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Type A partially-symmetric Macdonald
polynomials

Ben Goodberry

Abstract We construct type A partially-symmetric Macdonald polynomials P(λ|γ), where
λ ∈ Zn−k

⩾0 is a partition and γ ∈ Zk
⩾0 is a composition. These are polynomials which are sym-

metric in the first n−k variables, but not necessarily in the final k variables. We establish their
stability and an integral form defined using Young diagram statistics. Finally, we build Pieri-
type rules for degree 1 products xjP(λ|γ) for j > n − k and e1[x1, . . . , xn−k]P(λ|γ), along with
substantial combinatorial simplification of the e1 multiplication. The P(λ|γ) are the same as the
m-symmetric Macdonald polynomials defined by Lapointe in [9] up to a change of variables.

1. Introduction
The type GLn nonsymmetric Macdonald polynomials can be symmetrized, for ex-
ample by acting on Eµ by a symmetrization operator over the finite Weyl group, to
obtain the classic symmetric Macdonald polynomials. In recent work [13], Schlösser
constructs a symmetrization over a parabolic subgroup WJ for nonsymmetric Mac-
donald polynomials in general type. This was done in type GLn by Lapointe [9] for a
particular choice of parabolic subgroup, with the goal of building a basis for partially-
symmetric polynomials which are Schur-positive for some m-symmetric form of Schur
polynomials. We will use the same type of construction, with the symmetric group
S[1,n−k] acting on the first n − k variables as our parabolic subgroup, which gives
us polynomials that are stable when adding symmetrized variables. This stability is
special to type A, and to this parabolic subgroup.

In order to build an integral form J(λ|γ) as a normalization of P(λ|γ), in Section 2.3
we introduce Young diagram statistics associated with the split diagram (λ | γ). This
includes a different way to count arms depending on whether the column is in the
symmetric part of the diagram λ, or the nonsymmetric part γ. These coincide with
the integral form of the m-symmetric Macdonald polynomials in [9]. We use the
combinatorial formula for the nonsymmetric Macdonald polynomials found in [4] in
order to prove that J(λ|γ) ∈ Z[q, t][x1, . . . , xn] in Section 3.2. This is mentioned but
not proven in [9].

The major new identities we explore that do not seem to appear elsewhere are
rules for multiplication of P(λ|γ) by either e1[x1, . . . , xn−k], the elementary symmetric
polynomial in all of the symmetrized variables, or by xj where j > n − k, a non-
symmetric variable. We derive these formulas in Section 4. Our approach for finding
formulas for these products, written in the basis of partially-symmetric Macdonald
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polynomials, uses a similar approach by Baratta in [1] for the product xiEµ. Namely,
this makes heavy use of the interpolation nonsymmetric Macdonald polynomials of
Knop [7] and Sahi [12]. Halverson and Ram [5] find Monk type formulas for the same
products, but instead using Cherednik’s intertwiners. While these formulas could be
symmetrized in a naive way, combining the resulting expansion to get it into the basis
of partially-symmetric Macdonald polynomials is quite difficult, as many terms com-
bine to the same P(µ|η). We get around this using properties of the Hecke operators
and by evaluating the interpolation polynomial expressions at a special point which
forces uniqueness and avoids any overlapping of terms.

Our primary goal is to build the polynomials which appear in [2] as isomorphic
images of fixed points of a torus action in the Parabolic Flag Hilbert scheme, which will
be established in upcoming works with D. Orr and M. Bechtloff Weising. Toward this
end, after finding a formula for the expansion of e1[x1, . . . , xn−k]P(λ|γ), in Section 5
we categorize many combinatorial simplifications that can be made to that formula.

This article includes the majority of the results submitted for a doctoral dissertation
in [3], though the final simplifications and xjP(λ|γ) formulas do not appear there.

2. Partially symmetric Macdonald polynomials
2.1. Nonsymmetric Macdonald polynomials. Let K = Q(q, t) and n > 0. For
any composition ν ∈ (Z⩾0)n, denote by Eν = Eν(x; q, t) ∈ K[x1, . . . , xn] the non-
symmetric Macdonald polynomial of type GLn as defined in [4]. These satisfy the
triangularity property,

(1) Eµ ∈ xµ +
∑

ν<(Bru)µ

cνxν ,

where xµ = xµ1
1 · · · xµn

n , each cν ∈ K[x1, . . . , xn], and <(Bru) is the Bruhat order. The
symmetric group Sn acts naturally on Zn and K[x1, . . . , xn]. For 1 ⩽ i < n, let si

be the simple transposition (i, i + 1) ∈ Sn. Then explicitly, the Bruhat order is the
partial ordering on compositions with the covering relations.

• If µi > µi+1, then si(µ) > µ.
• If µi+1 − µi > 1, then si(µ) > µ + ei − ei+1.

In this ordering, we consider a weakly-decreasing weight to be dominant, and a weakly-
increasing weight antidominant.

Define the Demazure-Lusztig operators,

Ti = tsi + (t − 1)xi+1

xi+1 − xi
(1 − si), 1 ⩽ i < n.

These satisfy the braid relations,

(2) TiTi+1Ti = Ti+1TiTi+1, 1 ⩽ i < n

(3) TiTj = TjTi if |i − j| ⩾ 2

and the quadratic relations,

(4) (Ti − t)(Ti + 1) = 0.

For any reduced expression w = si1 · · · siℓ
∈ Sn, we define the operator Tw =

Ti1 · · · Tiℓ
.
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2.2. Partially symmetric Macdonald polynomials. Suppose n > 0 and k ⩾ 0.
We can regard S[1,n−k] as the subgroup of Sn fixing the elements {n − k + 1, . . . , n}.
Define the partial Hecke symmetrizer

e+
[1,n−k] =

∑
w∈S[1,n−k]

Tw.

For λ ∈ (Z⩾0)n−k, let (S[1,n−k])λ ⊆ S[1,n−k] be its stabilizer and

Wλ(t) =
∑

w∈(S[1,n−k])λ

tℓ(w).

We write ν = (λ | γ) to indicate a splitting of a composition ν into two com-
positions, λ and γ, i.e., ν = (ν1, . . . , νn) = (λ1, . . . , λn−k, γ1, . . . , γk) where λ =
(λ1, . . . , λn−k) ∈ (Z⩾0)n−k and γ = (γ1, . . . , γk) ∈ (Z⩾0)k.

Definition 2.1. For a weakly-decreasing partition λ ∈ (Z⩾0)n−k and a composition
γ ∈ (Z⩾0)k, the partially symmetric Macdonald polynomial P(λ|γ) = P(λ|γ)(x; q, t) is
defined by

P(λ|γ) =
e+

[1,n−k]E(λ|γ)

Wλ(t) .

2.3. Diagrams and their statistics. In constructions related to compositions and
their diagrams, we mostly follow the conventions of [4]. Compositions are tuples
ν = (ν1, . . . , νn) ∈ (Z⩾0)n. A composition ν is a partition if its entries are weakly
decreasing.

The diagram of a composition ν ∈ (Z⩾0)n is the subset d(ν) ⊂ (Z⩾0)2 given by

d(ν) = {(i, j) | 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ νi}.

We view the parts νi of ν as columns in d(ν), where i is the column number counting
from the left and j is the row number counting up from the bottom. Elements of d(ν)
are called boxes of ν. We also define the following subsets of d(ν):

dr(ν) = {(i, j) ∈ ν | j = r}
d>r(ν) = {(i, j) ∈ ν | j > r}
dtop(ν) = {(i, νi) | 1 ⩽ i ⩽ n}.

The standard leg and arm lengths of a box □ = (i, j) ∈ ν are defined by

ℓν(□) = νi − j,

aν(□) = #{1 ⩽ r < i | j ⩽ νr ⩽ νi} + #{i < r ⩽ n | j − 1 ⩽ νr < νi}.

We will also use the following alternate versions of arm length (see Example 2.2):

ãν(□) = #{1 ⩽ r < i | j ⩽ νr ⩽ νi} + #{i < r ⩽ n | j ⩽ νr < νi},

a′
ν(□) = #{1 ⩽ r < i | νi < νr} + #{i < r ⩽ n | νi ⩽ νr}.

The quantity a′
ν(□) will be called the coarm of the box. Starting with ν = (λ | γ) as

above and λ a partition, we construct an augmented diagram d̂(ν) as follows. First,
we form ν− := (λ− | γ), where λ− is the weakly increasing rearrangement of λ. The
augmented diagram associated with ν is then defined as follows

d̂(ν) = d(ν−) ∪ {(n − k + 1, 0), . . . , (n, 0)}.

We call the subsets of d(ν−) corresponding to λ− and γ the symmetric and non-
symmetric parts of the diagram, respectively. We will use different arm functions for
boxes in these two parts of the diagram- for boxes in the symmetric part of d(ν−),
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we will use ãν− , and for boxes in the nonsymmetric part, we will use the arm func-
tion aν− . These arm functions have interpretations as counting certain boxes in d̂(ν−),
as we illustrate in the example below.

Example 2.2. For ν = (3, 1 | 2, 1, 3, 0, 1), the following diagrams illustrate the boxes
counted as arms and legs for the nonsymmetric box u = (3, 1) and symmetric box
v = (2, 1) respectively.

a u

ℓ

a a

v

ℓ

ℓ

ã ã ã ã

It will prove useful to have formulas for the action of Ti on Eµ, which is most
simply expressed using diagram statistics.

Lemma 2.3. We have the following formulas for the action of Ti on the nonsymmetric
Macdonald polynomials.

• [4, (17)] If µi > µi+1 for some 1 ⩽ i < n, then

TiEµ = Esi(µ) − 1 − t

1 − qℓµ(□)+1taµ(□) Eµ(5)

where □ = (i, µi+1 + 1) ∈ d(µ).

• [Proof in Appendices] If µ < µi+1, and u = (i, µi + 1), then

(6) TiEµ = qℓ(u)+1ta(u)(1 − t)
1 − qℓ(u)+1ta(u) Eµ − (t − qℓ(u)+1ta(u))(1 − qℓ(u)+1ta(u)+1)

(1 − qℓ(u)+1ta(u))2 Esi(µ),

where all arms and legs are in terms of the diagram of si(µ).

• If µi = µi+1, then
(7) TiEµ = tEµ.

• Applying the above formulas, for any w ∈ S[1,n−k],
(8) Tw(Eµ) ∈ K- span{Ew′(µ)}w′∈S[1,n−k] .

3. Properties of Partially-Symmetric Macdonald Polynomials
3.1. Stability. The polynomials P(λ|γ) exhibit stability in the following sense. Con-
sidering the projection of polynomials in K[x1, . . . , xn],

π1(xλ1
1 · · · xλn

n ) :=
{

xλ2
1 · · · xλn

n−1 if λ1 = 0
0 if λ1 > 0

.

This is equivalent to setting x1 7→ 0 and shifting the remaining indices down by 1.

Proposition 3.1. If λ ∈ Zn−k
⩾0 is an S[1,n−k]-dominant weight and γ ∈ Zk

⩾0, then
π1P(λ,0|γ) = P(λ|γ).(9)

This is proved in [9] for the m-symmetric Macdonald Polynomials. An explicit
computation in our notation can be found in [3]. As a result of that computation,
with our choice of normalization, P(λ|γ) expands into the nonsymmetric Macdonald
basis with the coefficient of E(λ−|γ) (and therefore due to triangularity the coefficient
of x(λ−|γ) in the monomial basis) equal to 1.
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Remark 3.2. The partially-symmetric Macdonald polynomials form a basis for
partially-symmetric polynomials in K[x1, . . . , xn]S[1,n−k] , which is a direct result of
the fact that the Eµ form a basis for K[x1, . . . , xn].

3.2. Integral Form. The integral form partially symmetric Macdonald polynomial
J(λ|γ) = J(λ|γ)(x; q, t) is the scalar multiple

J(λ|γ) = j(λ|γ)P(λ|γ)

where

j(λ|γ) :=
∏

□∈λ−

(1 − qℓν− (□)tãν− (□)+1)
∏
□∈γ

(1 − qℓν− (□)+1taν− (□)+1).

In the definition of j(λ|γ), the products are taken over the symmetric and nonsym-
metric parts of d(ν−), respectively. That is,

∏
□∈λ−

=
∏

(i,j)∈ν−

1⩽i⩽n−k

and
∏
□∈γ

=
∏

(i,j)∈ν−

n−k+1⩽i⩽n

.

Remark 3.3. The integral form normalization agrees with the one in [9].

Before proving integrality of J(λ|γ), we will break it down to pieces which we
will prove individually. Fist, converting to the integral form of the nonsymmetric
Macdonald polynomials found in [8, Eqn. (6.11)], denoted Eν , and reorganizing the
denominator, we get:

J(λ|γ) =

∏
□∈λ−

(1 − qℓν− (□)t̃aν− (□)+1)
∏
□∈γ

(1 − qℓν− (□)+1taν− (□)+1)

W n−k
λ (t)

·

∑
w∈S[1,n−k]

Tw

(
E(λ|γ)

)
∏
□∈ν

(
1 − qℓν (□)+1taν (□)+1

)

=

∏
□∈λ−

(1 − qℓν− (□)t̃aν− (□)+1)∏
□∈d>1(λ)

(
1 − qℓν (□)+1taν (□)+1

) ·

∏
□∈γ

(1 − qℓν− (□)+1taν− (□)+1)∏
□∈γ

(
1 − qℓν (□)+1taν (□)+1

)

·

∑
w∈S[1,n−k]

Tw

(
E(λ|γ)

)
W n−k

λ (t)
∏

□∈d1(λ)

(
1 − qℓν (□)+1taν (□)+1

)
The middle products cancel immediately, since the ordering of the columns of λ

does not change the arm length of a box in γ. So this can be simplified to
(10)

J(λ|γ) =

∏
□∈λ−

(1 − qℓν− (□)t̃aν− (□)+1)∏
□∈d>1(λ)

(
1 − qℓν (□)+1taν (□)+1

) ·

∑
w∈S[1,n−k]

Tw

(
E(λ|γ)

)
W n−k

λ (t) ·
∏

□∈d1(λ)

(
1 − qℓν (□)+1taν (□)+1

) .

Then to complete the proof that J(λ|γ) is integral, we will show that

Eν∏
□∈d1(λ)

(1 − qℓν (□)+1taν (□)+1)
∈ Z[q, t][x1, . . . , xn],(11)
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and also, ∏
□∈λ−

(1 − qℓν− (□)t̃aν− (□)+1)∏
□∈d>1(λ)

(
1 − qℓν (□)+1taν (□)+1

) =
∏

□∈dtop(λ−)

(1 − qℓν− (□)t̃aν− (□)+1).(12)

We will make use of the combinatorial formula for the nonsymmetric Macdonald
polynomials from [4] in order to prove (11).

Lemma 3.4. For any ν = (λ | γ) where λ has weakly decreasing entries

(13) Eν∏
□∈d1(λ)

(1 − qℓν (□)+1taν (□)+1)
∈ Z[q, t][x1, . . . , xn].

Proof. First, we will convert Eν back into its monic form Eν , so the lefthand side
of (13) is ∏

□∈d>1(λ)

(1 − qℓν (□)+1taν (□)+1)
∏
□∈γ

(1 − qℓν (□)+1taν (□)+1)Eν .

Consider the combinatorial formula for Eν given in [4],

Eν =
∑

σ: ν→[n]
nonattacking

xσqmaj(σ̂)tcoinv(σ̂)
∏

□∈d(ν)
σ̂(□) ̸=σ̂(d(□))

1 − t

1 − qℓν (□)+1taν (□)+1 .

The following definitions are taken directly from [4]. A filling σ of the diagram ν
is a function assigning a number i ∈ {1, . . . , n} to each box in the diagram, which we
will call the box’s label. In this formula, d(ν) is the diagram of ν with no basement
row. The term d(□) is the box immediately below □, so the product is over every box
in the diagram d(ν) which does not have a box below it with the same label. Then for
a filling σ, the augmented filling σ̂ is a filling of the diagram d(ν)∪{(i, 0) | 1 ⩽ i ⩽ n}
where σ̂(i, 0) = i.

Two boxes (i, j) and (i′, j′) are said to be attacking if either,
• The boxes are in the same row, i.e. j = j′, or
• The boxes are in adjacent rows and different columns, and the box in the

lower row is to the right of the box in the higher row, i.e. the boxes are of the
form (i, j) and (i − 1, j′) where j′ > j.

A filling σ̂ of the augmented diagram is attacking if there is a pair of boxes in the
augmented diagram which are attacking and which have the same label. And σ is
said to be a nonattacking filling of ν if the corresponding filling σ̂ of the augmented
diagram is nonattacking. This means for σ to be nonattacking, every pair of attacking
boxes in the augmented diagram must have distinct values.

Now suppose σ is a nonattacking filling of ν. Since λ is decreasing, every column i
in the λ part of the augmented diagram where λi ̸= 0 has boxes in the basement row
and row 1. By assumption, each box (i, 0) contains the value i. So if we start filling
in the boxes (j, 1) from left to right, the box (1, 1) is attacking every box (j, 0) where
j > 1, all the boxes to the right of column 1 in row 0. Continuing to the right, the
box (i, 1) is attacking the boxes (k, 1) where k < i, and the boxes (j, 0) where j > i.
Inductively, the boxes (k, 1) for k < i are labeled k, and the boxes (j, 0) for j > i are
labeled j. So for the box to be nonattacking, (i, 1) must have label i. Then altogether,
(i, 1) has label i where λi ̸= 0.

Finally, since σ is nonattacking and must have the filling described above, every
□ = (i, 1) from the first row of λ must have the same label as the box d(□) be-
low it, namely i. Therefore, no box in the first row of λ contributes to the product
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∏
□∈d(ν)

σ̂(□)̸=σ̂(d(□))

1 − t

1 − qℓν (□)+1taν (□)(□)+1 . That means that the product,

∏
□∈ν,

□/∈d1(λ)

(1 − qℓν (□)+1taν (□)+1),

or equivalently, ∏
□∈d>1(λ)

(1 − qℓν (□)+1taν (□)+1)
∏
□∈γ

(1 − qℓν (□)+1taν (□)+1),

is sufficient to cancel all the denominators in the combinatorial formula for Eν− .
Therefore for this normalized form of the nonsymmetric Macdonald polynomials,∏

□∈ν−,

□/∈d1(λ−)

(1 − qℓν− (□)+1taν− (□)+1)Eν− ∈ Z[q, t][x1, . . . , xn]. □

Lemma 3.5. If λ is weakly decreasing,

(14)

∏
□∈λ−

(1 − qℓν− (□)t̃aν− (□)+1)∏
□∈d>1(λ)

(
1 − qℓν (□)+1taν (□)+1

) =
∏

□∈dtop(λ−)

(1 − qℓν− (□)t̃aν− (□)+1).

