Fn
2 .

For each vertex k ∈ [n], there is a bijective toggle operation τk : In → In that
adds k to an independent set I if k ̸∈ I and I ∪ {k} is an independent set, removes k

from I if k ∈ I, and fixes I otherwise.(2) Throughout this paper, we will toggle in the
order 1, . . . , n; that is, we consider the map

τ ∈ Tog(In), τ := τn ◦ · · · ◦ τ1.

Sometimes, we will write v1, . . . , vn rather than 1, . . . , n for extra emphasis, like we
did in the header of Figure 1.

In the remainder of this subsection, we will describe two formats for viewing the
dynamics that result from toggling independent sets of Cn. The first is a vertically
bi-infinite periodic table of 0s and 1s called the scroll, and the second is a bi-infinite
periodic sequence called the ticker tape that we get from reading the scroll like one
reads a book, across the columns and downward row-by-row. Each format has its ad-
vantages and disadvantages. Certain features are more prominent in one while hidden
in the other or are notationally simpler in one than the other.

Let x = x(0) = (x1, . . . , xn) ∈ In, and let x(i) = τ i(x) be the result of iterating τ
exactly i times from x. Since τ is a bijection on In, we can define this for all i ∈ Z.
Consider the table with n columns, indexed by j = 1, . . . , n, and rows indexed by
i ∈ Z, reading downward. The (i, j)-entry Xi,j is the state of vertex vj in x(i). In other
words, the ith row is just the vector x(i). This infinite table is called the scroll of x,
and we will denote it by S = (Xi,j) = Scroll(x). The scroll of x = 00001010000 ∈ F11

2 ,
shown in Figure 2, will be our new running example.

x v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

x(0) 0 0 0 0 1 0 1 0 0 0 0
x(1) 1 0 1 0 0 0 0 1 0 1 0
x(2) 0 0 0 1 0 1 0 0 0 0 1
x(3) 0 1 0 0 0 0 1 0 1 0 0
x(4) 0 0 1 0 1 0 0 0 0 1 0
x(5) 1 0 0 0 0 1 0 1 0 0 0
x(6) 0 1 0 1 0 0 0 0 1 0 1

x v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

x(0) 0 0 0 0 1 0 1 0 0 0 0
x(1) 1 0 1 0 0 0 0 1 0 1 0
x(2) 0 0 0 1 0 1 0 0 0 0 1
x(3) 0 1 0 0 0 0 1 0 1 0 0
x(4) 0 0 1 0 1 0 0 0 0 1 0
x(5) 1 0 0 0 0 1 0 1 0 0 0
x(6) 0 1 0 1 0 0 0 0 1 0 1

Figure 2. The scroll of x(0) = (0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0) ∈ F11
2 con-

sists of the seven rows x(0), . . . , x(6) repeated indefinitely. This is
shown twice, with different color schemes, to emphasize visual pat-
terns among the live (value of 1) entries that we will soon formalize
as snakes and co-snakes, respectively.

The global dynamics of τ can be read off the scroll as one reads from a book:
reading the rows from top to bottom, with each row read from left to right. This
defines a bi-infinite sequence called the ticker tape, denoted X = (Xk) = Tape(x). To

(2)Alternatively, this can be formalized by taking L = In in the definition of generalized toggling
in Eq. (1). Notice that the condition “and I ∖ {k} ∈ L” in the middle line is actually unnecessary,
because removing a vertex from an independent set always leaves it independent.
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convert between ticker tape and scroll notation, let X1 = X0,1, X2 = X0,2, X3 = X0,3,
and so on, so that Xin+j = Xi,j . The ticker tape of the example in Figure 2 is

. . . , X−6, X−5, X−4, X−3, X−2, X−1, X0︸ ︷︷ ︸
0,0,0,0,1,0,1

, X1, X2, X3, X4, X5, X6, X7︸ ︷︷ ︸
0,0,0,0,1,0,1

, X8, X9, X10, X11, X12, X13, X14︸ ︷︷ ︸
0,0,0,0,1,0,1

, . . . .

Topologically, the ticker tape can be naturally embedded on an infinite line. In
contrast, the scroll “wraps around” from the end of one row to the beginning of the
next, so it is natural to view it as being embedded on a bi-infinite cylinder rather
than on a plane. As such, it is always well-founded to speak of the entry immediately
to the left or to the right of position (i, j), even if it is in the first or the last column.
Notationally, even though we index the columns by j = 1, . . . , n, it will be convenient
to set Xi,k+n = Xi+1,k for each k ∈ Z.

At times, it will be more convenient to “lift up” the cylinder to its universal cover
and work with points in the plane. Here, we think of a scroll as a map S : Z×Zn → F2,
which naturally lifts to the universal scroll Ŝ : Z × Z → F2, making the following
diagram commute:

(2) Z × Zn

q
��

Ŝ

##
Z × Zn

S // F2

(i + k, j + kn)
_

q
��


Ŝ

&&
(i, j) � S // Xi,j

Note that the quotient map q is not quite the “canonical” quotient from the plane to
a cylinder that reduces the second entry modulo n, because the row increases when
we wrap around. There is no such analogue for lifting the ticker tape in this manner
because its canonical domain is a subset of R, which is already simply connected.
Note that each infinite row of the universal scroll is a shifted copy of the ticker tape.
In this context, we will usually take Zn = [n] = {1, . . . , n}, rather than {0, . . . , n−1},
because we want to index the columns by the vertices, which are in [n]. A portion of
the universal scroll of our running example from Figure 2 is shown in Figure 3. The
shading is meant to highlight disjoint copies of orbits under the toggling map τ .

In both a scroll and a ticker tape, positions that have a value of 1 are said to be
live. Formally, the sets of live entries, in both formats, are

Live(S) =
{

(i, j) ∈ Z × Zn | Xi,j = 1
}

, Live(X ) =
{

k ∈ Z | Xk = 1
}

.

We can also define the set of live entries in the universal scroll as
Live(Ŝ) =

{
(i, j) ∈ Z × Z | Xi,j = 1

}
= q−1(Live(S)).

2.2. The successor and co-successor functions. In this subsection, we will
explore the patterns of the live entries within the scrolls. Given an arbitrary live
entry (i, j), we can draw some easy conclusions about its surrounding entries. Recall
that since scrolls are naturally embedded on a cylinder, we can always speak of the
entry immediately to the left or to the right, even if we are in the first or the last
column, by setting Xi,k+n = Xi+1,k.

It is clear that for any live entry, the four entries that are immediately adjacent to
it must be 0. Similarly, the diagonal entries in the upper-right and lower-left directions
also must be 0.

Lemma 2.1. If (i, j) ∈ Live(S), then
Xi−1,j = Xi−1,j+1 = Xi,j−1 = Xi,j+1 = Xi+1,j−1 = Xi+1,j = 0.

It is also elementary to see that exactly one of Xi,j+2 and Xi+1,j+1 must be 1;
we will call the location of whichever entry is live the successor of (i, j). Similarly,
exactly one of Xi+2,j−2 and Xi+2,j−1 must be 1; we will call the location of the live
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· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · · 0 0 0 0 1 0 1 0 0 0 0

1 0 1 0 0 0 0 1 0 1 0
0 0 0 1 0 1 0 0 0 0 1
0 1 0 0 0 0 1 0 1 0 0
0 0 1 0 1 0 0 0 0 1 0
1 0 0 0 0 1 0 1 0 0 0
0 1 0 1 0 0 0 0 1 0 1

0 0 0 0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 1 0 1 0
0 0 0 1 0 1 0 0 0 0 1
0 1 0 0 0 0 1 0 1 0 0
0 0 1 0 1 0 0 0 0 1 0
1 0 0 0 0 1 0 1 0 0 0
0 1 0 1 0 0 0 0 1 0 1

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·0 0 0 0 1 0 1 0 0 0 0

1 0 1 0 0 0 0 1 0 1 0
0 0 0 1 0 1 0 0 0 0 1
0 1 0 0 0 0 1 0 1 0 0
0 0 1 0 1 0 0 0 0 1 0
1 0 0 0 0 1 0 1 0 0 0
0 1 0 1 0 0 0 0 1 0 1

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

...
...

...
...

...
...

...
...

...
...

...
. . .

0 0 0 0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 1 0 1 0
0 0 0 1 0 1 0 0 0 0 1
0 1 0 0 0 0 1 0 1 0 0
0 0 1 0 1 0 0 0 0 1 0
1 0 0 0 0 1 0 1 0 0 0
0 1 0 1 0 0 0 0 1 0 1

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 1 0 1 0
0 0 0 1 0 1 0 0 0 0 1
0 1 0 0 0 0 1 0 1 0 0
0 0 1 0 1 0 0 0 0 1 0
1 0 0 0 0 1 0 1 0 0 0
0 1 0 1 0 0 0 0 1 0 1

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

...
...

...
...

...
...

...
...

...
...

... . .
.

0 0 0 0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 1 0 1 0
0 0 0 1 0 1 0 0 0 0 1
0 1 0 0 0 0 1 0 1 0 0
0 0 1 0 1 0 0 0 0 1 0
1 0 0 0 0 1 0 1 0 0 0
0 1 0 1 0 0 0 0 1 0 1

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

...
...

...
...

...
...

...
...

...
...

.... .
.

0 0 0 0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 1 0 1 0
0 0 0 1 0 1 0 0 0 0 1
0 1 0 0 0 0 1 0 1 0 0
0 0 1 0 1 0 0 0 0 1 0
1 0 0 0 0 1 0 1 0 0 0
0 1 0 1 0 0 0 0 1 0 1 ...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 1 0 1 0
0 0 0 1 0 1 0 0 0 0 1
0 1 0 0 0 0 1 0 1 0 0
0 0 1 0 1 0 0 0 0 1 0
1 0 0 0 0 1 0 1 0 0 0
0 1 0 1 0 0 0 0 1 0 1

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

...
...

...
...

...
...

...
...

...
...

...
. . .

0 0 0 0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 1 0 1 0
0 0 0 1 0 1 0 0 0 0 1
0 1 0 0 0 0 1 0 1 0 0
0 0 1 0 1 0 0 0 0 1 0
1 0 0 0 0 1 0 1 0 0 0
0 1 0 1 0 0 0 0 1 0 1

Figure 3. The universal scroll Ŝ of our running example S =
Scroll(x) from Figure 2. Each 7×11 block highlighted by the checker-
board shading corresponds to an identical copy of a τ -orbit. The offset
of the blocks arises because the covering map in Eq. (2) is not just
the standard “modulo n” reduction, since in the scroll, the end of a
row wraps around to the beginning of the next one.

entry the co-successor of (i, j). The formal statement of this is given in Lemma 2.2,
and a visual interpretation is shown in Figure 4. Notice how these two images also
show the nearby surrounding entries that must be 0, as guaranteed by Lemma 2.1.

Lemma 2.2. If (i, j) ∈ Live(S) then

Xi,j+2 + Xi+1,j+1 = 1, and Xi+2,j−2 + Xi+2,j−1 = 1.

· · · 0 0 · · ·
0 1 0 a · · ·

· · · 0 0 a 0 · · ·

“successor of (i, j)”

· · · 0 0 · · ·· · ·
01 · · ·· · ·

0
0
0 · · ·· · ·

· · · bb · · ·

“co-successor of (i, j)”

Figure 4. A picture illustrating Lemmas 2.1 and 2.2, where a = 1+a
and b = 1 + b denote complementary entries in F2 = {0, 1}.

Algebraic Combinatorics, Vol. 7 #6 (2024) 1701



C. Defant, M. Joseph, M. Macauley & A. McDonough

It will be convenient to think of the successor and co-successor as functions on the
live entries.
Definition 2.3. Given a scroll S, the successor is the function s : Live(S) −→ Live(S)
that sends (i, j) to the unique element of

{
(i, j + 2), (i + 1, j + 1)

}
∩ Live(S). The co-

successor is the function c : Live(S) −→ Live(S) that sends (i, j) to the unique element
of

{
(i + 2, j − 2), (i + 2, j − 1)

}
∩ Live(S).

