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A pair of Garside shadows

Piotr Przytyck & Yeeka Yau

Abstract We prove that the smallest elements of Shi parts and cone type parts exist and form
Garside shadows. The latter resolves a conjecture of Parkinson and the second author as well
as a conjecture of Hohlweg, Nadeau and Williams.

1. Introduction
Overview. The Shi partition and the cone type partition are examples of ‘regular
partitions’ recently studied by Parkinson and Yau [6]. Regular partitions are essen-
tially equivalent to automata recognising the language of reduced words L(W, S) of
a Coxeter system (W, S). That is, for each regular partition R of W , there exists an
explicitly defined automaton recognising L(W, S) with states being the parts of R.
Moreover, every automaton recognising L(W, S) arises in this way from a regular
partition (see [6, Thm. 2]).

The parts of the Shi partition are the connected components of the well-known
generalised Shi arrangement, an important structure in algebraic combinatorics, geo-
metric group theory and representation theory (see for example [2], [1], and the survey
article [3]). The cone type partition gives rise to the smallest automaton recognis-
ing L(W, S). Namely, it is the smallest element in the (complete) lattice of regular
partitions (see [6, Thm. 3 and Cor. 4]). The Shi partition is a refinement of the cone
type partition, and a critical difference to note between the two partitions is that the
cone type partition does not correspond to a ‘hyperplane arrangement’ (see Figure 2
for the case of the Coxeter group of type G̃2).

In this article, we show that each part of the Shi partition and the cone type
partition contains a smallest element. Moreover, these smallest elements form Garside
shadows. We note that the results for the Shi partition were proved independently in
a more general form by Dyer, Fishel, Hohlweg and Mark in [1, Thm. 1.1(1)].
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Terminology and notation. A Coxeter group W is a group generated by a finite
set S subject only to relations s2 = 1 for s ∈ S and (st)mst = 1 for s ̸= t ∈ S,
where mst = mts ∈ {2, 3, . . . , ∞}. Here the convention is that mst = ∞ means that
we do not impose a relation between s and t. By X1 we denote the Cayley graph
of W , that is, the graph with vertex set X0 = W and with edges (of length 1) joining
each g ∈ W with gs, for s ∈ S. For g ∈ W , let ℓ(g) denote the word length of g, that
is, the distance in X1 from g to id. We consider the action of W on X0 = W by left
multiplication. This induces an action of W on X1.

For r ∈ W a conjugate of an element of S, the wall Wr of r is the fixed point
set of r in X1. We call r the reflection in Wr (for fixed Wr such r is unique). Each
wall W separates X1 into two components, called half-spaces, and a geodesic edge-
path in X1 intersects W at most once [7, Lem 2.5]. Consequently, the distance in X1

between g, h ∈ W is the number of walls separating g and h.
We consider the partial order ⪯ on W (called the ‘weak order’ in algebraic combina-

torics), where p ⪯ g if p lies on a geodesic edge-path in X1 from id to g. Equivalently,
there is no wall separating p from both id and g.

Shi parts. Let E be the set of walls W such that there is no wall separating W from id
(these walls correspond to so-called ‘elementary roots’). The components of X1 ∖

⋃
E

are Shi components. For a Shi component Y , we call P = Y ∩ X0 the corresponding
Shi part.

Our first result is the following.

Theorem 1.1. Let P be a Shi part. Then P has a smallest element with respect to ⪯.

We note again that Theorem 1.1 was proved independently in a more general form
by Dyer, Fishel, Hohlweg and Mark in [1, Thm. 1.1(1)]). Here we give a short proof
following the lines of the proof of a related result of the first author and Osajda [5,
Thm. 2.1].

In [8], Shi proved Theorem 1.1 for affine W .
For g ∈ W , let m(g) be the smallest element in the Shi part containing g, guaran-

teed by Theorem 1.1. Let M ⊂ W be the set of elements of the form m(g) for g ∈ W .
The join of g, g′ ∈ W is the smallest element h (if it exists) satisfying g ⪯ h

and g′ ⪯ h. A subset B ⊆ W is a Garside shadow if it contains S, contains g−1h for
every h ∈ B and g ⪯ h, and contains the join, if it exists, of every g, g′ ∈ B.

Theorem 1.2. M is a Garside shadow.