Proof. Let wλ− ∈ S[1,n−k] be the shortest element such that wλ−(λ) = λ−. Note
that wλ− does not change the ordering of columns of the same height relative to
each other. Consider the boxes u = (i, j) in d>1(λ) inside the diagram (λ | γ), and
u′ = (wλ−(i), j − 1), the box in (λ− | γ) immediately below the box corresponding to
u after reversing λ. Since u is not in the first row of λ, the box u′ appears in λ− and
not in dtop(λ).

We wish to show that ãν−(u′) = aν(u) and ℓν−(u′) = ℓν(u) + 1. The leg equality
is immediate, since u and u′ are in columns of the same height and u′ is one row
below u, and thus has one more leg than u.

To count the arms in ãν−(u′) and aν(u), consider the arms which are counted in
the following cases:

• Consider a column in γ which could be counted in the right arms of u and u′.
The same box is counted in the right arms, using the definitions of a and ã,
since aν(u) counts boxes in the row below u, and ãν−(u′) counts boxes in the
same row as u′, which are the same row, j − 1. And the criterion for the box
to be counted is the same in either case.

• In λ and λ−, columns of height λi are only counted if they are to the left of
the box u or u′ in their respective diagrams. Because those columns maintain
the same order relative to each other, and left arms in a and ã are counted
the same, u and u′ have the same number of arms in those columns.

• Columns of height λi − 1 appear to the right of u in ν since λ is weakly
decreasing, and to the left of u′ in ν− since λ− is weakly increasing. Then
since the columns have fewer boxes than λi, these columns contribute to
right right arm in aν(u). Similarly, the columns contribute to the left arm of
in ãν−(u′).

• Columns of height greater than λi or less than λi − 1 do not contribute to
either ãν−(u′) or aν(u).
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Altogether, this implies that ãν−(u′) = aν(u), and from that we can see that,

1 − qℓν− (u′)t̃aν− (u′)+1 = 1 − qℓν (u)+1taν (u)+1.

This allows us to cancel most of the terms in the quotient on the left side of (14).
The terms coming from the boxes in d>1(λ) correspond to the terms from the boxes
below them in λ−. What’s left in the numerator are terms from the top horizontal
strip, dtop(λ−). □

Now to complete the proof that J(λ|γ) is integral, it remains to show that the
Poincaré polynomial W n−k

λ (t) is cancelled by the symmetrization of Eν .

Theorem 3.6. If we expand J(λ|γ) =
∑

µ

cµxµ, with λ weakly decreasing, then

cµ ∈ Z[q, t] for any µ.
Proof. Applying Lemma 3.5 to (10), we can start by writing,

J(λ|γ) =
∏

□∈dtop(λ−)

(1 − qℓν− (□)t̃aν− (□)+1) · 1
W n−k

λ (t)

·
∑

w∈S[1,n−k]

Tw

 E(λ|γ)∏
□∈d1(λ)

(
1 − qℓν (□)+1taν (□)+1

)
 .

Looking at the symmetrizer and Poincaré polynomial, and decomposing each w into
w = w′w′′ where w′ ∈ (S[1,n−k])λ and w′′ ∈ W λ is the minimal length coset represen-
tative of w(S[1,n−k])λ in S[1,n−k]/(S[1,n−k])λ, we get,

1
W n−k

λ (t)

∑
w∈S[1,n−k]

Tw = 1∑
w∈(S[1,n−k])λ(λ)

tℓ(w)

∑
w′′∈W λ

Tw′′

∑
w′∈(S[1,n−k])λ

Tw′ .

Then using (7), the action of Tw′ is just multiplication by tℓ(w′), and so,
1

W n−k
λ (t)

∑
w∈S[1,n−k]

Tw =
∑

w′′∈W λ

Tw′′ .

Finally, we can consider J(λ|γ) as,

∏
□∈dtop(λ−)

(1 − qℓν− (□)t̃aν− (□)+1)
∑

w′′∈W λ

Tw′′

 E(λ|γ)∏
□∈d1(λ)

(
1 − qℓν (□)+1taν (□)+1

)
 .

Since the operators Ti preserve Z[q, t][x1, . . . , xn], and from (11), the function inside
the symmetrizer is in Z[q, t][x1, . . . , xn], we conclude that J(λ|γ) ∈ Z[q, t][x1, . . . , xn].

□

By definition, P(λ|γ) has the symmetric and nonsymmetric Macdonald polynomi-
als as special cases if we take P(λ|∅) and P(∅|γ) respectively. The formula for j(λ|γ)
also specializes to the integrality constants of nonsymmetric Macdonald polynomials
in [11], and in the symmetric Macdonald polynomials in [6, section VI.8], so that

j(λ|∅)P(λ|∅) = Jλ and j(∅|γ)P(∅|γ) = Eγ ,

meaning J(λ|γ) also has as special cases the integral forms of the symmetric and
nonsymmetric Macdonald polynomials respectively. Additionally, because the diagram
for j(λ|γ) is constructed with λ rewritten in weakly increasing order, any extra 0 entries
appended to λ will not change the diagram, and thus j(λ|γ) = j(λ,0|γ) for any λ and γ.
Combining this with the stability of P(λ|γ), we have stability of J(λ|γ) as well.
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3.3. Expansion into nonsymmetric Macdonald basis. The nonsymmetric
Macdonald polynomials form a basis for K[x1, . . . , xn], so every partially-symmetric
Macdonald polynomial can be written in that basis. Additionally, we know from
Lemma 2.3 that for weakly decreasing partition λ and composition γ,

P(λ|γ) ∈ K- span{E(w(λ)|γ)}w∈S[1,n−k] .

It will prove useful in later computations to have formulas for the coefficients of that
expansion in the nonsymmetric Macdonald basis.

Proposition 3.7. In the expansion of P(λ|γ) into the nonsymmetric Macdonald basis,

P(λ|γ) =
∑

µ∈S[1,n−k](λ)

fµ,(λ|γ)E(µ|γ),

the coefficients satisfy the recurrence relation,

fλ−,(λ|γ) = 1(15)

fsi(µ),(λ|γ) = fµ,(λ|γ) · t − qℓsi(µ)(u)+1tasi(µ)(u)

1 − qℓsi(µ)(u)+1tasi(µ)(u) ,(16)

if si(µ) < µ and u = (i, µi + 1).

Proof. The identity (15) can be found using the formulas in Lemma 2.3 and the
triangularity of the nonsymmetric Macdonald polynomials. Let µ ∈ S[1,n−k](λ) be
some weight such that si(µ) < µ and define u = (i, µi + 1). Since P(λ|γ) is invariant
under the permutation si,

TiP(λ|γ) = tP(λ|γ).

In the expansion into the nonsymmetric Macdonald basis, writing ν ∼ λ to mean ν
is a rearrangement of λ (equivalently, ν ∈ S[1,n−k](λ)),∑

ν∼λ

fν,(λ|γ)TiE(ν|γ) =
∑
ν∼λ

fν,(λ|γ)tE(ν|γ).

The recursive identity can be recovered by comparing the coefficients of E(si(µ)|γ) on
each side. On the right, we simply have t · fsi(µ),(λ|γ). On the left, because TiE(µ|γ)
is a linear combination of E(µ|γ) and E(si(µ)|γ), the only possible values of ν which
contribute to the coefficient of E(si(µ)|γ) are E(µ|γ) and E(si(µ)|γ). Once again consid-
ering all arms and legs to be with respect to the diagram of si(µ), computing both
possible contributions gives,

TiE(µ|γ) = qℓ(u)+1ta(u)(1 − t)
1 − qℓ(u)+1ta(u) E(µ|γ) + (t − qℓ(u)+1ta(u))(1 − qℓ(u)+1ta(u)+1)

(1 − qℓ(u)+1ta(u))2 E(si(µ)|γ)

TiE(si(µ)|γ) = E(µ|γ) + t − 1
1 − qℓ(u)+1ta(u) E(si(µ)|γ)

Thus the coefficient of E(si(µ)|γ) on the left side is,

fsi(µ),(λ|γ) · t − 1
1 − qℓ(u)+1ta(u) + fµ · (t − qℓ(u)+1ta(u))(1 − qℓ(u)+1ta(u)+1)

(1 − qℓ(u)+1ta(u))2 .

This must be equal to t · fsi(µ),(λ|γ), which implies,

fsi(µ),(λ|γ)

(
t − t − 1

1 − qℓ(u)+1ta(u)

)
= fµ · (t − qℓ(u)+1ta(u))(1 − qℓ(u)+1ta(u)+1)

(1 − qℓ(u)+1ta(u))2 .

After simplification, this is exactly (16). □
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Proposition 3.8. There is a closed formula for fµ,(λ|γ),

(17) fµ,(λ|γ) = tℓ(wm) ·

∏
□∈(λ−|γ)

(
1 − qℓ(λ−|γ)(□)+1ta(λ−|γ)(□)

)
∏

□∈(µ|γ)

(
1 − qℓ(µ|γ)(□)+1ta(µ|γ)(□)) ,

where wm is the minimal length element in S[1,n−k] such that wm(λ−) = µ.

Proof. We will prove this by showing that the given formula for fµ,(λ|γ) satisfies the
recurrence relations in Proposition 3.7. The identity (15) is trivial. To show (16),
suppose si(µ) < µ for some µ ∈ S[1,n−k](λ). Let wm and w′

m be the elements in
S[1,n−k] of minimal length such that wm(λ−) = si(µ) and w′

m(λ−) = µ. We must now
simplify

(18)
fsi(µ),(λ|γ)

fµ,(λ|γ)
= tℓ(wm)−ℓ(w′

m) ·

∏
□∈(µ|γ)

(
1 − qℓ(µ|γ)(□)+1ta(µ|γ)(□))

∏
□∈(si(µ)|γ)

(
1 − qℓ(si(µ)|γ)(□)+1ta(si(µ)|γ)(□)

) .

Because si(µ) < µ, we have ℓ(wm) − ℓ(w′
m) = 1. Note that every box in the diagrams

(µ | γ) and (si(µ) | γ) has the same arms and legs in its corresponding diagram except
one. The exception is the box u whose coordinates in si(µ) are (i, µi + 1), and the
corresponding box u′ in µ with coordinates (i + 1, µi + 1). The boxes u′ and u have
the same number of legs. And u has one more box in si(µ) in its arm than u′ in µ,
namely the box (i + 1, si(µ)i+1). Thus we can write

1 − qℓ(µ|γ)(u′)+1ta(µ|γ)(u′) = 1 − qℓ(si(µ)|γ)(u)+1ta(si(µ)|γ)−1(u).

Now since every term from a box other than u and u′ in (18) cancels, we are left with

fsi(µ),(λ|γ)

fµ,(λ|γ)
= t · 1 − qℓ(µ|γ)(u′)+1ta(µ|γ)(u′)

1 − qℓ(si(µ)|γ)(u)+1ta(si(µ)|γ)(u)

= t − qℓ(si(µ)|γ)(u)+1ta(si(µ)|γ)(u)

1 − qℓ(si(µ)|γ)(u)+1ta(si(µ)|γ)(u) .

Therefore the formula (17) satisfies the recursive condition (16), and so the closed
form we found is an equation for the coefficients fµ,(λ|γ). □

4. Multiplication Rules
Our next goal with the partially-symmetric Macdonald polynomials will be to find
multiplication rules for e1[x1, . . . , xn−k]P(λ|γ) in the basis P(µ|ν) of partially-symmetric
Macdonald polynomials, where e1[x1, . . . , xn−k] is the elementary symmetric polyno-
mial x1 + · · · + xn−k. After this is done, we will find a similar formula for xjP(λ|γ)
with j > n − k, so xj is a nonsymmetric variable, in a similar way. We refer to those
coefficient formulas as Pieri rules.

4.1. Setup and notation. From this point forward, we make the assumption that
0 < k < n. Because e1[x1, . . . , xn−k] and P(λ|γ)(λ | γ) are both symmetric in the
first n − k variables, so is their product. Additionally, since the two polynomials
are homogeneous with degree 1 and |(λ | γ)| respectively, their product will be a
homogeneous polynomial with degree |(λ | γ)| + 1. There is therefore an expansion,

(19) (x1 + · · · + xn−k)P(λ|γ)(λ | γ) =
∑

|(µ|η)|=|(λ|γ)|+1
µ1⩾ ··· ⩾µn−k

C
(λ|γ)
(µ|η) P(λ|γ)(µ | η).
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In order to compute the coefficients, we will be using similar methods to those used
by Baratta in [1] to compute Pieri rules for the nonsymmetric Macdonald polynomials,
in their case for xiEµ. Because we will be making use of several of the formulas in
that paper, we start by converting our notation into theirs.

The first difference in notation in our constructions and Baratta’s is the indexing
of the variables. In [1], the variables are zj and are written in reverse order, so our
xi corresponds to zn+1−i. As a result, the vectors we have considered to this point,
written as (λ | γ), will be reversed, so our ‘symmetrized’ variables appear at the end.
For the element of maximum length w0 ∈ Sn, the vector (λ | γ) in our notation then
corresponds to w0(λ | γ) in Baratta’s.

The Hecke algebra operators Hj are defined with identical relations to ours, with
Hj replacing Tj in the braid relations and quadratic relations (4). The action of Hj

is given by the equation,

Hj = (t − 1)zj

zj − zj+1
+ zj − tzj+1

zj − zj+1
sj .

Then using the fact that xµ = zw0(µ), we find,
Tif(x1, . . . , xn) = Hn−if(zn, . . . , z1).

Under these conventions, the nonsymmetric Macdonald polynomials E(λ|γ) corre-
spond to Baratta’s Ew0(λ|γ)(z; q−1, t−1). The inverted powers of q and t are a formality,
since we only use that form of the nonsymmetric Macdonald polynomials as an inter-
mediate step. For clarity, we will also denote the polynomials in Baratta’s conventions
with the dagger, so E†

(γ|λ−)(z; q−1, t−1). Specifically, they correspond by the equation,

E(λ|γ)(x; q, t) =
[
E†

w0(λ|γ)(z; q−1, t−1)
]

zi 7→xn+1−i

.

Where it is unambiguous, the argument (z; q−1, t−1) will be suppressed. Using the
Hecke algebra isomorphism mapping Ti to Hn−i, we get the definition of the partially-
symmetric Macdonald polynomials,

P †
(γ|λ−)(z; q−1, t−1) := 1

W n−k
λ (t)

∑
w∈S[k+1,n]

HwE†
(γ|λ−)(z; q−1, t−1).

Because the Hw act the same as the corresponding Tw in our symmetrizers, we will
also write this as,

P †
(γ|λ−) = e+

[k+1,n]E
†
(γ|λ−) or P †

(γ|λ−) = e+E†
(γ|λ−).

In cases where we need the expansion of P †
(γ|λ−) as a Q(q, t)-linear combination of

the nonsymmetric Macdonald polynomials, we will write,

P †
(γ|λ−) =

∑
ν∼λ

fν,(γ|λ−)E
†
(γ|ν),

where the fν,(γ|λ−) is equal to fµ,η in Proposition 3.7 where ν is µ written in reverse
order, and η is (γ | λ−) in reverse order.

4.2. Interpolation Polynomials. The following definitions can be found in [1].
In order to derive Pieri-type formulas, we will be working with the interpolation non-
symmetric Macdonald polynomials. Begin with the eigenvalues associated with E†

ν ,

(20) νi = qνit−l′
ν (i), 1 ⩽ i ⩽ n,

l′
ν(i) = #{j < i | νj ⩾ νi} + #{j > i | νj > νi}.

Let ν = (ν1, . . . , νn) be the vector whose entries are the corresponding eigenvalues.
These eigenvalues can be used to define the interpolation nonsymmetric Macdonald
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polynomials, which are the unique polynomials (up to normalization) E∗
ν(z; q, t) of

degree |ν| which satisfy evaluation criteria,{
E∗

ν(µ) = 0 if µ ̸= ν and |µ| ⩽ |ν|
E∗

ν(ν) ̸= 0
(21)

By Theorem 3.9 in [7], the top homogeneous component of E∗
ν is a constant multiple

of the corresponding nonsymmetric Macdonald polynomial E†
ν . We use this to choose

a normalization,

E∗
ν(z; q, t) = E†

ν(z; q−1, t−1) +
∑

|µ|<|ν|

hµ,νE†
µ(z; q−1, t−1).

With the normalization chosen, the nonzero evaluation has an explicit formula,
given in Proposition 6 of [1]:

(22) E∗
ν(ν) =

(
n∏

i=1
ννi

i

) ∏
□∈ν

(1 − q−(ℓν (□)+1)t−aν (□)).

Thus define a Q(q, t)-linear isomorphism Ψ : K[x1, . . . , xn] → K[x1, . . . , xk] which
sends E†

ν(z; q−1, t−1) to E∗
ν(z; q, t). Note that the powers of q and t in the argument

of the interpolation polynomials are again positive, so in our notation, Eν(x; q, t)
corresponds to E∗

w0(ν)(z; q, t).
The following lemmas will be useful when we look at the actions of the Hecke

algebra on the interpolation polynomials.

Lemma 4.1. Let µ be a composition with its corresponding vector of eigenvalues µ.
Then siµ = siµ if and only if µi ̸= µi+1.

Proof. This comes by comparing directly the ith and (i+1)st column eigenvalues. □

Lemma 4.2. Let µ be a composition with µn > 0. Then

(µn − 1, µ1, . . . , µn−1) = (q−1µn , µ1 , . . . , µn−1).

Proof. This is once again immediate from the eigenvalue definition. □

In Theorem 3.6 of [7], the interpolation nonsymmetric Macdonald polynomials are
proven to be simultaneous eigenfunctions of the commuting operators,

Ξi := z−1
i + z−1

i Hi · · · Hn−1ΦH1 · · · Hi−1,

where Φ is defined by
Φ = (zn − t−n+1)∆,

∆f(z1, . . . , zn) = f

(
zn

q
, z1, . . . , zn−1

)
.

