
ALGEBRAIC
 COMBINATORICS

Daniel Tubbenhauer
On rank one 2-representations of web categories
Volume 7, issue 6 (2024), p. 1813-1843.
https://doi.org/10.5802/alco.389

© The author(s), 2024.

This article is licensed under the
CREATIVE COMMONS ATTRIBUTION (CC-BY) 4.0 LICENSE.
http://creativecommons.org/licenses/by/4.0/

Algebraic Combinatorics is published by The Combinatorics Consortium
and is a member of the Centre Mersenne for Open Scientific Publishing

www.tccpublishing.org www.centre-mersenne.org
e-ISSN: 2589-5486

https://doi.org/10.5802/alco.389
http://creativecommons.org/licenses/by/4.0/
https://www.tccpublishing.org/
www.tccpublishing.org
www.centre-mersenne.org
http://www.centre-mersenne.org/


Algebraic Combinatorics
Volume 7, issue 6 (2024), p. 1813–1843
https://doi.org/10.5802/alco.389

On rank one 2-representations of web
categories

Daniel Tubbenhauer

Abstract We classify rank one 2-representations of SL2, GL2 and SO3 web categories. The
classification is inspired by similar results about quantum groups, given by reducing the problem
to the classification of bilinear and trilinear forms, and is formulated such that it can be adapted
to other web categories.

1. Introduction
We give a classification of simple transitive 2-representations of web categories on C-
vector spaces. This classification builds upon and extends results in the classification
of quantum groups and Hopf algebras. The main point is that, even in this very
restricted and semisimple setting, there are infinitely many such 2-representations
and these are essentially impossible to classify explicitly.

1A. Motivation and results. Classification is a central topic in all of mathemat-
ics. In representation theory the most important classification problem is to construct
and compare all simple representations. In higher representation theory, an offspring
of categorification that originates in seminal papers such as [12, 22, 33, 51, 41], the
most crucial classification problem is about the appropriate analog of simple represen-
tations. For example, given a favorite monoidal category, one can ask whether one can
classify its simplest possible module categories. The favorite categories of our choice in
this note are certain diagram categories, simplest possible will mean simple transitive
and classification will mean reduction of the original problem to linear algebra.

Note, however, that linear algebra can still be arbitrarily complicated. The problem
of classifying symmetric and alternating bilinear forms is well-known and has a very
pleasant answer. Less well-known but still doable and nice is the classification of all
bilinear forms. On the other hand, the classification of trilinear forms is tractable for
small dimensions only, even if one restricts to symmetric or alternating forms: the
classification problem is “wilder than wild” [6]. However, for small dimensions there
is indeed a classification of trilinear forms, see e.g. [61, 11, 60].

In this note we will see a similar behavior for the following web categories: the
category of SL2 = SL2(C) webs Web(SL2), the category of GL2 = GL2(C) webs
Web(GL2) and the category of SO3 = SO3(C) webs Web(SO3), and quantum ver-
sions for which the q in the notation will appear. (That we discuss SO3 webs and
not the very similar SL3 webs has historical reasons, see Remark 5B.2 below.) The
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classification problem we have in mind for these categories is to study the easiest
form of actions of these categories on CVect, the category of finite dimensional C-
vector spaces. In the language of [42], we want to classify rank one simple transitive
2-representations of these web categories. (Let us point out that rank one simple tran-
sitive 2-representations are not semisimple in general, but for web categories they are
by Lemma 2.15.)

For all of these web categories we give a classification of such 2-representations. The
classification takes a certain form as outlined in Classification Problem 2.19. Roughly,
we construct 2-representations from linear algebra inputs such as matrices and tensors.
Second, the equivalence classes of these 2-representations are given by an explicit
linear algebra condition on matrices and tensors such as congruence. Finally, we argue
that any rank one simple transitive 2-representation is of the form constructed in the
first step.

But how explicit our classification is varies drastically:
▷ For Web(SL2) the classification is similar to the classification of bilinear forms

and has therefore a short-and-sweet answer, see Theorem 3B.2.
▷ For Web(GL2) trilinear forms make their appearance. However, as we will

see, the appearing trilinear forms are on C-vector spaces of small dimensions
so we still get a good answer, see Theorem 4B.2.

▷ For Web(SO3) honest trilinear forms appear which makes us believe that
there is no good (this could e.g. mean listable) answer, see Theorem 5B.1.

These three web categories are semisimple but have infinitely many isomorphism
classes of simple objects. As we will see, in all cases there are infinitely many equiva-
lence classes of rank one simple transitive 2-representations. This is very different from
the situation of semisimple categories with finitely many simple objects where some
form of Ocneanu rigidity ensures that there are only finitely many simple transitive
2-representations.

In Proposition 6.2 we also show that the classification (of rank one simple transitive
2-representations) for Web(SL2) (and Web(GL2)) implies the classification of bilin-
ear forms, and in fact, the classification is a tame problem. For Web(SO3) we are not
able to determine the precise characterization of the complexity of the classification
problem. However, for a modification of Web(SO3) we show that the classification
implies the classification of trilinear forms, see Proposition 6.3. In fact, the classifi-
cation problem for the variant of Web(SO3) is strictly more difficult than any wild
problem in classical representation theory, see Theorem 6.4.

1B. A few extra comments. We finish the introduction with a few remarks.

Remark 1B.1. All web categories in this paper are monoidally equivalent to rep-
resentation theoretical categories. However, since one of our main points is to use
diagrammatics, we think of these as web categories instead of their representation
theoretical counterparts.

Along the same lines, we would like to point out that similar results have been
obtained in other fields although the translation is not completely straightforward.
The connection was in fact the starting point for this note. The methods presented
in these papers are different from what we do in this note; in particular, we take
the diagrammatic approach and make the classification results more explicit, see e.g.
Lemma 3C.13.

For example, see [8] or [23] for SL2, [43] for GL2, and [44] or [24] for SO3. See also
[50] and [46] for the SLk family. ♢
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Remark 1B.2. In this remark complexity is meant with respect to classification of
rank one simple transitive 2-representations, and we use it as an informal estimate of
difficulty. We give some details later in section 6.

(a) Consider the following list:

SL2, GL2

n 0 1 2 3 4 5 6
dimC 1 0 1 0 2 0 5

,

SL3

n 0 1 2 3 4 5 6
dimC 1 0 1 1 2 3 6

,

SO3

n 0 1 2 3 4 5 6
dimC 1 0 1 1 3 6 15 .

These lists are the maximal appearing dimensions b∗
n of the hom-spaces in

SL2, SL3 and SO3 webs, respectively, for webs with n boundary points to the
empty web. We have bSL2

n ⩽ bSL3
n ⩽ bSO3

n , but on the other hand [14, Theorem
1.4.(a)] gives

lim
n→∞

n

√
bSL2

n = 2 < 3 = lim
n→∞

n

√
bSL3

n = lim
n→∞

n

√
bSO3

n .

This justifies the complexity jump from SL2 to SO3 webs, and probably indi-
cates that SL3 and SO3 webs are of the same complexity. (We note that [7]
gives more precise formulas for the asymptotics of the numbers b∗

n, but we do
not need them here.)

Note also that bSL2
n = bGL2

n so their complexity is roughly the same which
indeed matches what we will see in Theorem 3B.2 and Theorem 4B.2.

(b) In general we expect the complexity of SLn (or GLn) webs, as in e.g. [45, 10],
to be equal to or higher than for SO3, so likely unsolvable in a precise sense.
However, as pointed out in [60], (4, 4, 6) trilinear forms are classifiable and
4, 4, 6 are the dimensions of the nontrivial fundamental SL4-representations.
Thus, there might be something that can be said for SL4 webs similar to what
we do at the end of subsection 5C.

(c) All categories in this note are semisimple. A good question is to address the
nonsemisimple case where one could expect cell theory as in e.g. [29, 41, 63]
to play a role. As usual one should expect a nontrivial complexity jump from
the semisimple to the nonsemisimple cases.

(In (b) we write (p, q, r) trilinear form for a trilinear form on C-vector spaces of these
dimensions.) ♢

Remark 1B.3. Two technical remarks:
(a) Some calculations were done with machine help and the code used can be

found on [62]. Any necessary erratum can be found on the same website.
(b) This note is readable in black-and-white since the colors we use are a visual

aid only.
Please email me if you find mistakes or have comments; I aim to then update [62]. ♢

2. Background on 2-representations
We will briefly recall some notions from 2-representation theory. Below, and through-
out, we usually count objects up to isomorphism but drop the ‘up to isomorphism’
for brevity.
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Remark 2.1. Nothing in this section is new, but reformulated compared to our main
sources [21, 38, 39]. Our reformulation stems from that we only consider the semisim-
ple case, which is just a special case of what the above literature discusses. For cate-
gories with countably many simple object see also [40] for a helpful reference.

The reader is also referred to [37, 21] for standard notions such as monoidal cate-
gories. ♢

Let K be a field. Everything in this section will be over K. As basic notation we
use:

▷ Categories are denoted using bold font such as V or W, while monoidal
categories (↭ 2-categories with one object) are denoted by e.g. C or D .

▷ Objects are denoted by X, Y etc. and morphisms by f, g etc.
▷ Categorical composition is denoted by ◦ and monoidal composition by ⊗. The

monoidal unit is denoted by 1, and identity morphism as idX or simplified as
id. The following picture summarizes our diagrammatic composition rules:

(id ⊗ g) ◦ (f ⊗ id) = ◦ ◦

⊗

⊗

. . .

. . .
. . .

. . .

f

g
=

. . .

. . .. . .

. . .

f g =

◦◦

⊗

⊗

. . .

. . .
. . .

. . .

g

f
= (f ⊗ id) ◦ (id ⊗ g).

▷ For functors calligraphic font is used, for example M or N .

Remark 2.2. Before we get started, let us point out that all our higher categories
and structures are strict. This turns out to be no restriction for us and the usual
strictification theorems apply, see for example [28, Section 1.4] or [53, Section 4.2] for
quite general strictification theorems.

In contrast, the notion of equivalence (and generally of morphism) for 2-
representations is not strict. See also [57] for examples why one has to allow
nonstrict equivalences. ♢

Definition 2.3. A nonzero object of a K-linear category is simple if all its subobjects
are either zero objects or isomorphisms.