Naturally, Definition 2.3 is easily translated into ticker tape notation, where the
subscripts are indices rather than ordered pairs. Specifically, if Xk = 1, then the
successor and co-successor functions s, c : Live(X ) → Live(X ) are defined by sending
k to the unique element of{

k + 2, k + n + 1
}

∩ Live(X ) and
{

k + 2n − 2, k + 2n − 1
}

∩ Live(X ),
respectively.
Lemma 2.4. The successor and co-successor functions are bijections on Live(S).
Proof. If (i, j) ∈ Live(S) were to have two s-preimages, then they would have to
be (i − 1, j − 1) and (i, j − 2). However, Xi−1,j−1 = 1 would force Xi,j−2 = 0 by
Lemma 2.1.

Similarly, if (i, j) ∈ Live(S) were to have two c-preimages, then they would have
to be (i − 2, j + 1) and (i − 2, j + 2), and this is clearly not allowed because they are
adjacent. Figure 5 provides a visual for why these two scenarios are impossible. □

· · · 0 1 0 0 · · ·
· · · 1 0 1 0 · · ·

· · · 0 0 · · ·

· · · 1 1 · · ·
· · · 0 0 · · ·

· · · 0 1 0 · · ·
· · · 0 0 · · ·

Figure 5. If the successor (respectively, co-successor) function were
not bijective, then the impossible configuration on the left (respec-
tively, right) would occur in the scroll.

Since the successor and co-successor functions are bijections on Live(S), each of
them defines an equivalence relation. The color scheme back in Figure 2 highlights
the equivalence classes, which is why we often prefer to use scrolls over ticker tapes.
We will explore these notions more in the next subsection.

A fundamental property of the successor and co-successor functions is the simple
observation that they commute.
Proposition 2.5. The successor of the co-successor is the co-successor of the succes-
sor. That is, for any live entry (i, j), we have s(c(i, j)) = c(s(i, j)).
Proof. Starting with a live entry (i, j), the two possibilities for its co-successor c(i, j)
are shown in Figure 6. In each case, the successor of the co-successor is the position of
either b or b, whichever is live. The successor of (i, j) is the position of either a or a,
whichever is live. It is easy to check that in both cases above, a = 1 forces b = 1, and
a = 1 forces b = 1. In both cases, the position of whichever b or b is live, by definition,
is the co-successor of the successor. □

At times, it will be more convenient to work in the universal scroll Ŝ than in S itself.
The successor and co-successor functions lift to the commuting universal successor
and universal co-successor functions ŝ, ĉ : Live(Ŝ) → Live(Ŝ), which are defined by
replacing each S with Ŝ in Definition 2.3.
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· · · 0 0 · · ·
· · · 0 1 0 a · · ·

· · · 0 0 a 0 · · ·
· · · 00

0 0

0
1 b · · ·

· · · b 0 · · ·

· · · 0 0 · · ·
· · · 010 a · · ·
· · · 00 a 0 · · ·

· · · 0 1 0 b · · ·
· · · 00 b 0 · · ·

Figure 6. A picture of the argument in Proposition 2.5 of why the
successor and co-successor functions commute.

2.3. Snakes and co-snakes. Recall that by Lemma 2.4, the successor and co-
successor functions are bijections on Live(S). Thus, they define a group, which we
will denote by G(S) = ⟨s, c⟩ or by G(X ) = ⟨s, c⟩, depending on whether we are using
the notation of scrolls or ticker tapes. Clearly, the generators have infinite order, and
by Proposition 2.5, this group is abelian. We will call G(S) the snake group. Our gen-
eral approach for understanding the structure of the scrolls, and hence understanding
toggling independent sets of the cycle graph, is to study this group and its actions. In
this section, we will investigate the snake group’s relations and derive a presentation.

Given a group G acting on a set X, we say X is a torsor for G (or a G-torsor)
if the action is simply transitive, i.e., it is both transitive and free. When this is the
case, there is a bijection between G and X, and for a fixed generating set S ⊆ G, this
action defines a Cayley graph structure on X. Specifically, the (left) Cayley graph for
G = ⟨S | R⟩ has vertex set X, and for each x ∈ X and generator g ∈ S, there is a
directed edge x → g.x, annotated with g (often by color). In our setting, there is a
canonical action of the snake group G(S) on the set Live(S) of live entries, and we
will prove that this makes Live(S) into a G(S)-torsor.

At times, it will be helpful to lift up to the universal scroll and work with the
action of the affine snake group G(Ŝ) := ⟨ŝ, ĉ⟩ on Live(Ŝ). The actions of these two
snake groups on the corresponding sets of live entries are described by the following
commutative diagram, which relates the successor functions s and ŝ. Here, q is the
quotient map from Eq. (2):

Live(Ŝ)

q
��

ŝ // Live(Ŝ)

q
��

Live(S) s // Live(S)

(i + k, j + kn)
_

q
��

� ŝ // ŝ(i + k, j + kn)
_

q
��

(i, j) � s // s(i, j)

Naturally, there is an analogous diagram relating the co-successor functions c and ĉ.

Definition 2.6. Given a live entry (i, j) in a scroll, the snake and the co-snake con-
taining it are the following subsets of Z × Zn:

Snake(i, j) =
{

sk(i, j) | k ∈ Z
}

, CoSnake(i, j) =
{

ck(i, j) | k ∈ Z
}

.

The affine snake and affine co-snake are defined similarly, but for ŝ and ĉ in the
universal scroll. We will denote these by Snake�(i, j) and CoSnake�(i, j), respectively.

Returning to our running example, the two snakes in the scroll shown in Figure 2
are highlighted by color in the table on the left. The six co-snakes are not as visually
prominent in the scroll, but the live entries in the table on the right are colored to
distinguish them. There are always infinitely many affine snakes and co-snakes. In the
example in Figure 3, each affine snake is colored according to the snake to which the
quotient map q (from Eq. (2)) sends it.
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Remark 2.7. The term snake is borrowed from a paper by the third author and Roby
about toggling independent sets of a path graph [10]. It was chosen because of the
visual interpretation resulting from iterating the successor function from a given entry
in a scroll. In [8], Haddadan studied snakes in tuple boards to analyze the dynamics
of comotion on order ideals, which is also defined via toggles.

To understand the action of the snake group on the live entries in the scroll, it is
easiest to consider the action of the affine snake group in the universal scroll and then
project downwards.(3)

Lemma 2.8. The affine snake group is free abelian, i.e., it has presentation

G(Ŝ) =
〈
ŝ, ĉ | ŝ ĉ = ĉ ŝ

〉
.

Proof. It suffices to show that the action of the abelian group G(Ŝ) on Live(Ŝ) ⊂ Z×Z
is free. Consider an element ŝk ĉℓ that fixes (i, j). Since the action of ŝ increases the
second coordinate and the action of ĉ decreases it, k and ℓ cannot have opposite signs.
Without loss of generality, assume k, ℓ ⩾ 0. Since c increases the first coordinate, we
have ℓ = 0. Then ŝk(i, j) = (i, j), so k = 0. □

The next lemma tells us that the live entries in the universal scroll form a G(Ŝ)-
torsor.

Lemma 2.9. The affine snake group acts simply transitively on Live(Ŝ).

Proof. Since G(Ŝ) is free abelian, it suffices to show that the action is transitive.
Consider the affine snake containing (i, j) ∈ Live(Ŝ). There is another affine snake
below it containing ĉ(i, j) that differs by a translation of (−1, 2) or (−2, 2). Similarly,
there is one above it containing ĉ−1(i, j), which differs by a translation of (1, −2)
or (2, −2). Clearly, there is no room for live entries between any two such consecutive
snakes. In particular, this means that we can get from any live entry (i, j) to an-
other (i′, j′) in Live(Ŝ) by first applying ĉℓ for some ℓ ∈ Z, to traverse from Snake�(i, j)
to Snake�(i′, j′), and then applying ŝk for some appropriate k ∈ Z to move within the
affine snake. □

Since Live(Ŝ) is a G(Ŝ)-torsor, the affine snakes are in bijection with the cosets
of ⟨ŝ⟩, and the affine co-snakes are in bijection with the cosets of ⟨ĉ⟩. Moreover, there
are bijections between the elements of these cosets and those in the (co)-snakes. The
quotient q : Live(Ŝ) → Live(S) is a topological covering map, so it induces a group
homomorphism q∗ : G(Ŝ) → G(S) with q∗(ŝ) = s and q∗(ĉ) = c. The snake group is
the quotient

G(S) ∼= G(Ŝ)/ ker q∗,

and it acts simply transitively on Live(Ŝ)/ ker q, which can be canonically identified
with Live(S).

Proposition 2.10. The set Live(S) is a torsor for the snake group, which has presen-
tation

G(S) =
〈
s, c | sc = cs, sβ = cα

〉
,

where S has α snakes and β co-snakes.

(3)We will continue to write snake groups multiplicatively due to their definitions in terms of
function composition, and because most snakes are not adders.
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Proof. We have already established the first statement. It follows that there is a
bijective correspondence between snakes and cosets of ⟨s⟩ and between co-snakes and
cosets of ⟨c⟩. That is,

α = [G(S) : ⟨s⟩] and β = [G(S) : ⟨c⟩]

are the smallest positive integers for which sβ ∈ ⟨c⟩ and cα ∈ ⟨s⟩. It follows that
sβ = c±α. To resolve the sign ambiguity, we notice that applying c will always increase
the second coordinate of a live entry, while applying s cannot possibly decrease this
coordinate.

Any relation in G(S) other than sc = cs arises from an element of ker q∗, and
these all have the form ŝ bĉ a for some a, b ∈ Z. Since both generators s = q∗(ŝ) and
c = q∗(ĉ) have infinite order, we may thus assume that ker q∗ =

〈
ŝ bĉ a

〉
for some

a, b ̸= 0. By minimality of α and β, we may take a = −α and b = β. □

2.4. Slithers and co-slithers. Since G(S) endows Live(S) with the structure of
a Cayley graph, if we fix (i, j) ∈ Live(S), then every word in {s, s−1, c, c−1} corre-
sponds to a path from (i, j). The snakes and co-snakes correspond to the cosets of ⟨s⟩
and ⟨c⟩, respectively. In particular, this means that all snakes have the same alge-
braic structure, as do all co-snakes. In this section, we will prove a stronger result:
the embeddings of all snakes and co-snakes in a given scroll additionally have the
same “shape.” As before, we will let α = [G(S) : ⟨s⟩] be the number of snakes and
β = [G(S) : ⟨c⟩] be the number of co-snakes. Though we will work with scrolls, all of
our definitions and results can also be translated into ticker tape notation.

From a fixed (i, j) ∈ Live(S), consider the next live entry reached when applying
the successor or co-successor function. There are two cases for each, as was shown back
in Figure 4. We will annotate a step of s(i, j) = (i + 1, j + 1) by “D” for “diagonal”
and a step of s(i, j) = (i, j + 2) by “E” for “east.”(4) Similarly, we will annotate a
step of c(i, j) = (i + 2, j − 1) by “S” for “short,” and c(i, j) = (i + 2, j − 2) by “L”
for “long.” Allowing inverses, it is straightforward to annotate any path in the Cayley
graph of G(S). We will call this the shape of a path. If a path has length 1, then we
will refer to it as a step and refer to its shape as its type. For example, the step from
(i, j) to s(i, j) is either of type D or of type E. At times, it will be convenient to
speak of a D-step or E-step (these are “s-steps”), or of an S-step or L-step (these are
“c-steps”). An s-path is a sequence of s-steps (inverses allowed); a c-path is defined
similarly.

Since the snake group is abelian, we have s(c(i, j)) = c(s(i, j)) for all (i, j) ∈
Live(S). Thus, if we start from (i, j), then applying an s-step and then a c-step results
in the same endpoint as applying a c-step and then an s-step. A simple but useful
observation is that we also take the same types of steps along these two paths, but in
the opposite order. Geometrically, this means that paths formed by applying s−1c−1sc
(and hence c−1s−1cs) always trace out parallelograms, and any scroll is tiled by these
parallelograms. There are four such parallelograms, as shown in Figure 7. Specifically,
in each of the four neighborhoods, there is a parallelogram formed by both 1s and
both a’s, and another one formed by both 1s and both a’s. This double-counts each
parallelogram, leaving four distinct 1s. In other words, every possible scroll is described
by a periodic tiling of parallelograms on a cylinder. However, there are restrictions to
which of these tilings are possible, which we will explore further in Section 3.