With these operators, we have

ΞiE
∗
ν = (νi)−1E∗

ν .

Then define the following operators on the interpolation polynomials,

Zi := t−(n
2)(ziΞi − 1)Ξ1 · · · Ξî · · · Ξn,

where Ξî means Ξi is not included in the list. The significance of Zi stems from a
useful corollary in [1],

(23) ziE
†
ν(z; q−1, t−1) = q|ν|Ψ−1ZiE

∗
ν(z; q, t).
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4.3. Interpolation polynomial expansion. We now begin with the computations
that will lead to the desired Pieri formulas. First, following definitions from Baratta,
define a modified version of the operators Zi,

Z̃i := Hi · · · Hn−1ΦH1 · · · Hi−1 = ziΞi − 1.

With this definition, the definition of Zi, and using commutativity of the Ξj , we
have an identity,

Zi = t−(n
2)Z̃i Ξ−1

i

n∏
j=1

Ξj .

This form with the full product
n∏

j=1
Ξj is useful since the product acts identically

on all interpolation nonsymmetric Macdonald polynomials of the same degree.

Lemma 4.3. Let µ be a composition. Then
n∏

j=1
ΞjE∗

µ = q−|µ|t(
n
2)E∗

µ.

Proof. The eigenvalue of
n∏

j=1
Ξj acting on E†

µ has a power of q equal to −
n∑

i=1
µi = −|µ|,

and a t power equal to
n∑

j=1
l′
ν(i) =

(
n

2

)
. Hence the eigenvalue associated with

n∏
j=1

Ξj

is q−|µ|t(
n
2). □

Every nonsymmetric Macdonald polynomial in the expansion of P †
(γ|λ−) has the

same degree, so
n∏

j=1
Ξj acts identically on each of those terms, and thus,

n∏
j=1

ΞjP †
(γ|λ−) = q−|µ|t(

n
2)P †

(γ|λ−).

We also need the fact that Hi acts the same on nonsymmetric Macdonald polyno-
mials as their interpolation counterparts. This can be seen in [10, page 6]. We have
the relation,

(24) HiE
†
ν = Ψ−1HiE

∗
ν .

Now we have all the required pieces to set up the desired computation, beginning
by using (24) and the K-linearity of Ψ to pass Ψ−1 through the symmetrizer, and
then (23) to move it through the sum of monomials. We also abbreviate e+

[k+1,n]
to e+.

(zk+1 + · · · + zn)P †
(γ|λ−) =

 n∑
j=k+1

zj

 e+
[k+1,n]Ψ

−1E∗
(γ|λ−)

=

 n∑
j=k+1

zj

Ψ−1e+E∗
(γ|λ−)

= q|(γ|λ−)|Ψ−1

 n∑
j=k+1

Zje+E∗
(γ|λ−)
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= q|(γ|λ−)|Ψ−1

 n∑
j=k+1

(
t−(n

2)Z̃j Ξ−1
j

n∏
ℓ=1

Ξℓ

)
e+E∗

(γ|λ−)


= Ψ−1

 n∑
j=k+1

(
Z̃j Ξ−1

j

)
e+E∗

(γ|λ−)


= Ψ−1

 n∑
j=k+1

(
Hj · · · Hn−1ΦH1 · · · Hj−1 Ξ−1

j

)
e+E∗

(γ|λ−)


Combining the above with (19), we have∑

|(η|µ−)|=|(λ|γ)|+1
µ1⩾ ··· ⩾µn−k

C
(γ|λ−)
(η|µ−) P(λ|γ)(η | µ−) =

Ψ−1

 n∑
j=k+1

(
Hj · · · Hn−1ΦH1 · · · Hj−1 Ξ−1

j

)
e+E∗

(γ|λ−)

 .

Then taking Ψ of both sides and once again using (24) on the left side,
(25) ∑
|(η|µ−)|=|(λ|γ)|+1

µ1⩾ ··· ⩾µn−k

C
(γ|λ−)
(η|µ−) e+E∗

(η|µ−) =
n∑

j=k+1

(
Hj · · · Hn−1ΦH1 · · · Hj−1 Ξ−1

j

)
e+E∗

(γ|λ−).

This is the equation we will use to compute C
(γ|λ−)
(η|µ−) . The first simplification will be

using the relation (see [7]),
HiΞ−1

i+1 = Ξ−1
i Hi,

where
Hi := (t − 1)zi+1

zi − zi+1
+ zi − tzi+1

zi − zi+1
si.

This Hi is almost the inverse of Hi, but instead their multiplication is given by,

HiHi = t.

Importantly, if f = sif , then Hif = f . In particular, this means for i ⩾ k + 1,

HiP
†
(γ|λ−) = P †

(γ|λ−).

Now continuing with our calculations,∑
|(η|µ−)|=|(λ|γ)|+1

µ1⩾ ··· ⩾µn−k

C
(γ|λ−)
(η|µ−) e+E∗

(η|µ−) =
n∑

j=k+1
Hj · · · Hn−1ΦH1 · · · Hj−1 Ξ−1

j e+E∗
(γ|ν)

=
n∑

j=k+1
Hj · · · Hn−1ΦH1 · · · Hk Ξ−1

k+1e+E∗
(γ|ν)

=
n∑

j=k+1
Hj · · · Hn−1ΦH1 · · · Hk Ξ−1

k+1

∑
ν∼λ

fν,(γ|λ−)E
∗
(γ|ν)

=
∑
ν∼λ

fν,(γ|λ−)

n∑
j=k+1

Hj · · · Hn−1ΦH1 · · · Hk Ξ−1
k+1E∗

(γ|ν)
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Note that the way we have written the sum on the lefthand side, with µ weakly
decreasing, guarantees no two nonsymmetric Macdonald polynomials in the sum sym-
metrize to the same partially-symmetric Macdonald polynomial, so the coefficients
C

(γ|λ−)
(η|µ−) are well-defined.

4.4. Expansion Support. In this section, we will determine the weights which ap-
pear with nonzero coefficients in the Pieri expansion. This process serves the dual
purpose of setting up the final computation for the coefficients. The following result
identifies all possible coefficients which could appear, and we will show in Corol-
lary 4.11 that every such coefficient is nonzero.
Proposition 4.4. In the Pieri expansion,

(zk+1 + · · · + zn)P †
(γ|λ−) =

∑
|(η|µ−)|=|(γ|λ−)|+1

µ−
1 ⩽ ··· ⩽µ−

n−k

C
(γ|λ−)
(η|µ−) P †

(η|µ−),

we have C
(γ|λ−)
(η|µ−) ̸= 0 only if, for some I1 = {t1, . . . , tr} ⊆ [1, k] with t1 < · · · < tr,

and ν ∈ Sn−k(λ−), the nonsymmetric part η is
ηi = γi if i /∈ I1

ηtj
= γtj+1 for 1 ⩽ j ⩽ r where γtr+1 = ν1,

and the symmetric part µ− satisfies
(µ−

1 , . . . , µ−
n−k) ∈ Sn−k(ν2, . . . , νn−k, (γ | ν)t1

+ 1).
In the case that I1 = ∅, we have η = γ and (γ | ν)t1

:= ν1.
Proof. We first must analyze the actions of Hi and Φ on interpolation nonsymmetric
Macdonald polynomials. To simplify the formula for the Hi, define some functions,
following [1],

a(x, y) := (t − 1)x
x − y

, b(x, y) := x − ty

x − y
.

Then write Hi = a(zi, zi+1)+b(zi, zi+1)si. To continue, note that in the full expression,

(26)
∑
ν∼λ

fν,(γ|λ−)

 n∑
j=k+1

(
Hj · · · Hn−1ΦH1 · · · Hk Ξ−1

k+1
)

E∗
(γ|ν)

 ,

because Ξ−1
k+1 is acting on an interpolation polynomial, it acts as a constant eigenvalue

which depends only on (γ | ν), and does not impact the support. So we are evaluating
the resulting polynomials in the expansion of Hj . . . Hn−1ΦH1 . . . HkE∗

(γ|ν)(z; q, t).
Expanding all of the Hi operators and Φ, we obtain

[a(zj , zj+1) + b(zj , zj+1)sj ] · · · [a(zn−1, zn) + b(zn−1, zn)sn−1] (zn − t−n+1)∆
· [a(z1, z2) + b(z1, z2)s1] · · · [a(zk, zk+1) + b(zk, zk+1)sk] E∗

(γ|ν)(z; q, t).
Since si permutes the variables zi and zi+1, we have that the action of the sim-

ple reflections is siE
∗
(γ|ν)(z; q, t) = E∗

(γ|ν)(si(z); q, t). While this does not change the
index (γ | ν), the argument si(z) means this is no longer an interpolation nonsym-
metric Macdonald polynomial. Finding a term after expanding the above product
corresponds to choosing either a(zi, zi+1) or b(zi, zi+1)si from each bracketed pair. In
this way, choose two sets I1 = {t1 < · · · < tr} ⊆ [1, k] and I2 = {v1 < · · · < vs} ⊆
[j, n − 1] so that if i ∈ I1, we choose a(zi, zi+1), and if i /∈ I1, we choose b(zi, zi+1)si,
and the same for I2. We will write

wI1 := s1 · · · ŝt1 · · · ŝtr
· · · sk
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to mean the full product s1 · · · sk with the simple reflections with a hat removed.
Let pI1(z) be the coefficient obtained from the terms in

∆[a(z1, z2) + b(z1, z2)s1] · · · [a(zk, zk+1) + b(zk, zk+1)sk] =
∑

I1⊆[1,k]

pI1(z)∆wI1 .

Similarly, define the permutation

wI2 := sj · · · ŝv1 · · · ŝvs · · · sn−1

Let p2(z) be the coefficient obtained from terms in

[a(zj , zj+1) + b(zj , zj+1)sj ] · · · [a(zn−1, zn) + b(zn−1, zn)sn−1](zn − t−n+1)

=
∑

I2⊆[j,n−1]

p2(z)wI2 .

Notice that the (zn − t−n+1) term is part of p2. Additionally, we call this p2
rather than pI2 because in later computations, we will find that the Pieri coeffi-
cients do not depend on I2. Using these definitions, we can write an expansion of
Hj · · · Hn−1∆H1 · · · HkE∗

(γ|ν)(z; q, t) as

(27)
∑

I1⊆[1,k]
I2⊆[j,n−1]

pI1(z)·p2(z)·(sj · · · ŝv1 · · · ŝvs
· · · sn−1∆s1 · · · ŝt1 · · · ŝtr

· · · sk) E∗
(γ|ν)(z),

or more succinctly as ∑
I1⊆[1,k]

I2⊆[j,n−1]

pI1(z) · p2(z) · E∗
(γ|ν)(I2(I1(z))),

where I1(z) and I2(z) are defined by

(I1(z))m :=



zm if m /∈ I1 and m ⩽ k

ztℓ−1 if m = tℓ and ℓ ̸= 1
q−1zn if m = t1, or r = 0 and m = k + 1
ztr

if m = k + 1 and r ̸= 0
zm−1 if m > k + 1

(28)

(I2(z))m :=



zm if m ⩽ k

zm+1 if m − 1 /∈ I2, and k + 1 ⩽ m ⩽ n − 1
zj if m = v1 + 1
zvi−1+1 if m = vi + 1 and i ⩾ 2
zvs+1 if m = n, and if s = 0, then vs + 1 = j

.(29)

The actions of I1 and I2 on the indices of the variables zi can be described as
products of disjoint cycles, along with ∆, by considering the whole permutation as
follows in cyclic notation:

sj · · · ŝv1 · · · ŝvs
· · · sn−1∆s1 · · · ŝt1 · · · ŝtr

· · · sk

= (j . . . v1)(v1 + 1 . . . v2) · · · (vs + 1 . . . n)∆(1 . . . t1)(t1 + 1 . . . t2) · · · (tr + 1 . . . k + 1).
This whole product can almost be combined into one long cycle,

(vs + 1, vs−1 + 1, . . . , v1 + 1, j, j − 1, . . . , k + 2, k + 1, tr, tr−1, . . . , t1).

However, the cycling of t1 to vs + 1 is special, since I2(I1(zt1)) = q−1zvs+1.
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It is easier to work with the compositions (γ | ν) than the lists of eigenvalues (η | µ),
so we would like to find an action dI for which

dI(γ | ν) = (η | µ) if and only if I2

(
I1

(
(η | µ)

))
= (γ | ν).

The I in dI should be thought of as I = I1∪I2. The following definition of dI is derived
by repeated application of Lemma 4.1 and one application of Lemma 4.2. Note that
the hypothesis in Lemma 4.1 that µi ̸= µi+1 means the property above only holds if
I1 and I2 do not include the permutation si if it would permute two columns of the
same height. For now we take this for granted, but we will see in Lemma 4.5 that
we are only interested in I1 which have this property, and the same will be shown
explicitly for I2 in the proof of Theorem 4.9 when uniqueness of I2 is established.

Assuming I1 ̸= ∅, the following definition of dI satisfies this property, and the
horizontal bar separates the nonsymmetric and symmetric parts of dI(γ | ν):

(dI(γ | ν))m :=



(γ | ν)m if m ⩽ k and m /∈ I1
(γ | ν)k+1 if m = tr

(γ | ν)ti+1
if m = ti and i ̸= r

 m ⩽ k

(γ | ν)m+1 if k + 1 ⩽ m < j
(γ | ν)m if m > j and m − 1 /∈ I2
(γ | ν)v1+1 if m = j and s ̸= 0
(γ | ν)vi+1+1 if m = vi + 1 and 1 ⩽ i < s

((γ | ν)t1
) + 1 if m = vs + 1, or s = 0 and m = j

 m ⩾ k + 1

If I1 = ∅, the entry ((γ | ν)t1
) + 1 in the last row should be replaced by

((γ | ν)k+1) + 1. The constructions so far allow us to compute the partially-symmetric
Macdonald polynomials which appear in the Pieri expansion, by considering evalua-
tions of (26). First, we rewrite that equation using the operator expansions we have
found:

(30)
∑
ν∼λ

fν,(γ|λ−)

 n∑
j=k+1

∑
I1⊆[1,k]

I2⊆[j,n−1]

pI1(z) · p2(z) · E∗
(γ|ν)(I2(I1(z)))

 .

If we evaluate the expression at z = (η | µ−), by the vanishing properties of the
interpolation polynomials, we only get a nonzero term if I2

(
I1

(
(η | µ−)

))
= (γ | ν).

So equivalently, this vanishes unless (η | µ−) = dI(γ | ν) for some sets I1 and I2. From
the definition of dI , this happens when η satisfies

ηi = γi if i /∈ I1(31)
ηtj

= γtj+1 for 1 ⩽ j ⩽ r where γtr+1 = ν1(32)

and µ− has

(µ−
1 , . . . , µ−

n−k) ∈ Sn−k(ν2, . . . , νn−k, (γ | ν)t1
+ 1).(33)

Again we have that if I1 = ∅, then t1 should be considered as k + 1.
Then take the formula found earlier,∑
|(η|µ−)|=|(λ|γ)|+1

µ1⩾ ··· ⩾µn−k

C
(γ|λ−)
(η|µ−) e+E∗

(η|µ−)
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=
∑
ν∼λ

fν,(γ|λ−)

n∑
j=k+1

Hj · · · Hn−1ΦH1 · · · Hk Ξ−1
k+1E∗

(γ|ν).

Due to (30), the right side vanishes when evaluated at (η | µ−) unless (η | µ−)
meets the above criteria. We know from (24) that e+E∗

(η|µ−) expands in the same
way as P †

(η|µ−). So the left side must also vanish for (η | µ−) which don’t meet those
conditions. Because both sides are K-linear combinations of interpolation polynomials,
using (21), the only possible E∗

(η|µ−) which can appear with nonzero coefficients on
the left are indexed by those same nonvanishing (η | µ−).

The order of µ− is unimportant, since any permutation of µ− contributes to the
same P †

(η|µ−). Altogether, we conclude that the P †
(η|µ−) which appear in the expansion

of (zk+1 + · · · + zn)P †
(γ|ν) are those which satisfy (31), (32), and (33). □

With this all constructed, we make the following notes:
• The action of dI increases the height of exactly one column, which is found

in µ−.
• Because I2 permutes only the entries with positions in [k + 1, n], which will

all symmetrize to the same partially-symmetric Macdonald polynomial, the
action of I2 does not change which terms appear as basis elements in the Pieri
expansion.

We can now restrict the possible subsets I1 which contribute to the Pieri-type
coefficient formula.

Lemma 4.5. Let (η | µ) be a composition such that (γ | ν) = I2

(
I1

(
(η | µ)

))
for

some composition (γ | ν) and sets I1 ⊆ [1, k] and I2 ⊆ [j, n − 1]. Then the I1 and I2
which satisfy that equation are unique.

Proof. This is a consequence of Lemma 4.1, and is proved in [7, proof of Lemma 4.3].
□

We will work more with I2 in the proof of Theorem 4.9, but for now we define I1
which is the unique set in the lemma above.

Definition 4.6. We call I1 maximal with respect to (γ | ν) and I2 if there is some
(η | µ) for which (γ | ν) = I2

(
I1

(
(η | µ)

))
.

In explicit terms, I1 is maximal with respect to (γ | ν) and if it satisfies:
(1) γi ̸= γt1 for all i < t1, and if I1 = ∅, consider (γ | ν)t1

:= ν1
(2) γi ̸= γtu+1 for all tu + 1 ⩽ i ⩽ tu+1 − 1

Note that the set I1 which satisfies the above crieria is called comaximal with
respect to (γ | ν) in [1]. We also omit the reference to I2 in maximality where it is
not needed. We will show after computing the coefficients pI1(z) and p2(z) that for a
particular choice of I2 and maximal I1, the coefficient C

(γ|λ−)
(η|µ−) is nonzero. Finally, we

give notation for the support set.

Definition 4.7. Define M(γ|λ−) to be the set of compositions which appear in Propo-
sition 4.4,

M(γ|λ−) := { (η | µ−)
∣∣∣ dI(γ | ν) = (η | µ−) for some ν ∈ Sn−k(λ−), some maximal

set I1 and some µ− ∈ Sn−k(ν2, . . . , νn−k, (γ | ν)t1
+ 1)}.
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Example 4.8. In the support of (z4 + z5)P †
(2,0,1|1,2), we can have ν1 = 1 or ν1 = 2.

