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The number of realisations of a rigid graph
in Euclidean and spherical geometries

Sean Dewar & Georg Grasegger

Abstract A graph is d-rigid if for any generic realisation of the graph in Rd (equivalently, the
d-dimensional sphere Sd), there are only finitely many non-congruent realisations in the same
space with the same edge lengths. By extending this definition to complex realisations in a nat-
ural way, we define cd(G) to be the number of equivalent d-dimensional complex realisations
of a d-rigid graph G for a given generic realisation, and c∗

d(G) to be the number of equiva-
lent d-dimensional complex spherical realisations of G for a given generic spherical realisation.
Somewhat surprisingly, these two realisation numbers are not always equal. Recently developed
algorithms for computing realisation numbers determined that the inequality c2(G) ⩽ c∗

2(G)
holds for any minimally 2-rigid graph G with 12 vertices or less. In this paper we confirm that,
for any dimension d, the inequality cd(G) ⩽ c∗

d(G) holds for every d-rigid graph G. This result
is obtained via new techniques involving coning, the graph operation that adds an extra vertex
adjacent to all original vertices of the graph.

1. Introduction
A (finite simple) graph is said to be d-rigid if every generic realisation of the graph in
d-dimensional Euclidean space is rigid, i.e. shares edge-lengths with at most finitely
many other realisations in the same space modulo isometries. A d-rigid graph is mini-
mally d-rigid if removing any edge of the graph forms a graph that is not d-rigid. Given
a d-rigid graph, we would wish to know how many possible edge-length equivalent re-
alisations exist for any given generic realisation solely from the structural properties
of the graph. This is unfortunately not possible for most graphs as the number of
equivalent realisations differs between different generic realisations; for example, see
Figure 1. As with many problems in algebraic geometry, the solution is to extend the
problem to allow complex solutions. By doing so, we can concretely define the num-
ber of equivalent complex realisations (modulo congruence) of a generic d-dimensional
complex realisation of a graph G. We refer to this number as the d-realisation num-
ber of G and denote it by cd(G). (See Definition 3.5 for a rigorous definition of the
concept.)

Here we must make an important technical point: we use the definition of a
graph’s d-realisation number given by Jackson and Owen [24], and as such
we consider reflections of a realisation to be congruent also; for example, the
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complete graph with d + 1 vertices has a d-realisation number of 1. The variant of
d-realisation number used by Borcea and Streinu [7] and Capco et al. [10] does (for
algebraic reasons) count reflections, and so is exactly double the d-realisation number
used here. We have opted for the former definition of a d-realisation number since
it preserves an important property of congruence: any two affinely spanning ordered
sets of equal size with identical pairwise distances between points are congruent. We
urge any reader who is cross-referencing with multiple sources to be careful about this
technical point, especially since many algorithms for computing d-realisation numbers
use the latter definition (e.g. [10, 15]).

W

Figure 1. Two realisations of the same graph on 5 vertices with
different numbers of equivalent real realisations. The realisation on
the left has 4 non-congruent equivalent real realisations (two of which
are shown), whilst the one on the right has only 2 due to the edge
lengths.

Via tools such as coning — adding a vertex to a graph adjacent to all other vertices,
a process that preserves rigidity between dimensions — Whiteley [30] proved that a
graph is rigid when embedded generically on the d-dimensional sphere if and only if
it is d-rigid. Because of this equivalence, it is natural to ask how many equivalent
spherical realisations exist for any given generic spherical realisation of a graph. Yet
again we are required to extend to complex solutions, where we also consider realisa-
tions on the complexification of the sphere. We thus define the spherical d-realisation
number of a graph G, here denoted by c∗

d(G), to be the number of equivalent com-
plex spherical realisations (modulo congruence) of a generic d-dimensional complex
spherical realisation of a graph G. (See Definition 4.5 for a rigorous definition of the
concept.) As noted in Remark 4.10, this number is equal to the analogous realisation
number for hyperbolic space, and so can also be considered to be the non-Euclidean
d-realisation number of a graph.

In recent years, deterministic algorithms have also been constructed for comput-
ing c2(G) [10] and c∗

2(G) [15] when the graph G is a minimally 2-rigid. It is also
relatively easy to compute the values c1(G) and c∗

1(G) for any graph G (see Propo-
sitions 3.8 and 4.9). This is, unfortunately, where the good news stops: when d > 2,
there exist no current feasible deterministic algorithms for computing either cd or c∗

d

for general graphs. One probabilistic method for computing cd(G) and c∗
d(G) when G

is d-rigid involves choosing a random realisation for the graph and applying Gröbner
basis computational techniques to the resulting algebraic solution set. Whilst this
algorithm can be used reliably to obtain a lower bound on the d-realisation number
of a graph, it is not deterministic and usually extremely slow (see [10, Section 5] for
computation speed comparisons). Upper bounds can also be determined using mixed
volume techniques [28] or multihomogenous Bézout bounds [4].