(4)Earlier conference papers involving this work, such as AUTOMATA [3] and FPSAC [5] used
‘2’ instead of ‘E.’
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Lemma 2.11 (Parallelogram lemma). Starting from any (i, j) ∈ Live(S), the paths
(i, j) → c(i, j) → s(c(i, j)) and (i, j) → s(i, j) → c(s(i, j)) have the same types of
steps but in the opposite order.

Proof. It suffices to check all possible cases, which are shown in Figure 7. The two
diagrams on the left show the possible parallelograms formed by applying s−1c−1sc
to (i, j), starting with an L and an S, respectively. The diagrams on the right show
the possible parallelograms formed by applying c−1s−1cs to (i, j), starting with a E
and a D, respectively. □

· · · 0 0 · · ·
· · · 0 1 0 a · · ·

· · · 0 0 0 a 0 · · ·
· · · 0 1 0 a 0 · · ·

0 0· · · a 0 · · ·

· · · 0 0 · · ·
· · · 010 a · · ·
· · · 00 a 0 · · ·

· · · 0 1 0 a · · ·
· · · 00 a 0 · · ·

· · · 0 0 0 0 · · ·
· · · 0 1 0 1 0 · · ·
· · · 0 0 0 0 · · ·

· · · a a a a · · ·
0· · · 0 0 · · ·

· · · 0 0 · · ·
· · · 010 0 · · ·
· · · 00 1 0 · · ·

· · · a a 0 0 · · ·
· · · a0 a · · ·

· · · 0 · · ·

Figure 7. Scrolls are tiled by up to four types of parallelograms;
see the proof of Lemma 2.11. Each of the four diagrams here depicts
two: one for each choice of a ∈ {0, 1}. Each parallelogram appears
exactly twice.

The parallelogram lemma guarantees that the notion of the path shape is well-
defined on snakes and co-snakes. In other words, applying the successor (resp., co-
successor) function from any two live entries in the same co-snake (resp., snake) yields
the same type of step.

Corollary 2.12. Suppose (i′, j′) ∈ Snake(i, j) and (i′′, j′′) ∈ CoSnake(i, j). Then
the steps (i, j) → c(i, j) and (i′, j′) → c(i′, j′) have the same type (either both S or
both L), and the steps (i, j) → s(i, j) and (i′′, j′′) → s(i′′, j′′) have the same type
(either both D or both E).

Proof. We will show that (i, j) → c(i, j) and (i′, j′) → c(i′, j′) have the same type;
the proof of the analogous statement for (i, j) → s(i, j) and (i′′, j′′) → s(i′′, j′′)
is very similar. Since Snake(i, j) is the orbit of (i, j) under s, it suffices to prove the
desired result when (i′, j′) = s(i, j). However, this is immediate from the parallelogram
lemma. □

The elements of the cyclic quotient group G(S)/ ⟨c⟩ ∼= Zβ correspond to the co-
snakes in S. Thus, starting at any live entry (i, j) and iterating the successor function
β times defines an ordering of the co-snakes. We call the shape of this length-β path
the slither from (i, j), denoted Slither(i, j). For ease of notation, we can use exponents
to write a slither. In our running example back in Figure 2, we have Slither(1, 1) =
EDEDED = (ED)3 and Slither(3, 2) = DEDEDE = (DE)3.

There is a similar construction for co-snakes. The elements of the cyclic quotient
group G(S)/ ⟨s⟩ ∼= Zα are the snakes in S. Starting at any live entry (i, j) and iterating
the co-successor function α times defines an ordering of the snakes. We call the shape
of this length-α path the co-slither from (i, j), denoted CoSlither(i, j). In our running
example from Figure 2, we have CoSlither(i, j) = SS = S2 for every live entry (i, j).
The following is immediate from Corollary 2.12.

Lemma 2.13. Let (i, j) ∈ Live(S) and (i′, j′) = sacb(i, j) for some a, b ∈ Z.
• The slither from (i′, j′) is the slither from (i, j), cyclically shifted a positions.
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• The co-slither from (i′, j′) is the co-slither from (i, j), cyclically shifted b po-
sitions. ■

By Lemma 2.13, it is well-defined to speak of the slither of S, written Slither(S),
as the slither from any live entry of S up to cyclic shift. The co-slither of S, written
CoSlither(S), is defined similarly.

2.5. Scales and periods. Here we formalize the notion of the “exponent” that we
used to write slithers and co-slithers, and we use this notion to calculate properties of
scrolls and the ticker tapes. By Lemma 2.13, these exponents are inherent properties of
a scroll. Not only are they notationally convenient, but they underlie a fundamental
property that will be useful to us later in this paper. In Section 4, we will relate
these to the periods of both the scrolls and ticker tapes. We will also use a slightly
different terminology: the word “degree” will both suggest the fact that it appears as
an exponent and indicate its relation to the degree of a certain covering map that we
will introduce in Section 4.

Definition 2.14. The degree of a scroll, denoted deg(S), is the length of Slither(S)
divided by its period as a cyclic word. The co-degree of a scroll, denoted codeg(S), is
the length of CoSlither(S) divided by its period as a cyclic word.

The scroll in our running example from Figure 2 has degree 3 because its slither is
(DE)3. Note that this must divide β, the number of co-snakes. Similarly, this scroll
has co-degree 2 because its co-slither is S2. This number divides α, the number of
snakes.

The definitions of slithers, co-slithers, degrees, and co-degrees can be defined anal-
ogously on ticker tapes. We write Slither(k) (resp., CoSlither(k)) for the slither (resp.,
co-slither) from the kth entry of X . We also define deg(X ) = deg(S) and codeg(X ) =
codeg(S). While it is usually easy to visualize results in the scroll, sometimes it is
notationally simpler to work with ticker tapes.

Going forward, it will be fruitful to write the slither as deg(X ) copies of a word P
over {D, E} and the co-slither as codeg(X ) copies of a word Q over {S, L}. Notation-
ally, for any fixed k ∈ Live(X ), we will write

Slither(k) = P deg(X ),

β = |P | · deg(X ),

CoSlither(k) = Qcodeg(X ),

α = |Q| · codeg(X ).

We will also want to speak of the number of spaces that we advance in the ticker tape
upon applying P and Q; we will denote these as

(3) p = s|P |(k) − k, and q = c|Q|(k) − k.

By Lemma 2.13, these do not depend on k, though the actual words P and Q do.
Note that p and q are the minimal shifts of the ticker tape that leave invariant the
snakes and co-snakes, respectively. Going forward, we will refer to p as the snake scale
and q as the co-snake scale.

In our running example from Figure 2, if we take k = 12, which is the live entry
(i, j) = (1, 1) one row beneath the non-live entry in the upper-left corner, then

Slither(k) = (ED)3, β = 6, P = ED, deg(X ) = 3, p = 14,

and

CoSlither(k) = S2, α = 2, Q = S, codeg(X ) = 2, q = 21.
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Starting at an arbitrary live entry k, each time we traverse the path corresponding to
P , we go forward in the ticker tape p entries. For any r ∈ N, traversing the path P r

advances us rp entries. Though this is intuitive, we will formalize and prove it below,
as it will be a useful technical lemma for a number of results.

Lemma 2.15. For any r ∈ Z⩾0 and any k ∈ Live(X ), we have

sr|P |(k) − k = r
(
s|P |(k) − k

)
= rp and cr|Q|(k) − k = r

(
c|Q|(k) − k

)
= rq.

Proof. For the first statement, it suffices to show that sr|P |(k) = rp + k, and we will
do this by induction. The cases when r = 0 or r = 1 are immediate. Assuming the
hypothesis holds for r, we have

s(r+1)|P |(k) = s|P |(sr|P |(k)) = s|P |(rp + k) = rp + k + p = (r + 1)p + k.

The proof of the second equality is completely analogous; just replace s with c, |P |
with |Q|, and p with q. □

Recall that α and β are the number of snakes and co-snakes respectively of S.

Lemma 2.16. For any ticker tape X , the values of deg(X ) and codeg(X ) are relatively
prime.

Proof. Let d = gcd(deg(X ), codeg(X )). By Lemma 2.15,

sβ(k) − k = sdeg(X )|P |(k) − k = d(sβ/d(k) − k).
Since sβ(k) = cα(k), the quantity above is equal to

cα(k) − k = ccodeg(X )|Q|(k) − k = d(cα/d(k) − k),

and thus sβ/d(k) = cα/d(k). It now follows from the presentation of the snake group
(Proposition 2.10) that d = 1. □

Lemma 2.17. For any ticker tape X ,
lcm(p, q) = deg(X )p = codeg(X )q.

Proof. By definition, we have the following chain of equalities.

deg(X )p = deg(X )
(

s|P |(k) − k
)

= sβ(k) − k

= cα(k) − k

= codeg(X )
(

c|Q|(k) − k
)

= codeg(X )q.

From the presentation of the snake group, α and β are the smallest positive integers
for which the middle equality holds. Thus, deg(X )p is the smallest multiple of p that
is a multiple of q, and codeg(X )q is the smallest multiple of q that is a multiple of p.
The lemma follows. □

The quantity in Lemma 2.17 is significant enough that we will give it its own name.

Definition 2.18. The scale of a ticker tape X is
Scale(X ) := sβ(k) − k = cα(k) − k,

where α is the number of snakes, β is the number of co-snakes, and k is an arbitrary
integer. If S is the corresponding scroll, then we define the scale of S to be Scale(S) :=
Scale(X ).
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Remark 2.19. The snake scale p and co-snake scale q of X (or S) are

p = Scale(X )
codeg(X ) , and q = Scale(X )

deg(X ) .

Since the scale is the minimal positive integer σ for which k and k + σ always lie
on the same snake and same co-snake, we have the following algebraic interpretation
of the scale in terms of cosets.

Corollary 2.20. The scale of a ticker tape is

Scale(X ) = lcm(p, q).

Proof. This follows immediately from the proof of Lemma 2.17. □

Definition 2.21. The fibers of a scroll S (or ticker tape X ) are the equivalence classes
of live entries defined by intersecting the snakes and co-snakes. In both notations, the
fiber of a live entry is denoted

(4) Fiber(i, j) = Snake(i, j) ∩ CoSnake(i, j), Fiber(k) = Snake(k) ∩ CoSnake(k).

Algebraically, the fibers are just the orbits under the action of the cyclic group

⟨s⟩ ∩ ⟨c⟩ =
〈
sβ

〉
= ⟨cα⟩ ⩽ G(S),

and the scale is the smallest positive integer σ for which two live entries in X are in
the same fiber if and only if they differ by a multiple of σ in the ticker tape.

We will now explore the periodicity of the scroll and ticker tape. Though the scroll
and ticker tape are both periodic, we measure their periods in different ways.

Definition 2.22. The period T (S) of a scroll S = (Xi,j) is the smallest m > 0 such
that Xi+m,j = Xi,j for all i, j.

The period T (X ) of a ticker tape X = (Xk) is the smallest ℓ > 0 such that
Xk+ℓ = Xk for all k.

In our running example from Figure 2, the period of the ticker tape and scroll are
both 7. In particular, the ticker tape is generated by the subsequence 1010000, and
the scroll consists of 7 repeating rows. For the example back in Figure 1, the period
of the ticker tape is 45, while the period of the scroll is 15.

Lemma 2.23. Suppose that k ∈ Live(X ) and ℓ ∈ Z⩾0. Then T (X ) divides ℓ if and only
if Slither(k) = Slither(k + ℓ) and CoSlither(k) = CoSlither(k + ℓ).