The following are all maximal I1 and resulting composition (η | µ−) for each of these.

ν1 = 1

I1 (η | µ−)
{1, 2, 3} (0, 1, 1 | 2, 3)
{1, 3} (1, 0, 1 | 2, 3)
{2, 3} (2, 1, 1 | 1, 2)
{3} (2, 0, 1 | 2, 2)

ν1 = 2

I1 (η | µ−)
{1, 2, 3} (0, 1, 2 | 1, 3)
{1, 2} (0, 2, 1 | 1, 3)
{2, 3} (2, 1, 2 | 1, 1)
{1, 3} (1, 0, 2 | 1, 3)
{1} (2, 0, 1 | 1, 3)
{2} (2, 2, 1 | 1, 1)
{3} (2, 0, 2 | 1, 2)

4.5. Pieri coefficient computation. Let us return to the equation which we will
use to determine the Pieri coefficients:∑

|(η|µ−)|=|(γ|λ−)|+1

C
(γ|λ−)
(η|µ−) e+E∗

(η|µ−)(z)

=
∑
ν∼λ

fν,(γ|λ−)

 n∑
j=k+1

(
Hj · · · Hn−1ΦH1 · · · Hk Ξ−1

k+1
)

E∗
(γ|ν)(z)

(34)

Our approach will be to evaluate both sides at a particular value for z, and solve
the equation for C(η|µ−). First, use the expansion of e+E∗

(η|µ−)(z) into nonsymmetric
interpolation polynomials,∑

(η|µ−)

C
(γ|λ−)
(η|µ−)

∑
µ′∼µ

fµ′,(η|µ−)E
∗
(η|µ′)(z)

=
∑
ν∼λ

fν,(γ|λ−)

 n∑
j=k+1

(
Hj · · · Hn−1ΦH1 · · · Hk Ξ−1

k+1
)

E∗
(γ|ν)(z)

(35)

By the vanishing property of interpolation polynomials, evaluating at a vector of
eigenvalues (η | µ′) will cause all but one term to vanish on the left side. We will choose
a particular value of µ′ that we call µ̃ which simplifies our remaining computations.
Starting with a vector (γ | λ−), we begin by choosing some (η | µ−) in M(γ|λ−), which
determines a unique I1 that is maximal with respect to (γ | λ−). Notice that going
from (γ | λ−) to (η | µ−), exactly one column height from λ− is removed, and one
column has its height increased in the creation of µ−. This can be read directly from
λ− and µ− unless λ− = µ−. If this is the case, both the removed λ− column and the
increased µ− column have a height γi where i is the largest value for which γi ̸= ηi.

Then for the choice of which µ̃ to use in the evaluation, we require all columns with
the same height as the increased column in µ− to be at the beginning of the vector.
The remaining entries are chosen to be weakly decreasing. As a consequence of the
choice of µ̃, we will see later that there is only one contributing ν in the sum indexed
by ν. We call this special composition λ̃, which is given by

(λ̃1, . . . , λ̃n−k) = (ηtr
, µ̃2, . . . , µ̃n−k)

if I ̸= ∅, and if I = ∅,

(λ̃1, . . . , λ̃n−k) = (µ̃1 − 1, µ̃2, . . . , µ̃n−k).

It is useful to define a value,

m
(γ|λ−)
(η|µ−) := |{1 ⩽ i ⩽ n − k | µ̃i = µ̃1}| − 1.
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This is the same as the number of entries in (λ̃2, . . . , λ̃n−k) which are the same height
as the newly increased column. We now have enough to write the coefficients in the
Pieri expansion.

Theorem 4.9. The product e1[zk+1, . . . , zn]P †
(γ|λ−) can be written as a sum of

partially-symmetric Macdonald polynomials with the formula,

(zk+1 + · · · + zn)P †
(γ|λ−) =

∑
(η|µ−)∈M(γ|λ−)

C
(γ|λ−)
(η|µ−) P †

(η|µ−),

where

C
(γ|λ−)
(η|µ−) =

f
λ̃,(λ|γ)

f
µ̃,(µ|η)

· (γ | λ̃)k+1 · pI1 · p2 ·
E∗

(γ |̃λ)

(
(γ | λ̃)

)
E∗

(η|µ̃)

(
(η | µ̃)

) ,

the symmetric parts µ̃ and λ̃ are those described above, the set I1 = {t1 < · · · < tr}
is maximal with respect to (γ | λ̃), m := m

(γ|λ−)
(η|µ−), and pI1 and p2 are given by

pI1 =
(t − 1)q−1µ̃m+1

q−1µ̃m+1 − ηt1

r−1∏
u=1

(
(t − 1)ηtu

ηtu
− ηtu+1

)
t1−1∏
j=1

(
q−1µ̃m+1 − tηj

q−1µ̃m+1 − ηj

)

·
r∏

u=1

tu+1−1∏
j=tu+1

(
ηtu

− tηj

ηtu
− ηj

)

p2 = 1 − tm+1

1 − t
· (µ̃m+1 − t−n+1) ·

n−k∏
j=m+2

µ̃m+1 − t · µ̃j

µ̃m+1 − µ̃j

.

Proof. The remainder of the derivation proceeds by evaluating both sides of (34) at
(η | µ̃). Because the sums in the left side were constructed to have no overlapping
terms, evaluation of the left side of the equation gives∑

(η|µ−)

C
(γ|λ−)
(η|µ−)

∑
µ′∼µ

fµ′,(η|µ−) · E∗
(η|µ′)

(
(η | µ̃)

)
= C

(γ|λ−)
(η|µ−) f

µ̃,(η|µ−) E∗
(η|µ̃)

(
(η | µ̃)

)
.

Before evaluating the right side of (35), using the fact that Ξ−1
k+1 acts as an eigen-

value, we make the simplification
Hj · · · Hn−1ΦH1 · · · Hk Ξ−1

k+1E∗
(γ|ν)(z) = (γ | ν)k+1 (Hj · · · Hn−1ΦH1 · · · Hk) E∗

(γ|ν)(z).
It remains to simplify the evaluation,

(36)
∑
ν∼λ

fν,(γ|λ−) · (γ | ν)k+1

 n∑
j=k+1

(
Hj · · · Hn−1ΦH1 · · · HkE∗

(γ|ν)

)(
(η | µ̃)

) .

Expanding the inner sum indexed by j with (27), we must then simplify
n∑

j=k+1

∑
I2⊆[j,n−1]

∑
I1⊆[1,k]

pI1

(
(η | µ̃)

)
· p2

(
(η | µ̃)

)
· E∗

(γ|ν)

(
I2

(
I1

(
(η | µ̃)

)))
.

The goal at this point is to find which compositions (γ | ν) and sets I1 and I2 can
be used to satisfy

(γ | ν) = I2

(
I1

(
(η | µ̃)

))
.

In other words, we must find which compositions and sets satisfy
dI(γ | ν) = (η | µ̃).
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The nonsymmetric part η has already been found in the support computations. Recall
that there is only one I1 such that pI1

(
(η | µ̃)

)
̸= 0 by Lemma 4.5. That leaves us

with the task of finding possible values for ν and I2. Note that µ̃ has entries equal to
µ̃1 in its first m

(γ|λ−)
(η|µ−) + 1 positions. From this point on, we will use m and m

(γ|λ−)
(η|µ−)

interchangeably. We will now make several observations which reduce the sums to
only one composition ν = λ̃ and set I2 = [j, . . . , k + m].

• ν1 must be ηtr , which was found when constructing (η | µ−), if I ̸= ∅. And
if I = ∅, then ν1 is the increased column.

• Since µ̃1 = (γ | ν)t1
+ 1, by the definition of dI , we get (dI(γ | ν))vs+1 = µ̃1.

So since dI(γ | ν) = (η | µ̃) only has µ̃1 in positions k + 1, . . . , k + m + 1,
we can conclude vs + 1 ⩽ k + m + 1. And because vs is the highest value
in I2, that means any value in {k + m + 1, . . . , n − 1} cannot appear in I2.
So I2 ⊆ [j, . . . , k + m].

• Again using the definition of dI , we have that (dI(γ | ν))i = (η | µ̃)i = (γ | ν)i

for i ⩾ k+m+2, since this means i−1 /∈ I2. Equivalently, νi = µ̃i for i ⩾ m+2.
These are exactly the entries of µ̃ which are not equal to µ̃1. The only entries
not accounted for in ν are the ones equal to µ̃1, so νi = µ̃1 for all 2 ⩽ i ⩽ m+1.
Altogether,

(ν2, . . . , νn−k) = (µ̃2, . . . , µ̃n−k).

• If j > k + m + 1, then from the definition of dI , on one hand,

(dI(γ | ν))k+m+1 = (γ | ν)k+m+2 ̸= µ̃1.

On the other hand, we have

(dI(γ | ν))k+m+1 = (η | µ̃)k+m+1 = µ̃m+1 = µ̃1.

So j ⩽ k + m + 1.
• Suppose ℓ /∈ I2 and j ⩽ ℓ ⩽ k + m, and choose the smallest such ℓ. That

would mean we take the part of Hℓ that acts as b(zℓ, zℓ+1)sℓ. Since (η | µ̃)ℓ =
(η | µ̃)ℓ+1 = µ̃1, by the definition of the eigenvalues, we have (η | µ̃)ℓ = t ·
(η | µ̃)ℓ+1. Therefore the coefficient p2 will include the term

b
(

(η | µ̃)ℓ, (η | µ̃)ℓ+1

)
=

(η | µ̃)ℓ − t · (η | µ̃)ℓ+1

(η | µ̃)ℓ − (η | µ̃)ℓ+1
= 0.

Thus for the coefficient to be nonzero, Hℓ must act as a(zℓ, zℓ+1), which means
I2 = [j, . . . , k + m]. Note that if j = k + m + 1, then I2 = ∅.

The above observations allow us to conclude that for it to be possible that
dI(γ | ν) = (η | µ̃), we must have ν = λ̃ and I2 = [j, . . . , k + m].

Hℓ must act as a(zℓ, zℓ+1) for each j ⩽ ℓ ⩽ k + m, and the columns ℓ and ℓ + 1
have the same height, so we have zℓ = t · zℓ+1. After evaluation, the actions simplify
to

Hℓ = a(zℓ, zℓ+1) = (t − 1)zℓ

zℓ − zℓ+1
= t.

Taking all possible values of j together,
k+m+1∑
j=k+1

Hj · · · Hk+m acts by
m∑

i=0
ti.
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We will consider the above sum to be part of p2(z). With all the simplifications
up to this point, as well as rewriting the coefficient fν,(γ|λ−) with the corresponding
specific value in our notation f

λ̃,(λ|γ), we can now rewrite (36) as

f
λ̃,(λ|γ) · (γ | λ̃)k+1 · pI1

(
(η | µ̃)

)
· p2

(
(η | µ̃)

)
· E∗

(γ|ν)

(
I2

(
I1

(
(η | µ̃)

)))
.

The argument
(

I2

(
I1

(
(η | µ̃)

)))
can just be written as (γ | λ̃) at this point. Now

all that remains is computing explicit formulas for pI1(z) and p2(z). We have already
done most of the work to compute p2(z), since we know how each of Hj , . . . , Hn−1
act. So we can make some simplifications,

n∑
j=k+1

Hj · · · Hn−1(zn − t−n+1)

=
(

m∑
i=0

ti

)
Hk+m+1 · · · Hn−1(zn − t−n+1)

=
(

m∑
i=0

ti

)
[b(zk+m+1, zk+m+2)sk+m+1] · · · [b(zn−1, zn)sn−1](zn − t−n+1)

=
(

m∑
i=0

ti

)
(b(zk+m+1, zk+m+2) · · · b(zk+m+1, zn)) (zk+m+1 − t−n+1)

· sk+m+1 · · · sn−1

This means that the formula for p2(z) is:

p2(z) =
(

m∑
i=0

ti

)
(zm+k+1 − t−n+1)(b(zk+m+1, zk+m+2) · · · b(zk+m+1, zn))

p2

(
(η | µ̃)

)
= 1 − tm+1

1 − t
· (µ̃m+1 − t−n+1) ·

n−k∏
j=m+2

µ̃m+1 − t · µ̃j

µ̃m+1 − µ̃j

We shorten p2

(
(η | µ̃)

)
to p2. And finally, for pI1(z), the coefficient is almost

identical to the one computed in [1]. Let I1 = {t1, . . . , tr} and tr+1 := k + 1, and note
that vs + 1 = k + m + 1. Then the coefficient pI1(z) is:

a
(
q−1zvs+1, zt1

) r−1∏
u=1

a
(
ztu

, ztu+1

)
·

t1−1∏
j=1

b
(
q−1zvs+1, zj

) r∏
u=1

tu+1−1∏
j=tu+1

b (ztu
, zj)

=
(

(t − 1)q−1zvs+1

q−1zvs+1 − zt1

)
·

r−1∏
u=1

(
(t − 1)ztu

ztu − ztu+1

)
·

t1−1∏
j=1

(
q−1zvs+1 − tzj

q−1zvs+1 − zj

)

·
r∏

u=1

tu+1−1∏
j=tu+1

(
ztu

− tzj

ztu
− zj

)

After evaluation at (η | µ̃), we get the formula for pI1

(
(η | µ̃)

)
, which we shorten

to pI1 :

pI1 =
(

(t − 1)q−1µ̃m+1

q−1µ̃m+1 − ηt1

)
r−1∏
u=1

(
(t − 1)ηtu

ηtu
− ηtu+1

)
t1−1∏
j=1

(
q−1µ̃m+1 − tηj

q−1µ̃m+1 − ηj

)
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·
r∏

u=1

tu+1−1∏
j=tu+1

(
ηtu

− tηj

ηtu
− ηj

)
With all the terms now computed, we solve the following equation to find the Pieri

coefficients:

C
(γ|λ−)
(η|µ−) f

µ̃,(µ|η) E∗
(η|µ̃)

(
(η | µ̃)

)
= f

λ̃,(λ|γ) · (γ | λ̃)k+1 · pI1 · p2 · E∗
(γ |̃λ)

(
(γ | λ̃)

)

C
(γ|λ−)
(η|µ−) =

f
λ̃,(λ|γ)

f
µ̃,(µ|η)

· (γ | λ̃)k+1 · pI1 · p2 ·
E∗

(γ |̃λ)

(
(γ | λ̃)

)
E∗

(η|µ̃)

(
(η | µ̃)

) □

4.6. Further coefficient results. Now that we have a formula for the Pieri coef-
ficients, we will show the coefficient is nonzero for each partially-symmetric Macdonald
polynomial that we claim is in the support. Then we will convert the formulas back
to our original conventions, and give the corresponding formula for the expansion of
e1[x1, . . . , xn−k]J(λ|γ).

Lemma 4.10. If I1 is maximal with respect to (γ | λ̃), then pI1

(
(η | µ̃)

)
̸= 0.

Proof. See appendices. □

Corollary 4.11. For every (η | µ−) ∈ M(γ|λ−) , the coefficient C
(γ|λ−)
(η|µ−) is nonzero.

Proof. In the proof of uniqueness of I2 and ν, we found that p2

(
(η | µ̃)

)
̸= 0. The

evaluation E∗
(γ |̃λ)

(
(γ | λ̃)

)
is nonzero by the vanishing properties of the interpolation

polynomials. And f
λ̃,(λ|γ) ̸= 0 by Proposition 3.7. So choosing the maximal set I1

such that dI(γ | λ̃) = (η | µ̃) guarantees the coefficient C
(γ|λ−)
(η|µ−) is nonzero. □

We now convert Theorem 4.9 back to our original notation.
Given a weight (λ | γ), begin by choosing some entry of λ to be λ̃n−k and set

I1 = {t1, . . . , tr} ⊆ [1, k] which satisfies,
• ηj ̸= ηtu for any u ∈ {1, . . . , r} and j ∈ {tu−1 + 1, . . . , tu − 1}, and
• ηj ̸= µ̃n−k − 1 for any j ∈ {tr + 1, . . . , k}.

The increased column height has height γtr
+ 1. Next we choose µ̃ to have all the

columns µ̃h, . . . , µ̃n−k of height γtr + 1, and µ̃1 < · · · < µ̃h−1. Also, we choose
(λ̃1, . . . , λ̃n−k−1) = (µ̃1, . . . , µ̃n−k−1). Finally, we define η as before,

ηi = γi if i /∈ I1

ηtj
= γtj+1 for 1 ⩽ i ⩽ r where γtr+1 = λ̃1.(37)

Corollary 4.12. The product e1[x1, . . . , xn−k]P(λ|γ) can be written as a sum of
partially-symmetric Macdonald polynomials with the formula,

(x1 + · · · + xn−k)P(λ|γ)(λ | γ) =
∑

(µ|η)∈M(λ|γ)

C
(λ|γ)
(µ|η) P(λ|γ)(µ | η),

where

C
(λ|γ)
(µ|η) =

f
λ̃,(λ|γ)

f
µ̃,(µ|η)

· (λ̃ | γ)n−k · pI1 · p2 ·
E∗

(λ̃|γ)
(λ̃ | γ)

E∗
(µ̃|η)

(µ̃ | η)
,

Algebraic Combinatorics, Vol. 7 #6 (2024) 1669



B. Goodberry

I1 is maximal with respect to (λ̃ | γ), the symmetric parts µ̃ and λ̃ are those described
above, pI1 and p2 are given by

pI1 =
(

(t − 1)q−1µ̃h

q−1µ̃h − ηtr

)
·

r−1∏
u=1

(
(t − 1)ηtu+1

ηtu+1 − ηtu

)
·

k∏
j=tr+1

(
q−1µ̃h − tηj

q−1µ̃h − ηj

)

·
r∏

u=1

tu−1∏
j=tu−1+1

(
ηtu

− tηj

ηtu
− ηj

)

p2 =
(

m∑
i=0

ti

)
· (µ̃h − t−n+1) ·

h−1∏
j=1

µ̃h − t · µ̃j

µ̃h − µ̃j

.

We can also renormalize the Pieri formula to get a corresponding equation for the
integral form J(λ|γ) polynomials.

Corollary 4.13. There is a Pieri expansion of the integral form of partially-
symmetric Macdonald polynomials,

(x1 + · · · + xn−k)J(λ|γ) =

∑
(µ|η)∈M(λ|γ)

f
λ̃,(λ|γ)

f
µ̃,(µ|η)

· (λ̃ | γ)n−k · pI1 · p2 ·
E∗

(λ̃|γ)
(λ̃ | γ)

E∗
(µ̃|η)

(µ̃ | η)
·

j(λ|γ)

j(µ|η)

J(µ|η).