1.1. Our contributions. When computing c2 and c∗
2 for various minimally 2-rigid

graphs, it was observed that the two numbers occasionally will differ; see Figures 2

Algebraic Combinatorics, Vol. 7 #6 (2024) 1616



The number of realisations of a rigid graph

Figure 2. 12 equivalent real realisations of the 3-prism graph.

Figure 3. 16 equivalent real realisations of the 3-prism graph on the sphere.

and 3 for the smallest 2-rigid graph where c2 is strictly less than c∗
2. It was also

observed that the opposite never held for any of the graphs whose realisation num-
bers were computed. To be exact, for every minimally 2-rigid graph with at most 12
vertices, the 2-realisation number c2 is never greater than the spherical 2-realisation
number c∗

2(G): this observation can be achieved by combining implementations of
the algorithms [9, 16] and the data set of all minimally 2-rigid graphs with at most
12 vertices that can be found at [11]. Similarly, randomized experiments with higher
numbers of vertices also exhibited the exact same behaviour. Our main contribution
of this paper is proving that this observation is indeed true for any graph in any
dimension.

Theorem 1.1. For any graph G and any positive integer d, we have cd(G) ⩽ c∗
d(G).

To prove this result, we first show an equivalence between the spherical d-realisation
number of a graph G and the (d+ 1)-realisation number of the coned graph G∗ o, the
graph formed by adding a new vertex adjacent to all other vertices of G.

Algebraic Combinatorics, Vol. 7 #6 (2024) 1617
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Theorem 1.2. Let d be a positive integer and let G∗o be a coning of a graph G. Then
c∗

d(G) = cd+1(G ∗ o).

Our proof for Theorem 1.2 hinges on the observation that realisation numbers
for frameworks are, in the special case of coned frameworks, projectively invariant.
This is, in some sense, an extension of a result of Connelly and Whiteley [12], who
proved that global rigidity (i.e. cd(G) = 1 [17]) is projectively invariant. Theorem 1.1,
however, requires a more specialised approach to graph coning. We actually prove
that cd(G) ⩽ cd+1(G∗o), since Theorem 1.2 then implies the required inequality. Our
technique now is as follows. We construct a very specific space of (d+ 1)-dimensional
realisations of the coned graph G ∗ o which include realisations where the cone vertex
o is mapped to a point at infinity. For this special class of realisations, the distance
constraints stemming from edges connecting the cone vertex o to each vertex v of
G are instead linear constraints that force the vertices of G to lie in a family of
parallel hyperplanes. This allows us to embed our d-dimensional realisations of G
into our new larger space of (d + 1)-dimensional realisations of G ∗ o. From this, we
can then approximate any d-dimensional realisation of G by a sequence of (d + 1)-
dimensional realisations of G ∗ o in our larger space such that the required geometric
information regarding realisation spaces (i.e. an upper bound on the number of points)
is preserved.

The idea of considering a linear constraint to be a point at infinity is not new; see
for example [13]. The idea of mapping realisations between Euclidean and spherical
geometries to determine rigidity properties is also not new: the central projection [23,
26] (also known as the infinitesimal Pogorelov map or the gnomonic projection) is
an example of a map between spherical and Euclidean geometry which preserves the
linear information of frameworks; for example, infinitesimal rigidity, or the rank of any
self-stresses of the framework. It is important to note here that the central projection
does not, in general, preserve the number of configurations for a framework;(1) for
more details on this, see [12, Section 8]. Although the authors cannot see any direct
method for adapting the central projection to prove Theorem 1.1, a similar map is
used in Section 5 to prove Theorem 1.2. An alternative approach that does preserve
non-linear information is the finite Pogorelov map [23, 26], here denoted by T . Roughly
speaking, this rational map takes pairs of d-dimensional spherical realisations p, q of
a graph G and produces a single d-dimensional Euclidean realisation T (p, q), with the
property that the spherical realisations p and q have the same length edges if and
only if the Euclidean realisations T (p, q) and T (q, p) have the same length edges. A
major issue with the finite Pogorelov map is that, while it does preserve edge-length
equivalence of pairs of realisations, it usually does not behave well when applied to
the entire realisation space of a framework.(2) For example, if p, q, r are d-dimensional
spherical realisations of a graph G with the same length edges, then T (p, q) and T (p, r)
(or T (r, p)) do not, in general, have the same length edges. Because of this difficulty,