Proof. The slither and co-slither from any live entry completely determine X . In par-
ticular, when the ticker tape is shifted ℓ positions, it remains unchanged. conversely,
if Slither(k) ̸= Slither(k + ℓ) or CoSlither(k) ̸= CoSlither(k + ℓ), then the ticker tape
changes after shifting by ℓ. □

As a corollary, we get an analogous characterization of the period of a scroll, which
will be useful later.

Corollary 2.24. For any (i, j) ∈ Live(S), the period T (S) is the minimal ℓ > 0 such
that the following three conditions hold:

(1) (i + ℓ, j) ∈ Live(S),
(2) Slither(i, j) = Slither(i + ℓ, j),
(3) CoSlither(i, j) = CoSlither(i + ℓ, j).

Next, we show how the period of a ticker tape can be computed from its scale,
degree, and codegree.
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Theorem 2.25. The period of the ticker tape X is

T (X ) = gcd(p, q) = Scale(X )
deg(X ) codeg(X ) .

Proof. For the first equality, it is immediate from the definition of p that Slither(k) =
Slither(k+ℓ) if and only if ℓ is a multiple of p. Similarly, CoSlither(k) = CoSlither(k+ℓ)
if and only if ℓ is a multiple of q. The equality follows from Lemma 2.23.

For the second equality, by Lemma 2.17, as well as the fact that pq =
lcm(p, q) gcd(p, q), we have

gcd(p, q) deg(X ) codeg(X ) = gcd(p, q) lcm(p, q)
p

· lcm(p, q)
q

= lcm(p, q) = Scale(X ).

by Corollary 2.20. □

The period of a scroll is closely related to the period of the corresponding ticker
tape.

Corollary 2.26. The period of a scroll S is

T (S) = T (X )
gcd(T (X ), n) = lcm(T (X ), n)

n
= Scale(X )

deg(X ) codeg(X ) gcd(T (X ), n) .

Proof. It follows from the definition that the period T (S) is the minimum positive
integer m such that n divides mT (X ). Therefore, T (S) must be T (X )/ gcd(T (X ), n).
The result now follows from Theorem 2.25. □

3. Combinatorial characterization and enumeration of dynamics
In this section, we will characterize when a given pair of a potential slither (a sequence
of Ds and Es) and co-slither (a sequence of Ss and Ls) defines a ticker tape. This
will allow us to characterize which infinite sequences can arise as ticker tapes and to
enumerate them.

3.1. Computing slithers and subslithers. Define a substring of a ticker tape to
be a finite sequence Xi, . . . , Xi+r of consecutive entries. We will consider a substring
of a scroll to be any substring in the corresponding ticker tape. It is clear that a
scroll or ticker tape can be reconstructed from any of its length-n substrings. In this
section, we will give an algorithm to directly calculate the slither and co-slither based
on the gaps between live entries of a length-n substring that begins with a 1. Each
gap corresponds to a substring of the slither, which we will call a subslither. The
slither is simply the concatenation of subslithers, though with the last step omitted.
After establishing this construction, we will use it to combinatorially characterize all
possible ticker tapes for a given n.

Since our construction depends on gaps between live entries, it will be necessary to
speak of the live entries that appear immediately before and after a given live entry.
We will formally define this using ticker tape notation, but it is easy to translate it
back into the language of scrolls, if desired.

Definition 3.1. Given a live entry k ∈ Live(X ), its previous live entry k− and next
live entry k+ are

k− = max
{

j < k | j ∈ Live(X )
}

, k+ = min
{

ℓ > k | ℓ ∈ Live(X )
}

.

In scroll notation, we will write these as (i, j)− and (i, j)+. Two live entries are
consecutive if one of them is the next live entry of the other. A 0-block is a maximal
substring of 0s between consecutive live entries.
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Clearly, any two consecutive live entries are separated by a 0-block of some length
z ∈ {1, . . . , n}, and we will canonically assign a sequence of Ds and Es to each such
block. The simplest case is when this 0-block has length z = 1, which occurs when
(i, j)+ = (i, j + 2) = s(i, j). In this case, we just take the path that is a single s-step,
i.e., a length-1 sequence E.

If the 0-block has size z ∈ {2, . . . , n}, then our path must begin with a D. When
this happens, we will iteratively apply the successor function until we reach c

(
(i, j)+)

.
Recall that the shape of this path, starting at (i, j) and ending at c

(
(i, j)+)

, is the
resulting sequence of Ds and Es. The following observation is straightforward but
useful, and it is also necessary for the definition of a subslither.
Lemma 3.2. If k, ℓ ∈ Live(X ) and |k − ℓ| < n, then CoSnake(k) ̸= CoSnake(ℓ). In
particular, any two live entries on the same row of a scroll are contained in different
co-snakes. □

Definition 3.3. Let (i, j) ∈ Live(S) be followed by a length-z 0-block. If z = 1, then
the subslither from (i, j) is E; otherwise, it is the shape of the minimal s-path from
(i, j) to c

(
(i, j)+)

.
Suppose we start at any live entry (i, j). The slither describes the minimal path of

Ds and Es that returns us to the same co-snake. This path touches every co-snake
exactly once. Therefore, the subslither from (i, j) is an initial sequence of the slither
from (i, j). It begins with an E if and only if (i, j + 2) ∈ Live(S), in which case
that length-1 word is the entire subslither. Otherwise, the subslither must begin with
a D. To understand where it terminates, we may, without loss of generality, assume
that (i, j) = (i, 1). There are now two subcases. In the first, the next live entry is
(i, j)+ = (i + 1, j + 1), which occurs precisely when (i, j) is followed by a 0-block of
length n. When this happens, the entries in row i + 1 alternate 0, 1, 0, 1, . . . , and then
all but possibly the last entry in row i + 2 are 0. Two examples of opposite parity are
shown in Figure 8.

1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 1 0 1 0 1 0 1 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0

Figure 8. Starting from the live entry (i, j) in the upper-left, the
next live entry (i, j)+ is on Snake(i, j) if and only if (i, j) is followed
by exactly n 0s. In this case, the successor of the last live entry in
the second row is c

(
(i, j)+)

, so the subslither from (i, j) is
DE⌊n/2−1⌋D.

In both subcases shown in Figure 8, the last live entry in row i + 1 is the co-
successor of (i, j) = (i, 1); this is (i + 1, n − 1) if n is odd and is (i + 1, n) if n is even.
Because the snake group is abelian, the next live entry is c(i + 1, j + 1) = c((i, j)+).
By construction, this is where the subslither from (i, j) stops: at (i + 2, n) if n is odd
or (i + 3, 1) if n is even. It is straightforward to see that the subslither from (i, j) is
thus DE⌊n/2−1⌋D.

So far, we have covered the two extreme cases: if the 0-block that follows (i, j)
has (minimal) length z = 1, then the subslither from (i, j) is E. If the 0-block has
(maximal) length z = n, then the subslither is DE⌊n/2−1⌋D. The final case is when
the 0-block has length z ∈ {2, . . . , n − 1}. An example of this appears in Figure 9. We
claim that in this case, the subslither is also DE⌊z/2−1⌋D, which happens to match
the case of z = n.
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Lemma 3.4. The subslither from (i, j) ∈ Live(S) is{
E if z = 1
DE⌊z/2⌋−1D if z ∈ {2, . . . , n},

where z is the length of the 0-block that follows (i, j).
Proof. We have already verified the cases when z = 1 and when z = n. Now suppose
z ⩾ 2. It is elementary to show that the subslither must be of the form DErD for
some integer r ⩾ 0. Note that (i, j)+ = (i, j + z + 1). After starting at (i, j) and
traversing the subslither, we reach the live entry (i + 2, j + 2r + 2), which must also
be c((i, j)+). Now, c((i, j)+) is either (i + 2, j + z) or (i + 2, j + z − 1) (depending on
whether the step from (i, j)+ = (i, j + z + 1) to its co-successor is of type S or L). It
follows that j + 2r + 2 is either j + z or j + z − 1, so r = ⌊z/2⌋ − 1. □

1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1
0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

Figure 9. Starting from the live entry in the upper-left, the steps
DEED reach the co-snake containing its next live entry. Then, start-
ing at that live entry, we use a single E to reach the co-snake of its
next live entry. Then a DD takes us to the co-snake of the next live
entry. From here, the steps DED reach the co-snake containing the
next live entry. Finally, the steps DEE get us back to our starting
co-snake. The slither of the scroll is simply the concatenation of these
steps DEEDEDDDEDDEE. The co-slither SLSS is obtained from
the co-successor functions of live entries in the first row, but taken
in opposite cyclic order (right to left) and ignoring each live entry
whose previous live entry is two spaces to its left.

In constructing the slither from (i, j) = (i, 1) from subslithers, there are two cases
to handle separately: (i) traversing between consecutive live entries within a row,
and then (ii) leaving the final live entry in the row, in which case we prematurely
reach c

(
(i, j)+)

before finishing the subslither and our algorithm will terminate. The
subslither between consecutive live entries is completely determined by the sizes of
the 0-blocks.

Clearly, we can construct the slither of a scroll by starting at any live entry (i, j)
and successively computing subslithers; the only question is when to stop. Assume
once again that (i, j) = (i, 1) is in the first column, and let (i, j′) be the last live entry
in row i. It is straightforward to see that j′ < n and that the subslither from (i, j′)
must start with a D. This step takes us to row i+1, and the subslither continues with
Es until either the entry (i + 1, n − 1) or (i + 1, n) is reached. Whichever of these is
live is the co-successor of (i, 1), so this takes us back to c

(
(i, j)+)

before we finish the
subslither from (i, j′). Notice that an L-step from (i, 1) would take us to (i+1, n−1),
and an S-step would take us to (i + 1, n). This is stated formally as the following
lemma.
Lemma 3.5. Suppose (i, 1) ∈ Live(S) and the last live entry (i, j′) in row i is followed
by exactly z consecutive 0s in row i. If we start at (i, j′) and apply the initial segment
of the subslither consisting of D followed by

⌊
z−1

2
⌋

instances of E, then we end up at
c(i, 1). Moreover, the step (i, 1) → c(i, 1) is of type S if z is odd and is of type L if z
is even. □
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Still assuming that (i, j) = (i, 1), Lemmas 3.4 and 3.5 completely characterize how
to construct the slither of a scroll, given any length-n substring that starts with a 1.
Specifically, we traverse the gaps of 0s between live entries from left to right and
append each subslither (E or DErD) as described by Lemma 3.4. Then we append
the partial subslither DEr per Lemma 3.5.

Proposition 3.6. To construct the slither from a row with (i, 1) ∈ Live(S), traverse
the 0-blocks entirely contained in row i from left to right. Do the following for each
0-block (where z is the size of the 0-block):

• If z = 1, append E.
• If z > 1, append DE⌊z/2⌋−1D.

Finally, append DE⌊(z−1)/2⌋, where z ⩾ 1 is the number of 0s in row i after the
rightmost live entry in row i.

Proof. The first step is the result of iteratively appending subslithers, which, by
Lemma 3.4, are either DE⌊z/2−1⌋D or E. The last step of appending DE⌊(z−1)/2⌋

is due to Lemma 3.5. □

An example of the construction of a subslither from a row beginning with a live
entry is shown in Figure 10. Here, we construct the subslither of the scroll shown in
Figure 9 from just the first row, using only the sizes of the 0-blocks. That figure also
provides a summary of how to construct the co-slither, which we will derive next.

S S L S

1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0

DEED E DD DED DEE

Independent set (row in S):

Slither (read left-to-right):

Co-slither (read right-to-left):

Figure 10. The construction of the slither and co-slither from Fig-
ure 9. The slither is constructed by iteratively appending subslithers,
as described in Proposition 3.6. The co-slither is constructed from
the parity of the gaps from right-to-left using Proposition 3.7.

To construct the co-slither, start from (i, j) = (i, 1), and apply the co-successor
function to reach either (i+1, n) or (i+1, n−1). Applying the inverse-successor func-
tion from here takes us to (i, j′), the last live entry in row i, which lies on Snake((i, j′)).
Applying the co-successor function from (i, j′) takes us to another snake, and we can
apply s−1 until we get back to row i and repeat this process until we return to
Snake(i, j). Note that there could be several choices at each step, because some snake
might have at least two consecutive live entries in row i, like the blue snake does in
Figure 9. However, this does not matter, because applying the co-successor function
from any of these lands us on the same snake.