4.7. Multiplication by a nonsymmetric variable. Much like in the previous
section, we would like to find a rule for the expansion of the product xjP(λ|γ), where
j > n − k, in the partially-symmetric Macdonald basis. Fortunately, the approach
is virtually identical to what we’ve done to compute e1[x1, . . . , xn]P(λ|γ). As there is
little extra insight to be gained from the derivation, those computations are left to
the appendices. The primary difference is that the nonsymmetric variables are split
into two groups, those in [1, j − 1] and those in [j, k], which act differently since the
operators Hj , . . . , Hk act after Φ, and H1, . . . , Hj−1 act before Φ in the interpolation
polynomial computations.

Theorem 4.14. Let j ∈ [1, k]. Then the expansion of the product zjP †
(γ|λ−) is,

(38) zjP †
(γ|λ−) =

∑
|(η|µ−)|=|(λ|γ)|+1

µ1⩾ ··· ⩾µn−k

D
(γ|λ−)
(η|µ−) · P †

(η|µ−),

where µ, λ̃, and µ̃ are as found in Theorem 4.9, and η is

ηℓ =



γℓ if 1 ⩽ ℓ ⩽ j − 1 and ℓ /∈ I ′
1

γti+1 if ℓ = ti and i ̸= r

γj if ℓ = tr

γy1+1 if ℓ = j

γℓ if j + 1 ⩽ ℓ ⩽ k and ℓ − 1 /∈ I ′
3

γyi+1+1 if ℓ = yi + 1 and 1 ⩽ i < c

λ̃1 if ℓ = yc + 1

(39)

for some maximal I ′
1 = {t1, . . . , tr} ⊆ [1, j − 1] and I ′

3 = {y1, . . . , yc} ⊆ [j, k]. The
coefficients D

(γ|λ−)
(η|µ−) have the formula,
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D
(γ|λ−)
(η|µ−) = C

(γ|λ−)
(η|µ−) ·

(γ | ν)j

(γ | ν)k+1
· tm · 1 − t

1 − tm+1 ·
ηj(ηtr

− ηy1)
ηtr

(ηj − ηy1)

·
y1−1∏

u=j+1

ηj − tηu

ηj − ηu

·
y1−1∏

u=tr+1

ηtr
− ηu

ηtr
− tηu

,

5. Cancellation
The formula in Corollary 4.13 is highly unsimplified. We conclude our work by can-
celling that formula as far as possible, with the aim of a condensed form which will
prove useful in upcoming work with D. Orr.

5.1. Internal cancellations in f
λ̃,(λ|γ)/f

µ̃,(µ|η). Recall that λ̃ and µ̃ are almost
antidominant, but both have columns of height µ̃n−k as far right as possible, and
λ̃n−k is some distinguished entry from λ. If λ̃ ̸= µ̃, the only entry which differs
between the two diagrams is the (n − k)th position. Consider f

λ̃,(λ|γ) and f
µ̃,(µ|η)

using the recursive formula. Each symmetric column of height µ̃n−k is permuted past
taller columns in both µ̃ and λ̃, with this happening one more time in µ̃ than λ̃. The
term which contributes multiplicatively to f

µ̃,(µ|η) and f
λ̃,(λ|γ) is identical for all the

columns of height µ̃n−k that are in both diagrams, as the boxes in row µ̃n−k +1 of the
symmetric diagrams have the same number of arms and legs before and after columns
are cycled.

There is one column which is permuted to the right from each of µ̃ and λ̃ which
contributes to f

λ̃,(λ|γ)/f
µ̃,(µ|η) and is not cancelled. For f

λ̃,(λ|γ), this is the column
λ̃n−k, and for f

µ̃,(µ|η), this is the leftmost column of height µ̃n−k. Again using the
recursive formula, the contributions are as follows:

• For f
λ̃,(λ|γ), permuting the entry λ̃n−k all the way to the right contributes∏

□∈d
(̃λn−k+1)

(λ−)

t − qℓ(λ−|γ)(□)+1ta(λ−|γ)(□)+1

1 − qℓ(λ−|γ)(□)+1ta(λ−|γ)(□)+1

• Similarly, in f
µ̃,(µ|η), permuting the leftmost entry µ̃n−k as far right as possible

(left of the rest of the columns of that height) contributes∏
□∈d

(̃µn−k+1)
(µ̃)

t − q
ℓ

(̃µ|η)
(□)+1

t
a

(̃µ|η)
(□)

1 − q
ℓ

(̃µ|η)
(□)+1

t
a

(̃µ|η)
(□)

Therefore we obtain the cancelled form,
f

λ̃,(λ|γ)

f
µ̃,(µ|η)

=
∏

□∈d
(̃λn−k+1)

(λ−)

t − qℓ(λ−|γ)(□)+1ta(λ−|γ)(□)+1

1 − qℓ(λ−|γ)(□)+1ta(λ−|γ)(□)+1

·

 ∏
□∈d

(̃µn−k+1)
(µ̃)

t − q
ℓ

(̃µ|η)
(□)+1

t
a

(̃µ|η)
(□)

1 − q
ℓ

(̃µ|η)
(□)+1

t
a

(̃µ|η)
(□)


−1

Note that if λ̃ = µ̃, the formula still holds, but the argument works by moving just
the λ̃n−k column to the (n − k)th position, and moving the leftmost column of height
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µ̃n−k to its final position, and the rows of boxes in d(λ̃n−k+1)(λ
−) and d(µ̃n−k+1)(µ̃)

are the same row.

5.2. Internal cancellations in j(λ|γ)/j(µ|η). To simplify this constant, we need to
identify and sort all boxes in the diagrams (λ− | γ) and (µ− | η) whose contributions
to j(λ|γ) and j(µ|η) are different. The diagram at the end of this section gives a visual
representation of these groups. The groups that are in (λ− | γ) are labelled with
numbers and a subscript j, and the corresponding groups in (µ− | η), namely the
same boxes after columns are cycled, are labelled with the same group number, j,
and a prime.

First recall that j(λ|γ) and j(µ|η) are calculated using the diagrams (λ− | γ) and
(µ− | η), with the symmetric parts weakly increasing (antidominant). Beginning with
columns which are in the symmetric part of both diagrams, the only symmetric boxes
whose statistics change after columns are cyclically permuted are those in the same
row as the newly added box. Each of these gains one (modified) arm after cycling. So
if we let

Group 1′
j =

{
□ ∈ d(µ̃n−k)(µ̃) | □ is not the newly added box

}
,

then the contribution of these boxes to the product j(λ|γ)/j(µ|η) is

(40) j1 :=
∏

□∈Group 1′
j

1 − qℓ(µ−|η)(□)t̃a(µ−|η)(□)

1 − qℓ(µ−|η)(□)t̃a(µ−|η)(□)+1
.

Next, we address the nonsymmetric columns, including the column which is moved
from λ. First suppose I1 = [k + 1, n], i.e., each Ti for k + 1 ⩽ i ⩽ n − 1 acts as a
constant, not permuting columns. Then the only boxes whose statistics change are
those that moved from the rightmost symmetric column of height λ̃n−k (call this
Group 2j) to the first column of η (call this Group 2′

j). In this case, the contribution
to j(λ|γ)/j(µ|η) is

(41) j2 :=

∏
□∈Group 2j

1 − qℓ(λ−|γ)(□)t̃a(λ−|γ)(□)+1

∏
□∈Group 2′

j

1 − qℓ(µ−|η)(□)+1ta(µ−|η)(□)+1 .

Notice that for a box □ = (λ̃n−k, j) ∈ Group 2j and its corresponding box □ =
(ηt1 , j) ∈ Group 2′

j , the boxes have the same number of legs, and the arms only differ
by the number of nonsymmetric columns of height j − 1, which are not counted in
ã(λ−|γ)(□). So we can rewrite j2 as a product of rational functions in only one diagram,

(42) j2 =
∏

□∈Group 2j

1 − qℓ(λ−|γ)(□)t̃a(λ−|γ)(□)+1

1 − qℓ(λ−|γ)(□)+1t̃a(λ−|γ)(□)+1+mj−1(η)
,

where mj−1(η) is the number of entries in η that are equal to j − 1.
Now we extend this to where I1 ̸= [k + 1, n] by considering what happens to the

diagram if the action of Ti includes the permutation si. From the columns in position
i and i + 1, the only box whose statistic is changed from (λ− | γ) is

□ =
{

(i + 1, γi + 1) if γi < γi+1

(i, γi+1 + 1) if γi > γi+1

In the first case, the box has one more arm in (µ− | η) than in (λ− | γ), and in
the second case, the box has one less arm in (µ− | η) than (λ− | γ). We will call
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these boxes Group 3j when considered in (λ− | γ), and Group 3′
j when considered

in (µ− | η). The boxes in the column which become µ̃h, as well as boxes in columns
{tr + n − k, . . . , n} will be excluded from this group and dealt with separately. Then
the contribution for these boxes is

(43) j3 :=

∏
□∈Group 3j

1 − qℓ(λ−|γ)(□)+1ta(λ−|γ)(□)+1

∏
□∈Group 3′

j

1 − qℓ(µ−|η)(□)+1ta(µ−|η)(□)+1 .

Note that Group 3j might include a box from the column Group 2j , if the action
of Tn−k includes the permutation sn−k. While this could be cancelled further with
terms in j2, it is more useful to leave the product uncancelled in this form for now.

The final set of boxes to consider are in the column which wraps around and gains
a box, and any boxes in columns {tr + n − k, . . . , n} whose statistics were affected by
the column that wrapped around. Like in Group 3j , each time the column γtr passes
another column, one box in either the γtr

column or the column it passes gains or
loses an arm. If i > tr and ηi ⩾ µ̃h, then the box (i + n − k, µ̃h) gains one arm. And
if ηi < µ̃h, the box is in the column which becomes µ̃h. So our next group is

Group 4′
j := {□ = (i, µ̃h) | tr + n − k < i}

and the contribution from the boxes in these columns to j is

j4 :=
∏

□∈Group 4′
j

1 − q
ℓ

(̃µ|η)
(□)+1

t
a

(̃µ|η)
(□)

1 − q
ℓ

(̃µ|η)
(□)+1

t
a

(̃µ|η)
(□)+1

We finally account for the boxes which land in µ̃h. The newly-added box has no
arms or legs, so its contribution to j(µ|η) is 1 − t. Every other box in the wrapped-
around column has one more leg in (µ | η), which means the power of q in the con-
tribution of the box in j(λ|γ) is the same as in j(µ|η), since in j(λ|γ) the box is in
the nonsymmetric part of the diagram, and in j(µ|η) it is in the symmetric part.
Let □ = (i, j) be a box not on top, so j < µ̃h. Then we make three observations:

(1) Boxes in the newly-increased column of (µ− | η) have the same number of
arms as their counterparts in (µ̃ | η), so for the sake of future cancellation,
we will write in terms of (µ̃ | η).

(2) a(λ̃|γ)(tr + n − k, j) = a(µ̃|η)(h, j).

(3) ã(µ̃|η)(h, j) = a(µ̃|η)(h, j) − gj−1, where gℓ := #{i > tr | ηi = ℓ}.

Define j5 to be the rational function contribution of boxes which move to µ̃h, and its
corresponding group of boxes,

Group 5′
j := {□ = (h, i) | 1 ⩽ i ⩽ µ̃h}.

Using the above observations, we find

j5 = 1
1 − t

∏
□∈Group 5′

j

□=(h,i)
i̸=µ̃h

1 − q
ℓ

(̃µ|η)
(□)

t̃
a

(̃µ|η)
(□)+1+gi−1

1 − q
ℓ

(̃µ|η)
(□)

t̃
a

(̃µ|η)
(□)+1

.

With all the groups now indexed, we can rewrite j(λ|γ)/j(µ|η):
j(λ|γ)/j(µ|η) = j1 · j2 · j3 · j4 · j5.
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Figure 1. Diagrams for j(6,5,4,3,2,1|4,0,1,0,2,3,2,5) (top) and
j(6,5,4,4,3,1|4,0,2,0,2,1,2,5) (bottom). Each box is filled with (legs,
arms).
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5.3. Internal cancellations in E∗
(λ̃|γ)

(λ̃ | γ)/E∗
(µ̃|η)

(µ̃ | η). This will be very sim-
ilar to the cancellations in j(λ|γ)/j(µ|η). We will group things in the same ways, but
since we are looking at the diagrams (λ̃ | γ) and (µ̃ | η) now, we will label the groups
with the subscript E. Recall the formula,

E∗
(λ̃|γ)

(λ̃ | γ)

E∗
(µ̃|η)

(µ̃ | η)
=

(
n∏

i=1
(λ̃ | γ)

(λ̃|γ)i

i

) ∏
□∈(λ̃|γ)

(
1 − q

−(ℓ
(̃λ|γ)

(□)+1)
t
−a

(̃λ|γ)
(□))

(
n∏

i=1
(µ̃ | η)

(µ̃|η)i

i

) ∏
□∈(µ̃|η)

(
1 − q

−(ℓ
(̃µ|η)

(□)+1)
t
−a

(̃µ|η)
(□)) .

To simplify the products of eigenvalues on the left, recall from Lemma 4.5 and
Definition 4.6 that since I1 is maximal, the permutation of columns from (λ̃ | γ) to
(µ̃ | η) also permutes the associated eigenvalues, except in the column which gains a
box. Combining this with the facts that µ̃h = γtr +1 and ℓ′

(µ̃|η)
(h) = ℓ′

(λ̃|γ)
(tr +n−k),

we get(
n∏

i=1
(λ̃ | γ)

(λ̃|γ)i

i

)
(

n∏
i=1

(µ̃ | η)
(µ̃|η)i

i

) =

(
(λ̃ | γ)tr+n−k

)γtr

(
(λ̃ | γ)h

)µ̃h

=

(
qγtr t

−ℓ′

(̃λ|γ)
(tr+n−k)

)γtr

(
qµ̃ht

−ℓ′

(̃µ|η)
(h)
)µ̃h

= q−2µ̃h+1t
ℓ′

(̃µ|η)
(h).

Once again, if we compare a corresponding box in (λ̃ | γ) and (µ̃ | η) and it has
the same arms and legs in both diagrams, those terms cancel. Beginning like before
with boxes which are in the symmetric parts of both diagrams, the boxes which have
different statistics are in the (µ̃h + 1)st row counting from the bottom, so define
groups,

Group 1E := d(µ̃n−k+1)(λ̃)

Group 1′
E := d(µ̃n−k+1)(µ̃)

The boxes in group 1′
E have the same legs and one more arm, namely the column µ̃h,

and so we can write

E∗
1 :=

∏
□∈Group 1E

(
1 − q

−(ℓ
(̃λ|γ)

(□)+1)
t
−a

(̃λ|γ)
(□))

∏
□∈Group 1′

E

(
1 − q

−(ℓ
(̃µ|η)

(□)+1)
t
−a

(̃µ|η)
(□))

=
∏

□∈Group 1′
E

(
1 − q

−(ℓ
(̃µ|η)

(□)+1)
t
−(a

(̃µ|η)
(□)−1))(

1 − q
−(ℓ

(̃µ|η)
(□)+1)

t
−a

(̃µ|η)
(□))

=
∏

□∈Group 1′
E

(
t − q

ℓ
(̃µ|η)

(□)+1
t
a

(̃µ|η)
(□))(

1 − q
ℓ

(̃µ|η)
(□)+1

t
a

(̃µ|η)
(□))

Notice that this matches exactly with the remaining denominator from the term
f

λ̃,(λ|γ)/f
µ̃,(µ|η), so those will cancel.

Unlike with the j’s, because the E∗ formula is all in nonsymmetric terms, the
statistics of the boxes which cycle from column λn−k to η1 (prior to the Ti actions)
do not change, so there is in effect no Group 2E to account for.
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The analogs to Group 3j and Group 3′
j will work exactly the same with E∗ as in the

j’s, since both use the same diagram statistics (nonsymmetric arms). The resulting
contribution from these boxes is then

E∗
3 :=

∏
□∈Group 3j

1 − q
−(ℓ

(̃λ|γ)
(□)+1)

t
−a

(̃λ|γ)
(□)

∏
□∈Group 3′

j

1 − q
−(ℓ

(̃µ|η)
(□)+1)

t
−a

(̃µ|η)
(□) .

The boxes in Group 4′
j also behave the same in E∗ and j, so the contribution for

those boxes to the right of ηtr
which change is

E∗
4 :=

∏
□∈Group 4′

j

1 − q
−(ℓ

(̃µ|η)
(□)+1)

t
−(a

(̃µ|η)
(□)−1)

1 − q
−(ℓ

(̃µ|η)
(□)+1)

t
−a

(̃µ|η)
(□)

Finally, we address the group of boxes which go from column ηtr to µ̃h. Compare
the boxes (tr + n − k, i) in (λ̃ | γ) and (h, i) in (µ̃ | η). The box in µ̃h has the added
box as an extra leg, and comparing a(λ̃|γ)(tr + n − k, i) to the modified ã(µ̃|η)(h, i),
these both count the same columns except that a(λ̃|γ)(tr + n − k, i) also counts boxes
in columns to the right of tr + n − k with height i − 1. We still need to account for
the newly-added box, so altogether we have groups,

Group 5E := {□ = (tr + n − k, i) | 1 ⩽ i ⩽ γtr }
Group 5′

E := {□ = (h, i) | 1 ⩽ i ⩽ µ̃h},

and contribution of those groups,

E∗
5 :=

∏
□∈Group 5E

1 − q
−(ℓ

(̃λ|γ)
(□)+1)

t−a(λ|γ)(□)

∏
□∈Group 5′

E

1 − q
−(ℓ

(̃µ|η)
(□)+1)

t
−a

(̃µ|η)
(□)

= 1

1 − q−1t
−a

(̃µ|η)
(h,µ̃h)

·
∏

□∈Group 5′
E

□=(h,i)
i ̸=µ̃h

1 − q
−ℓ

(̃µ|η)
(□)

t
−(̃a

(̃µ|η)
(□)+gi−1)

1 − q
−(ℓ

(̃µ|η)
(□)+1)

t
−a

(̃µ|η)
(□)

With all boxes enumerated, we have the simplification,

E∗
(λ̃|γ)

(λ̃ | γ)

E∗
(µ̃|η)

(µ̃ | η)
= q−2µ̃h+1t

ℓ′

(̃µ|η)
(h)

· E∗
1 · E∗

3 · E∗
4 · E∗

5 .