(1)The notable exception to this is when a generic framework is globally rigid, since this condition
is equivalent to the existence of a full-rank self-stress [17]. Using self-stresses to determine realisation
numbers fails in the general case, however, for two important reasons: (i) very little can be said
when every self-stress of a generic framework with n vertices has rank strictly less than n − d − 1
except that cd(G) > 1 and c∗

d(G) > 1; (ii) self-stress techniques are not viable for the majority of
d-rigid graphs, including the important class of minimally d-rigid graphs (which generically have no
non-trivial self stresses).

(2)Yet again, the exception makes the rule: in [12, Section 7], Connelly and Whiteley’s gave an
alternative proof that global rigidity is equivalent for spherical and Euclidean spaces which utilises
the finite Pogorelov map. This is as, to prove a framework is not globally rigid, one only needs to
prove there exists one other non-congruent framework with the same length edges — a property that
can be preserved using the Pogorelov map.

Algebraic Combinatorics, Vol. 7 #6 (2024) 1618
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it does not seem to be immediate to us for how the finite Pogorelov map could be
possibly applied to prove Theorem 1.1.

How our new method differs from the properties gifted by the two previously
mentioned maps is that it allows us to approximate d-dimensional general realisations
of a graph G by (d + 1)-dimensional coned realisations of the cone graph G ∗ o in a
way that preserves some algebraic geometric information about generic realisation
spaces, not just pairs of realisations: in our particular case, the geometric information
that is preserved is an upper bound on the size of the set. It is the authors’ belief
that our new enhanced coning technique has the potential to applied to other generic
invariants related to framework rigidity (see Remark 6.5 for further discussion).

1.2. Structure of the paper. Our paper is structured as follows. In Section 2
we cover all the necessary background surrounding the topics of rigidity, spherical
rigidity and coning. In Sections 3 and 4 we provide rigorous definitions for the d-
realisation number and spherical d-realisation number respectively. Whilst such ideas
have been alluded to in prior papers (for example [10, 24]), they have previously
restricted themselves to 2-dimensional spaces only. Due to the various technicalities
that occur when moving between our various higher-dimensional geometries, we have
opted to include thorough proofs of all necessary background results. In Section 5
and Section 6 we prove Theorem 1.2 and Theorem 1.1 respectively. In Section 5 we
also prove that repeatedly coning a graph will, in some sense, stabilise its realisation
numbers (Theorem 5.2), which can be utilised to construct infinite families of graphs
for each dimension with realisation numbers that can be computed deterministically.
We conclude the paper by discussing various computational results we have obtained
in Section 7.

2. Preliminary results for rigidity theory
In this section we cover the necessary background results for discussing rigidity in
geometries based over the real numbers. Many of these concepts are extended to
geometries based over the complex numbers in Sections 3 and 4.

2.1. Euclidean space rigidity. A realisation of a (finite simple) graph G = (V,E)
in Rd is a map p : V → Rd, and the linear space of all realisations of a graph is denoted
by (Rd)V . A realisation p is said to be generic if the set of coordinates of p forms an
algebraic independent set of d|V | elements.(3) A graph-realisation pair (G, p) is said
to be a d-dimensional framework. Two frameworks (G, p) and (G, q) in Rd are said to
be equivalent if (given ∥ · ∥ is the standard Euclidean norm) ∥pv − pw∥ = ∥qv − qw∥
holds for every edge vw ∈ E. A framework (G, p) in Rd is now said to be rigid if the
following holds for some ε > 0: if (G, q) is an equivalent framework in Rd such that
∥pv − qw∥ < ε for all v ∈ V , then there exists an isometry f : Rd → Rd such that
qv = f(pv) for all v ∈ V .

Determining whether a framework is rigid is NP-Hard for d ⩾ 2 [1]. To combat
this, we construct the rigidity matrix R(G, p) of a given framework (G, p). This is the
|E| × d|V | matrix with the row labelled vw ∈ E given by

[0 · · · 0
v︷ ︸︸ ︷

pv − pw 0 · · · 0
w︷ ︸︸ ︷

pw − pv 0 · · · 0].
A framework (G, p) is said to be regular if its rigidity matrix has maximal rank, i.e. for
any d-dimensional realisation q of G we have rankR(G, p) ⩾ rankR(G, q). Any frame-
work (G, p) with a surjective rigidity matrix (i.e. rank(G, p) = |E|) is automatically

(3)The requirement that the algebraic independent set has d|V | elements is stated to avoid the
possibility of identical coordinates.
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regular: in such a case we say that the framework (G, p) is independent. Any generic
framework must also be regular, since the non-regular frameworks form an algebraic
set defined by rational-coefficient polynomials.