Proposition 3.7. To construct the co-slither from a row with (i, 1) ∈ Live(S), start
with an L if it ends in an even number of 0s and an S otherwise. Next, for each gap
of z > 1 consecutive 0s, going from right to left:

• if z is even, append S;
• if z is odd, append L.

Proof. The first step is due to the characterization of c(i, 1) in Lemma 3.5. Next, it is
straightforward to see (e.g., in Figure 9) how for each live entry in row i other than
(i, 1), the step taking that live entry to its co-successor is of type S if the number of
0s preceding it is even and is of type L if the number of 0s preceding it is odd. □
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An example of using Proposition 3.7 to construct the co-slither of the scroll shown
in Figure 9 from just the first line is shown in Figure 10.

3.2. Characterizing ticker tapes. Propositions 3.6 and 3.7 can be used to con-
struct all possible pairs of slithers and co-slithers for a given n. Given a ticker tape X ,
write βE and βD for the number of Es and Ds in Slither(X ) and αS and αL for the
number of Ss and Ls in CoSlither(X ). Recall that the scale of a ticker tape is defined
in Definition 2.18.

Lemma 3.8. The scale of a ticker tape (or scroll) is
σ = 2βE + (n + 1)βD = (2n − 1)αS + (2n − 2)αL.

Proof. From some fixed k ∈ Live(X ), we can compute the scale in two ways: (i) by
applying the successor function β = βE + βD times, or (ii) applying the co-successor
function α = αS +αL times. In the first case, we advance 2βE +(n+1)βD positions in
the ticker tape, and in the latter case, we advance (2n−1)αS+(2n−2)αL positions. □

Corollary 3.9. For any ticker tape (or scroll), we have
βD = 2(αS + αL) − 1 and 2βE + 3αS + 4αL = n + 1.

Proof. Without loss of generality, assume that (0, 1) ∈ Live(S). There are αS + αL

letters in the co-slither: one for each gap of zeros between live entries and one more
for the final string of 0s. Each gap contributes exactly two Ds, except the final string,
which contributes one. It follows that the slither contains 2(αS + αL) − 1 instances
of D. The result now follows from substituting βD = 2(αS +αL)−1 into the equation
in Lemma 3.8 and simplifying. □

The equation 2βE + 3αS + 4αL = n + 1 from Corollary 3.9 gives a necessary con-
dition for the slithers and co-slithers that exist for a given n. Theorem 3.11 will show
that this condition is also sufficient. In particular, any solution to this equation with
βE , αS , αL ⩾ 0 and αS + αL > 0 gives a set of potential slithers and co-slithers that
only differ by rearrangement.(5) From each of these slither and co-slither combina-
tions, we can construct a scroll. Without loss of generality, we will assume that (0, 1)
is live.

Definition 3.10. Fix a positive integer n. Let αS, αL, βE, and βD = 2(αS + αL) − 1
be nonnegative integers. Suppose Ws (the “slither”) is a word over the alphabet {D, E}
with βD instances of D and βE instances of E, and suppose Wc (the “co-slither”) is
a word over the alphabet {S, L} with αS instances of S and αL instances of L. We
say the pair (Ws, Wc) is feasible if 2βE + 3αS + 4αL = n + 1.

Built into the definition of a feasible pair is the assumption that αS + αL > 0, and
hence that βD > 0. In particular, both words must be nonempty.

Theorem 3.11. Every feasible pair defines a ticker tape.

Proof. We can explicitly construct the ticker tape using Propositions 3.6 and 3.7.
Begin with a live entry in (0, 1), and read off the slither. If we read an E and there
have been an even number of Ds so far, we add a single 0 and then a live entry. If
we read a D that is not the final D, then let t be the number of Es between this D
and the next D. We add either 2t + 2 or 2t + 3 zeros and then another live entry. To
determine which, we look at the next entry in the co-slither, reading right to left. If
the entry is S, we add 2t + 2 zeros, while if it is L, we add 2t + 3 zeros. When we
reach the final D in the slither, we simply fill out the rest of the row with zeros.

(5)Note that if we had αS = αL = 0, then our co-slither would be empty, which is impossible.
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βE αS αL βD = 2(αS + αL) − 1 Slither Co-slither
5 0 1 1 EEEEED L
3 0 2 3 EEEDDD LL
3 0 2 3 EEDEDD LL
3 0 2 3 EEDDED LL
3 0 2 3 EDEDED LL
1 0 3 5 EDDDDD LLL
4 2 0 3 EEEEDDD SS
4 2 0 3 EEEDEDD SS
4 2 0 3 EEEDDED SS
4 2 0 3 EEDEEDD SS
4 2 0 3 EEDEDED SS
2 2 1 5 EEDDDDD SSL
2 2 1 5 EDEDDDD SSL
2 2 1 5 EDDEDDD SSL
0 2 2 7 DDDDDDD SSLL
0 2 2 7 DDDDDDD SLSL
1 4 0 7 EDDDDDDD SSSS

Figure 11. This table classifies all possible slithers and co-slithers
(up to cyclic shift) for ticker tapes on n = 13 vertices.

By the condition that βD = 2(αS + αL) − 1, we know that upon reaching the
rightmost D in the slither, we also reach the leftmost letter in the co-slither. Let t be
the number of Es at the end of the slither. We claim that the number of 0s at the end
of the first row of the scroll is precisely 2t + 1 if the leftmost entry in the co-slither
is S and is 2t + 2 if it is L. This follows from the fact that 2βE + 3αS + 4αL = n + 1.
In particular, when writing entries in the first row, we moved right two positions for
each T , three positions for each S, and four positions for each L.

Now that we have constructed the first row, the remainder of the table is fully
determined. By construction, the set of live entries forms an independent set, and the
theorem follows. □

By construction, each feasible pair corresponds to a unique ticker tape. The exam-
ple in Figures 9 and 10 corresponds to the solution βE = 6, αS = 3, αL = 1 to the
equation 2βE + 3αS + 4αL = 25.

Remark 3.12. Using generating functions, it is straightforward to calculate the num-
ber of solutions to the equation 2βE +3αS +4αL = n+1 over the nonnegative integers
that satisfy αS + αL > 0. In particular, this quantity is given by the coefficient of
xn+1 in the generating function

1
1 − x2

(
1

(1 − x3) (1 − x4) − 1
)

.

Calculating the total number of feasible pairs is more complicated because each so-
lution corresponds to a collection of slithers and co-slithers made up of the same
multiset of letters.

Example 3.13. Figure 11 gives a list of all of the ticker tapes for n = 13, which we
computed using Theorem 3.11. There are a total of 17 ticker tapes (up to cyclic shift).
Furthermore, one can see that there are 7 possible quadruples (αS , αL, βE , βD). This
is the coefficient of x14 in the generating function from Remark 3.12.
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4. Dynamics and actions on finite quotient spaces
4.1. Orbit tables and ouroboroi. Thus far, we have viewed the dynamics gen-
erated by toggling independent sets using infinite scrolls and ticker tapes. However,
sometimes it will be convenient to restrict our attention to a repeating sequence of
rows in a scroll. If we identify two identical rows by a quotient map of the scroll (a
cylinder) to get a torus, the snakes and co-snakes “wrap around” from bottom to top.
Inspired by the ancient symbol of a snake swallowing its tail, as shown on the left in
Figure 12, we will call such a finite circular snake an ouroboros.

x v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11
x(0) 0 0 0 0 1 0 1 0 0 0 0
x(1) 1 0 1 0 0 0 0 1 0 1 0
x(2) 0 0 0 1 0 1 0 0 0 0 1
x(3) 0 1 0 0 0 0 1 0 1 0 0
x(4) 0 0 1 0 1 0 0 0 0 1 0
x(5) 1 0 0 0 0 1 0 1 0 0 0
x(6) 0 1 0 1 0 0 0 0 1 0 1

x v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11
x(0) 0 0 0 0 1 0 1 0 0 0 0
x(1) 1 0 1 0 0 0 0 1 0 1 0
x(2) 0 0 0 1 0 1 0 0 0 0 1
x(3) 0 1 0 0 0 0 1 0 1 0 0
x(4) 0 0 1 0 1 0 0 0 0 1 0
x(5) 1 0 0 0 0 1 0 1 0 0 0
x(6) 0 1 0 1 0 0 0 0 1 0 1

Figure 12. On the left is a drawing of an ouroboros from a 1478
book on medieval alchemy by Theodoros Pelecanos; this image is
from Wikipedia. On the right is the fundamental orbit table T1 from
our running example in Figure 2. When we allow snakes and co-
snakes to wrap from bottom to top, the two snakes merge into one
ouroboros with slither D E (top), and the six co-snakes merge into
two co-ouroboroi, with co-slither S (bottom).

Let x ∈ Fn
2 , and suppose r is a positive integer such that x(r) = x(0) = x. Then r

must be a multiple of the period T (S) of the scroll defined by x (as defined in Sec-
tion 2.1). Hence, r = ωT (S) for some positive integer ω that we call a frequency.
Define the ω-fold orbit table of x to be the r ×n table whose rows are x(0), . . . , x(r−1).
We denote this table by Tω = Tableω(x) or as T = Table(x), depending on whether ω
is understood.

It will at times be useful to work with a finite version of the ticker tape. If r = ωT (S)
as above, then define the ω-fold orbit vector of x to be the length-rn subsequence of
the ticker tape that has x as an initial sequence—the result of reading the ω-fold orbit
table across each column, downward row-by-row. We denote this as
(5)

Vω = Vectorω(x) =
(
X0,1, . . . , X0,n, X1,1, . . . , X1,n, . . . , Xr−1,1, . . . , Xr−1,n

)
∈ Frn

2 ,

or V = Vector(x) if ω is understood or unimportant to the context. We refer to the
1-fold orbit table (resp., vector) as the fundamental orbit table (resp., vector).
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If T is an orbit table and V an orbit vector, we define their sets of live entries to
be

Live(T ) =
{

(i, j) ∈ Zr × Zn | Xi,j = 1
}

, Live(V) =
{

k ∈ Zrn | Xk = 1
}

.

Though it makes no difference either way, we will continue with the convention that
the columns are numbered 1, . . . , n and the rows are numbered 0, . . . , r − 1. As such,
we harmlessly take Zn = {1, . . . , n} and Zr = {0, . . . , r − 1} in the orbit table and
Zrn = {1, . . . , rn} in the orbit vector.

The live entries in an orbit table are simply the images of the live entries in the
corresponding scroll under the natural quotient map pω : Live(S) → Live(Tω) that
reduces the first coordinate of each entry modulo r. Under this map, the successor and
co-successor functions descend to bijections on Live(Tω) that we call the ω-successor
function sω and ω-co-successor function cω. The relationship between the successor
and its ω-counterpart is illustrated by the following commutative diagrams.

Live(S)

pω

��

s // Live(S)

pω

��
Live(Tω) sω // Live(Tω)

(i + kr, j)
_

pω

��

� s // s(i + kr, j)
_

pω

��
(i, j) � sω // sω(i, j)

Naturally, there is an analogous diagram relating c and cω. The functions sω and cω

generate a finite abelian group G(Tω) := ⟨sω, cω⟩ that we call the ouroboros group
of Tω, or the ω-fold ouroboros group of S. Since pω is a topological covering map,
there is an induced homomorphism p∗

ω : G(S) → G(Tω) sending s 7→ sω and c 7→ cω.
The ouroboros group is the quotient

G(Tω) ∼= G(S)/ ker p∗
ω,

and it acts simply transitively on Live(S)/ ker pω, which can be canonically identified
with Live(Tω). We get a bijective correspondence between the orbits under sω and cω

and the cosets of ⟨sω⟩ and ⟨cω⟩. These are the images of the snakes and the co-snakes
under the quotient map pω, so we call them ouroboroi and co-ouroboroi, respectively.