By a semisimple category we mean a K-linear additive category such that (i) every
object decomposes as a finite direct sum of simple objects, and (ii) if f : S1 → S2
and g : S2 → S3 are nonzero morphisms between simple objects Si, then g ◦ f is also
nonzero. ♢

A semisimple category may have infinitely many simple objects. The following will
be used silently.

Lemma 2.4. We have:
(a) A semisimple category is idempotent complete.
(b) A semisimple category is K-linear finite length abelian.
(c) K-linear functors between K-linear additive categories are additive.

Proof. Well-known, so we will be brief. First, (c) is an exercise, while (b) is proven in,
for example, [65, Theorem C.6]. (a) follows from the following argument (due to the
referee): For (a) it suffices to show that an idempotent in the endomorphism algebra
of a simple object splits. And indeed, if e is a nontrivial (neither zero nor the identity)
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idempotent in the endomorphism algebra of a simple object X, then so is idX − e.
However, the composite of these two is zero, violating (ii) of Definition 2.3. □

Remark 2.5. By Lemma 2.4.(a), in the semisimple case, the theories presented in [21]
on the one hand, and [38] and [39] on the other hand are essentially the same (there
are subtle differences but they do not play any role for us). ♢

Definition 2.6. An essentially fusion category C is a semisimple rigid monoidal
category with countably many simple objects and such that all morphism spaces are
finite-dimensional. ♢

Example 2.7. The category KVect of finite dimensional K-vector spaces is a pro-
totypical example of an essentially fusion category. A more exciting example is
CRep

(
SL2(C)

)
, complex finite dimensional SL2(C)-representations, and its relatives

that we will discuss in the sections below. The simple objects, up to equivalence, in
the category CRep

(
SL2(C)

)
are {Sk = Symk(C2)|k ∈ Z⩾0}. ♢

Remark 2.8. In the language of [39], Definition 2.6 translates to what is called a
locally semisimple quasi-fiat one object 2-category in that paper, with one difference:
Definition 2.6 allows countably (finite or infinite) many simple objects, whereas a
locally semisimple quasi-fiat one object 2-category always has finitely many simple
objects. ♢

Lemma 2.9. An essentially fusion category C is Krull–Schmidt.

Proof. A finite length abelian category is Krull–Schmidt, so Lemma 2.4.(b) proves
the claim. □

Let A = Af
K denote the 2-category of finitary categories, K-linear functors and

natural transformations, see [38, Definition 2.12]. For the purpose of this paper it
is enough to know that KVect ∈ A . By ◦-ideal we mean an ideal with respect to
the operation ◦, while ◦-⊗-ideal is meant with respect to both operations ◦ and ⊗
separately.

Definition 2.10. Let C be as in Definition 2.6.
(a) A (finitary) 2-representation M of C is a K-linear monoidal functor M : C →

EndA (V) for V ∈ A .
(b) The rank, denoted by rank M, of such a functor M is the number of inde-

composable objects in V.
(c) We call a 2-representation semisimple if the target category V ∈ A is

semisimple.
(d) Such a functor M is called simple transitive if it has no proper C-stable ◦-

ideals, meaning that every ◦-ideal I ⊂ V with M(X)(I) ⊂ I for all X ∈ C is
either zero or V.

(The 2-representation in (d) are simple, by the definition above, and transitive by
Lemma 2.13 below, hence the name.) ♢

Remark 2.11. There is also the notion of a (finitary) module category. Similarly as for
representations and modules, these notions are equivalent in the appropriate sense.
We leave it to the reader to spell out the definitions, and we use them interchangeably.
For example, in Definition 2.12 below the horizontal arrows are to be read as module
category notation. ♢
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Definition 2.12. Two 2-representations M : C → EndA (V) and N : C → EndA (W)
are equivalent, written M ∼=2rep N , if there is an equivalence F : V → W ∈ A such
that

C V

C W

M

N

F

is a commutative diagram up to a coherent natural isomorphism N (X)
(
F(V)

) ∼==⇒
F

(
M(X)(V)

)
. ♢

Lemma 2.13. Any simple transitive 2-representation is transitive, meaning generated,
taking direct sums and direct summands, by the action of M.

Proof. This is [42, Lemma 4]. □

Example 2.14. The category CRep
(
SL2(C)

)
acts on itself by tensoring, that is,

M(Sk) is the endofunctor of (left) tensoring with Sk. The only ◦-⊗-ideals in
CRep

(
SL2(C)

)
are zero or the category itself. This follows since CRep

(
SL2(C)

)
is

semisimple and we have C2 ⊗ Sk
∼= Sk+1 ⊕ Sk−1 for k ∈ Z⩾1. Hence, CRep

(
SL2(C)

)
is simple transitive. Thus, since rankCRep

(
SL2(C)

)
= ∞, CRep

(
SL2(C)

)
is an

infinite rank simple transitive 2-representation of itself. ♢

Note that 2-representations of essentially fusion categories are in general not
semisimple. As an example consider KVect which can act on any K-linear abelian
category. (This action is unique up to the equivalence in Definition 2.12.) Hence, the
following result is remarkable and key for this paper:

Lemma 2.15. Any simple transitive 2-representation M of an essentially fusion cate-
gory C with rank M < ∞ is semisimple, meaning that V is semisimple.

Proof. A direct adaption of [39, Proposition 2.16]. □

Lemma 2.16. Any rank one simple transitive 2-representation of an essentially fusion
category C is on KVect.

Proof. Since KVect is the only semisimple category with one simple object, this
follows from Lemma 2.15. □

Let C be an essentially fusion category. Recall that a fiber functor F : C → KVect
is an exact faithful monoidal functor. We write F(X|X ∈ C) for the full subcategory
whose objects are direct sums of direct summands of objects of the form F(X), for
X ∈ C . The following, very easy, lemma is another key fact:

Lemma 2.17. We have the following.
(a) Any fiber functor F : C → KVect of an essentially fusion category C gives

rise to a semisimple rank one 2-representation M.
(b) A fiber functor functor F : C → KVect of an essentially fusion category C

gives rise to a simple transitive 2-representation M if and only if F(X|X ∈ C)
does not have any nontrivial ◦-⊗-ideals.

Proof. (a). For X ∈ C set M(X) to be the endofunctor of tensoring with the K-vector
space F(X). One can directly verify that this defines a 2-representation.

(b). If M is simple transitive, then there cannot be any nontrivial ◦-⊗-ideals by
the construction of M in (a). Conversely, if there are no nontrivial ◦-⊗-ideals then
semisimplicity, that is Lemma 2.15, implies that M is simple transitive. □
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With Lemma 2.17.(a) in mind, we also say fiber 2-representation instead of fiber
functor. These are always of rank one, by definition, but the converse might be false.
(A rank one 2-representation has no reason to be faithful in general.) If the condition
Lemma 2.17.(b) is satisfied for a fiber functor F : C → KVect, then we call F a
simple transitive fiber 2-representation.

Example 2.18. The action from Example 2.14 is not a fiber 2-representation. But
composition with the forgetful functor CRep

(
SL2(C)

)
→ CVect defines a (simple

transitive) fiber 2-representation. ♢

Classification Problem 2.19. The classification of simple transitive 2-representa-
tions of a given C is one of the main problems of the theory, and akin to classifying
simple representations of groups or algebras. This is justified by the categorical analog
of the Jordan–Hölder theorem, see [42, Section 3.5].

For us such a classification is optimally given by:
▷ The existence of certain explicitly constructed simple transitive 2-representa-

tions. (Existence)
▷ The comparison of these with a computable condition. (Non-redundant)
▷ A proof that all simple transitive 2-representations are of the particular form.

(Complete)
In this paper we restrict to the subproblem of classifying simple transitive rank one
(or fiber) 2-representations. As we will see, even this subproblem can get arbitrarily
difficult, and we will sometimes only give part of the list above. ♢

Remark 2.20. Classification Problem 2.19 is not meant as a definition. ♢

Example 2.21. Keeping Remark 2.5 in mind, the paper [23] classifies simple tran-
sitive 2-representations of CRep

(
SL2(C)

)
of finite rank. The classification is quite

difficult, and we will discuss the much simpler classification of simple transitive fiber
2-representations CRep

(
SL2(C)

)
→ CVect in section 3. It turns out that in this case

all rank one simple transitive 2-representations come from fiber functors. ♢

Lemma 2.22. An essentially fusion category C with finitely many simple objects has
only finitely many simple transitive 2-representations up to ∼=2rep.

Proof. We point out that an essentially fusion category with finitely many simple
objects is a fusion category in the usual sense as, for example, in [21, Chapter 9].
Then the claim follows from Ocneanu rigidity as e.g. in [21, Proposition 3.4.6 and
Corollary 9.1.6]. □

With contrast to Lemma 2.22 we have:

Theorem 2.23. An essentially fusion category C can have infinitely many nonequiv-
alent simple transitive rank one 2-representations.

Proof. By the examples discussed in the next sections; see, for example, Theo-
rem 3B.2. □

For KVect we use its unique braiding (= the flip map). To finish this section, and
relevant for our examples (we say braided and symmetric instead of braided monoidal
and symmetric monoidal):

Definition 2.24. Assume that the acting category C is braided. A fiber 2-
representation is braided if it is given by a braided functor. ♢

One should not expect fiber 2-representations to have interesting braidings:
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Lemma 2.25. A braided fiber 2-representation is given by a symmetric functor.
Proof. We start with an auxiliary lemma (whose proof is due to a referee):
Lemma 2.26. Let C be braided, and let D be symmetric. If there is a braided functor
F : C → D which is faithful, then C is symmetric.
Proof. This is known, so we only give a condensed proof. The diagram

F(X) ⊗ F(Y) F(Y) ⊗ F(X) F(X) ⊗ F(Y)

F(X ⊗ Y) F(Y ⊗ X) F(X ⊗ Y)

bD
F(X),F(Y)

id

F2
X,Y

∼=

bD
F(Y),F(X)

F2
Y,X

∼= ≃F2
X,Y

F(bX,Y) F(bY,X)

(2)

(1)

(3)

commutes: (1) by D being symmetric, (2) and (3) by coherence. We get that

EndC (X ⊗ Y) FX,Y−−→ EndD

(
F(X ⊗ Y)

) (F2
X,Y)−1◦−◦F2

X,Y−−−−−−−−−−→ EndD

(
F(X) ⊗ F(Y)

)
sends both idX⊗Y and bY,X ◦ bX,Y to idF(X)⊗F(Y). But this is a composite of injections,
and hence it is injective. Thus, we get idX⊗Y = bY,X ◦ bX,Y. □

The flip map defines a symmetric structure on KVect. Hence, Lemma 2.26 implies
the claim. □

Assume that rank M < ∞ and let K⊕
0 (M) denote the additive Grothendieck

group of the 2-representation M. (By Lemma 2.15 we are in the semisimple case
so the additive and the abelian Grothendieck groups agree.) For essentially fusion
categories C one can define K⊕

0 (C) without issue by Lemma 2.9 (even though C is
allowed to have infinitely many isomorphism classes of simple objects).
Lemma 2.27. Write M = M(X|X ∈ C). The additive Grothendieck group K⊕

0 (M) is
a K⊕

0 (C)-representation.
Proof. Easy to check and omitted. □

We write ∼=rep for equivalence of K⊕
0 (C)-representations.