Theorem 2.1 ([2]). Let (G, p) be a regular framework in Rd. Then the following prop-
erties are equivalent.

(i) (G, p) is rigid.
(ii) Either G has at least d vertices and rankR(G, p) = d|V | −

(
d+1

2
)
, or G is a

complete graph.

Since every generic framework is regular, Theorem 2.1 informs us that both rigidity
and independence are generic properties. This motivates the following definitions.

Definition 2.2. A graph G is said to be d-rigid (respectively, d-independent) if there
exists a d-dimensional rigid (respectively, independent) generic framework (G, p). If
G is rigid but G−e is not for each edge e ∈ E, then G is said to be minimally d-rigid.

One method that can be used to construct rigid/independent graphs in higher
dimensions is via coning. Specifically: given a graph G = (V,E), we define the cone
of G (by the new vertex o) to be the graph G ∗ o := (V ∗ o,E ∗ o) where o /∈ V ,
V ∗ o := V ∪ {o} and

E ∗ o := E ∪ {ov : v ∈ V }.

We can now use the next result to move between dimensions whilst preserving rigidity
and independence.

Theorem 2.3 ([30, Theorem 5]). A graph G = (V,E) is d-rigid (respectively, d-
independent) if and only if G ∗ o is (d+ 1)-rigid (respectively, (d+ 1)-independent)<.

2.2. Spherical space rigidity. The d-dimensional (unit) sphere is the set

Sd :=
{
x ∈ Rd+1 : ∥x∥2 = 1

}
.

Similar to the Euclidean case, we define a d-dimensional spherical realisation to be a
pair (G, p) of a graph G = (V,E) and a d-dimensional spherical realisation p : V → Sd.
The notions of equivalence and rigidity can be analogously defined for spherical frame-
works by restricting all realisations to be spherical realisations.

An important observation is that any d-dimensional spherical realisation of a graph
G can (for rigidity purposes at least) be considered to be a (d+1)-dimensional realisa-
tion of the cone of G. To be more specific: given a d-dimensional spherical framework
(G, p), we define the (d+ 1)-dimensional framework (G ∗ o, p′) by setting p′

v = (pv, 1)
for all v ∈ V and p′

o = 0. From this construction it is easy to see that the framework
(G∗o, p′) is rigid if and only if (G, p) is rigid. Slightly less obviously, this remains true
if we scale each pv by some positive scalar.

Proposition 2.4. For a graph G = (V,E), let p, q be d-dimensional realisations of
the cone G ∗ o where po = qo = 0. Further suppose that for each v ∈ V , there exists a
scalar rv > 0 such that qv = rvpv. Then (G ∗ o, p) is rigid if and only if (G ∗ o, q) is
rigid, and rankR(G ∗ o, p) = rankR(G ∗ o, q).

Proof. That rankR(G ∗ o, p) = rankR(G ∗ o, q) follows from the observation that the
rank of a rigidity matrix is projectively invariant; see [23, Theorem 1] for more details.
Now choose any d-dimensional framework (G∗ o, p̃) equivalent to (G∗ o, p) and define
q̃ to be the realisation of G ∗ o with q̃v = rvp̃v for each v ∈ V . For every edge vw of
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G we have

∥p̃v∥2 = ∥p̃v − p̃o∥2 = ∥pv − po∥2 = ∥pv∥2,

∥p̃w∥2 = ∥p̃w − p̃o∥2 = ∥pw − po∥2 = ∥pw∥2,

p̃v · p̃v = ∥p̃v∥2 + ∥p̃w∥2 − ∥p̃v − p̃w∥2 = ∥pv∥2 + ∥pw∥2 − ∥pv − pw∥2 = pv · pw.