Definition 4.1. Given a live entry (i, j) in an orbit table Tω, the ouroboros and
co-ouroboros containing it are the sets

Ouroω(i, j) =
{

sk
ω(i, j) | k ∈ Z

}
, CoOuroω(i, j) =

{
ck

ω(i, j) | k ∈ Z
}

.

Throughout the rest of this paper, we will continue to assume that a scroll S has
α snakes and β co-snakes. Recall that we denote the number of Ss and Ls in any
co-slither by αS and αL, and the number of Ds and Es in any slither by βD and βE ,
respectively. Naturally, we have

α = αS + αL and β = βD + βE .

We say the ω-fold orbit table T = Tω has αω ouroboroi and βω co-ouroboroi. (If ω
is clear from the context, which it usually will be, then we will typically drop it as a
subscript.) Similarly, we will often write s and c rather than sω and cω because ω will
usually be unambiguous when we speak of these functions.

Theorem 4.2. For any orbit table T , the set Live(T ) is a torsor of the ouroboros
group, which has presentation

G(T ) =
〈

s, c
∣∣∣ s c = c s, sβ = cα, s η/α = c η/β = 1

〉
∼= Zα × Zη/α

∼= Zβ × Zη/β ,

where η is the number of live entries.

Algebraic Combinatorics, Vol. 7 #6 (2024) 1717



C. Defant, M. Joseph, M. Macauley & A. McDonough

Proof. We have already established the first statement. It follows that there are bijec-
tive correspondences between ouroboroi and cosets of ⟨s⟩ and between co-ouroboroi
and cosets of ⟨c⟩. Since G(T ) = ⟨s, c⟩ ∼= G(S)/ ker p∗ is a finite abelian group of order
η, the first two relations hold, and we have
(6) α = [G(T ) : ⟨s⟩] = η/β and β = [G(T ) : ⟨c⟩] = η/α.

In other words, G(T )/ ⟨s⟩ ∼= Zα and G(T )/ ⟨c⟩ ∼= Zβ . The result now follows. □

x v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

x(0) 0 0 0 0 1 0 1 0 0 0 0
x(1) 1 0 1 0 0 0 0 1 0 1 0
x(2) 0 0 0 1 0 1 0 0 0 0 1
x(3) 0 1 0 0 0 0 1 0 1 0 0
x(4) 0 0 1 0 1 0 0 0 0 1 0
x(5) 1 0 0 0 0 1 0 1 0 0 0
x(6) 0 1 0 1 0 0 0 0 1 0 1
x(7) 0 0 0 0 1 0 1 0 0 0 0
x(8) 1 0 1 0 0 0 0 1 0 1 0
x(9) 0 0 0 1 0 1 0 0 0 0 1
x(10) 0 1 0 0 0 0 1 0 1 0 0
x(11) 0 0 1 0 1 0 0 0 0 1 0
x(12) 1 0 0 0 0 1 0 1 0 0 0
x(13) 0 1 0 1 0 0 0 0 1 0 1

x v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

x(0) 0 0 0 0 1 0 1 0 0 0 0
x(1) 1 0 1 0 0 0 0 1 0 1 0
x(2) 0 0 0 1 0 1 0 0 0 0 1
x(3) 0 1 0 0 0 0 1 0 1 0 0
x(4) 0 0 1 0 1 0 0 0 0 1 0
x(5) 1 0 0 0 0 1 0 1 0 0 0
x(6) 0 1 0 1 0 0 0 0 1 0 1
x(7) 0 0 0 0 1 0 1 0 0 0 0
x(8) 1 0 1 0 0 0 0 1 0 1 0
x(9) 0 0 0 1 0 1 0 0 0 0 1
x(10) 0 1 0 0 0 0 1 0 1 0 0
x(11) 0 0 1 0 1 0 0 0 0 1 0
x(12) 1 0 0 0 0 1 0 1 0 0 0
x(13) 0 1 0 1 0 0 0 0 1 0 1

Figure 13. In the 2-fold orbit table T2 from our running example
in Figure 2, there are α2 = 2 ouroboroi with slither D E and β2 = 2
co-ouroboroi with co-slither S

2.

Definition 4.3. The (co-)ouroboros degree of an orbit table Tω is the number of
(co-)snakes in the pω-preimage of each (co-)ouroboros. We denote these as

deg(pω) := [G(S) : ⟨s⟩]
[G(Tω) : ⟨sω⟩] = α/αω and codeg(pω) := [G(S) : ⟨c⟩]

[G(Tω) : ⟨cω⟩] = β/βω.

We call deg(p1) and codeg(p1) the fundamental ouroboros degree and fundamental
co-ouroboros degree, respectively.

Returning back to our running example, the fundamental orbit table (i.e., ω = 1)
is shown in Figure 12. The α = 2 snakes in S merge into α1 = 1 ouroboros, and
the β = 6 co-snakes merge into β1 = 2 co-ouroboroi. Therefore, the fundamental
ouroboros and co-ouroboros degrees are

deg(p1) = α/α1 = 2/1 = 2 and codeg(p1) = β/β1 = 6/2 = 3.

In contrast, in the 2-fold orbit table, shown in Figure 13, the α = 2 snakes in S remain
α2 = 2 separate ouroboroi, and the β = 6 co-snakes become β2 = 2 co-ouroboroi. The
ouroboros and co-ouroboros degrees are thus

deg(p2) = α/α2 = 2/2 = 1 and codeg(p2) = β/β2 = 6/2 = 3.

Slithers and co-slithers naturally descend to orbit tables via the quotient
pω : Live(S) → Live(Tω). The slither of S is a length-β sequence of Ds and Es,
and it defines a cyclic ordering ⟨c⟩ , s⟨c⟩ , . . . , sβ−1⟨c⟩ of co-snakes. If we apply the
quotient map p∗

ω : G(S) → G(Tω), then we get a cyclic ordering of the βω co-
ouroboroi. Each co-ouroboros appears in the sequence ⟨cω⟩ , sω⟨cω⟩ , . . . , sβ−1

ω ⟨cω⟩
exactly codeg(pω) = β/βω times, and this must be a divisor of the co-degree of S (the
exponent that appears in the slither). Define the slither of Tω, denoted Slither(Tω),
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to be any length-β subsequence of a slither of S (so Slither(Tω) is defined up to cyclic
shift). We will also refer to Slither(Tω) as the ω-slither of S.

The preceding notions all have straightforward analogues for co-slithers. More pre-
cisely, a co-slither of S is a length-α sequence of Ss and Ls that defines a cyclic
ordering ⟨s⟩ , c ⟨s⟩ , . . . , cα−1 ⟨s⟩ of snakes. Via the quotient map p∗

ω : G(S) → G(Tω),
we get a cyclic ordering of the αω ouroboroi. Each ouroboros appears in the sequence
⟨s⟩ , cω ⟨s⟩ , . . . , cα−1

ω ⟨s⟩ exactly deg(pω) = α/αω times, and this must be a divisor of
the degree of S (the exponent that appears in the co-slither). We define the co-slither
of Tω, denoted CoSlither(Tω), to be any length-α subsequence (defined up to cyclic
shift) of a co-slither of S; we also call this the ω-co-slither of S. The preceding two
paragraphs have established the following.

Lemma 4.4. For any scroll S, we have(
Slither(Tω)

)codeg(pω) = Slither(S) and
(
CoSlither(Tω)

)deg(pω) = CoSlither(S).

We will refer to the (co-)slither of the fundamental orbit table (i.e., ω = 1) as the
fundamental (co-)slither . To emphasize that we are taking the slither in an orbit table
rather than in the scroll, we will sometimes write E and D rather than E and D, and
we will similarly use S and T in co-slithers.

Let us return to our running example from Figure 2 and its fundamental and 2-fold
orbit tables shown in Figures 12 and 13, respectively. The length of the fundamental
slither D E is β1 = β/ codeg(p1), the number of co-ouroboroi, and the length of the
fundamental co-slither S is α1 = α/ deg(p1), the number of ouroboroi. As guaranteed
by Lemma 4.4, the (co-)slithers of S and T are related by

(DE)codeg(p1) = (DE)3 and Sdeg(p1) = S2.

The 2-fold orbit table of our running example, shown in Figure 13, has two
ouroboroi with slither D E and two co-ouroboroi with co-slither S

2. The ouroboros
degree is thus deg(p2) = 2/2 = 1, and the co-ouroboros degree is codeg(p2) = 6/2 = 3.
As predicted by Lemma 4.4, we have

(DE)codeg(p2) = (DE)3 and
(
S2)deg(p2) = S2.

4.2. Swallow and co-swallow functions. In this subsection, we will look at
how the snakes and co-snakes merge in various ω-fold orbit tables under the quotient
maps pω. This will allow us to derive formulas relating αω to α = α1 and likewise
relating βω to β = β1.

We will write S(S) for the set of snakes of S and C(S) for the set of co-snakes of S.
Given s ∈ S(S), define its tail to be the smallest positive coordinate t of the ticker
tape that is contained in s. It is easy to translate this back into orbit table notation if
desired, and we will denote this as Tail(s), regardless of the setting. Next, for any ω,
with r = ωT (S), define the ω-head of s to be the largest coordinate h ∈ [rn] of the
orbit vector Vω contained in s. Applying the ω-successor function from the ω-head
wraps past the end of the orbit vector to back near the beginning, landing on some
live entry whose pω-preimage lies in some snake s′ ∈ S(S), possibly s itself. This
defines a bijection on the snakes of S, and motivated by the idea of an ouroboros
swallowing its tail, we will call this bijection the ω-swallow function:

Swalω : S(S) −→ S(S).

As a permutation, Swalω contains αω disjoint cycles, each containing exactly deg(pω)
snakes. The next result guarantees that if the snakes of S are canonically cyclically
ordered, then this bijection cyclically shifts this ordering by the same amount.
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Proposition 4.5. If we cyclically order the snakes in S by s1, . . . , sα so that the
co-successor of any live entry in si lies in si+1, then for some constant k,

Swalω(si) = si+k for all 1 ⩽ i ⩽ α,

where all indices are taken modulo α.

Proof. Since the snakes are cyclically ordered, it suffices to show that this holds for
consecutive entries. Specifically, we will show that if Swal(sα) = sk, then Swal(s1) =
sk+1. Denote the ω-head and the tail of si by hi = Headω(si) and ti = Tail(si),
respectively.(6)

It suffices to show that if s(hα) = tk, then s(h1) = tk+1. Assuming the former, start
at h1, and apply s to get to the tail tj of some snake sj . Alternatively, applying c−1

takes us to some live entry on sα. Now, let i ∈ N be the minimal number of s-steps
needed to reach the ω-head of sα, i.e., si

(
c−1(h1)

)
= hα. The next s-step takes us

to the tail tk ∈ sk. Finally, c(tk) lies on snake sk+1. Because the ouroboros group is
abelian, we have

c si+1c−1(h1) = si+1(h1) ∈ sk+1.

We also know that si s(h1) = si(tj), and further applications of s from the tail will
remain on the snake sj (until we reach the ω-head hj), so j = k + 1. □

We can analogously define the tail and ω-head of a co-snake c, which we will denote
by Headω(c) and Tail(c), respectively. Applying the ω-co-successor function from the
ω-head of each co-snake defines a bijection

CoSwalω : C(S) −→ C(S)
that we call the co-swallow function. The basic properties of the swallow function carry
over to the co-swallow function. For example, as a permutation, CoSwalω contains
βω disjoint cycles, each containing exactly deg(pω) co-snakes. If the co-snakes are
canonically cyclically ordered, then this bijection cyclically shifts this ordering by the
same amount. The proof is analogous to that of Proposition 4.5 and will be omitted.

Proposition 4.6. If we cyclically order the co-snakes in S by c1, . . . , cβ so that the
co-successor of any live entry in ci lies in ci+1, then for some constant k,

CoSwalω(ci) = ci+k, for all 1 ⩽ i ⩽ β,

where all indices are taken modulo β.