3. Rank one 2-representations of SL2 webs
For the rest of the paper let K = C. As we will see, the main players in this section
are complex bilinear forms.

3A. SL2 webs. We first recall the Temperley–Lieb category, or Rumer–Teller–Weyl
category, that we will call the SL2 web category.
Definition 3A.1. Fix q ∈ C∖{0}. Let Web(SL2) denote the C-linear pivotal category
⊗-generated by the selfdual object X, and ◦-⊗-generated by morphisms called caps and
cups (also called bilinear form and coform):

cap = : X ⊗ X → 1, cup = : 1 → X ⊗ X,

modulo the ◦-⊗-ideal generated by isotopy and circle evaluation:

= = , = −[2]q = −q − q−1.

We call Web(SL2) the SL2 web category and its morphism SL2 webs. ♢
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Remark 3A.2. In this and the following sections we work over C using a “generic” q
instead of over C(q) for a variable q. The situation of C(q) can be discussed verbatim,
but the linear algebra results used in this note need to be adjusted to C(q). ♢

Let Cl
k denote the set of crossingless matchings of k bottom and l top points,

interpreted as SL2 webs in the usual way.

Lemma 3A.3. The set Cl
k is a C-basis of HomWeb(SL2)(X⊗k, X⊗l).

Proof. Well-known, see e.g. [16] for a self-contained argument that implies the claim.
□

A nontrivial root of unity is a q /∈ {1, −1} with qk = 1 for some k ∈ Z⩾0.

Lemma 3A.4. We have the following.
(a) The simple objects of Web(SL2) are in one-to-one correspondence with Z⩾0.
(b) Web(SL2) is semisimple if only if q ∈ C∖{0} is not a nontrivial root of unity.
(c) Web(SL2) is an essentially fusion category if only if q ∈ C ∖ {0} is not a

nontrivial root of unity.

Proof. Recall that Web(SL2) can be defined integrally, meaning over Z[q, q−1], and
that Web(SL2) is integrally equivalent to the category of tilting modules for quantum
SL2. This is a type of folk theorem that dates back to [56], see e.g. [19, Theorem
2.58], [2, Proposition 2.3] or [58, Proposition 2.13]. The statements follow then from
specialization to the complex numbers, which is well-understood on the tilting side,
see e.g. [4, Section 2]. □

Choose a square root q1/2 of q. Let us define

= q1/2 · + q−1/2 · , = q−1/2 · + q1/2 · .

(3A.5)

Lemma 3A.6. The formula Equation 3A.5 endows Web(SL2) with the structure of a
braided category.

Proof. Well-known and easy to check. See also [32, Section 2.1]. □

Notation 3A.7. As a braided category, we consider Web(SL2) with the structure
induced by Equation 3A.5. ♢

3B. The main theorem in the SL2 case. Let ≡c denote matrix congruence, that
is, for complex n-by-n matrices A and B we have:(

A ≡c B
)

⇔
(
∃P ∈ GLn(C) : A = PT BP

)
.

Note that two congruent matrices are of the same size.

Remark 3B.1. Recall that matrix congruence is define by “(A ≡c B) ⇔ (the matrices
A and B represent the same bilinear form up to change-of-basis)”. ♢

The proof of the following theorem is given in subsection 3C.

Theorem 3B.2. Assume q ∈ C∖ {0} is not a nontrivial root of unity.
(a) Let n ⩾ 2. For every N ∈ GLn(C) with tr(NT N−1) = −[2]q there exists a

simple transitive fiber 2-representation Fn
N of Web(SL2) constructed in the

proof of Lemma 3C.1. (Existence)
(b) We have Fn

N
∼=2rep Fm

M if and only if N ≡c M. (Non-redundant)
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(c) Every simple transitive fiber 2-representation of Web(SL2) is of the form Fn
N ,

and every simple transitive rank one 2-representation of Web(SL2) arises in
this way. (Complete)

Moreover, there are infinitely many nonequivalent simple transitive rank one 2-
representations of Web(SL2).

In fact, we will make Theorem 3B.2.(a) and (b) even more explicit. We list some
Fn

N for n ∈ {2, 3}, while for n = 4 there are infinitely many nonequivalent Fn
N , see

Lemma 3C.13 below for details. Moreover, Theorem 3B.2 and Lemma 3C.13 together
solve Classification Problem 2.19 for Web(SL2).
Remark 3B.3. For n = 1 the condition tr(NT N−1) = −[2]q becomes 1 = −[2]q which
has no solutions unless q ∈ { 1

2 (−1 ±
√

3)}. This is the monoid case, see e.g. [34], but
since 1

2 (−1 ±
√

3) are nontrivial roots of unity, this case is not part of Theorem 3B.2.
♢

Note that Theorem 3B.2 shows that the classification of simple transitive fiber 2-
representations of the category Web(SL2) is equivalent to the classification of simple
transitive rank one 2-representations of Web(SL2). And moreover, Theorem 3B.2
shows that both problems can be considered as a subproblem of the classification of
complex bilinear forms, cf. Remark 3B.1. The latter has a nice known solution that
we recall below. As we will see later, see Proposition 6.2, the converse is also true in
a precise sense.

Here are a few bonus observations that accompany Theorem 3B.2.
Proposition 3B.4. We have the following.

(a) We have K⊕
0 (Fn

N ) ∼=rep K⊕
0 (Fm

M ) as K⊕
0

(
Web(SL2)

)
-representations if and

only if n = m.
(b) The fiber 2-representation Fn

N is braided if and only if (q = 1, n = 2 and N is
a standard solution as in Example 3C.2).

(c) There exist infinitely many Hopf algebras H with CcoRep(H) ∼=⊗ Web(SL2)
as monoidal categories. In particular, infinitely many of these Hopf algebras
are not isomorphic to Oq

(
SL2(C)

)
.

Let us finish this section with a few (historical) remarks.
Remark 3B.5. The category Web(SL2) has been around for donkey’s years and is
a quantum version of the category constructed, albeit in a different language, by
Rumer–Teller–Weyl [56]. Many people have worked on this category, too many to cite
here, and it is not surprising that Theorem 3B.2 and Proposition 3B.4 are, in different
formulations, known in the literature. Most prominently, [8] solves a related problem
from which, after some work, one can get Theorem 3B.2 and Proposition 3B.4. As
pointed out in [8], versions of Theorem 3B.2 and Proposition 3B.4 are probably even
older. Having Remark 2.5 in mind, a similar formulation also appeared in [23], see for
example [23, Section 3.2]. ♢

Remark 3B.6. The case of Web(SL2) is one of the few web categories where the
modular representation theory of the associated group is quite well-understood, see
[15, Section 3.4] for a concise discussion of some of the main properties. Thus, one
might hope that Theorem 3B.2 generalizes to other fields than C, where the story is
not semisimple anymore. And, indeed, the paper [52] has some very similar results.
However, Remark 2.5 does not apply in the nonsemisimple case. ♢

Remark 3B.7. Proposition 3B.4.(c) was used in [14, Theorem 5.1] which in turn was
the starting point of this paper. ♢
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Remark 3B.8. The category Web(SL2) is cellular in the sense of [66] or [20]. The
same is true for the other two web categories in this paper, by the main result of [3]
or [1] and the connection to tilting modules. We however do not know how to use the
cellular structure to obtain Theorem 3B.2 and its relatives later on. ♢

3C. Proof of Theorem 3B.2. The key will be the following lemma.

Lemma 3C.1. For n ∈ Z⩾2 let N ∈ GLn(C) be a matrix satisfying tr(NT N−1) =
−[2]q. Then there exists an associated 2-representation F of Web(SL2) on CVect
with dimC F(X) = n. Conversely, every 2-representation F of Web(SL2) on CVect
with dimC F(X) = n gives such a matrix.

Proof. Note that a 2-representation F : Web(SL2) → EndA (CVect) is determined
by specifying a C-vector space F(X), a nondegenerate bilinear form F(cap) and a
nondegenerate bilinear coform F(cup) satisfying the circle evaluation and the isotopy
relation. From a matrix N as in the lemma we can get this data as follows. Firstly,
let F(X) = Cn with fixed ordered basis {v1, . . . , vn}. Writing N = (mij)1⩽i,j⩽n and
N−1 = (nij)1⩽i,j⩽n in this basis we have tr(NT N−1) =

∑
1⩽i⩽n

∑
1⩽j⩽n mijnij =

−[2]q. We then define F(cap) and F(cup) by

F(cap)(vi ⊗ vj) = mij , F(cup)(1) =
∑

1⩽i,j⩽n

nij · vi ⊗ vj .

Since N is invertible we get that F(cap) and F(cup) are nondegenerate. They moreover
satisfy the circle evaluation since tr(NT N−1) = −[2]q. Finally, they satisfy the isotopy
relation since the coefficients mij defining F(cap) and the coefficients nij defining
F(cup) are the entries of N and N−1, respectively.