(Remember that ov, ow ∈ E ∗ o and p̃o = po = 0.) Using the above equalities, we see
that

∥q̃v − q̃w∥2 = ∥rvp̃v − rwp̃w∥2

= ∥rvp̃v∥2 + ∥rwp̃w∥2 − rvrwp̃v · p̃w

= ∥rvpv∥2 + ∥rwpw∥2 − rvrwpv · pw

= ∥rvpv − rwpw∥2

= ∥qv − qw∥2,

and hence (G ∗ o, q) and (G ∗ o, q̃) are equivalent. From this it follows that (G ∗ o, p)
is rigid if and only if (G ∗ o, q) is rigid. □

From a combination of Theorem 2.1, Theorem 2.3 and Proposition 2.4, we can now
see that a graph is rigid in d-dimensional Euclidean space if and only if it is rigid in
d-dimensional spherical space.

Theorem 2.5. For any graph G, the following properties are equivalent.
(i) G is d-rigid.
(ii) Almost every (i.e. with Lebesgue measure zero complement) d-dimensional

spherical framework (G, p) is rigid.

Remark 2.6. It was first observed by Pogorelov [26, Chapter V] that the linear space
of infinitesimal motions of a d-dimensional spherical framework is isomorphic to the
linear space of infinitesimal motions of the d-dimensional framework obtained by
a central projection to Euclidean space. An alternative proof of Theorem 2.5 now
stems from the spherical analogue to Theorem 2.1, which can be proven in an almost
identical way.

3. Counting complex realisations
Our aim in this section is to prove that the definition of the d-realisation number
for a graph alluded to in the introduction can be stated in a rigorous manner (see
Definition 3.5).

3.1. Complex rigidity map. We recall that an algebraic set is a subset A ⊂ Cn of
common zeroes of an ideal I ⊂ C[X1, . . . , Xn], and a variety is an irreducible algebraic
set. If an algebraic set forms a smooth submanifold of Cn then it is said to be smooth.
We shall refer to a subset U of an algebraic set A as a Zariski closed/open/dense
subset if U is a closed/open/dense subset of A with respect to the Zariski topology.

For every point x = (x1, . . . , xd) ∈ Cd, we define [x]i := xi for each i = 1, . . . , d.
We now also consider realisations in Cd by extending (Rd)V to the set (Cd)V . Any
realisation in (Rd)V is said to be a real realisation. We extend the square of the
Euclidean norm to Cd by defining ∥x∥2 :=

∑d
i=1[x]2i . We note that this is a quadratic

form and not the square of the standard complex norm, and so can take complex
values. Later we shall also require the bilinear map x · y :=

∑d
i=1[x]i[y]i, where we

notice that x · x = ∥x∥2.
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For any graph G = (V,E) we define the complex rigidity map to be the multivari-
able map

fG,d : (Cd)V → CE , p 7→
(

1
2∥pv − pw∥2

)
vw∈E

.

We denote the Zariski closure of the image of fG,d by ℓd(G). Since the domain of fG,d is
irreducible, ℓd(G) is a variety. Note that two realisations p, q of G in Rd are equivalent
if and only if fG,d(p) = fG,d(q). Given O(d,C) is the group of d × d complex-valued
matrices M where MTM = MMT = I, we define two realisations p, q ∈ (Cd)V to
be congruent (denoted by p ∼ q) if and only if there exists A ∈ O(d,C) and x ∈ Cd

so that pv = Aqv + x for all v ∈ V . If the set of vertices of (G, p) affinely span Cd,
we have the following equivalent statement: two realisations p, q are congruent if and
only if fKV ,d(p) = fKV ,d(q) (see [17, Section 10] for more details). For all p ∈ (Cd)V ,
we define

Cd(G, p) := f−1
G,d(fG,d(p))/∼

to be the realisation space of (G, p).
Our new definitions might look a little strange at first. For example, the elements

of O(d,C) are not isometries of Cd (i.e. they are not unitary matrices), although
∥Ax∥2 = ∥x∥2 for all x ∈ Cd. However, our previous definitions of independence and
rigidity can be encoded in our new language of morphisms between complex spaces.
We first recall that a morphism f : X → Y between algebraic sets X ⊂ Cm and
Y ⊂ Cn (i.e. the restriction of a polynomial map Cm → Cn) is dominant if Y ∖f(X)
is contained in a Zariski closed proper subset of Y ; see Appendix A for more details
regarding dominant morphisms.

Lemma 3.1. Let G = (V,E) be any graph. Then the following are equivalent:
(i) G is d-independent.
(ii) The map fG,d is dominant.
(iii) ℓd(G) = CE.