Theorem 1.2 was also obtained in [1, Thm. 1.1(2)], where the authors showed
that M is the set of so-called ‘low elements’ introduced in [2]. We give an alternative
proof using ‘bipodality’, a notion introduced in [2] and rediscovered in [5].

Cone type parts. For each g ∈ W , let T (g) = {h ∈ W | ℓ(gh) = ℓ(g) + ℓ(h)}.
For T ⊂ W , the cone type part Q(T ) ⊂ W is the set of all g−1 with T (g) = T .
In other words, Q(T ) consists of g such that T is the set of vertices on geodesic
edge-paths starting at g and passing through id that appear after id, including id.

We obtain a short new proof of the following.

Theorem 1.3. [6, Thm. 1] Let Q be a cone type part. Then Q has a smallest element
with respect to ⪯.

For g ∈ W , let µ(g) be the smallest element in the cone type part containing g.
Let Γ ⊂ W be the set of elements of form µ(g) for g ∈ W . These elements are called
the gates of the cone type partition in [6].

We also obtain the following new result, confirming in part [6, Conj. 1].
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Theorem 1.4. For any g, g′ ∈ Γ, if the join of g and g′ exists, then it belongs to Γ.

By [6, Prop 4.27(i)], this implies that Γ is a Garside shadow. Furthermore, by [6,
Cor. 4], we have that Γ is the set of states of the smallest automaton (in terms of the
number of states) recognising L(W, S). By [4, Thm. 1.2], each Garside shadow B is
the set of states of an automaton AB(W, S) recognising L(W, S). Consequently, we
have the following.

Corollary 1.5 (c.f. [4, Conj. 1]).
i) Γ is the smallest Garside shadow.
ii) The automaton AB(W, S), where B is the smallest Garside shadow, is the

smallest automaton recognising L(W, S).

The paper is organised as follows. In Section 2 we discuss ‘bipodality’ and use it
to prove Theorem 1.1 and Theorem 1.2. In Section 3 we focus on the cone type parts
and give the proofs of Theorem 1.3 and Theorem 1.4.

2. Shi parts
The following property was called bipodality in [2]. It was rediscovered in [5].

Definition 2.1. Let r, q ∈ W be reflections. Distinct walls Wr, Wq intersect, if Wr is
not contained in a half-space for Wq (this relation is symmetric). Equivalently, ⟨r, q⟩
is a finite group. We say that such r, q are sharp-angled, if r and q do not commute
and there is g ∈ W such that both grg−1 and gqg−1 belong to S. In particular, there
is a component of X1 ∖ (Wr ∪ Wq) whose intersection F with X0 is a fundamental
domain for the action of ⟨r, q⟩ on X0. We call such F a geometric fundamental
domain for ⟨r, q⟩.

Lemma 2.2 ([5, Lem 3.2], special case of [2, Thm. 4.18]). Suppose that the reflec-
tions r, q ∈ W are sharp-angled, and that g ∈ W lies in a geometric fundamental
domain for ⟨r, q⟩. Assume that there is a wall U separating g from Wr or from Wq.
Let W ′ be a wall distinct from Wr, Wq that is the translate of Wr or Wq under an
element of ⟨r, q⟩. Then there is a wall U ′ separating g from W ′.

The following proof is similar to that of a different result [5, Thm. 2.1].

Proof of Theorem 1.1. Let P = Y ∩ X0, where Y is a Shi component. It suffices to
show that for each p0, pn ∈ P there is p ∈ P satisfying p0 ⪰ p ⪯ pn. Let (p0, p1, . . . , pn)
be the vertices of a geodesic edge-path π in X1 from p0 to pn, which lies in Y .
Let L = maxn

i=0 ℓ(pi).
We will now modify π and replace it by another embedded edge-path from p0 to pn

with vertices in P , so that there is no pi with pi−1 ≺ pi ≻ pi+1. Then we will be able
to choose p to be the smallest pi with respect to ⪯.

If pi−1 ≺ pi ≻ pi+1, then let Wr, Wq be the (intersecting) walls separating pi from
pi−1, pi+1, respectively. Moreover, if r and q do not commute, then r, q are sharp-
angled, with id in a geometric fundamental domain for ⟨r, q⟩. We claim that all the
elements of the residue R = ⟨r, q⟩(pi) lie in P .