5.4. Conversion of pI1 terms. The remaining cancellations happen by combining
some diagram statistic expressions involving ji terms and E∗i terms, and eigenvalue
functions from pI1 and p2. This will simplify the formulas substantially, but requires
some lengthy computations, all using similar techniques.

Proposition 5.1.

(44) j3 · E∗
3 ·

r∏
u=1

tu−1∏
j=tu−1+1

ηtu
− tηj

ηtu
− ηj

=
r∏

u=1

tu−1∏
j=tu−1+1

tηtu
− ηj

ηtu
− ηj
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γt2
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∈ Group 1E ∈ Group 3E

∈ Group 4E ∈ Group 5E Cancels
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0, 2
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ηt1

1, 3
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0, 1
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1, 4

0, 2

4, 10

3, 8

2, 5

1, 4

0, 1

∈ Group 1′
E ∈ Group 3′

E

∈ Group 4′
E ∈ Group 5′

E Cancels

Figure 2. Diagrams for E∗
(1,3,5,6,4,2|4,0,1,0,2,3,2,5) (top) and

E∗
(1,3,5,6,4,4|4,0,2,0,2,1,2,5) (bottom). Each box is filled with (legs,

arms).
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Proof. In order to cancel parts of pI1 with other terms, we first need to convert from
eigenvalue expressions to expressions involving diagram statistics. We split this into
two cases with tu−1 < j < tu, the first with ηj > ηtu

, and the second with ηj < ηtu
. It

is not possible that ηj = ηtu , as that would mean I1 is not maximal. Recall from (20)
the formula for the eigenvalues,

νi = qνit−l′
ν (i), 1 ⩽ i ⩽ n,

l′
ν(i) = #{j < i | νj > νi} + #{j > i | νj ⩾ νi}.

Case 1: Consider some column ηj with tu−1 < j < tu, and suppose ηj > ηtu
. Our

goal is to rewrite the rational function
ηtu

− tηj

ηtu
− ηj

in terms of diagram statistics of the box □ = (j + n − k, ηtu
+ 1) in the diagram

(µ̃ | η). First, the difference in column height, ηj − ηtu
, is one more than the number

of legs of □. So ηj − ηtu
= ℓ(µ̃|η)(□) + 1. For readability, we will write ℓ′

j and ℓ′
tu

to
mean ℓ′

(µ̃|η)
(j + n − k) and ℓ′

(µ̃|η)
(tu + n − k) respectively. Now, we find the differences

between the ℓ′
(µ̃|η)

values for the columns ηtu and ηj . This will be organized by the
location of each column relative to ηj and ηtu

, and the height of that column.

Counted in ℓ′
j and ℓ′

tu
Counted only in ℓ′

tu
Not counted

Left of both > ηj ηtu
+ 1, . . . , ηj ⩽ ηtu

Between ηj and ηtu
⩾ ηj ηtu

+ 1, . . . , ηj − 1 ⩽ ηtu

Right of both ⩾ ηj ηtu , . . . , ηj − 1 < ηtu

The final column that is counted and not in the chart is column ηj , which is counted
in ℓ′

tu
. We can compare the above to the arm length a(µ̃|η)(j, ηtu + 1),

a(µ̃|η)(j, ηtu
+ 1) =#{1 ⩽ i < j + n − k | ηtu

+ 1 ⩽ (µ̃ | η)j ⩽ ηj}|+
#{j + n − k < i ⩽ n | ηtu

⩽ (µ̃ | η)j ⩽ ηj − 1}.

Notice that the same columns that are counted in this arm are the ones which con-
tribute only to ℓ′

tu
. While on the surface there seems to be a discrepancy between the

right arm of the box and the columns between ηj and ηtu , where ℓ′
tu

does not count
columns of height ηtu

, recall that such a column existing would contradict maximality
of the set I1. Additionally, there is one extra box counted in the arm length, which is
again the column ηtj

. From this comparison, we obtain the formula,

ℓ′
tu

= ℓ′
j + a(µ̃|η)(j, ηtu + 1).

Further, combining this with the difference in column heights, we get a formula re-
lating the eigenvalues and statistics of □ = (j, ηtu

+ 1),

ηj = ηtu
· q

ℓ
(̃µ|η)

(□)+1
t
a

(̃µ|η)
(□)

.

Using this, we can now simplify the rational function,

ηtu
− tηj

ηtu
− ηj

=
ηtu

− ηtu
· q

ℓ
(̃µ|η)

(□)+1
t
a

(̃µ|η)
(□)+1

ηtu
− ηtu

· q
ℓ

(̃µ|η)
(□)+1

t
a

(̃µ|η)
(□)

= 1 − q
ℓ

(̃µ|η)
(□)+1

t
a

(̃µ|η)
(□)+1

1 − q
ℓ

(̃µ|η)
(□)+1

t
a

(̃µ|η)
(□) .
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To continue with the cancellation, recall that □ = (j, ηtu
+ 1) ∈ Group 3′

j . This
box has one more arm, namely from the column ηtu

, than the corresponding box
(j, ηtu

+ 1) ∈ Group 3j . This means the contribution of these boxes to j3 is

1 − q
ℓ

(̃λ|γ)
(□)+1

t
a

(̃λ|γ)
(□)+1

1 − q
ℓ

(̃µ|η)
(□)+1

t
a

(̃µ|η)
(□)+1 = 1 − q

ℓ
(̃µ|η)

(□)+1
t
a

(̃µ|η)
(□)

1 − q
ℓ

(̃µ|η)
(□)+1

t
a

(̃µ|η)
(□)+1 .

This cancels exactly with the eigenvalue rational function for column ηj . We can go
one step farther and use the contribution of the same box to E∗

3 ,

1 − q
−(ℓ

(̃λ|γ)
(□)+1)

t
−a

(̃λ|γ)
(□)

1 − q
−(ℓ

(̃µ|η)
(□)+1)

t
−a

(̃µ|η)
(□) = 1 − q

−(ℓ
(̃µ|η)

(□)+1)
t
−(a

((̃µ|η)
(□)−1)

1 − q
−(ℓ

(̃µ|η)
(□)+1)

t
−a

(̃µ|η)
(□)

= ηj − ηj · q
−(ℓ

(̃µ|η)
(□)+1)

t
−(a

((̃µ|η)
(□)−1)

ηj − ηj · q
−(ℓ

(̃µ|η)
(□)+1)

t
−a

(̃µ|η)
(□)

=
tηtu

− ηj

ηtu
− ηj .

Case 2: The approach here will be similar to the first case, but now instead of
just considering a single column ηj with ηj < ηtu , we consider all columns strictly
between ηtu−1 and ηtu

of a given height that is lower than ηtu
. The product of the

eigenvalue rational functions for all columns of height s will cancel together with the
contribution of □ = (tu + n − k, s + 1) to E∗

3 , and the contribution of the same square
to j3 will be equal to the corresponding products of eigenvalues on the right side
of (44). Combined with case 1, this accounts for all of j3 and E∗

3 , as well as all pairs
of tu and j in the product of the eigenvalue rational functions.

Let s ∈ {0, 1, . . . , ηtu
− 1}, and suppose the columns of height s between ηtu−1

and ηtu
of height s are ηa1 , . . . , ηags

, so gs = #{tu−1 < i < tu−1 | ηi = s}. Let
□ = (tu + n − k, r + 1). Suppose ηj ∈ {ηa1 , . . . , ηags

} is one of these columns. Like in
case 1, comparing column heights, we have ηtu = ηj + ℓ(µ̃|η)(□) + 1. There is again a
comparison of ℓ′

j and ℓ′
tu

:

Counted in ℓ′
j and ℓ′

tu
Counted only in ℓ′

j Not counted
Left of both > ηtu s + 1, . . . , ηtu ⩽ s

Between ηj and ηtu
> ηtu

s, . . . , ηtu
< s

Right of both ⩾ ηtu
s, . . . , ηtu

− 1 < s

There are two differences in boxes counted only in ℓ′
j and a(µ̃|η)(□):

(1) ℓ′
j counts ηtu

, but there is no corresponding column which contributes to
a(µ̃|η)(□).

(2) ℓ′
j counts boxes between ηj and ηtu

of height s, while those are not counted
in a(µ̃|η)(□).

With these differences accounted for, we get the equation,

ℓ′
j = ℓ′

tu
+ (a(µ̃|η)(□) + 1) + #{j < i < tu | ηi = s}.

We can use this to extract a series of formulas for the eigenvalues, moving from
the rightmost column of height s to the left,

ηags
= ηtu

· q
−(ℓ

(̃µ|η)
(□)+1)

t
−(a

(̃µ|η)
(□)+1)

ηa(gs−1) = ηtu
· q

−(ℓ
(̃µ|η)

(□)+1)
t
−((a

(̃µ|η)
(□)+1)+1)
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...

ηa1 = ηtu · q
−(ℓ

(̃µ|η)
(□)+1)

t
−((a

(̃µ|η)
(□)+1)+gs)

Taken together, the product of the respective eigenvalue rational functions before
substitution is

ηtu
− tηags

ηtu
− ηags

·
ηtu

− tηags−1

ηtu
− ηags−1

· · ·
ηtu

− tηa1

ηtu
− ηa1

and after substitution (and suppressing the subscripts, since all diagram statistics are
relative to (µ̃ | η)), this becomes

1 − q−(ℓ(□)+1)t−a(□)

1 − q−(ℓ(□)+1)t−(a(□)+1) · 1 − q−(ℓ(□)+1)t−(a(□)+1)

1 − q−(ℓ(□)+1)t−(a(□)+2) · · · 1 − q
−(ℓ

(̃µ|η)
(□)+1)

t−(a(□)+gs−1)

1 − q−(ℓ(□)+1))t−(a(□)+gs)

which simplifies so that
ηtu

− tηags

ηtu
− ηags

·
ηtu

− tηags−1

ηtu
− ηags−1

· · ·
ηtu

− tηa1

ηtu
− ηa1

= 1 − q−(ℓ(□)+1)t−a(□)

1 − q−(ℓ(□)+1)t−(a(□)+gs)

To complete the cancellations, notice that the columns which are counted in
a(λ̃|γ)(tu−1, s + 1) but not a(µ̃|η)(tu, s + 1) are exactly those between ηtu−1 and
ηtu of height s, which means the contribution of the boxes □′ = (tu−1, s + 1) and
□ = (tu, s + 1) to E∗

3 is

1 − q
−(ℓ

(̃λ|γ)+1)
(□′)

t
−a

(̃λ|γ)
(□′)

1 − q
−(ℓ

(̃µ|η)+1)
(□)

t
−a

(̃µ|η)
(□) = 1 − q

−(ℓ
(̃µ|η)+1)

(□)
t
−(a

(̃µ|η)
(□)+gs)

1 − q
−(ℓ

(̃µ|η)+1)
(□)

t
−a

(̃µ|η)
(□)

So the product of rational functions cancels exactly with the box’s contribution to
E∗

3 . Looking at the corresponding contribution of the box to j3, we have

1 − q
ℓ

(̃λ|γ)
(□′)+1

t
a

(̃λ|γ)
(□′)+1

1 − q
ℓ

(̃µ|η)
(□)+1

t
a

(̃µ|η)
(□)+1 = 1 − qℓ(□)+1ta(□)+1+gs

1 − qℓ(□)+1ta(□)+1

= 1 − qℓ(□)+1ta(□)+1+gs

1 − qℓ(□)+1ta(□)+1+(gs−1) · · · 1 − qℓ(□)+1t(a(□)+1)+1

1 − qℓ(□)+1ta(□)+1

= ηa1 − ηa1 · qℓ(□)+1ta(□)+1+gs

ηa1 − ηa1 · qℓ(□)+1ta(□)+(gs−1) · · ·
ηags

− ηags
· qℓ(□)+1t(a(□)+1)+1

ηags
− ηags

· qℓ(□)+1ta(□)+1

= ηa1 − t · ηtu

ηa1 − ηtu

· · ·
ηags

− t · ηtu

ηags
− ηtu

.

Altogether, between the two cases, every term from j3 and E∗
3 , and every eigenvalue

rational function in the left side of (44) has been either cancelled or converted to the
form in the right side of the equation. □

Proposition 5.2.

j4 · j5 · E∗
4 · E∗

5 ·
k∏

j=tr+1

q−1µ̃h − tηj

q−1µ̃h − ηj

=
k∏

j=tr+1

(q−1t)µ̃h − ηj

(q−1)µ̃h − ηj

·
∏

□∈Group 5′
E

□=(h,i)
i̸=µ̃h

1 − q
−ℓ

(̃µ|η)
(□)

t
−ã

(̃µ|η)
(□)

1 − q
−(ℓ

(̃µ|η)
(□)+1)

t
−a

(̃µ|η)
(□) ·

(
1

1 − t

)
·

 1

1 − q−1t
−a

(̃µ|η)
(h,µ̃h)



(45)

Proof. See Appendix D. The proof uses the same techniques as Proposition 5.1. □
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5.5. Conversion of p2 terms.

Proposition 5.3. The eigenvalue function from p2 can be rewritten,

h−1∏
j=1

µ̃h − tµ̃j

µ̃h − µ̃j

=
∏

□=(h,s)∈Group 5′
j

s ̸=µ̃h

1 − q
−ℓ

(̃µ|η)
(□)

t
−ã

(̃µ|η)
(□)+gs

1 − q
−ℓ

(̃µ|η)
(□)

t
−ã

(̃µ|η)
(□)

·
∏

d
(̃µh+1)

(µ̃)

1 − q
ℓ

(̃µ|η)
(□)+1

t
a

(̃µ|η)
(□)+1

1 − q
ℓ

(̃µ|η)
(□)+1

t
a

(̃µ|η)
(□)

where gs = #{i | µ̃i = s}

Proof. Detail omitted, the process is identical to the previous 2 proofs. □

Next, we can cancel most of the Group 5′
j product from Proposition 5.2 and Propo-

sition 5.3.

Proposition 5.4.

∏
□∈Group 5′

E

i ̸=µ̃h

1 − q
−ℓ

(̃µ|η)
(□)

t
−ã

(̃µ|η)
(□)

1 − q
−(ℓ

(̃µ|η)
(□)+1)

t
−a

(̃µ|η)
(□) ·

∏
□=(h,s)∈Group 5′

j

s̸=µ̃h

1 − q
−ℓ

(̃µ|η)
(□)

t
−ã

(̃µ|η)
(□)+gs

1 − q
−ℓ

(̃µ|η)
(□)

t
−ã

(̃µ|η)
(□)

·

 1

1 − q−1t
−a

(̃µ|η)
(h,µ̃h)

 = 1

1 − q
−(ℓ

(̃µ|η)
(h,1)+1)

t
−a

(̃µ|η)
(h,1)

Proof. The left product numerator and right product denominator cancel directly.
The rest comes immediately from the observation that for a box □ = (h, i) in the left
product and □′ = (h, i + 1) in the right product,

ã(µ̃|η)(□) − gs = a(µ̃|η)(□
′)

ℓ(µ̃|η)(□) = ℓ(µ̃|η)(□
′) + 1.

So the contributing terms for each pair of boxes □ and □′ in the left and right products
cancel, and what’s left is the contribution for the box (h, 1) in the left product. □

There is also a small cancellation with one of the terms left over from Proposi-
tion 5.2,

Proposition 5.5.
µ̃h − t−n+1

1 − q
−(ℓ

(̃µ|η)
(h,1)+1)

t
−a

(̃µ|η)
(h,1) = qµ̃ht

−ℓ′

(̃µ|η)
(h)

Proof. Again, the approach here is the same as the other eigenvalue conversions. The
only important thing to note is this makes use of the identity,

ℓ′
(µ̃|η)(h) = n − a(µ̃|η)(h, 1) − 1,

which comes from comparing the columns counted in a(µ̃|η)(h, 1) and in ℓ′
(µ̃|η)

(h) in
the same way we have done up to this point. □

We have one more major cancellation to compute.
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Proposition 5.6.

j1 · 1 − tm+1

1 − t
·

∏
d

(̃µh+1)
(µ̃)

1 − q
ℓ

(̃µ|η)
(□)+1

t
a

(̃µ|η)
(□)+1

1 − q
ℓ

(̃µ|η)
(□)+1

t
a

(̃µ|η)
(□) = 1

Proof. Recall the formula for j1,

j1 =
∏

□∈Group 1′
j

1 − qℓ(µ−|η)(□)t̃a(µ−|η)(□)

1 − qℓ(µ−|η)(□)t̃a(µ−|η)(□)+1
,

where Group 1′
j is d

µ̃h
(µ̃) but excluding the newly-added box. The cancellation occurs

by breaking this product into two pieces. The first will be those boxes in Group 1′
j

which have no boxes above them (i.e., boxes in columns of height µ̃h), and the second
is those which have boxes above them.

If we consider first the boxes which have no boxes above them, notice each of them
has 0 legs, and the number of modified arms in ã(µ−|η)(□) are 1, 2, . . . , m, where
m = #{1 ⩽ i ⩽ n − k | µ̃i = µ̃1} − 1. The contribution of all those boxes to j1 is then

1 − t

1 − t2 · · · 1 − tm

1 − tm+1 .

So those contributions cancel with 1−tm+1

1−t . For the remaining boxes, we compare the
contribution of one of the remaining boxes □ = (i, j) in the Group 1′

j product with
the corresponding box above it □′ in the d(µ̃h+1)(µ̃) product. The diagram (µ− | η)
has boxes of height µ̃h to the left of i, which means they are counted in the modified
arm of □, while (µ̃ | η) has boxes of height µ̃h to the right of □′, which are counted in
the arm of □′. All other columns are counted identically in ã(µ−|η)(□) and a(µ̃|η)(□

′).
The powers of q match as well, with the extra leg accounted for in the +1 on the
q-powers of the d(µ̃h+1)(µ̃) product. Everything cancels as desired. □

Considering all the cancellations up to this point, we state the final cancelled form
of the expansion of e1[x1, . . . , xn−k]J(λ|γ).