Reading the construction backwards gives a matrix N ∈ GLn(C) with tr(NT N−1) =
−[2]q from a 2-representation F : Web(SL2) → EndA (CVect). □

Example 3C.2. For x ∈ C∖ {0} we call the matrices S of the form

S(x) =
( 0 x

−qx 0
)

or S(x)′ =
(

0 x
−q−1x 0

)
the standard solutions for tr(NT N−1) = −[2]q. One easily checks that S(x) ≡c S(y)
and S(x) ≡c S(x)′, and we can simply focus on S = S(1). ♢

Lemma 3C.3. For every n ∈ Z⩾2 there exists some N ∈ GLn(C) with tr(NT N−1) =
−[2]q. For n = 1 there exists no such solution.

Proof. Let idk denote the k-by-k identity matrix. We take

N =

idn−2 0 0
0 0 1
0 x 0

 .(3C.4)

The matrix N is invertible and satisfies tr(NT N−1) = (n − 2) + x + x−1. Thus, we can
let x be a solution of x2 + ([2]q + n − 2)x + 1 = 0 which exists since we work over C.

The case n = 1 is discussed in Remark 3B.3. □

For n ∈ Z⩾2 let us denote by Fn
N the 2-representation as constructed in the proof of

Lemma 3C.1. The existence is guaranteed by Lemma 3C.3. Note also that Fn
N

∼=2rep

Fm
M implies n = m and Lemma 3C.3 thus gives infinitely many nonequivalent rank

one 2-representations of Web(SL2).

Lemma 3C.5. The 2-representation Fn
N is faithful, thus a fiber 2-representation.
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Proof. Using the basis of the hom-spaces of Web(SL2) given by crossingless matching,
see Lemma 3A.3, the lemma can be proven as follows. Firstly, for F2

S this is known by
classical results, e.g. by [56, 2. Fundamentalsatz], which uses the crossingless matching
basis. Indeed, this references, in modern language, also shows that Web(SL2) is the
free category generated by a nondegenerate bilinear form. This in turn, by simply
copying the n = 2 case, proves the lemma. Alternatively (and not written in 1930s
German), [8, Section 4] also implies the lemma. □

Lemma 3C.6. For any fiber 2-representation M : Web(SL2)→EndA (CVect) there ex-
ists a 2-representation Fn

N with M ∼=2rep Fn
N as 2-representations of Web(SL2).

Proof. From M we can get Fn
N as follows. View M as a fiber functor and choose an

ordered basis {v1, . . . , vn} of M(X). Then we get the lexicographically ordered basis
{v1 ⊗ v1, . . . , v1 ⊗ vn, . . . , vn ⊗ vn} of M(X) ⊗ M(X). In this basis we get a 1-by-n2

vector a determining M(cap) and a n2-by-1 vector b determining M(cup). We then
rearrange a and b into n-by-n matrices N and N−1 and the isotopy relation implies
that these matrices, as suggested by their notation, are inverses. Moreover, the circle
evaluation implies that tr(NT N−1) = −[2]q.

In total, we get a 2-representation of the form Fn
N . That M ∼=2rep Fn

N holds follows
by construction. □

From this point onward we need to assume that we are in the semisimple case.

Lemma 3C.7. Assume q ∈ C ∖ {0} is not a nontrivial root of unity. All rank one
simple transitive 2-representations of Web(SL2) are of the form Fn

N .

Proof. By classical theory, see e.g. [64, Chapter XII] (this uses semisimplicity), we
have the following property: Let V be any monoidal abelian category. Assume that
Y ∈ V has a right dual Y⋆ and there exists an isomorphism f : Y → Y⋆ such that

1
ev−→ Y ⊗ Y⋆ f⊗f−1

−−−−→ Y⋆ ⊗ Y coev−−−→ 1

equals −[2]q ·id1. Then there exists a unique monoidal functor Web(SL2) → V sending
X to Y.

Recall that Lemma 2.16 shows that for a rank one simple transitive 2-representation
we can assume that V ∼= CVect, and the proof completes. □

Lemma 3C.8. Assume q ∈ C ∖ {0} is not a nontrivial root of unity. Every rank one
simple transitive 2-representations of Web(SL2) comes from a fiber 2-representation.

Proof. We combine Lemma 3C.6 and Lemma 3C.7. □

Lemma 3C.9. Assume q ∈ C∖{0} is not a nontrivial root of unity. We have Fn
N

∼=2rep

Fm
M as 2-representations of Web(SL2) if and only if N ≡c M.

Proof. Following the same arguments as in the proof of Lemma 3C.7, namely the
characterization of monoidal functors Web(SL2) → V, one obtains that the datum of
a rank one simple transitive 2-representation (or, alternatively, a fiber 2-representation
by Lemma 3C.8) is equal to the datum of a C-vector space and a bilinear form. In
turn, bilinear forms are the same as matrix congruence, see Remark 3B.1, and the
lemma follows then from the relationship of N and its associated bilinear form. □

It remains to analyze matrix congruence. Let Jn(λ) denote an n-by-n (upper tri-
angular) Jordan block with eigenvalue λ ∈ C. Additionally, define two matrices by

Gn =

 (-1)n

(-1)n-1 (-1)n-1

... ...
-1 -1

1 1

, H2n(λ) =
(

0 idn

Jn(λ) 0

)
.
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The following is a normal form under ≡c for complex n-by-n matrices N ∈ Matn(C):

Lemma 3C.10. Every N ∈ Matn(C) is congruent to a direct sum of matrices of the
form Ji(0), Gj or H2k(λ) with λ /∈ {0, (−1)k+1} determined up to λ ↔ λ−1. Moreover,
for N ∈ GLn(C) the matrices Ji(0) do not occur.

Proof. This is [31, Theorem 1.1]. The tiny addition in the second sentence follows
directly from the fact that the Ji(0) are degenerate. □

The matrices Gn and H2n(λ) have the following associated weighted graphs with
vertices labeled by the rows/columns:

G6 ↭ 1 6 2 5 3 4
−1 1 1 −1 −1

1 1 −1 −1 1

1 ,

H6(λ) ↭ 1 4 2 5 3 6
1

1

1

1

1

λ λ λ

.

We display n = 4 and n = 3 with the general picture being similar. Hence, the
nondegenerate part of Lemma 3C.10 can be formulate using unions of these weighted
graphs.

Example 3C.11. Let n = 2 and take x = 1 in Example 3C.2. Then S = H2(−q). ♢

Note that the Jordan blocks Ji(0) are all degenerate, so we can exclude them for our
purposes, see the second part of Lemma 3C.10. For the remaining cases one directly
checks that tr(GT

j G−1
j ) = (−1)j+1j and that tr

(
H2k(λ)T H2k(λ)−1)

= k(λ + λ−1)
.

Since tr(NT N−1) is additive we get

C =
s⊕

a=1
Gja

⊕
r⊕

b=1
H2kb

(λb) satisfies tr(CT C−1) =
s∑

a=1
(−1)ja+1j +

r∑
b=1

kb(λb + λ−1
b ).

Thus, Lemma 3C.10 gives us a list of solutions of tr(NT N−1) = −[2]q up to ≡c. This
is exactly what we want for Theorem 3B.2 to be as explicit as possible.

Example 3C.12. For n = 2 we have tr(GT
2 G−1

2 ) = −[2]q or tr
(
(G1 ⊕ G1)T (G1 ⊕

G1)−1)
= −[2]q if and only if q = 1 or q = −1, while tr

(
H2(λ)T H2(λ)−1)

= −[2]q
if and only if λ ∈ {−q, −q−1}. In particular, for q /∈ {±1} we have S as an unique
solution up to ≡c. ♢

Example 3C.12 generalizes as follows:

Lemma 3C.13. We have the following solutions of tr(NT N−1) = −[2]q up to ≡c.
(a) For n = 2 there is the solution N = S if q /∈ {±1}. For q = 1 has the additional

solution N =
( 0 −1

1 1
)

and q = −1 has the additional solution N = ( 1 0
0 1 ).

(b) For n = 3 there are solutions of the form
N G1 ⊕ H1(λ) G1 ⊕ G1 ⊕ G1 G1 ⊕ G2 G3

#sols one or two one for q ∈ { 1
2 (−3 ±

√
5)} one for q ∈ {±(−1)1/3} one for q ∈ { 1

2 (−3 ±
√

5)}

with λ a root of x2 + 1
2 (1 + [2]q)x + 1 which has two solutions unless q ∈

{ 1
2 (3 ±

√
5), 1

2 (−5 ±
√

21)}.
(c) For n = 4 there are infinitely many solutions.

To get a complete list, we use the canonical forms under orthogonal congruence as
found in e.g. [30].
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Proof. Directly from the above discussion, and omitted. We only point out two ob-
servations.

First, note that general congruence will not keep tr(NT N−1) = −[2]q invariant. In
particular, the above needs to be combined with orthogonal congruence as in the final
sentence of the lemma.

Second, that for n ⩾ 4 we can have Hk(λ) ⊕ Hl(µ) ⊕ Rest appearing. Say Rest only
consists of Gj summands. Then we get infinitely many solutions: Fix an arbitrary
µ. Then the relevant equations for λ always have solutions since our ground field is
algebraically closed. □

Thus, we have proven Theorem 3B.2.

3D. Proof of Proposition 3B.4.

Lemma 3D.1. We have K⊕
0 (Fn

N ) ∼=rep K⊕
0 (Fm

M ) as K⊕
0

(
Web(SL2)

)
-representations if

and only if n = m.

Proof. To see that we have K⊕
0 (Fn

N ) ̸∼=rep K⊕
0 (Fm

M ) for n ̸= m we observe that
K⊕

0
(
Web(SL2)

) ∼= Z[X] as rings via the map [X] 7→ X, and X acts on K⊕
0 (Fn

N ) by
n. The converse follows since the 2-representations of the form Fn

N are given by fiber
functors and the twist of the bilinear form and coform can not be detected, cf. [21,
Theorem 5.3.12]. □

Lemma 3D.2. The fiber 2-representation Fn
N is braided if and only if (q = 1, n = 2

and N is a standard solution as in Example 3C.2).

Proof. Lemma 2.26 implies that Fn
N being braided implies that Web(SL2) is symmet-

ric and that the crossing is send to the flip map. The following calculation shows that
the standard solution is the only possible choice where that happens.