Indeed, since pi−1, pi+1 are both in P , we have that Wr, Wq /∈ E . It remains to
justify that each wall W ′ ̸= Wr, Wq that is the translate of Wr or Wq under an element
of ⟨r, q⟩ does not belong to E . We can thus assume that r and q do not commute, since
otherwise there is no such W ′. Since Wr /∈ E , there is a wall U separating id from Wr.
By Lemma 2.2, there is a wall U ′ separating id from W ′, justifying the claim.

We now replace the subpath (pi−1, pi, pi+1) of π by the second embedded edge-
path with vertices in the residue R from pi−1 to pi+1. Note that all the elements
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Figure 1. Lemma 2.2 for the case mrq = 4

of R are ≺ pi, which follows from [7, Thm. 2.9]. Indeed, since pi−1 ≺ pi ≻ pi+1, the
element projR(id) of R closest to id must be opposite to pi, and so there is a geodesic
edge-path from id to pi through projR(id), and hence through any other element
of R. Thus the above replacement decreases the complexity of π defined as the tuple
(nL, . . . , n2, n1), where nj is the number of pi in π with ℓ(pi) = j, with lexicographic
order. After possibly removing a subpath, we can assume that the new edge-path is
embedded. After finitely many such modifications, we obtain the desired path. □

Lemma 2.3. For g ⪯ h, we have m(g) ⪯ m(h).

Proof. Let k be the minimal number of distinct Shi components traversed by a ge-
odesic edge-path γ from h to g. We proceed by induction on k, where for k = 1 we
have m(g) = m(h). Suppose now k > 1. If a neighbour f of h on γ lies in the same
Shi component as h, then we can replace h by f . Thus we can assume that f lies
in a different Shi component than h. Consequently, the wall Wr separating h from f
belongs to E . Since g ⪯ f , by the inductive assumption we have m(g) ⪯ m(f). Thus
it suffices to prove m(f) ⪯ m(h).

In the first case, where for every neighbour h′ of h on a geodesic edge-path from h
to id, the wall separating h from h′ belongs to E , we have h = m(h) and we are done.
Otherwise, let Wq be a wall outside E separating h from its neighbour h′ ≺ h. If r
and q do not commute, then r, q are sharp-angled, with id in a geometric fundamental
domain for ⟨r, q⟩. By Lemma 2.2, among the walls in ⟨r, q⟩{Wr, Wq} only Wr belongs
to E . Let h̄, f̄ be the vertices opposite to f, h in the residue ⟨r, q⟩h. We have m(h̄) =
m(h), m(f̄) = m(f). Replacing h, f by h̄, f̄ , and possibly repeating this procedure
finitely many times, we arrive at the first case. □

Lemma 2.3 has the following immediate consequence.

Corollary 2.4. For any g, g′ ∈ M , if the join of g and g′ exists, then it belongs
to M .

For completeness, we include the proof of the following.
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Lemma 2.5 ([2, Prop 4.16]). For any h ∈ M and g ⪯ h, we have g−1h ∈ M .

Proof. For any neighbour h′ of h on a geodesic edge-path from h to g, the wall W
separating h from h′ belongs to E . Consequently, we also have g−1W ∈ E , and
so g−1h ∈ M . □

Also note that for each s ∈ S, we have Ws ∈ E and so m(s) = s implying S ⊂ M .
Thus Corollary 2.4 and Lemma 2.5 imply Theorem 1.2.

3. Cone type parts
Let T = T (g) for some g ∈ W . We denote by ∂T the set of walls separating adjacent
vertices h ∈ T and h′ /∈ T . In particular, the walls in ∂T separate id from g−1.

We note that one of the primary differences between the cone type parts and the
Shi parts is that the cone type parts do not correspond to a ‘hyperplane arrangement’.
See for example Figure 2.

Figure 2. Shi parts and cone type parts for the Coxeter group of
type G̃2

Remark 3.1. Note that for g, g′ ∈ Q(T ) any geodesic edge-path from g to g′ has all
vertices f in Q(T ). Indeed, for h ∈ T , any wall separating id from f separates id from g
or g′ and so it does not separate id from h. Thus h ∈ T (f−1) and so T ⊆ T (f−1).
Conversely, if we had T ⊊ T (f−1) then there would be a vertex h ∈ T with a
neighbour h′ ∈ T (f−1) ∖ T separated from h by a wall W (in ∂T ) that does not
separate h from f . The wall W would not separate h′ from g or g′, contradicting
h′ /∈ T (g−1) or h′ /∈ T (g′−1). See also [6, Thm. 2.14] for a more general statement.