Theorem 5.7. The coefficients in the expansion,

e1[x1, . . . , xn−k]J(λ|γ) =
∑

(µ|η)∈M(λ|γ)

A(λ|γ)
(µ|η)J(µ|η),

are given by the formula,

(46) A(λ|γ)
(µ|η) =

∏
□∈d

(̃λn−k+1)
(λ−)

t − qℓ(λ−|γ)(□)+1ta(λ−|γ)(□)+1

1 − qℓ(λ−|γ)(□)+1ta(λ−|γ)(□)+1 · j2 · p′
I1

·
(

1
1 − t

)

·(q−µ̃h+1) · (λ̃ | γ)n−k

where p′
I1

is the modified pI1 ,

p′
I1

:=
(

(t − 1)q−1µ̃h

q−1µ̃h − ηtr

)
r−1∏
u=1

(
(t − 1)ηtu+1

ηtu+1 − ηtu

)
k∏

j=tr+1

(
(q−1t)µ̃h − ηj

q−1µ̃h − ηj

)

·
r∏

u=1

tu−1∏
j=tu−1+1

(
tηtu

− ηj

ηtu
− ηj

)
,
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with 0 = t0 < t1 < · · · < tr < tr+1 = k + 1, and we recall

j2 =
∏

□∈Group 2j

1 − qℓ(λ−|γ)(□)t̃a(λ−|γ)(□)+1

1 − qℓ(λ−|γ)(□)+1t̃a(λ−|γ)(□)+1+mj−1(η)
,

where Group 2j is the column that is moved from the symmetric part of the diagram
to the nonsymmetric part.

We end with the following example of a coefficient A(λ|γ)
(µ|η) using Corollary 4.13

and (46).

Example 5.8. We will compute A(3,1,1 | 1,0,1)
(3,2,1 | 1,0,1) in two ways. First, note I1 = {1, 3}, and

(λ̃ | γ) = (1, 3, 1 | 1, 0, 1), (µ̃ | η) = (1, 3, 2 | 1, 0, 1).
The eigenvalues are

(λ̃ | γ) = (qt−4, q3, qt−3 | qt−2, t−5, qt−1), (µ̃ | η) = (qt−4, q3, q2t−1 | qt−3, t−5, qt−2)

The underlined terms in (µ̃ | η) are µ̃h, ηt1 , and ηt2 = ηtr
respectively. The following

diagrams are used to compute j(λ|γ) and j(µ|η) respectively, filled with (leg,arm),
and arms are modified in the symmetric columns and standard in the nonsymmetric
columns:

0, 0 0, 1 2, 4

1, 0

0, 0

0, 3 0, 3 0, 0 1, 3 2, 4

1, 1

0, 0

0, 0

0, 2 0, 2

Cancelling the gray box terms which are the same in the numerator and denomi-
nator, we get

j(λ|γ)

j(µ|η)
= (1 − qt)(1 − t2)(1 − qt4)(1 − qt4)

(1 − t)(1 − qt2)(1 − qt4)(1 − qt3)(1 − qt3) .

Next we build the diagrams for (λ̃ | γ) and (µ̃ | η) respectively, filled with (leg,arm)
with all standard (non-modified) arms:

0, 1 2, 5 0, 2

1, 3

0, 0

0, 3 0, 3 0, 1 2, 5 1, 4

0, 21, 3

0, 1

0, 2 0, 2

Again cancelling boxes with the same arms/legs in gray, we find,

E∗
(λ̃|γ)

(λ̃ | γ)

E∗
(µ̃|η)

(µ̃ | η)
= (qt−1)1

(q2t−1)2
(1 − q−1)(1 − q−1t−3)(1 − q−1t−3)

(1 − q−1t−1)(1 − q−1t−2)(1 − q−1t−2)(1 − q−2t−4)

= q−3
(

1 − q

1 − qt

)(
1 − qt3

1 − qt2

)(
1 − qt3

1 − qt2

)
1

1 − q−2t−4
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Then we compute p2 and pI1 ,

p2 = 1 − t

1 − t
(q2t−1 − t−5)

(
q2t−1 − qt−3

q2t−1 − qt−4

)(
q2t−1 − q3t

q2t−1 − q3

)
= q2t−1(1 − q−2t−4) · t ·

(
1 − qt2

1 − qt3

)(
1 − qt2

1 − qt

)
pI1 =

(
(t − 1)qt−1

qt−1 − qt−2

)(
(t − 1)qt−2

qt−2 − qt−3

)(
qt−2 − t−4

qt−2 − t−5

)
= t3 1 − qt2

1 − qt3

Finally, we find f
λ̃,(λ|γ)/f

µ̃,(µ|η) = (1−q2t2)(1−qt)
(1−q2t3)(1−q) . Combining all these terms as well

as (λ̃ | γ)n−k = qt−3 as per Corollary 4.13, and cancelling as far as possible, we obtain:

A(3,1,1 | 1,0,1)
(3,2,1 | 1,0,1) = (1 − q2t2)(1 − t2)(1 − qt4)

(1 − q2t3)(1 − t)(1 − qt3)(1 − qt3)
The computation using (46) is substantially easier. Since λ̃n−k = 1, the product

over d(λ̃n−k+1)(λ̃) = d2(λ̃) only has one box, and

∏
□∈d

(̃λn−k+1)
(λ−)

t − qℓ(λ−|γ)(□)+1ta(λ−|γ)(□)+1

1 − qℓ(λ−|γ)(□)+1ta(λ−|γ)(□)+1 = t − q2t3

1 − q2t3 = t
1 − q2t2

1 − q2t3 .

Next, j2 also only has a single box, namely the box (2, 1) in (λ− | γ), and

j2 =
∏

□∈Group 2j

1 − qℓ(λ−|γ)(□)t̃a(λ−|γ)(□)+1

1 − qℓ(λ−|γ)(□)+1t̃a(λ−|γ)(□)+1+mj−1(η)
= 1 − t2

1 − qt3 .

That leaves p′
I1

, which we compute:

p′
I1

=
(

(t − 1)qt−1

qt−1 − qt−2

)(
(t − 1)qt−2

qt−2 − qt−3

)(
qt−1 − t−5

qt−2 − t−5

)
= t2 1 − qt4

1 − qt3

Now, including again λ̃n−k = qt−3, the extra 1
1−t , and q−µ̃h+1 = q−1, we use (46),

A(3,1,1 | 1,0,1)
(3,2,1 | 1,0,1) = (1 − qt4)(1 − q2t2)(1 − t2)

(1 − qt3)(1 − q2t3)(1 − qt3)(1 − t) .

Appendix A. Proof of (6)
(6): If si(µ) < µ, and u = (i, µi + 1), then

TiEµ = qℓ(u)+1ta(u)(1 − t)
1 − qℓ(u)+1ta(u) Eµ − (t − qℓ(u)+1ta(u))(1 − qℓ(u)+1ta(u)+1)

(1 − qℓ(u)+1ta(u))2 Esi(µ),

where all arms and legs are in terms of the diagram of si(µ).

Proof. Suppose µi < µi+1, so si(µ) < µ. Using (4), note that T −1
i = 1

t (Ti + 1 − t).
Then since si(µ) < si(si(µ)), we can apply (5) with si(µ) to obtain,

TiEsi(µ) = Eµ + t − 1
1 − qℓ(u)+1ta(u) Esi(µ),
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where the arms and legs are with respect to the diagram of si(µ). Multiplying both
sides on the left by T −1

i and simplifying, we get,

Esi(µ) = 1
t
(Ti + 1 − t)(Eµ + t − 1

1 − qℓ(u)+1ta(u) Esi(µ))

tEsi(µ) = TiEµ + (1 − t)Eµ + t − 1
1 − qℓ(u)+1ta(u)

(
TiEsi(µ) + (1 − t)Esi(µ)

)
tEsi(µ) = TiEµ + (1 − t)Eµ

+ t − 1
1 − qℓ(u)+1ta(u)

(
Eµ + t − 1

1 − qℓ(u)+1ta(u) Esi(µ) + (1 − t)Esi(µ)

)
TiEµ =

(
t − 1 + 1 − t

1 − qℓ(u)+1ta(u)

)
Eµ

+
(

t − (t − 1)2

(1 − qℓ(u)+1ta(u))2 − (t − 1)(1 − t)
1 − qℓ(u)+1ta(u)

)
Esi(µ)

TiEµ = qℓ(u)+1ta(u)(1 − t)
1 − qℓ(u)+1ta(u) Eµ − (t − qℓ(u)+1ta(u))(1 − qℓ(u)+1ta(u)+1)

(1 − qℓ(u)+1ta(u))2 Esi(µ) □

Appendix B. Proof of Lemma 4.10
Lemma 4.10: If I1 is maximal with respect to (γ | λ̃), then pI1

(
(η | µ̃)

)
̸= 0.

Proof. We will prove the contrapositive, so assume pI1

(
(η | µ̃)

)
= 0. This implies

either
(1) ηtu

= tηj for some u ∈ [1, r] and j ∈ [tu + 1, tu+1 − 1], or
(2) q−1µ̃m+1 = tηj for some j ∈ [1, t1 − 1].

In the first case, if ηtu
= tηj , the powers of q being equal means columns tu and j have

the same height, so ηtu
= ηj . Let I ′

1 := I1 ∪ {j}, and let d′
I be the action associated

with I ′
1. We will show that dI(γ | ν) = d′

I(γ | ν). In that context, we have γj = γtu+1 .
The only positions affected by the addition of j to I1 are the positions j and t1. And
in these positions,

(dI(γ | ν))tu
= (γ | ν)tu+1

and (d′
I(γ | ν))tu

= (γ | ν)j

(dI(γ | ν))j = (γ | ν)j and (d′
I(γ | ν))j = (γ | ν)tu+1

.

All entries of dI(γ | ν) and d′
I(γ | ν) agree, so I1 is not maximal.

In the second case, since q−1µ̃m+1 = tηj for some j ∈ [1, t1−1], again using column
height, we have ηj = µ̃m+1 − 1. In terms of (γ | ν), because µ̃m+1 = µ̃vs+1, this
implies γj = γt1 after applying the definition of dI . By the same argument as in the
first case, dI(γ | ν) and d′

I(γ | ν) are identical, hence I1 is not maximal with respect
to (γ | ν). □

Appendix C. Proof of Theorem 4.14
C.1. Setup. We return to Baratta conventions for the computation. We are therefore
looking to find coefficients D

(γ|λ−)
(η|µ−) for the expansion,

(47) zjP †
(γ|λ−) =

∑
|(η|µ−)|=|(λ|γ)|+1

µ1⩾ ··· ⩾µn−k

D
(γ|λ−)
(η|µ−) · P †

(η|µ−),

where 1 ⩽ j ⩽ k. Then passing to the interpolation polynomial computation as before,

zjP †
(γ|λ−) = Ψ−1

(
Z̃jΞ−1

j e+E∗
(γ|λ−)

)
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= Ψ−1

(∑
ν∼λ

fν,(γ|λ−)Hj · · · Hn−1ΦH1 · · · Hj−1Ξ−1
j E∗

(γ|ν)

)
.

Taking Ψ of both sides, using (38) for the left side, and expanding P †
(η|µ−) into the

nonsymmetric Macdonald basis, this becomes
(48)∑
(η|µ−)

∑
µ′∼µ

D
(γ|λ−)
(η|µ−)fµ′,(η|µ−)·E∗

(η|µ′) =
∑
ν∼λ

fν,(γ|λ−)Hj · · · Hn−1ΦH1 · · · Hj−1Ξ−1
j E∗

(γ|ν)

C.2. Evaluation. In spite of some of the Hi operators being shuffled, we will still
evaluate at the same (η | µ̃) used in Section 4.5. With the vanishing property of the
interpolation polynomials, this reduces the left side of (48) to

D
(γ|λ−)
(η|µ−) · f

µ̃,(η|µ−) · E∗
(η|µ̃)

(
(η | µ̃)

)
,

and the right side becomes∑
ν∼λ

fν,(γ|λ−) ·
(

(γ | ν)j

)
· Hj · · · Hn−1ΦH1 · · · Hj−1E∗

(γ|ν)

(
(η | µ̃)

)
.

Prior to simplifying the product of operators and sum over ν, the formula for D
(γ|λ−)
(η|µ−)

is then,

(49) D
(γ|λ−)
(η|µ−) =

∑
ν∼λ

fν,(γ|λ−)

f
µ̃,(η|µ−)

·
(

(γ | ν)j

)
·

Hj · · · Hn−1ΦH1 · · · Hj−1E∗
(γ|ν)

(
(η | µ̃)

)
E∗

(η|µ̃)

(
(η | µ̃)

)
The question that remains is, for which ν and specific actions of each Hi does the
term in this sum not vanish?

C.3. Nonvanishing Polynomials. The goal in this section is to identify the terms
in the expansion,

Hj · · · Hn−1ΦH1 · · · Hj−1E∗
(γ|ν)(z),

which do not vanish when the function is evaluated at (γ | ν). Begin by defining three
indexing sets,

I ′
1 ⊆ [1, j − 1], I ′

2 ⊆ [k + 1, n − 1], I ′
3 ⊆ [j, k].

Also, label the sets as follows:
I ′

1 = {t1, . . . , tr}, I ′
2 = {v1, . . . , vs}, I ′

3 = {y1, . . . , yc}.

Note that like before, it is possible for some of these sets to be empty. Expanding out
the product,

[a(zj , zj+1) + b(zj , zj+1)sj ] · · · [a(zn−1, zn) + b(zn−1, zn)sn−1] (zn − t−n+1)∆
· [a(z1, z2) + b(z1, z2)s1] · · · [a(zj−1, zj) + b(zj−1, zj)sj−1] E∗

(γ|ν)(z),

term by term results in some choice of either a(zi, zi+1) or b(zi, zi+1)si for each 1 ⩽
i ⩽ n−1. Then the sets I ′

1, I ′
2, and I ′

3 are those indices for which we choose a(zi, zi+1).
Thus a single term in the expansion will be of the form,

p∗
I′

1
· p∗

2 · p∗
I′

3
· E∗

(γ|ν) (I ′
3(I ′

2(I ′
1(z)))) .

We label these p∗ to distinguish from pI′
1

and p2 already used, as we will be comparing
these new functions to pI1 and p2 after further computation. Also, note once again
the use of p∗

2 rather than p∗
I′

2
, as we will see there is an explicit form for I ′

2. Rather
than identify how each set permutes z separately, we combine it into a single action:
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I ′
3(I ′

2(I ′
1(z)))ℓ :=



zℓ if ℓ /∈ I ′
1 and 1 ⩽ ℓ ⩽ j − 1

ztℓ−1 if ℓ = ti and i ̸= 1
q−1zvs+1 if ℓ = t1

 ℓ ⩽ j

zℓ if k + m + 2 ⩽ ℓ
zℓ−1 if k + 2 ⩽ ℓ ⩽ k + m + 1

}
ℓ ⩾ k + 2

zℓ if ℓ − 1 /∈ I ′
3 and j + 1 ⩽ ℓ ⩽ k

zyi−1+1 if ℓ = yi + 1 and i ⩾ 2
zyc+1 if ℓ = k + 1

 j + 1 ⩽ ℓ ⩽ k + 1

This is written with the assumption that I ′
2 = [k+1, k+m], where m is the number

of columns of newly-increased height in µ. This comes from the exact same argument
as in the elementary symmetric polynomial multiplication, as I2 is the same there,
and we are evaluating at the same (η | µ̃). In cyclic notation, the action I ′

3(I ′
2(I ′

1(z)))
almost acts like the cycle,

(k + m + 1, k + m, . . . , k + 1, yc + 1, yc−1 + 1, . . . , y1 + 1, j, tr, tr−1, . . . , t1),

except that zt1 is sent to q−1zk+m+1. If either of I ′
1 or I ′

3 is empty, the relevant entries
are simply omitted from the list. Also, some of the terms may actually be the same,
e.g., it is possible that k ∈ I ′

3 so that k + 1 = yc + 1, so one of those terms would be
omitted from the cycle in that case.

We would like to find an action d′
I for which

d′
I(γ | ν) = (η | µ) if and only if I ′

3

(
I ′

2

(
I ′

1

(
(η | µ)

)))
= (γ | ν).

This action is in some sense the one that ‘undoes’ the permutation above. The
following is the action which achieves this aim:

(d′
I(γ | ν))ℓ :=



(γ | ν)ℓ if 1 ⩽ ℓ ⩽ j − 1 and ℓ /∈ I ′
1

(γ | ν)ti+1
if ℓ = ti and i ̸= r

(γ | ν)j if ℓ = tr

(γ | ν)y1+1 if ℓ = j

 ℓ ⩽ j

(γ | ν)ℓ if k + m + 2 ⩽ ℓ
(γ | ν)ℓ+1 if k + 1 ⩽ ℓ ⩽ k + m and
((γ | ν)t1

) + 1 if ℓ = k + m + 1

 k + 1 ⩽ ℓ

(γ | ν)ℓ if j + 1 ⩽ ℓ ⩽ k and ℓ − 1 /∈ I ′
3

(γ | ν)yi+1+1 if ℓ = yi + 1 and 1 ⩽ i < c

(γ | ν)k+1 if ℓ = yc + 1

 j + 1 ⩽ ℓ ⩽ k

We are looking to evaluate E∗
(γ|ν)

(
I ′

3

(
I ′

2

(
I ′

1

(
(η | µ̃)

))))
, so we must identify the

possible I ′
1, I ′

2, and I ′
3, as well as ν, such that

d′
I(γ | ν) = (η | µ̃).

Therefore we find that,

(ν2, . . . , νn−k) = (µ̃2, . . . , µ̃n−k).
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Using the action d′
I , we find that ν1 = (η | µ̃)yc+1. We give this specially-chosen ν the

name ν̃, so
ν̃ = (ηyc+1, µ̃2, . . . , µ̃n−k).

It can be checked using exactly the same arguments as in Section 4 that ν̃ is the only
permutation of λ which has nonzero contribution to (49), and that there are unique
(maximal) I ′

1, I ′
2, and I ′

3 for which d′
I(γ | ν̃) = (η | µ̃).

Here we note that this choice of indexing causes ν̃ to be the same as λ̃.

C.4. Coefficient Calculations. Just like in Section 4.5, the remaining goal is to
compute p∗

I′
1

(
(η | µ̃)

)
, p∗

2

(
(η | µ̃)

)
, and p∗

I′
3

(
(η | µ̃)

)
, and our approach here will be

the same as well. We start with p∗
2

(
(η | µ̃)

)
, which is the simplest.