We view Fn
N as a functor Web(SL2) → CVect. By the proof of Lemma 3C.1, we

have that

Fn
N (cup ◦ cap)(vi ⊗ vj) = mijFn

N (cup)(1) = mij

∑
1⩽k,l⩽n

nkl · vk ⊗ vl.

Hence, we get that

Fn
N

( )
(vi ⊗ vj) = q1/2 · vi ⊗ vj + q−1/2 ·

(
mij

∑
1⩽k,l⩽n

nkl · vk ⊗ vl

)
.(3D.3)

For this to be the flip map we then need mijnij = −q, mijnji = q1/2 and nkl = 0 else.
Since these have to hold for all i, j ∈ {1, . . . , n} with i ̸= j we therefore need n = 2.

For n = 2 a direct calculation shows that the only 2-by-2 matrices with
tr(NT N−1) = −[2]q and with Equation 3D.3 being the flip map are the standard
solutions for q = 1. □

In the two latter cases in Lemma 3D.2 the fiber 2-representation Fn
N is even sym-

metric by Lemma 2.25.

Example 3D.4. We again view Fn
N as a functor Web(SL2) → CVect. Let n = 3

and take the matrix N as in Equation 3C.4. For q = 1 the variable x has to be
1
2 (−3 ±

√
5). For x = 1

2 (−3 +
√

5) one gets (in an appropriate order of the basis
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{vi ⊗ vj |1 ⩽ i, j ⩽ n}) that

F3
N

  =


2 0 0 0 0 x 0 1 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
1 0 0 0 0 y 0 1 0
0 0 0 0 0 0 1 0 0

xg 0 0 0 0 1 0 yg 0
0 0 0 0 0 0 0 0 1

 with

x = 1
2 (−3 +

√
5),

xg = 1
2 (−3 −

√
5),

y = 1
2 (−1 +

√
5),

yg = 1
2 (−1 −

√
5),

which squares to the identity, but is clearly not the flip map. ♢

Lemma 3D.5. There exist infinitely many Hopf algebras H with CcoRep(H) ∼=
Web(SL2) as monoidal categories. In particular, infinitely many of these Hopf
algebras are not isomorphic to Oq

(
SL2(C)

)
.

Proof. Reconstruction theory implies that any fiber 2-functor F : Web(SL2) →
CVect gives rise to a Hopf algebra H being the coend of F . The comodules over H
give a monoidal category equivalent to Web(SL2). All of this is a direct consequence
of [21, Theorem 4.3.1]. Reconstruction theory moreover implies that the resulting
Hopf algebras are not isomorphic whenever the used fiber functors are not equivalent.
Now we use Theorem 3B.2. □

The section is complete.

4. Rank one 2-representations of GL2 webs
A lot of constructions and arguments in this section are similar to those in section 3,
so we will be brief.

4A. GL2 webs. We define webs for GL2 as follows.
Remark 4A.1. We have two types of strands in this section with the following names:

usual : , phantom: .

Both types carry an orientation. We omit the orientations in case they do not play
a role in order to not overload the illustrations. In this case we mean any consistent
orientation. ♢

Remark 4A.2. Before reading Definition 4A.4 we remind the reader that, using iso-
topy, one can generate many new morphisms. For example,( )

◦
( )

= is isotopic to .(4A.3)

We use this silently in Definition 4A.4 below. ♢

Definition 4A.4. Fix q ∈ C∖{0}. Let Web(GL2) denote the C-linear pivotal category
⊗-generated by the dual objects X, Y, and the dual objects P, Q, and ◦-⊗-generated by
morphisms called caps and cups, displayed and use as in Definition 3A.1 but oriented:

cap = : X ⊗ Y → 1, cup = : 1 → Y ⊗ X,

cap′ = : Y ⊗ X → 1, cup′= : 1 → X ⊗ Y,

as well as phantom caps and cups, phantom trilinear forms and coforms:

pcap = : P ⊗ Q → 1, pcup = : 1 → Q ⊗ P,

pcap′ = : Q ⊗ P → 1, pcup′ = : 1 → P ⊗ Q,

tup = : X ⊗ Q ⊗ X → 1, tdown = : 1 → X ⊗ Q ⊗ X,
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modulo the ◦-⊗-ideal generated by isotopy (not illustrated; we impose all possible
plane isotopies), circle and phantom circle evaluation, H=I and vertical=horizontal
relation (in all consistent orientations):

= [2]q, = 1, = , = .(4A.5)

We call Web(GL2) the GL2 web category and its morphism GL2 webs. ♢

Lemma 4A.6. We have the following.
(a) The ‘oriented version’ of Equation 3A.5 given by e.g.

= q1/2 · + q−1/2 ·

and additionally

= , = ,

and similar formulas define a braiding on Web(GL2) with the phantom strings
being part of a symmetric structure where the Reidemeister I relations holds
(the full subcategory generated by P and Q is symmetric with the phantom
crossing).

(b) We have the trilinear evaluation:

= [2]q.

Proof. (a)—non-mixed part. Easy and we just give one calculation:

= = = .

This uses the phantom circle evaluation and vertical=horizontal relation.
(a)—mixed part. One first shows that

= = = = .(4A.7)

This is a direct consequence of the vertical=horizontal relation. Using this and similar
formulas, one can show that the above defines a braiding.

(b). Immediately from Equation 4A.7. □

For two objects A, B ∈ Web(GL2) let CPB
A denote any (fixed) choice of placement

of phantom edges such that the GL2 web obtained by removing the phantom edges
corresponds to a crossingless matching.

Lemma 4A.8. The set CPB
A is a C-basis of HomWeb(GL2)(A, B).

Proof. Directly by using the braiding in Lemma 4A.6 and the usual crossingless
matching basis of Web(SL2), see Lemma 3A.3. In more details, the relations involving
phantom strings ensure that we have two cases. Firstly, a phantom string touches a
usual string an even number of times. Then the phantom string can be unplugged
from the usual string. On the other hand, if they touch an odd number of times, then
the phantom string can be unplugged up to one attachment, and this attachment
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can be placed arbitrarily along the usual string. This in turn implies that the usual
crossingless matching basis plus an arbitrary, but fixed and minimal, placement of
phantom strings gives a basis. □

The remainder of subsection 3A goes through for Web(GL2) with one mild change,
namely Lemma 4A.9.(a). That is:

Lemma 4A.9. We have the following.
(a) The simple objects of Web(GL2) are in one-to-one correspondence with Z⩾0 ×

Z.
(b) Web(GL2) is semisimple if only if q ∈ C ∖ {0} is not a nontrivial root of

unity.
(c) Web(GL2) is an essentially fusion category if only if q ∈ C ∖ {0} is not a

nontrivial root of unity.

Proof. The statement follows similarly as in Lemma 3A.4. □

4B. The main theorem in the GL2 case. For us an third order tensor is an l-by-
m-by-n array of complex numbers. We represent a third order tensor by T = (tijk)i,j,k

with tijk ∈ C. The indexes are the rows and columns, as for usual matrices, and the
pages k. Here is an illustration for l = m = n = 3:

t113 t123 t133

t213 t223 t233

t313 t323 t333t112 t122 t132

t212 t222 t232

t312 t322 t332t111 t121 t131

t211 t221 t231

t311 t321 t331

Page

Column

Row

.(4B.1)

As before, fix bases {v1, . . . , va} of Ca. It is immediate that a third order tensor gives
a trilinear form by

T : Cl ⊗ Cm ⊗ Cn → C, vi ⊗ vj ⊗ vk 7→ tijk.

In other words, T is a 1-by-lmn matrix.
Assume that we have already fixed a matrix N that corresponds to a bilinear form.

We therefore get matrices associated to caps and cups. Let us call these matrices
N(cap) and N(cup), respectively. Define

Tl = (T ⊗ idCn) ◦
(
idCl ⊗ idCm ⊗ N(cup)

)
,

Tl =
(
idCl ⊗ idCm ⊗ N(cap)

)
◦ (T′ ⊗ idCn),

where T′ is the transpose tensor. The picture to keep in mind is Equation 4A.3 which
displays the diagrammatic interpretation of Tl.

Let us denote the set of l-by-m-by-n tensors by Tl,m,n(C), and for elements in that
set let us write T ≡c U for congruence of third order tensors in the sense of e.g. [6,
Section 4], meaning, roughly speaking, that they define the same trilinear form up
to change-of-basis. Below we write P(cap) = P(cup) = P to highlight how the next
display fits to Equation 4A.5.

Theorem 4B.2. Assume q ∈ C∖ {0} is not a nontrivial root of unity.
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(a) Let n ⩾ 2. For every triple N⃗ = (N, P, T) ∈ GLn(C) × {±1} × Tn,1,n(C) with

tr(NT N−1) = [2]q, idCl⊗C = TlTl, idC⊗C = P(cap)P(cup)

there exists a simple transitive fiber 2-representation FN⃗ of Web(GL2) con-
structed in the proof of Lemma 4C.3. (Existence)

(b) We have F(N,P,T) ∼=2rep F(M,Q,U) if and only if N ≡c M, P = Q and T ≡c U.
(Non-redundant)

(c) Every simple transitive fiber 2-representation of Web(GL2) is of the form Fn
N ,

and every simple transitive rank one 2-representation of Web(GL2) arises in
this way. (Complete)

Moreover, there are infinitely many nonequivalent simple transitive rank one 2-
representations of Web(GL2).

As before, we list some FN⃗ for n ∈ {2, 3}, while for n = 4 there are infinitely many
nonequivalent FN⃗ , see Lemma 4C.7 below for details (also as before, Theorem 4B.2
and Lemma 4C.7 taken together solve Classification Problem 2.19 for Web(GL2)),
and the proof of Theorem 4B.2 gets its own section.