Proof. By the definition of a dominant map, (ii) and (iii) are equivalent. The map fG,d

is dominant if and only if rank dfG,d(p) = |E| for some p ∈ (Cd)V (see Theorem A.1).
If G is d-independent then there exists a p ∈ (Rd)V such that rank dfG,d(p) =
rankR(G, p) = |E|, hence (i) implies (ii). Suppose that G is not d-independent; i. e.,
for each p ∈ (Rd)V we have rank dfG,d(p) < |E|. Then the set X := {p ∈ (Cd)V :
rank dfG,d(p) < |E|} is a Zariski closed subset of (Cd)V that contains (Rd)V . Hence,
X = (Cd)V , and (ii) implies (i) as required. □

Let G = (V,E) be a graph with at least d + 1 vertices and fix a sequence of d
vertices v1, . . . , vd. We now define the algebraic set

XG,d :=
{
p ∈ (Cd)V : [pvk

]j = 0 if j ⩾ k
}
.(1)

(At certain points in the paper we use vertices w1, . . . , wd to define XG,d, which can
be done by replacing each vi with wi in the above definition.) We further note that
XG,d has dimension d|V | −

(
d+1

2
)
. Since XG,d is defined by a set of linear equations,

it is irreducible. With this, we define the morphism

f̃G,d : XG,d → ℓd(G), p 7→ fG,d(p),

i. e., the restriction of fG,d to the domain XG,d and the codomain ℓd(G). As can
be seen by the following lemma, the map f̃G,d allows us to more easily define the
cardinality of the set Cd(G, p) for most realisations p.
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Lemma 3.2. Let G = (V,E) be a graph with |V | ⩾ d + 1, and fix a sequence of d
vertices v1, . . . , vd. Then the image of f̃G,d is Zariski dense in the image of fG,d (and
so f̃G,d is dominant), and ∣∣∣f̃−1

G,d (fG,d(p))
∣∣∣ = 2d|Cd(G, p)|

for almost all(4) p ∈ (Cd)V .
See Appendix B for a detailed proof of Lemma 3.2.

3.2. Defining the d-realisation number. Before stating our next result, we re-
quire the following technical result regarding dominant morphisms. The proof of this
can be seen in Appendix A.
Theorem 3.3. Let X ⊂ Cm and Y ⊂ Cn be varieties and f : X → Y be a dominant
morphism. Then the following are equivalent:

(i) dimX = dimY .
(ii) f is generically finite, i.e. for a general y ∈ Y , the fibre f−1(y) is a finite

set.
(iii) There exists a k ∈ N and a non-empty Zariski open subset U ⊂ X where

|f−1(f(x))| = k for all x ∈ U . Furthermore, if x ∈ U and x′ ∈ f−1(f(x)),
then rank df(x′) = dimY .

Proposition 3.4. Let G = (V,E) be a graph with |V | ⩾ d+1. Then the following are
equivalent:

(i) G is d-rigid.
(ii) The map f̃G,d is generically finite.
(iii) There exists an n ∈ N and a non-empty Zariski open subset U ⊂ (Cd)V where

|Cd(G, p)| = n for all p ∈ U . Furthermore, if p ∈ U and q is an equivalent
d-dimensional realisation of G, then rank dfG,d(q) = d|V | −

(
d+1

2
)
.

Proof. By Lemma 3.2, the map f̃G,d is dominant. Since dim ℓd(G) = rank dfG,d(p)
for any general realisation p ∈ (Cd)V , it follows from Theorem 2.1 that G is d-rigid if
and only if

dim ℓd(G) = d|V | −
(
d+ 1

2

)
= dimXG,d.

The result now holds by applying Theorem 3.3 to the map f̃G,d. □

Using Proposition 3.4 we can now make the following well-defined definition of the
d-realisation number for any graph.
Definition 3.5. The d-realisation number of a graph G = (V,E) is an element of
N ∪ {∞} given by

cd(G) :=


|Cd(G, p)| for a general p ∈ (Cd)V if |V | ⩾ d+ 1,
1 if |V | ⩽ d and G is complete,
∞ if |V | ⩽ d and G is not complete.

It follows from Proposition 3.4 that a graph G is d-rigid if and only if cd(G) < ∞.
We can relate the d-realisation number back to real realisations so long as we

allow for equivalent complex realisations when counting. We first require the following
technical lemma.

(4)Here we say that a property P holds for almost all points in Cn if there exists a Zariski open
subset U ⊂ Cn of points where property P holds, in which case we say that any point where property
P holds is a general point (with respect to P ).
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Lemma 3.6. If U is a non-empty Zariski open subset of Cn, then U∩Rn is a non-empty
Zariski open subset of Rn.