Proof of Theorem 1.3. The proof is identical to that of Theorem 1.1, with P replaced
by Q. The vertices of a geodesic edge-path π in X1 from p0 to pn belong to Q by
Remark 3.1. We also make the following change in the proof of the claim that all
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the elements of R = ⟨r, q⟩(pi) lie in Q. Namely, since T = T (p−1
i ) equals T (p−1

i−1),
we have Wr /∈ ∂T . Analogously we obtain Wq /∈ ∂T . If r and q do not commute, we
have that T is contained in a geometric fundamental domain for ⟨r, q⟩, and so we also
have W ′ /∈ ∂T for any W ′ that is a translate of Wr or Wq under an element of ⟨r, q⟩.
This justifies the claim. □

Proof of Theorem 1.4. The proof structure is similar to that of Lemma 2.3. We need
to justify that for g ⪯ h, we have µ(g) ⪯ µ(h), where we induct on the minimal
number k of distinct cone type components traversed by a geodesic edge-path γ from h
to g. Suppose k > 1, and let Q = Q(T ) be the cone type component containing h. If a
neighbour f of h on γ lies in Q, then we can replace h by f . Thus we can assume f /∈ Q.
Consequently, the wall Wr separating h from f belongs to ∂T . Since g ⪯ f , by the
inductive assumption we have µ(g) ⪯ µ(f). Thus it suffices to prove µ(f) ⪯ µ(h).

If for every neighbour h′ of h on a geodesic edge-path from h to id, the wall
separating h from h′ belongs to ∂T , we have h = µ(h) and we are done. Otherwise,
let Wq be a wall outside ∂T separating h from its neighbour h′ ≺ h. Let h̄, f̄ be
the vertices opposite to f, h in the residue ⟨r, q⟩h, and let f ′ = rqh. It suffices to
prove µ(h̄) = µ(h), µ(f̄) = µ(f). To justify µ(h̄) = µ(h), or, equivalently, h̄ ∈ Q, it
suffices to observe that among the walls in ⟨r, q⟩{Wr, Wq} only Wr belongs to ∂T :
Indeed, if r and q do not commute, then r, q are sharp-angled, with T in the geometric
fundamental domain F for ⟨r, q⟩ containing id.

It remains to justify µ(f̄) = µ(f), or, equivalently, T (f̄−1) = T̃ for T̃ = T (f−1).
To start with, to show T (f ′−1) = T̃ , it suffices to show that the wall W = rWq does
not belong to ∂T̃ .

Otherwise, let b ∈ T̃ be adjacent to W. Since T̃ ⊂ F ∪ rF , we have b ∈ rF .
Then rb ∈ F is adjacent to Wq, which is outside ∂T . Consequently, rb /∈ T . Thus there
is a wall W ′ separating id from h and rb. Note that W ′ ̸= Wr and so W ′ separates id
from f . Since id lies on a geodesic edge-path from f to b, we have that W ′ does not
separate id from b. Thus rW ′ separates r and rb from f, h, b, and id, since, again, id
lies on a geodesic edge-path from f to b.

Consider the distinct connected components Λ1, Λ2, Λ3, Λ4 of X1 ∖ (Wr ∪ rW ′)
with id ∈ Λ1, b ∈ Λ2, r ∈ Λ3, rb ∈ Λ4. Connected components Λ1 and Λ3 (resp. Λ2
and Λ4) are opposite in the sense that they are separated by both Wr and rW ′. Since id
and r are interchanged by the reflection r and they lie in the opposite connected
components, we have rΛ2 ⊊ Λ1. On the other hand, since b and rb lie in the opposite
connected components, we have rΛ1 ⊊ Λ2, which is a contradiction.

This proves that the wall W does not belong to ∂T̃ , and hence neither does any
other wall in ⟨r, q⟩{Wr, Wq}. Consequently T (f̄−1) = T̃ , as desired. □
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Figure 3. Proof of Theorem 1.4, the case of mrq = 3
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