Moreover, we leave it to the reader to spell out the GL2 analog of Proposition 3B.4
(which reads essentially the same). We rather wrap-up this section with a (historical)
remark and another remark:

Remark 4B.3. Web(GL2) was first considered to construct a functorial version of
Khovanov homology [9], and GL2 webs have been studied intensively in the context
of link homologies, see e.g. [18, 17, 5, 35]. Indeed, our presentation of Web(GL2) is
stolen from [5]. ♢

Remark 4B.4. The reader familiar with [43] will notice that the main theorem of
that paper and Theorem 4B.2 are different. This is due to us using diagrammatics
that are not used in [43]. Hence, Theorem 4B.2 appears to be new in the presented
form, and is the expected extension of Theorem 3B.2. ♢

4C. Proof of Theorem 4B.2. The proof of Theorem 4B.2 is, of course, similar to
the proof of Theorem 3B.2 so we will be rather brief and focus on the main differences.

Let Peb(GL2) ⊂ Web(GL2) denote the full subcategory generated by P, Q.

Lemma 4C.1. We have the following.
(a) For P ∈ {±1} there exists a simple transitive fiber 2-representation FP of

Peb(GL2) constructed similarly as in the proof of Lemma 3C.1. (Existence)
(b) F+1 is not equivalent to F−1 as 2-representations of Peb(GL2). (Non-

redundant)
(c) Every simple transitive fiber 2-representation of Peb(GL2) is of the form

F±1, and every simple transitive rank one 2-representation of Peb(GL2)
arises in this way. (Complete)

Proof. The proof is similar, but much easier, than the proof of Theorem 3B.2. So let
us only give the two new observations needed for the proof.

Assume that we have a one column cap = (a1, . . . , an)T and a one row matrix
cup = (b1, . . . , bn). Then

cap × cup = (a1b1 + · · · + anbn), the diagonal of cup × cap is (a1b1, . . . , anbn).

In particular, cap × cup = (1) and cup × cap = idn can only hold for n = 1. Moreover,
for n = 1 the only possible solutions are a1 = b1 = ±1. Thus, a 2-representation of
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Peb(GL2) needs to send both generating objects to C, and the phantom caps and
cups to multiplication by ±1.

It then follows from the phantom circle removal and the isotopy relations that
fixing ±1 as the value for pcap determines the other three bilinear (co)forms, so we
only have ±1 to vary. That is:(

7→ · − 1
)

⇒
(

7→ · − 1
)

since = 1,

(
7→ · − 1

)
⇒

(
7→ · − 1

)
since = ,

(
7→ · − 1

)
⇒

(
7→ · − 1

)
since = .

All other cases follow by symmetry. □

Similarly as above, let Ueb(GL2) ⊂ Web(GL2) denote the full subcategory gener-
ated by X, Y.
Lemma 4C.2. Theorem 3B.2 holds verbatim for Ueb(GL2).
Proof. As in the proof of Lemma 4C.1,(

7→ fixed
)

⇒
(

7→ fixed
)

since = and = ,

etc. (as above, the cup oriented rightwards and the circle evaluation fixes the assign-
ment for the cap oriented leftwards, and then the zigzag fixes the assignment for the
cup oriented leftwards). The rest of the proof works, mutatis mutandis, as for SL2. □

We will refer to the triples N⃗ = (N, P, T) in Theorem 4B.2 as GL2 triples.

Lemma 4C.3. For n ∈ Z⩾2 let N⃗ = (N, P, T) be a GL2 triple. Then there exists an as-
sociated 2-representation F of Web(GL2) on CVect with dimC F(X) = dimC F(Y) = n
and dimC F(P) = dimC F(Q) = 1. Conversely, every 2-representation F of Web(GL2)
on CVect with dimC F(P) = dimC F(Q) = 1 gives such a triple.
Proof. Very similar to the proof of Lemma 4C.3 with the following two differences.
Firstly, the phantom part is taken care of by Lemma 4C.1 while the usual part is
Lemma 4C.2. The two sides are related via the trilinear form and the H=I relation.
Note that Lemma 4A.6 shows that the trilinear form determines the trilinear coform
in exactly the same way as the bilinear form and coform are related, so we only need
to specify the trilinear form. Finally, the H=I relation is part of the definition. □

Lemma 4C.4. For every n ∈ Z⩾2 there exists some GL2 triple. For n = 1 there exists
no such triple.
Proof. Let us take P = 1, and let N be any matrix satisfying tr(NT N−1) = [2]q. The
existence of the latter is guaranteed by (the same arguments as in) Lemma 3C.3,
while the choice P = 1 satisfies tr(PT P−1) = 1 and id = P(cap)P(cup). We may
construct a trilinear form T by mapping vi ⊗ 1 ⊗ vk 7→ N(cap)(vi ⊗ vk). This form
satisfies the conditions of Theorem 4B.2. On the diagrammatic side, this corresponds
to ignoring the phantom edges and identifying the bilinear form with the trilinear
form. The property id = TlTl is then clearly satisfied.

For n = 1 see Remark 3B.3. □
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As before, let FN⃗ be the 2-representation constructed above.

Lemma 4C.5. The 2-representation FN⃗ is faithful, thus a fiber 2-representation.

Proof. As before, but using Lemma 4A.8 instead of Lemma 3A.3. □

Lemma 4C.6. The statements Lemma 3C.6 to Lemma 3C.9 hold mutatis mutandis
for Web(GL2) as well.

Proof. Only two things changes with respect to the proofs given in subsection 3C.
Firstly, one uses the basis in Lemma 4A.8 instead of the crossingless matching basis.
Second, the careful reader can copy the arguments in [64, Chapter XII] to get the
analog of the result used in the proof of Lemma 3C.7. □

Lemma 4C.7. GL2 triples, up to ≡c, are given by:
▷ The matrix N is classified as in Lemma 3C.13.
▷ The sign P can be chosen freely.
▷ The tensor T is classified as N in Lemma 3C.13 together with the choice of a

sign.

Proof. The only extra information one needs beyond Lemma 3C.13 is the classification
of n-by-1-by-n trilinear forms, which is the same as the classification of n-by-n bilinear
forms up to a sign. This is easy to see, but can also be found explicitly spelled out in
[60, Introduction]. □

Hence, taking the above together proves Theorem 4B.2.

5. Rank one 2-representations of SO3 webs
As expected, a lot of constructions and arguments in this section are similar to those
in the previous sections, so we will be brief and focus on the new bits.

5A. SO3 webs. We start with a reminder on the SO3 web category. As in the pre-
vious section we silently use (an analog of) Remark 4A.2.

Definition 5A.1. Fix q ∈ C ∖ {0} with q2 + q−2 ̸= 0. Let Web(SO3) denote the
C-linear pivotal category ⊗-generated by the selfdual object X, and ◦-⊗-generated by
morphisms called bilinear and trilinear forms and coforms:

cap = : X ⊗ X → 1, cup = : 1 → X ⊗ X,

tup = : X ⊗ X ⊗ X → 1, tdown = : 1 → X ⊗ X ⊗ X,

modulo the ◦-⊗-ideal generated by isotopy (not displayed; we impose all possible plane
isotopies), circle and bitri evaluation, and the H=I relation:

= [3]q = q2 + 1 + q−2, = 0,

= + 1/(q2 + q−2) · − 1/(q2 + q−2) · .

We call Web(SO3) the SO3 web category and its morphism SO3 webs. ♢

Remark 5A.2. Note that we do not define the SO3 web category for q2 + q−2 = 0. In
particular, when talking about this category we will always assume that q2 +q−2 ̸= 0.

♢
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Example 5A.3. The H=I relation can be used to systematically reduce faces of SO3
webs in their complexity. For example,

= ︸ ︷︷ ︸
=0

−1/(q2 + q−2) · ︸ ︷︷ ︸
=[3]2

q

+1/(q2 + q−2) · ︸ ︷︷ ︸
=[3]q

= −[3]q.

In the first picture we highlighted an I that we then replaced by H and error terms. In
a similar fashion one can get relations for other faces as well. ♢

A higher valent vertices, exemplified, is:

4 valent : , 7 valent : .

The dot is a visual aid only. Diagrams that are allowed to have these additional vertices
are embedded graphs with specified bottom and top boundary. An edge of such a
graph is called inner if it does not touch the boundary. The contraction operation is

7→ 7→ ,

where the dotted edge is contracted.

Definition 5A.4. Let k + l be the number of boundary points of SO3 web u. We say
u is a partition (of the set {1, . . . , k + l}) if:

(a) u is one SO3 web, i.e. not a nontrivial C-linear combination of such diagrams.
(b) u has no internal faces.
(c) After a finite number of contractions, u is a graph without inner edges. (Here

we see u as a trivalent graph and then apply contraction.)
Let Pl

k be the set of all partition SO3 web diagrams with k bottom and l top boundary
points. ♢

Lemma 5A.5. The set Pl
k is a C-basis of HomWeb(SO3)(X⊗k, X⊗l).

Proof. Spanning. As exemplified in Example 5A.3, the H=I relation implies that we
can assume that u has no internal faces. Indeed, the faces marked with a bullet in

= , = ,

will have fewer edges on the right-hand sides when compared to the left-hand sides.
We can repeat this operation until some internal face is a monogon and the bitri
evaluation applies. Moreover, the two error terms in the H=I relation are simpler SO3
webs since the number of vertices is smaller than for the other two SO3 webs. In other
words, internal faces can be removed recursively. Finally, the H=I relation let us get
rid of inner edges, which shows that Pl

k spans.
Linear independence. There is a bijection from Pl

k to the set of all planar
partitions of the set {1, . . . , k + l} where every block has at least two parts
given by associating a partition to a partition SO3 web diagram by interpreting
the connected components of the web as blocks of the partition. Let pp(k, l) be
the number of such partitions. Since Pl

k spans HomWeb(SO3)(X⊗k, X⊗l), we get
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dimC HomWeb(SO3)(X⊗k, X⊗l) ⩽ pp(k, l), while pivotality and [26, Lemma 4.1] imply
that pp(k, l) ⩽ dimC HomWeb(SO3)(X⊗k, X⊗l). Hence, linear independence follows. □

Remark 5A.6. The numbers pp(k, l) are well-known in combinatorics. Without loss
of generality we can consider pp(k, l) for l = 0 and one gets

{1, 0, 1, 1, 3, 6, 15, 36, 91, 232, 603}, pp(k, 0) for k = 0, . . . , 10.

The sequence is [49, A005043]. ♢

Let us denote symmetric SL2 webs in the sense of [55] by using labeled (and colored)
edges, for example,

2

1 1

.