Let us return to our running example. Since there are β = 6 co-snakes but only
α = 2 snakes, it is more illustrative to compute the co-swallow functions. The co-
snakes are highlighted by color on the left in Figure 14. The entries marked with 1
indicate the tails of the co-snakes; these do not depend on ω. The entries marked with
1 indicate the 1-heads of the co-snakes; these do depend on the choice of ω = 1.

From Figure 14, the co-swallow function is defined by
CoSwal1(c1) = c5, CoSwal1(c5) = c3, CoSwal1(c3) = c1

and also
CoSwal1(c2) = c6, CoSwal1(c6) = c4, CoSwal1(c4) = c2.

In the language of Proposition 4.5, the swallow function is the mapping si 7→ si+4,
where the indices are taken modulo 6. We can describe this by the permutation with
cycle decomposition (153)(264).

(6)Because we want this argument to work with both orbit table and orbit vector notation, we
are not specifying whether hi and ti are integers or ordered pairs.
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c1 c2 c3 c4 c5 c6
x v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

x(0) 0 0 0 0 1 0 1 0 0 0 0
x(1) 1 0 1 0 0 0 0 1 0 1 0
x(2) 0 0 0 1 0 1 0 0 0 0 1
x(3) 0 1 0 0 0 0 1 0 1 0 0
x(4) 0 0 1 0 1 0 0 0 0 1 0
x(5) 1 0 0 0 0 1 0 1 0 0 0
x(6) 0 1 0 1 0 0 0 0 1 0 1

...
...

...
...

...
...

...
...

...
...

...
...

CoSwal1 = (c1 c5 c3) (c2 c6 c4)

c1 c2 c3 c4 c5 c6
x v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

x(0) 0 0 0 0 1 0 1 0 0 0 0
x(1) 1 0 1 0 0 0 0 1 0 1 0
x(2) 0 0 0 1 0 1 0 0 0 0 1
x(3) 0 1 0 0 0 0 1 0 1 0 0
x(4) 0 0 1 0 1 0 0 0 0 1 0
x(5) 1 0 0 0 0 1 0 1 0 0 0
x(6) 0 1 0 1 0 0 0 0 1 0 1

Figure 14. On the left is the repeating portion of the running ex-
ample of our scroll. The tails of co-snakes are indicated by 1. On the
right is the ω-fold orbit table for ω = 1. The ω-heads of the co-snakes
are the positions of 1.

By Proposition 4.5, the swallow function Swalω is the permutation sending i 7→ i+k,
so each cycle has length α/ gcd(α, k), and there are gcd(α, k) disjoint cycles. The
different cycles correspond to the different ouroboroi.

4.3. The ω-fold vs. fundamental orbit table. We are now ready to give explicit
relationships between the properties of an ω-fold orbit table, such as the (co-)degree
and the number of (co-)snakes, and the corresponding properties of the fundamental
(i.e., 1-fold) orbit table. First, recall that deg(S) (resp., codeg(S)) is the length of
Slither(S) (resp., CoSlither(S)) divided by its length as a cyclic word, and that the
(co-)snake scale is the minimal shift of the ticker tape that leaves the (co-)snakes
invariant. These are denoted p and q, respectively.

Proposition 4.7. For any scroll S,

deg(p1)
∣∣ deg(S) and codeg(p1)

∣∣ codeg(S).

Proof. Without loss of generality, suppose that (0, 1) ∈ Live(S). By Corollary 2.24,
the minimal k > 1 such that

(7) (k, 1) ∈ Live(S), Slither(k, 1) = Slither(0, 1), CoSlither(k, 1) = CoSlither(0, 1)

is the period T (S) of the scroll. By definition, this is also the number of rows in the
fundamental orbit table.

Next, let k′ > 0 be minimal such that the three conditions in Eq. (7) hold, with the
additional condition that (k′, 1) ∈ Snake(0, 1). Note that k′/k is just the number of
times the ouroboros wraps around from bottom to top before returning to the initial
snake, so

k′ = k deg(p1) = deg(p1)T (S) = deg(p1) T (X )
gcd(T (X ), n) = deg(p1) lcm(T (X ), n)

n
.

Next, we will express k′ in terms of deg(S).
Recall that Scale(X ) is the minimal σ such that a live entry h is on the same snake

and co-snake as h + σ. It follows that p = Scale(X )/ codeg(X ) is the minimal ℓ such
that h is on the same snake as h + ℓ and CoSlither(h) = CoSlither(h + ℓ). Using the
same line of reasoning as in the proof of Corollary 2.26, we find that

k′ = 1
n

lcm
(

Scale(X )
codeg(X ) , n

)
= 1

n
lcm (deg(X )T (X ), n) .
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Applying Corollary 2.26 shows that

deg(p1) = k′

T (S) =
1
n lcm (deg(X )T (X ), n)

1
n lcm (T (X ), n)

= deg(X ) gcd (T (X ), n)
gcd (deg(X )T (X ), n) .

We now have the explicit formula

deg(S) = deg(X ) = deg(p1) gcd (deg(X )T (X ), n)
gcd (T (X ), n) ,

which establishes that deg(S) divides deg(p1). The proof that codeg(S) di-
vides codeg(p1) is analogous: we simply replace the “additional condition” with
(k′, 1) ∈ CoSnake(0, 1) and swap all instances of deg(X ) and codeg(X ). □

Corollary 4.8. The integers deg(p1) and codeg(p1) are relatively prime.

Proof. Lemma 2.16 established that gcd(deg(S), codeg(S)) = 1. The result now fol-
lows immediately from Proposition 4.7. □

We now state formulas relating the numbers of (co-)ouroboroi of the ω-fold orbit
table in terms of the numbers of (co-)ouroboroi of the fundamental orbit table.

Proposition 4.9. Suppose a scroll S has α snakes and β co-snakes and that its
fundamental orbit table has α ouroboroi and β co-ouroboroi. For ω > 1, the numbers
αω and βω of ouroboroi and co-ouroboroi in its ω-fold orbit table satisfy

αω = α · gcd(deg(p1), ω) and βω = β · gcd(codeg(p1), ω).

Proof. As in Proposition 4.5, let s1, . . . , sα be the snakes in S, cyclically ordered so
that the co-successor of a live entry of si lies in si+1. That proposition says that there
is some constant k such that each snake si maps to si+k when wrapping vertically
around the fundamental orbit table. It follows that each snake si maps to si+ωk when
wrapping vertically around the ω-fold orbit table. This means that the number of
ouroboroi in the ω-fold orbit table is gcd(ωk, α), so

αω = gcd(ωk, α)
= gcd(α, gcd(ωk, ωα))
= gcd(α, ω · gcd(k, α))
= gcd(k, α) · gcd(α/ gcd(k, α), ω)
= α · gcd(deg(p1), ω).

The second equality is analogous. □

Our running example of a scroll has α = 2 snakes and β = 6 co-snakes, which
we distinguished with different colors. As we took quotients to construct ω-fold orbit
tables, these snakes and co-snakes merged into (co)-ouroboroi, so we needed fewer
colors to represent them. However, there are special cases when taking the quotient
preserves the snakes and co-snakes, and thus the colors as well. Going back to our
running example, notice that if ω is a multiple of deg(p1) = 2, then there are αω =
α = 2 ouroboroi, and if ω is a multiple of codeg(p1) = 3, then there are βω = β = 6
co-ouroboroi. Specifically, these quantities are

αω =
{

2, ω ≡ 0 (mod 2)
1, ω ≡ 1 (mod 2)

and βω =


6, ω ≡ 0 (mod 3)
2, ω ≡ 1 (mod 3)
2, ω ≡ 2 (mod 3).

We now consider when the ω-fold orbit table Tω has the same number of ouroboroi
as the scroll has snakes and also has the same number of co-ouroboroi as the scroll has
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co-snakes. This happens precisely when ω is a multiple of lcm(deg(p1), codeg(p1)) =
deg(p1) · codeg(p1). In this case, we say that the orbit table Tω = pω(S) is color-
preserving.

Proposition 4.10. Given an orbit table Tω = pω(S), the following conditions are
equivalent:

(1) αω = α and βω = β;
(2) Swalω and CoSwalω are the identity permutation;
(3) there is a bijection between the set of (co-)snakes in the scroll and the set of

(co-)ouroboroi in the orbit table;
(4) the number rn = ωnT (S) of entries in Tω is a multiple of Scale(X );
(5) deg(p1) · codeg(p1) divides ω.

Proof. The equivalence of conditions (1), (2), (3) is immediate from the above discus-
sion.

Let k be the smallest positive integer such that Xk = 1. Let s and c be the snake
and the co-snake, respectively, containing k. Let k′ be the smallest integer such that
k′ > rn and k′ ≡ k (mod Scale(X )). Then k′ is a live entry in Swalω(s) ∩ CoSwalω(c).
It follows that Scale(X ) divides rn if and only if Swal(s) = s and CoSwal(c) = c. But
all cycles of Swal(s) (respectively, CoSwal(c)) have the same size, so (4) is equivalent
to (2).

From Proposition 4.9, we see that (1) holds if and only if lcm(deg(p1), codeg(p1))
divides ω. Since deg(p1) and codeg(p1) are relatively prime by Corollary 4.8, condi-
tions (1) and (5) are equivalent. □

5. Periods of sum vectors
In this section, we will introduce the sum vector of a scroll and fully classify the
possible periods for the sum vector of a scroll on n vertices, when viewed as a cyclic
word.

For an orbit table T , define the sum vector of T , written Σ⃗(T ), to be the vector
in Nn given by the column sums of T . Clearly, for every ω ∈ N, the ω-fold orbit
table of a scroll S has sum vector ω · Σ⃗(T1). Thus, we can define Σ⃗(S) to be the sum
vector of any orbit table of S, and this vector is well-defined up to scalar multiples.
Note that Σ⃗(S) indicates the relative frequency of live entries in each column of S.
From the toggling perspective, this means that Σ⃗(S) indicates the relative frequency
with which each vertex of Cn appears in the independent sets that we obtain from
iteratively applying the toggling operation τ .

In many orbit tables, such as the one in our running example in Figure 2, the sum
vector is constant, so its period is 1. However, this is not always the case. For example,
the sum vector of the orbit table in Figure 15 has period 3.

x v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
x(0) 1 0 1 0 0 0 0 0 1 0 1 0
x(1) 0 0 0 1 0 1 0 0 0 0 0 1
x(2) 0 1 0 0 0 0 1 0 1 0 0 0
x(3) 0 0 1 0 1 0 0 0 0 1 0 1
x(4) 0 0 0 0 0 1 0 1 0 0 0 0

Sum: 1 1 2 1 1 2 1 1 2 1 1 2

Figure 15. The sum vector Σ⃗(T1) = (1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2) for
this orbit table has period 3.
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The sum vector of an orbit table or scroll is closely related to the scale, the distance
between two consecutive entries in any fiber. Specifically, we will want to keep track
of the number of columns between such entries, and this is just the scale modulo n.
However, it is also helpful to explicitly define this as an integer in {0, . . . , n − 1} (i.e.,
a particular residue modulo n).

Definition 5.1. The column scale of S, denoted ColScale(S), is the value in
{0, 1, . . . , n − 1} that is congruent to Scale(S) modulo n.

By definition, if (i, j) and (i′, j′) are consecutive entries in the same fiber, then
j + ColScale(S) ≡ j′ (mod n).
Lemma 5.2. For any scroll S, the following equality holds:

ColScale(S) = βD + 2βE = n − αS − 2αL.

Proof. The first equality follows from Definition 5.1 and Lemma 3.8, as well as the
fact that βD + 2βE < n, which follows from Corollary 3.9. For the second equality,
we again apply Corollary 3.9 to find that

ColScale(S) = βD + 2βE

= 2αS + 2αL + 2βE − 1
= (2βE + 3αS + 4αL) − αS − 2αL − 1
= n + 1 − αS − 2αL − 1
= n − αS − 2αL. □

Lemma 5.3. For any scroll S, the period of Σ⃗(S) must divide gcd(n, Scale(S)) =
gcd(n, ColScale(S)).