Proof. For a field F ∈ {R,C}, we fix F[Xn] to be the set of all n-variable polynomials
over F. Define the ideal

F := {f ∈ C[Xn] : f(p) = 0 for all p /∈ U}.
Since U is a Zariski open set, the zero set

Z(F ) := {p ∈ Cn : f(p) = 0 for all f ∈ F}
is a Zariski closed set and the complement of U . As U is non-empty we imme-
diately have that F ̸= {0}. For each f ∈ F , there exist two unique polynomials
fR, fI ∈ R[Xn] such that f = fR + ifI : to see this, note that there exists a finite sub-
set A ⊂ Zn

⩾0 and real values ax, bx for each x ∈ A such that f(p) =
∑

x∈A(ax + ibx)px

(here px = px1
1 · · · pxn

n for each x = (x1, . . . , xn)), and so fR(p) =
∑

x∈A axp
x and

fI(p) =
∑

x∈A bxp
x. For each p ∈ Rn we note that f(p) = 0 if and only if fR(p) =

fI(p) = 0. Fix FR := {fR : f ∈ F} and FI := {fI : f ∈ F}, and for every set of (real
or complex) polynomials S ⊂ C[Xn] fix ZR(S) := {p ∈ Rn : f(p) = 0 for all f ∈ S}.
Then ZR(F ) = ZR(FR) ∩ ZR(FI). Hence, the set ZR(F ) is a Zariski closed subset
of Rn since ZR(FR) and ZR(FI) are Zariski closed subsets of Rn. Furthermore, the
set ZR(F ) is a proper Zariski closed subset of Rn: this follows from the observing the
equivalence

ZR(F ) = Rn ⇔ FR = FI = {0} ⇔ F = {0},

with the latter property contradicting our previous observation that F ̸= {0}. The
result now holds as U ∩ Rn = Rn ∖ ZR(F ). □

Corollary 3.7. For each graph G = (V,E), there exists a non-empty Zariski open
subset UR ⊂ (Rd)V of real d-dimensional realisations p where |Cd(G, p)| = cd(G).

Proof. The result is trivial if G is complete and |V | ⩽ d. If G is not d-rigid then
cd(G) = ∞ and the result holds by Theorem 2.1. If G is d-rigid with |V | ⩾ d+ 1 then
we fix U ⊂ (Cd)V to be the set defined in Proposition 3.4 and define UR := U ∩(Rd)V .
The set UR is now a Zariski open subset of (Rd)V by Lemma 3.6. □

It is important to note that Corollary 3.7 does not guarantee that every other
equivalent realisation in Cd(G, p) is also real. In fact we note that this is often not
the case. For example, any minimally d-rigid graph with a vertex of degree d must
have general d-dimensional realisations with complex equivalent realisations: this re-
alisation can be chosen in a similar way to the right realisation pictured in Figure 1.
Failing this, it is then natural to ask whether each graph G has at least one real generic
d-dimensional realisation p where every other equivalent realisation in Cd(G, p) is also
real. It was proven in [24] that this too is false when d = 2. It does, however, remain
open whether the statement is false when d > 2. For more on the topic of equivalent
real realisations for a graph, see [3].

When d = 1, it is relatively easy to compute the realisation number of a graph.
We first require the following terminology. A connected graph is biconnected if it has
at least 2 vertices and the removal of any vertex will always produce a connected
graph. We remark that the set of biconnected graphs is exactly the set of 2-connected
graphs with the addition of the complete graph with two vertices. Given a graph
G = (V,E), we say that a subset F ⊂ E is a biconnected component of G if the
subgraphH = (V [F ], F ) induced by F is biconnected and no subgraph ofG containing
H that is not H itself is biconnected. The biconnected components of a graph form a
partition of its edge set.
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Proposition 3.8. Let G be a graph and fix k to be the number of biconnected compo-
nents of G. Then c1(G) < ∞ if and only if G is connected. If G is connected with at
least one edge then c1(G) = 2k−1.

Proof. If we glue two connected graphs H1 and H2 at exactly one vertex to form a
graph H then c1(H) = 2c1(H1)c1(H2). The result now follows from the observation
that c1(G) = 1 if G is biconnected. □

As the number of biconnected components of a graph can be computed in linear
time [22], it follows that there exists a linear time algorithm for computing c1(G). The
current fastest deterministic algorithm for computing c2(G) when G is minimally 2-
rigid runs in exponential time [10]. There are no other known deterministic algorithms
for computing cd(G) outside of restricting to specific families of graphs (e.g. chordal
graphs).