The edge labeled 1 are uncolored. Let SWeb(SL2) denote the associated C-linear
pivotal category.

Lemma 5A.7. Assume q ∈ C∖{0} is not a nontrivial root of unity. There is a faithful
C-linear pivotal functor I : Web(SO3) → SWeb(SL2) determined by

7→
2 2

, 7→
2 2

,

7→ 1
s ·

2 2 2

, 7→ 1
s ·

2 2 2
,

where we choose a square root s =
(
(q2 + q−2)[2]2q

)1/2 of (q2 + q−2)[2]2q.

Proof. A direct verification shows that the above defines a C-linear pivotal functor.
There are only two things to note here. Firstly, the scaling which comes from the
comparison of the relations

= −[3]q and 2 = −(q2 + q−2)[2]2q[3]q.

Second, to verify the defining relations hold in the image of I is an easy calculation.
That I is an embedding can be checked by using Lemma 5A.5 and the faithful

representation Γsym of SWeb(SL2) on symmetric powers obtained from the functor
used in the proof of [55, Theorem 1.10]. The only thing the reader needs to know to
verify this is the following. Fix the basis {v1, v2} of C2. The basis elements of Sym2C2
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are chosen to be {v1v1, v1v2 = q−1 · v2v1, v2v2}. Then

1 1
7→

{
vi ⊗ vi 7→ 0,

v1 ⊗ v2 7→ −q, v2 ⊗ v1 7→ 1,

1 1
7→ (1 7→ v1 ⊗ v2 − q−1 · v2 ⊗ v1),

2

1 1

7→ (vi ⊗ vj 7→ vivj),

2

1 1
7→

{
vivi 7→ [2]q · vi ⊗ vi,

v1v2 7→ q−1v1 ⊗ v2 + v2 ⊗ v1,

under Γsym, while the 2 labeled caps and cups are defined by explosion, see [55,
Definition 2.18]. □

Lemma 5A.8. We have the following.
(a) The simple objects of Web(SO3) are in one-to-one correspondence with Z⩾0.
(b) Web(SO3) is semisimple if only if q ∈ C ∖ {0} is not a nontrivial root of

unity.
(c) Web(SO3) is an essentially fusion category if only if q ∈ C ∖ {0} is not a

nontrivial root of unity.

Proof. This follows from Lemma 3A.4 and the fact that SO3 webs can be constructed
as the full subcategory of SL2 webs ⊗-generated by the diagrammatic analog of
Sym2C2, see Lemma 5A.7. □

For SO3 webs the crossing formulas are:

= (q2 − 1) · + q−2 · + (q2 + q−2) · ,

= (q−2 − 1) · + q2 · + (q2 + q−2) · .

(5A.9)

Now all of Lemma 3A.6 (with Equation 5A.9) and Notation 3A.7 have the evident
SO3 analog (their formulation is omitted) and we will use these analogs freely. In
particular, Web(SO3) is a braided category.

5B. The main theorem in the SO3 case. Recall that we introduced our notation
for tensors in subsection 4B. We will use the same conventions now.

Theorem 5B.1. Assume q ∈ C∖ {0} is not a nontrivial root of unity.
(a) Let n ⩾ 3. For every pair N⃗ = (N, T) ∈ GLn(C) × Tn,n,n(C) with

tr(NT N−1) = [3]q, tr
(
T(N(cup) ⊗ id)

)
= 0, and (id ⊗ Tl) ◦ (Tl ⊗ id) =

TlTl + 1/(q2 + q−2) · id − 1/(q2 + q−2) · N(cap)N(cup) there exists a simple
transitive fiber 2-representation Fn

N,T of Web(SO3) constructed similarly to
the proof of Lemma 3C.1. (Existence)

(b) We have F(N,T) ∼=2rep F(M,U) if and only if N ≡c M and T ≡c U. (Non-
redundant)
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(c) Every simple transitive fiber 2-representation of Web(SO3) is of the form FN⃗ ,
and every simple transitive rank one 2-representation of Web(SO3) arises in
this way. (Complete)

Moreover, there are infinitely many nonequivalent simple transitive rank one 2-
representations of Web(SO3).

We also show that for n = 3 there is only one possible solution.
Essentially all we said at the end of subsection 3B (before the remarks) applies

for SO3 webs as well. In particular, we leave the analog of Proposition 3B.4 to the
reader, and we will only focus on the crucial difference compared to the other two
cases: the appearance of (honest) trilinear forms. This might make a “huge” difference,
see section 6 for a more detailed discussion.

Remark 5B.2. The category Web(SO3) was discovered in the early days of quantum
topology, see [67] for the potentially earliest reference. In that paper it is effectively
shown that Web(SO3) gives a diagrammatic description of SO3-representations (this
can be pieced together by comparing Lemma 5A.7 and the MathSciNet review of [67]).
As far as we know, Web(SO3) is the oldest diagram category that truly deserves the
name web category. Its importance stems from its connection to, for example, the
chromatic polynomial and the four color theorem in graph theory. This connection
originates in [59], see [25, Introduction] for a list of early appearances of this relation.

♢

Remark 5B.3. In contrast to Theorem 3B.2, a generalization of Theorem 5B.1 beyond
rank one appears to be difficult. See however [24] for a related classification. ♢

Remark 5B.4. Theorem 5B.1 seems very different than [44, Theorems 1.1 and 1.2].
♢

5C. Proof of Theorem 5B.1. A tuple N⃗ = (N, T) ∈ GLn(C) × Tn,n,n(C) as in
Theorem 5B.1 is called an SO3 tuple.

Lemma 5C.1. For m ∈ Z⩾2 let N ∈ GLm(C) be a matrix satisfying tr(NT N−1) =
−[2]q. Then there exists an associated SO3 tuple with n = m + 1.

Proof. Recall from [55, Proof of Theorem 1.10] that SWeb(SL2) is monoidally
equivalent to Web(SL2) upon taking additive idempotent closures, and the equiv-
alence is given by an explicit monoidal functor F . In a bit more detail, the object
k in SWeb(SL2) corresponds to the kth Jones–Wenzl projector in Web(SL2). In
any case, we get a monoidal equivalence F : Web(SL2)⊕,⊂⊕ → SWeb(SL2)⊕ ∼=⊗
SWeb(SL2)⊕,⊂⊕ between the additive idempotent closure of Web(SL2) and the
additive closure of SWeb(SL2). We identify the two categories using F .

Recall I from Lemma 5A.7, and consider the following commutative diagram:

Web(SO3) Web(SL2)⊕,⊂⊕

Web(SL2)

CVect

CVect.

I ∃!F̃n
N

incl.

Fn
N

The existence of F̃n
N follows from the usual Yoga of additive and idempotent closures.

Thus, we get a 2-representation F̃n
N ◦ I of Web(SO3).

Note that all needed functors are given explicitly. Tracking back their definitions
and a bit of calculation gives the desired matrices and tensors. □
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Lemma 5C.2. For every n ∈ Z⩾3 there exists some SO3 tuple. For n ∈ {1, 2} there
exists no such tuples.

Proof. By Lemma 5C.1 and the corresponding statement for Web(SL2) as in
Lemma 3C.3, we get the existence. The case n = 1 is ruled out as in Remark 3B.3,
while n = 2 can be ruled out as in Example 3C.12. □

Lemma 5C.3. The statements Lemma 3C.5 to Lemma 3C.9 hold mutatis mutandis
for Web(SO3) as well.

Proof. Let us go through the lemmas one-by-one and mention what needs to be
changed:

(a) For Lemma 3C.5 we first recall that Lemma 5C.2 shows that for n = 3 the
only possible SO3 tuple is the one coming from the standard choice (given
by SO3 acting on its defining representation), while there are no solutions for
n < 3. Moreover, for n = 3 the lemma follows by using Lemma 5A.7 and then
tracking the image of the basis from Lemma 5A.5 under quantum symmetric
Howe duality.The general case follows by copying this for a higher dimensional
target space.

(b) Lemma 3C.6 works in the same way: one chooses a basis and orders the images
of the generators in corresponding matrices or tensors.

(c) In Lemma 3C.7 one replaces the reference to [64, Chapter XII] with [44,
Lemma 3.4]. Indeed, the proof of [44, Lemma 3.4] can be copied as it only relies
on the fusion rules of SO3. We get the desired unique functor, up to scaling,
as all generators exists uniquely, up to scaling, as maps and all relations are
satisfied, for example, [44, Lemma 3.4.(2f)] is the H=I relation.

(d) Lemma 3C.8 follows as before from the previous two points.
(e) Ditto, Lemma 3C.9 follows as before from the third point above.

Details are omitted. □

We have a complete solution for matrix congruence, see subsection 3C, which is
the same as equivalence of bilinear forms by the classical fact that two matrices are
congruent if and only if they represent the same bilinear form up to change-of-basis.

Example 5C.4. For n = 3 Lemma 3C.13 lists all possible solutions of tr(NT N−1) =
−[2]q up to ≡c. The solutions of tr(NT N−1) = [3]q up to ≡c are similar. That is, for
q generic enough the only possible solution is

N = G1 ⊕ H1(q2) =
( 1 0 0

0 0 1
0 q2 0

)
,

up to q ↔ q−1. This is the standard solution up to permutation. ♢

Thus, we only need to worry about trilinear forms. The easiest case for us are
ternary trilinear forms, often called (3, 3, 3) trilinear forms, where n = 3. In the
notation above this is the case displayed in Equation 4B.1. For 1⃗ = (1, 1, 1), we
denote the appearing 3-by-3 matrices by Tx(⃗1), Ty (⃗1) and Tz (⃗1) in order from front
to back.

Take now such a form T and write it as T =
∑

h,i,j thij ·xhyizj , using variables. We
let Tx(x⃗) = (

∑
h thij · xh)ij for x⃗ = (x1, x2, x3), and similarly Ty(y⃗) and Tz(z⃗). The

determinant formula det
(
Tx(x⃗)

)
= 0 is a ternary cubic that we denote by Tx. We also

have Ty and Tz by using the corresponding determinant formulas. Finally, evaluation
at a⃗ ∈ C3 gives Tx(⃗a). This is a complex matrix, so we can let tx ∈ Z⩾0 ∪ {∞} be

Algebraic Combinatorics, Vol. 7 #6 (2024) 1837



D. Tubbenhauer

the number of matrices Tx(⃗a) with rank CTx(⃗a) = 1 (this number can be infinite).
Similarly for ty and tz.