Proof. Clearly, the period of Σ⃗(S) divides the period of the ticker tape, which divides
Scale(S) by Theorem 2.25. Since Σ⃗(S) has length n, its period divides n. Thus, the
period of Σ⃗(S) divides gcd(n, Scale(S)). □

Corollary 5.4. For any scroll S, the sum vector Σ⃗(S) has odd period.

Proof. Let λ be the period of Σ⃗(S). Thus far, we have established that
λ | ColScale(S) and ColScale(S) = βD + 2βE

where the divisibility is by Lemma 5.3 and the equality by Lemma 5.2. The result is
immediate from Corollary 3.9, which tells us that βD is odd. □

Theorem 5.5. If the sum vector of a scroll on n ⩾ 4 vertices has period λ, then λ | n
and n ⩾ 4λ.

Proof. We may assume λ > 1 since the result is trivial otherwise. Since it follows from
Lemma 5.3 that λ | n, we just need to show that n ̸∈ {λ, 2λ, 3λ}.

By Lemmas 5.2 and 5.3,
λ | ColScale(S) and ColScale(S) = n − αS − 2αL = βD + 2βE < n.

It follows that λ ̸= n. Suppose by way of contradiction that n = 2λ. Then, we must
have ColScale(S) = n

2 . In this case, αS + 2αL = βD + 2βE = n
2 . By Corollary 3.9, this

implies that αS + 2αL = 2αS + 2αL + 2βE − 1. It follows that βE = 0 and αS = 1.
However, when βE = 0, the slither is made entirely of Ds, and each snake has the
same number of live entries in each column. This means that the period of Σ⃗(S) must
be 1, which contradicts the assumption that λ > 1.

Now suppose n = 3λ. We must have αS + 2αL ∈
{

n
3 , 2n

3
}

. If αS + 2αL = 2n
3 , then

αS + 2αL = 2(βD + 2βE) = 2(2αS + 2αL + 2βE − 1),
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which implies that 1 = 3αS + 2αL + 4βE . This is clearly impossible. On the other
hand, if αS + 2αL = n

3 , then 2(αS + 2αL) = 2αS + 2αL + 2βE − 1. This is impossible
because the two sides of the equation have opposite parities. □

Next, we will prove a partial converse to Theorem 5.5. In particular, we will show
that if λ | n and n ⩾ 4λ, then there must exist some scroll on n vertices whose
sum vector has period λ. Before proving this theorem, we introduce one more useful
definition.

Suppose a snake has a slither of length β. A segment of the snake is a subset of
Live(S) of the form {

k, s(k), s2(k), . . . , sβ−1(k)
}

,

where k is any live entry.
Theorem 5.6. For any λ, k ∈ N such that λ is odd and k ⩾ 4, there exists a scroll S
on n = kλ vertices such that the period of Σ⃗(S) is λ.
Proof. We prove this result via a construction that depends on the parity of k. Since
the sum vectors of the ω-fold orbit tables for different choices of ω always have the
same period, we can work with the minimal color-preserving orbit table.

First, suppose k is even. We will use the slither

Dλ−2ED2E
λk
2 −λ−1

and the co-slither
SL

λ−1
2 .

Note that this slither and co-slither are a feasible pair, and thus define a ticker tape
(and scroll) by Theorem 3.11. Furthermore, by a straightforward calculation, we find
that the column scale of the associated scroll is λ(k−1). Because gcd(λ(k−1), λk) = λ,
each snake can be divided into n/λ = k disjoint segments.

We will start by finding the contribution to the sum vector coming from a single
snake, and we will then consider the total sum vector. Consider the mod n positions
of live entries that form a single snake. For a single segment, we begin with λ − 1
adjacent positions, skip one position, take two more adjacent positions, and then take
every other position until we place a 0 in position λ(k − 1). The next slither has an
equivalent effect on the sum, but it is shifted by λ(k − 1) positions. Figure 16 gives
an example of this construction for λ = 7 and k = 4.

Notice from the structure of the slither that the contribution to the sum vector
from a single snake is periodic with period λ. In particular, almost all of the first λ
entries have the same value x, except that the second entry is x + 1 and the λth entry
is x − 1. This pattern repeats for every set of λ columns.

Now, we need to consider the sum vectors of the other snakes. Notice that for
every S in the co-slither, we get a snake whose sum vector is shifted one position left
from the previous snake, while for every L in the co-slither, we get a snake whose
sum vector is shifted two positions left from the previous snake. For our co-slither
of SL(λ−1)/2, we consider how many times each of the entries x, x − 1 and x + 1
appear in each column. Through a straightforward computation, we find that x + 1
appears once in the first column as well as every column (of the first λ) of even index
but does not appear in the other columns. Similarly, x − 1 appears once in the λth

column as well as once in every even-indexed column, but it does not appear in the
other columns. Overall, this means that the initial λ entries in the sum vector are
a + 1, a, a . . . , a, a − 1 for some a (see Figure 16). It follows that the period of the sum
vector is λ.

In the case where k is odd, we use the slither D2λ+1E((k−4)λ−1)/2 and the co-slither
S2Lλ−1. It is again easy to confirm that the slither and co-slither are a feasible pair.
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1 1 1 1 1 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1
0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0

Sum: 2 3 2 2 2 2 1 2 3 2 2 2 2 1 2 3 2 2 2 2 1 2 3 2 2 2 2 1

Snake 1 Contrib.: 2 3 2 2 2 2 1 2 3 2 2 2 2 1 2 3 2 2 2 2 1 2 3 2 2 2 2 1
Snake 2 Contrib.: 3 2 2 2 2 1 2 3 2 2 2 2 1 2 3 2 2 2 2 1 2 3 2 2 2 2 1 2
Snake 3 Contrib.: 2 2 2 1 2 3 2 2 2 2 1 2 3 2 2 2 2 1 2 3 2 2 2 2 1 2 3 2
Snake 4 Contrib.: 2 1 2 3 2 2 2 2 1 2 3 2 2 2 2 1 2 3 2 2 2 2 1 2 3 2 2 2

Overall Sum: 9 8 8 8 8 8 7 9 8 8 8 8 8 7 9 8 8 8 8 8 7 9 8 8 8 8 8 7

Figure 16. An example of the construction used for the proof of
Theorem 5.6 when k = 4 and λ = 7. The first three rows of the figure
show the column position of the live entries from a single snake, where
different colors represent different segments. Note that when two live
entries are adjacent in this presentation, they appear on subsequent
rows of the orbit table, but the row position of live entries does not
affect the column sums. The fourth row is the column sum of the first
three rows, which is the contribution to the sum vector from a single
snake. In the remaining rows of the figure, we add the contributions
to the sum vector from each of the four snakes. This overall sum is
the sum vector of the orbit table when k = 4 and λ = 7. We show in
the proof that this sum vector always has period λ.

Furthermore, by a straightforward calculation, we find that the column scale of the
associated scroll is λ(k − 2). The argument for this case is essentially analogous to
the argument we used for the case where k is even. Figure 17 gives an example of this
construction for λ = 7 and k = 5.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0

Sum: 3 3 2 3 2 3 2 3 3 2 3 2 3 2 3 3 2 3 2 3 2 3 3 2 3 2 3 2 3 3 2 3 2 3 2

Figure 17. An example of the construction used for the proof of
Theorem 5.6 when k = 5 and λ = 7. The different colors represent
different segments. The 1s are in the correct column (but not the
correct row) for a single snake so that we can see the impact on the
sum vector.

Once we have the contribution to the sum vector from a single snake, showing that
the total sum vector has period λ is even easier than it was in the previous case. In
particular, using a co-slither of S2Lr−1 is equivalent to taking λ sum vectors, each
subsequently shifted two positions, and then adding one more sum vector shifted one
position. The first λ contributions to the sum vectors must add up to a constant sum
because gcd(2, λ) = 1. Thus, the total sum vector has period λ because a single sum
vector has period λ. □

There is nothing special about the constructions used for Theorem 5.6, and we
expect that there are many other classes of ticker tapes satisfying the conditions

Algebraic Combinatorics, Vol. 7 #6 (2024) 1726



Torsors and Tilings from Toric Toggling

of the theorem. The challenge was to incorporate just enough asymmetry so as not
to shrink the period of the sum vector. One idea for future research would be to
characterize the relative frequencies of different sum vector periods.

6. Concluding remarks
We began the work described in this paper thinking it was a fun but fairly narrow
and self-contained problem about toggling independent sets of cycle graphs. What
we encountered was an unexplored mathematical theory that is applicable to other
combinatorial actions. The iteration of a fixed Coxeter element τ in any generalized
toggle group defines a finite dynamical system, and the concepts of a scroll, ticker
tape, and orbit table all carry over. There is nothing special about these objects on
their own, as they are just ways to describe and visualize the dynamics. What makes
this problem unique is the fact that there are two commuting bijections, the successor
and co-successor functions, that act simply transitively on the live entries. As far as
we know, studying actions on the live entries is new, and it endows the orbits of the
global action with a signature algebraic structure.

It is natural to ask which other combinatorial actions also have torsor structures
on their orbits. For this to have any chance of working, there needs to be strong
structural regularity of the underlying graph. For example, in the current paper, the
automorphism group of the graph—the dihedral group of order 2n—acts transitively
on the vertices, and the action commutes with the toggle operation. It is hard to see
how the orbits of a general action could admit any meaningful algebraic structure
without this. In other words, we should be looking at other vertex-transitive graphs
that are in some sense similar to cycle graphs. In ongoing work, we have found torsor
structures on orbits from toggling independent sets over distance-2 cycle graphs and
from toggling other combinatorial objects over cycle graphs.

In another direction, toggling independent sets can be formalized as one of the
256 elementary cellular automata (CA) rules. Specifically, a CA is a regular grid of
cells, where each cell has a Boolean state in F2 = {0, 1}, and the state of a vertex
v is updated at each timestep based on the states of v and its neighbors. In the 1-
dimensional setting, a “grid” is simply a cycle graph or an infinite path graph. In either
case, the update function is defined by some f : F3

2 → F2. Each one is characterized
by its truth table, a generic example of which is shown in Eq. (8).

(8)
xi−1xixi+1 111 110 101 100 011 010 001 000

f
(k)
i (xi−1, xi, xi+1) b7 b6 b5 b4 b3 b2 b1 b0

Since each bi is in F2, there are 28 = 256 possible functions; each such function is
indexed by the integer k ∈ {0, 1, . . . , 255}, which is the integer whose binary repre-
sentation is b7b6b5b4b3b2b1b0. The one indexed by k is called the elementary cellular
automata (ECA) rule k. In this setting, the toggle functions introduced in this paper
can be realized as ECA rule 1. Technically, the bits b7, b6, and b3 can be anything
because the the substrings 111, 110, and 011 do not appear in the set L of indepen-
dent sets of Cn. However, it is arguably more natural to use ECA rule 1, also known
as the logical NOR function. ECA rules are defined on all 2n states, and the periodic
points of ECA rule 1 are precisely the independent sets.

Casting the work from this paper in the setting of cellular automata poses new
questions that would likely not be asked from within the dynamical algebraic com-
binatorics community. For example, which ECA rules lead to dynamics whose live
entries admit a torsor structure? For such a toggle action to be defined, the local
functions need to act on the set of periodic points, and this happens for precisely 104
ECA rules, or 41 up to the equivalences defined by reflection and inversion. These
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rules were classified by the third author with McCammond and Mortveit in [11], and
their toggle groups were studied in [12], though under the name of “dynamics groups.”
Preliminary investigation has revealed that most of these 41 ECA rules do not admit
an interesting torsor structure, but largely for mundane reasons. For example, the
toggle group is trivial for 26 of the 41 rules. For more on the connections between
dynamical algebraic combinatorics and cellular automata, the interested reader can
consult our paper in the proceedings of the annual AUTOMATA conference [3]. The
first two thirds of that paper is a survey bringing these fields together, and the last
third is an “extended abstract” of this current paper. In it, we also propose a number
of open-ended problems in both fields, inspired by ideas and themes of the other one.
It is our hope that the present work, and the ideas within, catches the interest of
researchers with different backgrounds in these fields and beyond.
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