The product of operators which contribute to p∗
2 is Hk+1 · · · Hn−1(zn − t−n+1).

The only difference between this and the formula we found for p2 is that rather than

the sum
k+m+1∑
j=k+1

Hj · · · Hk+m which acted as
m∑

i=0
ti, we only have the longest product,

Hk+1 · · · Hk+m, which acts as tm. The rest is exactly identical, and so we obtain,

p∗
2 = tm · (µ̃m+1 − t−n+1) ·

n−k∏
j=m+2

µ̃m+1 − t · µ̃j

µ̃m+1 − µ̃j

,

or equivalently,

p∗
2 = tm · 1 − t

1 − tm+1 · p2.

Next, we deal with p∗
I′

3
. We are working with the following product:

Hj · · · Hk = [a(zj , zj+1) + b(zj , zj+1)sj ] · · · [a(zk, zk+1) + b(zk, zk+1)sk]

For the choice of I ′
3 = {y1, . . . , yc} ⊆ [j, k], consider the contribution from some Hyi

,
which acts as a(zyi , zyi+1). The relevant part of the full Hj . . . Hk which modifies
a(zyi , zyi+1) is:

syi−1+1 · · · syi−1a(zyi , zyi+1) = a(zyi−1+1, zyi+1)syi−1+1 · · · syi−1,

if i > 1, and if i = 1, the term y0 should be treated as j − 1. Similarly, for some
ℓ ∈ [j, k] for which yi < ℓ < yi+1, we find Hℓ acts as b(zℓ, zℓ+1), and the relevant
portion of the full product is:

syi+1 · · · sℓ−1b(zℓ, zℓ+1)sℓ = b(zyi+1, zℓ+1)syi+1 · · · sℓ.

If ℓ < y1, then again, consider y0 < ℓ < y1 with y0 = j − 1. Additionally, if yc ̸= k,
then the remaining operators on the right, Hyc+1 · · · Hk, act as(

k+1∏
u=yc+2

b(zyc+1, zu)
)

syc+1 · · · sk.

Taking all the contributions from Hj · · · Hk(z) together, we obtain:

p∗
I′

3
(z) =

c∏
i=1

a
(
zyi−1+1, zyi+1

)
·

k+1∏
u=yc+2

b(zyc+1, zu) ·
c∏

i=1

yi∏
u=yi−1+2

b
(
zyi−1+1, zu

)
.

The computation for p∗
I′

1
is similar to pI1 . We give the formula without proof, as

the process is like what we did for p∗
I′

3
, and again refer to [1] where the derivation is
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almost identical:

p∗
I′

1
(z) = a(q−1zk+m+1, zt1)·

r−1∏
i=1

a(zti
, zti+1)·

t1−1∏
u=1

b(q−1zk+m+1, zu)·
r∏

i=1

ti+1−1∏
u=ti+1

b(zti
, zu),

where tr+1 := j + 1. To unify the formulas of p∗
I′

1
and p∗

I′
3

and compare them to pI1 ,
we use the following indexing:

I13 := {(ty)1, . . . , (ty)c+r} such that (ty)i =
{

ti if 1 ⩽ i ⩽ r

yi−r + 1 if r + 1 ⩽ i ⩽ r + c
.

Expressing p∗
I′

3
in these terms and rearranging the products turns this into,

a(zj , z(ty)r+1) ·
r+c−1∏
i=r+1

a
(
z(ty)i

, z(ty)i+1

)
·

(ty)r+1−1∏
u=j+1

b(zj , zu) ·
r+c∏

i=r+1

(ty)i+1−1∏
u=(ty)i+1

b
(
z(ty)i

, zu

)
,

with (ty)r+c+1 = k + 2.
Now the product p∗

I′
1

· p∗
I′

3
can be simplified to,

p∗
I′

1
(z)·p∗

I′
3
(z) = a(q−1zk+m+1, zt1) ·

a(zj , z(ty)r+1)
a(z(ty)r

, z(ty)r+1)

r+c−1∏
i=1

a(z(ty)i
, z(ty)i+1)

·
t1−1∏
u=1

b(q−1zk+m+1, zu) ·

(ty)r+1−1∏
u=j+1

b(zj , zu)

(ty)r+1−1∏
u=(ty)r+1

b(z(ty)r
, zu)

·
r+c∏
i=1

(ty)i+1−1∏
u=(ty)i+1

b
(
z(ty)i

, zu

)

Written this way, it is easier to compare to pI1 where I1 = {t1, . . . , tr, y1+1, . . . , yc+1}:

p∗
I′

1
(z) · p∗

I′
3
(z) = pI1(z) ·

(
a(zj , z(ty)r+1)

a(z(ty)r
, z(ty)r+1)

)
·


(ty)r+1−1∏

u=j+1
b(zj , zu)

(ty)r+1−1∏
u=(ty)r+1

b(z(ty)r
, zu)

 .

Expanding out the a’s and b’s,

p∗
I′

1
(z) · p∗

I′
3
(z) = pI1(z) ·

zj(z(ty)r
− z(ty)r+1)

z(ty)r
(zj − z(ty)r+1) ·

(ty)r+1−1∏
u=j+1

zj − tzu

zj − zu
·

(ty)r+1−1∏
u=(ty)r+1

z(ty)r
− zu

z(ty)r
− tzu

.

And finally, evaluating p∗
I′

1

(
(η | µ̃)

)
· p∗

I′
3

(
(η | µ̃)

)
, we find,

p∗
I′

1

(
(η | µ̃)

)
· p∗

I′
3

(
(η | µ̃)

)
= pI1

(
(η | µ̃)

)
·

ηj(ηtr
− ηy1)

ηtr
(ηj − ηy1) ·

y1−1∏
u=j+1

ηj − tηu

ηj − ηu

·
y1−1∏

u=tr+1

ηtr
− ηu

ηtr
− tηu

.

It is worth noting that if tr = j, then this simplifies to just pI1

(
(η | µ̃)

)
. Combining

all these simplifications with (49), using the vanishing property of the interpolation
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polynomials, and comparing with the result from Theorem 4.9, we obtain the expres-
sion:

D
(γ|λ−)
(η|µ−) =

f
λ̃,(γ|λ−)

f
µ̃,(η|µ−)

·
(

(γ | ν)j

)
· p∗

I′
1

· p∗
2 · p∗

I′
3

·
E∗

(γ |̃λ)

(
(γ | λ̃)

)
E∗

(η|µ̃)

(
(η | µ̃)

)
= C

(γ|λ−)
(η|µ−) ·

(γ | ν)j

(γ | ν)k+1
· tm · 1 − t

1 − tm+1 ·
ηj(ηtr

− ηy1)
ηtr

(ηj − ηy1)

·
y1−1∏

u=j+1

ηj − tηu

ηj − ηu

·
y1−1∏

u=tr+1

ηtr
− ηu

ηtr
− tηu

.

Appendix D. Proof of Proposition 5.2
Proposition 5.2

j4 · j5 · E∗
4 · E∗

5 ·
k∏

j=tr+1

q−1µ̃h − tηj

q−1µ̃h − ηj

=
k∏

j=tr+1

(q−1t)µ̃h − ηj

(q−1)µ̃h − ηj

·
(

1
1 − t

)

·
∏

□∈Group 5′
E

□=(h,i)
i ̸=µ̃h

1 − q
−ℓ

(̃µ|η)
(□)

t
−ã

(̃µ|η)
(□)

1 − q
−(ℓ

(̃µ|η)
(□)+1)

t
−a

(̃µ|η)
(□) ·

 1

1 − q−1t
−a

(̃µ|η)
(h,µ̃h)



Proof. We approach the proof of this proposition much in the same way as Propo-
sition 5.1. The major difference will be that the boxes contributing to j5 now have
the modified arm lengths. This naturally breaks into two cases again, the first case
cancelling very similarly to those in Proposition 5.1, and the second one which leaves
us with the extra diagram statistic terms on the right side of the equation.

Before getting into the cases, we point out that the final two fractions in the right
side of the equation, 1

1 − t
and 1

1 − q−1t
−a

(̃µ|η)
(h,µ̃h)

, are the contributions of the

newly added box (h, µ̃h) to j5 and E∗
5 respectively. These do not cancel with the

eigenvalue rational functions like the terms from other boxes do.

Case 1: Let j > tr, and suppose that ηj ⩾ µ̃h. We will show that the term coming

from j4 for the box (j + n − k, µ̃h) cancels with
q−1µ̃h − tηj

q−1µ̃h − ηj

, and the corresponding

term coming from E∗
4 replaces it with

(q−1t)µ̃h − ηj

(q−1)µ̃h − ηj

. The first observation is that

ηj = µ̃h + ℓ(µ̃|η)(□). As we did before, we write ℓ′
j and ℓ′

h to mean ℓ′
(µ̃|η)

(j + n − k)
and ℓ′

(µ̃|η)
(h) respectively. The following table shows column heights where ℓ′

h and ℓ′
j

differ:
Counted in ℓ′

j and ℓ′
h Counted only in ℓ′

h Not counted
Left of both > ηj µ̃h + 1, . . . , ηj ⩽ µ̃h

Between µ̃h and ηj > ηj µ̃h, . . . , ηj < µ̃h

Right of both ⩾ ηj µ̃h, . . . , ηj − 1 < µ̃h

Like before, ℓ′
h also counts the column ηj , and a(µ̃|η)(□) counts the column µ̃h.

Superficially, there appear to be two differences between the boxes only counted in ℓ′
h
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and a(µ̃|η)(□). The first is that a(µ̃|η)(□) counts boxes left of µ̃h of height µ̃h, and ℓ′
h

does not, but by construction, no such columns exist. The second is that only a(µ̃|η)(□)
counts columns to the right of ηj of height µ̃h − 1, but such a column does not exist
by maximality of I1. This means we have ℓ′

h = ℓ′
j + a(µ̃|η)(□). Comparing eigenvalues,

we also get ηj = µ̃h · q
ℓ

(̃µ|η)
(□)

t
a

(̃µ|η)
(□)

, again with □ = (j, µ̃h). The comparison leads
to the following conversion:

q−1µ̃h − tηj

q−1µ̃h − ηj

= q−1µ̃h − µ̃h · q
ℓ

(̃µ|η)
(□)

t
a

(̃µ|η)
(□)+1

q−1µ̃h − µ̃h · q
ℓ

(̃µ|η)
(□)

t
a

(̃µ|η)
(□)

= 1 − q
ℓ

(̃µ|η)
(□)+1

t
a

(̃µ|η)
(□)+1

1 − q
ℓ

(̃µ|η)
(□)+1

t
a

(̃µ|η)
(□)

Then the power of t in the denominator can be modified, using the fact that
a(µ̃|η)(j, µ̃h) counts one more column than a(λ̃|γ)(j, µ̃h), which is the column which
wraps around and becomes µ̃h. As a result,

q−1µ̃h − tηj

q−1µ̃h − ηj

= 1 − q
ℓ

(̃µ|η)
(□)+1

t
a

(̃µ|η)
(□)+1

1 − q
ℓ

(̃µ|η)
(□)+1

t
a

(̃λ|γ)
(□)+1 ,

which cancels identically with the related term for this box in j4. And the rational
function coming from the box in E∗

4 can be converted back into an eigenvalue function,

1 − q
−(ℓ

(̃λ|γ)
(□)+1)

t
−a

(̃λ|γ)
(□)

1 − q
−(ℓ

(̃µ|η)
(□)+1)

t
−a

(̃µ|η)
(□) = 1 − q

−(ℓ
(̃µ|η)

(□)+1)
t
−(a

(̃µ|η)
(□)−1)

1 − q
−(ℓ

(̃µ|η)
(□)+1)

t
−a

(̃µ|η)
(□)

=
ηj − ηj · (q−1t)q

−ℓ
(̃µ|η)

(□)
t
−a

(̃µ|η)
(□)

ηj − ηj · (q−1)q
−ℓ

(̃µ|η)
(□)

t
−a

(̃µ|η)
(□)

=
ηj − (q−1t)µ̃h

ηj − (q−1)µ̃h

.

In summary, this case takes care of:
(1) All terms in j4 and E∗

4

(2) The rational functions
q−1µ̃h − tηj

q−1µ̃h − ηj

on the left and
ηj − (q−1t)µ̃h

ηj − (q−1)µ̃h

on the

right of the equation for all values j such that ηj ⩾ µ̃h.

Case 2: Like case 1, the work in this case mirrors case 2 of the proof of
Proposition 5.1. So let (h, s) be a box in the diagram (µ̃ | η) with s < µ̃h. Let
ηa1 , . . . , ηags−1

be the columns of height s − 1, with tr < a1 < · · · < ags−1 ,
so gs−1 = #{i > tr | ηi = s − 1}. Suppose ηj ∈ {ηa1 , . . . , ηags−1

}. Let □ = (h, ηj +1),
or equivalently □ = (h, s). Note that µ̃h = ηj + ℓ(µ̃|η)(□) + 1. Comparing ℓ′

j and ℓ′
h,

we get the following:

Counted in ℓ′
j and ℓ′

h Counted only in ℓ′
j Not counted

Left of both > µ̃h ηj + 1, . . . , µ̃h ⩽ ηj

Between µ̃h and ηj ⩾ µ̃h ηj + 1, . . . , µ̃h − 1 ⩽ ηj

Right of both ⩾ µ̃h ηj , . . . , µ̃h − 1 < ηj
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Additionally, ℓ′
j counts µ̃h. Unlike before, we would like to compare ℓ′

j and ℓ′
h using

the modified arm, ã(µ̃|η)(□). The formula for this is,

ãν(□) := #{1 ⩽ r < i | j ⩽ νr ⩽ νi} + #{i < r ⩽ n | j ⩽ νr < vi}

Like in the previous proof’s case 2, this does not count columns to the right of ηj of
the same height s−1. Taking into account this and the additional column µ̃h counted
in ℓ′

j , we have the relation,

ℓ′
j = ℓ′

h + (ã(µ̃|η)(□) + 1) + #{j < i ⩽ k | ηi = ηj}.

Now we use this information to find eigenvalue relations for each column of
height s − 1,

ηags−1
= µ̃h · q

−(ℓ
(̃µ|η)

(□)+1)
t
−(̃a

(̃µ|η)
(□)+1)

ηags−1−1 = µ̃h · q
−(ℓ

(̃µ|η)
(□)+1)

t
−(̃a

(̃µ|η)
(□)+2)

...

ηa1 = µ̃h · q
−(ℓ

(̃µ|η)
(□)+1)

t
−(̃a

(̃µ|η)
(□)+1+gs−1−1)

Next, we simplify the product of rational functions,

q−1µ̃h − tηags−1

q−1µ̃h − ηags−1

· · ·
q−1µ̃h − tηa1

q−1µ̃h − ηa1

= 1 − q
−ℓ

(̃µ|η)
(□)

t
−ã

(̃µ|η)
(□)

1 − q
−ℓ

(̃µ|η)
(□)

t
−(̃a

(̃µ|η)
(□)+1)

· 1 − q
−ℓ

(̃µ|η)
(□)

t
−(̃a

(̃µ|η)
(□)+1)

1 − q
−ℓ

(̃µ|η)
(□)

t
−(̃a

(̃µ|η)
(□)+2)

· · ·

· 1 − q
−ℓ

(̃µ|η)
(□)

t
−(̃a

(̃µ|η)
(□)+gs−1−1)

1 − q
−ℓ

(̃µ|η)
(□)

t
−(̃a

(̃µ|η)
(□)+gs−1)

= 1 − q
−ℓ

(̃µ|η)
(□)

t
−ã

(̃µ|η)
(□)

1 − q
−ℓ

(̃µ|η)
(□)

t
−(̃a

(̃µ|η)
(□)+gs−1)

Unfortunately, unlike the other cases, this does not fully cancel with the term
coming from E∗

5 . Recall that the contribution of that box to E∗
5 is

1 − q
−ℓ

(̃µ|η)
(□)

t
−(̃a

(̃µ|η)
(□)+gi−1)

1 − q
−(ℓ

(̃µ|η)
(□)+1)

t
−a

(̃µ|η)
(□) .

So the E∗
5 numerator cancels with the rational function denominator, and we are left

with
1 − q

−ℓ
(̃µ|η)

(□)
t
−ã

(̃µ|η)
(□)

1 − q
−(ℓ

(̃µ|η)
(□)+1)

t
−a

(̃µ|η)
(□)

We can do a similar thing with the corresponding rational function on the right
side of the desired equation, (45),

(q−1t)µ̃h − ηags−1

q−1µ̃h − ηags−1

· · ·
(q−1t)µ̃h − ηa1

q−1µ̃h − ηa1
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=
(q−1t)ηags−1

· q
ℓ

(̃µ|η)
(□)+1

t̃
a

(̃µ|η)
(□)+1

− ηags−1

q−1ηags−1
· q

ℓ
(̃µ|η)

(□)+1
t̃
a

(̃µ|η)
(□)+1

− ηags−1

· · ·

·
(q−1t)ηa1 · q

ℓ
(̃µ|η)

(□)+1
t̃
a

(̃µ|η)
(□)+gs−1 − ηa1

q−1ηa1 · q
ℓ

(̃µ|η)
(□)+1

t̃
a

(̃µ|η)
(□)+gs−1 − ηa1

= 1 − q
ℓ

(̃µ|η)
(□)

t̃
a

(̃µ|η)
(□)+1+gs−1

1 − q
ℓ

(̃µ|η)
(□)

t̃
a

(̃µ|η)
(□)+1

.

Observe that this matches identically with the contribution of the box to j5. Then
to summarize our last case, we have accounted for the following parts of the equa-
tion (45):

(1) j5 and E∗
5

(2) The rational functions
q−1µ̃h − tηj

q−1µ̃h − ηj

on the left and
ηj − (q−1t)µ̃h

ηj − (q−1)µ̃h

on the right

of the equation for all values j such that ηj < µ̃h

(3) The extra product with diagram statistics on the right,

∏
□∈Group 5′

E

□=(h,i)
i ̸=µ̃h

1 − q
−ℓ

(̃µ|η)
(□)

t
−ã

(̃µ|η)
(□)

1 − q
−(ℓ

(̃µ|η)
(□)+1)

t
−a

(̃µ|η)
(□) .

That takes care of the remainder of the pieces of (45). □
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