Lemma 5C.5. Any ternary cubic is projectively equivalent to one of the following:
1 : x3 = 0, 2 : x2y = 0, 3 : xy(x − y) = 0, 4 : xyz = 0,

5 : z(x2 + yz) = 0, 6 : x(x2 + yz) = 0, 7 : x3 − y2z = 0, 8 : x3 + y3 − xyz = 0,

as well as 9 : an elliptic cubic and 10 : a zero cubic.

Proof. Well-known, see [61]. A more modern and detailed account can be found in
many works, see for example [36, Table 1]. □

One has a complete classification of ternary trilinear forms:

Lemma 5C.6. We have the following.
(a) We have T ≡c U if and only if ((tx, ty, tz) is equal to (ux, uy, uz) in some

order, and (Tx, Ty, Tz) is projective equivalent to (Ux, Uy, Uz) in the same
order.)

(b) The only possible triples (tx, ty, tz), up to reordering, are listed in the table
in Equation 5C.7 below. The only possible ternary cubics, up to projective
equivalence, are listed in the same table.

(0, 1, 0) (1, 0, 1) (1, 1, 1) (1, 2, 1) (2, 1, 2) (2, 2, 2) (3, 3, 3) (∞, 1, ∞) (∞, 2, ∞)
1 1 10
2 2, 5 1 3 2 10
3 2
4 4 6 4 4
5 7 3
6 8 4

(0, 0, 0) : nonzero ⇔ all cubics are of the same projective type.

(5C.7)

Equation 5C.7 is to be read as follows. The projective cases of two of (Tx, Ty, Tz)
need to agree, up to order, and the list in the first column is the class for Tx and Tz.
The class of Ty is then listed in the table, with empty entries meaning that there is
no solution. The entries are as in Lemma 5C.5.

Proof. This is [61, Theorem 12]. See also [47, Pages 2-4] for explicit matrix forms. □

Example 5C.8. To exemplify how to read the table Equation 5C.7, let us consider the
column (3, 3, 3). The only nonzero possibility is that all three ternary cubics are of
type xyz = 0. We thus get

Tx(x⃗) =
( t111x1+t211x2+t311x3 t112x1+t212x2+t312x3 t113x1+t213x2+t313x3

t121x1+t221x2+t321x3 t122x1+t222x2+t322x3 t123x1+t223x2+t323x3
t131x1+t231x2+t331x3 t132x1+t232x2+t332x3 t133x1+t233x2+t333x3

)
≡c

( x1 0 0
0 x2 0
0 0 x3

)
.

That is, we can assume that t111 = t222 = t333 = 1 and thij = 0 otherwise. ♢

Lemma 5C.9. From the cases listed in Equation 5C.7 precisely ((0, 0, 0) and projective
type 10) can be used to define an SO3 tuple up to ≡c.

Proof. Firstly, up to ≡c, we have

N =
( 1 0 0

0 0 1
0 q2 0

)
,

by Example 5C.4. The trilinear form that gives a solution is
t123 = −1, t132 = 1, t213 = −1, t231 = 1, t321 = −1, t312 = 1,

where we only show the nonzero entries. That this trilinear form works is a direct
calculation. This is ((0, 0, 0) and projective type 10) or the Veronese cuboid. All other
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nonzero cases in Equation 5C.7 can be directly ruled out. Since the trilinear form
cannot be zero due to the H=I relation, the proof completes. □

Remark 5C.10. The analog of Lemma 5C.6 for higher forms that would be relevant
for Theorem 5B.1, i.e. (p, p, p) trilinear forms with p ⩾ 4, seems to be not trackable.
In fact, this problem for general p is very difficult, see e.g. [6].

[60] has some results regarding (p, p, 2p − 2) trilinear forms, but these are not
relevant for SO3. For certain subclasses of trilinear forms a bit more can be said, see
for example [13].

The paper [47] studies trilinear forms from a geometric invariant theory point
of view. [47, Proposition 5] gives a numerical condition for the stability under GIT
quotients of (p, q, r) trilinear forms. Another geometric treatment is given in [48], but
for (3, 3, 4) trilinear forms; in particular, the moduli space of such forms is related to
the moduli space of unordered set of six points in the plane, or dually, six lines. The
double cover of the plane branched along the six lines is a K3 surface, and interesting
geometry appears. The analog for the (p, p, p) trilinear forms with p ⩾ 4 relevant for
this paper appears to be out of reach. ♢

6. On the complexity of the classification problems
In this section q is allowed to be any nonzero complex number. It will play the role
of a parameter.

The rank one classification problem for web categories, say Web(SL2), Web(GL2)
or Web(SO3), is the classification of rank one simple transitive 2-representations of
such categories for all q ∈ C at once. Here classification should be read in the sense
of Classification Problem 2.19.

Remark 6.1. This is again not meant as a definition. In particular, the below are
sketchy statements with sketchy proofs. We however hope that we are convincing
enough so that the reader believes that making these precise (in the sense of com-
plexity theory) is not difficult. We think that making this section precise by properly
addressing the complexity questions outlined below is an interesting problem, e.g. is
there some finite-tame-2-wild trichotomy for 2-representations? ♢

Web(SL2), and also Web(GL2) (or Ueb(GL2)), is very close to be the free pivotal
category generated by a bilinear form:

Proposition 6.2. The rank one classification problem for Web(SL2) implies the
classification of bilinear forms. Similarly, The rank one classification problem for
Web(GL2) (or Ueb(GL2)) implies the classification of bilinear forms as well.

Proof. We start by pointing out that all the statements in subsection 3C until,
and including, Lemma 3C.6 work even if q is a nontrivial root of unity. Moreover,
Lemma 3C.9 also holds, but needs to be adjusted as in [23, Theorem 2.3].

We assume now that the rank one classification problem for Web(SL2) is solved.
By the above mentioned lemmas we can associate N ∈ GLn(C) to a 2-representation
Fn

N for some Web(SL2) by choosing q appropriately. To see this, we point out that
the relation

= −[2]q

does not give any restriction on the appearing bilinear form if we are allowed to
vary q. This can be done since tr(NT N−1) ∈ C is some value and we can solve
tr(NT N−1) = −[2]q for q ∈ C∖ {0}. Thus, we obtain the classification of N ∈ GLn(C)
up to orthogonal congruence (recall that orthogonal congruence is the congruence that
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preserves the trace). This problem for Hermitian matrices, by [30, Corollary 2.3] and
[54, Theorem 11], is equivalent to the classification of nondegenerate bilinear form.
The latter is then equivalent ot the classification of all bilinear forms, as shown in [27,
Unique theorem in Section 1].

The case of Web(GL2) (or Ueb(GL2)) can be proven similarly and is omitted. □

We do not know how to deal with the H = I relation, so let us ignore it. Pre-
cisely, let Web(SO3)′ be the same as Web(SO3) but without imposing the H = I
relation. The category Web(SO3)′ is close to be the free pivotal category generated
by a trilinear form:

Proposition 6.3. The rank one classification problem for Web(SO3)′ implies the
classification of trilinear forms.

Proof. The proof strategy and arguments are almost the same as in the proof of
Proposition 6.2, so let us only focus on the differences.

We want to argue that the relations

= [3]q = q2 + 1 + q−2, = 0,

will not restrict the choice of trilinear form.
Similarly as in the proof of Proposition 6.2 we can vary q, eliminate the circle

relation and we can assume that N ∈ GLn(C) (encoding the bilinear form) is arbitrary.
The bitri evaluation thus does not restrict the appearing trilinear form because we
can just chose the bilinear form accordingly. Although this is difficult in practice, this
follows from a simple parameter count. Namely, the trilinear form has n3 parameters,
and so its kernel has n3 − 1 parameters, while the bilinear form has n2. (Note that
this count does not work for n = 1, but classifying (1, 1, 1)-trilinear forms is trivial.)

The remaining steps work as at the end of the proof of Proposition 6.2 (the re-
duction from nondegenerate trilinear to general trilinear forms follows by copying the
proof of [27, Unique theorem in Section 1]). □

Note that all of our rank one classification problems have an associated C-vector
space, i.e. the image of the generating object. Let n ∈ Z⩾0 denote the dimension of
this space.

In analogy with matrix classification problems, we call a rank one classification
problem finite if there are only finite many equivalence classes of rank one simple
transitive 2-representations for every fixed n ∈ Z⩾0. Similarly, such a problem is tame
if there is at most a one-parameter family of equivalences classes per n. We call such a
problem 2-wild (alternatively, wilder than wild) if it is strictly more difficult than any
wild problem in the sense that solving it solves all wild problems, but not vice versa.
(Recall that a classification problem is called wild if it contains the classification of
indecomposables for any finite dimensional algebra.)

Theorem 6.4. The rank one classification problem for Web(SO3)′ is 2-wild.

Proof. This follows from Proposition 6.3 and [6, Theorem 1.1]. □

The above, together with the easy to obtain solution of the rank one classification
problem for Web(SL1), implies the following. The rank one classification problem . . .

(i) . . . for Web(SL1) is finite.
(ii) . . . for Web(SL2)/Web(GL2) is tame.
(iii) . . . for Web(SO3)′ is 2-wild.
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Remark 6.5.
(a) In the representation theory of finite dimensional algebras there is the notion

of finite, tame and wild representation type. The above is inspired from these
notions.

(b) Note that the categorical version of wild, that we called 2-wild, is strictly
more difficult than any wild problem. In this sense one can say that cate-
gorical representation theory is more difficult than classical representation
theory. However, the main caveat is that we are discussing Web(SO3)′ and
not Web(SO3) itself.

We think it is an interesting question whether the rank one classification problem for
Web(SO3) (and with it probably for most other web categories) is wilder than wild.

Optimally, we would like to write the rank one classification problem for Web(SL1)
is finite, for Web(SL2) it is tame and for Web(SL3) it is 2-wild. (In order, no form
appear, bilinear forms appear, and trilinear forms appear.) We however were not able
to verify this because of the so-called square relation for Web(SL3). ♢
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