4. Counting realisations on a complex sphere
Our aim in this section is to prove that the definition of the spherical d-realisation
number alluded to in the introduction can be stated in a rigorous manner (see Defi-
nition 4.5).

4.1. Complex spherical rigidity map. We define
Sd
C :=

{
x ∈ Cd+1 : ∥x∥2 = 1

}
to be the complexification of the d-dimensional (unit) sphere. As Sd

C is a smooth
connected variety (and hence irreducible), so too is (Sd

C)V for any finite set V . Like how
we chose to consider a larger set of realisations by switching from (Rd)V to (Cd)V , we
now consider spherical realisations in Sd

C by extending the set (Sd)V to the set (Sd
C)V .

Any spherical realisation in p ∈ (Sd)V is now said to be a real spherical realisation.
At a spherical realisation p ∈ (Sd

C)V , the linear space

Tp(Sd
C)V :=

{
x ∈ (Cd+1)V : xv · pv = 0 for all v ∈ V

}
is the tangent space of (Sd

C)V at p.
For any graph G = (V,E) we define the complex spherical rigidity map to be the

map

sG,d : (Sd
C)V → CE , p 7→

(
1
2∥pv − pw∥2

)
vw∈E

= (1 − pv · pw)vw∈E .

We denote the Zariski closure of the image of sG,d by ℓ∗
d(G). Since the domain of sG,d

is irreducible, ℓ∗
d(G) is a variety. The derivative of sG,d at a point p ∈ (Sd

C)V can be
seen to be the linear map

dsG,d(p) : Tp(Sd
C)V → CE ,

x 7→ ((pv − pw) · (xv − xw))vw∈E = (−(pv · xw + pw · xv))vw∈E .

We define two realisations p, q ∈ (Sd
C)V to be congruent (denoted by p ∼ q) if and

only if p = Aq for some A ∈ O(d + 1,C). If the vertex set of p linearly spans Cd+1,
then two realisations p, q are congruent if and only if sKV ,d(p) = sKV ,d(q). For all
p ∈ (Sd

C)V , we define C∗
d(G, p) := s−1

G,d(sG,d(p))/∼ to be the spherical realisation space
of (G, p).

We can link the infinitesimal properties of rigidity in Cd and in Sd
C with the following

result.

Lemma 4.1. Let p ∈ (Cd)V and q ∈ (Sd
C)V be such that [qv]d+1 ̸= 0 and [pv]i =

[qv]i/[qv]d+1 for all v ∈ V and i ∈ {1, . . . , d}. Then rank dfG,d(p) = rank dsG,d(q).
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Proof. Define the bijective linear map

φ : Tq(Sd
C)V → (Cd)V , x 7→

(
[xv]1

[qv]d+1
, . . . ,

[xv]d
[qv]d+1

)
v∈V

.

For any u ∈ Tq(Sd
C)V we have

(pv − pw) · (φ(u)v − φ(u)w)

=
d∑

i=1

[qv]i[uv]i
[qv]2d+1

+ [qw]i[uw]i
[qw]2d+1

− [qv]i[uw]i + [qw]i[uv]i
[qv]d+1[qw]d+1

= − [qv]d+1[uv]d+1

[qv]2d+1
− [qw]d+1[uw]d+1

[qw]2d+1

+[qv]d+1[uw]d+1 + [qw]d+1[uv]d+1

[qv]d+1[qw]d+1
− qv · uw + qw · uv

[qv]d+1[qw]d+1

= −qv · uw + qw · uv

[qv]d+1[qw]d+1
.

It follows that u ∈ ker dsG,d(q) if and only if φ(u) ∈ ker dfG,d(p). As φ is bijective,
we have rank dfG,d(p) = rank dsG,d(q) as required. □

From Lemma 4.1 we know that a graph is rigid (respectively, independent) in Rd

if and only if it is rigid (respectively, independent) in Sd. Due to this, we can obtain
an analogue of Lemma 3.1 for the map sG,d.

Lemma 4.2. Let G = (V,E) be any graph. Then the following are equivalent:
(i) G is d-independent.
(ii) The map sG,d is dominant.
(iii) ℓ∗

d(G) = CE.

Proof. By the definition of a dominant map, (ii) and (iii) are equivalent. Hence, we
only need to prove that (i) and (ii) are equivalent. By Lemma 3.1, we only need to
show that sG,d is dominant if and only if fG,d is dominant. This is equivalent to
proving the following: there exists p ∈ (Cd)V with rank dfG,d(p) = |E| if and only
if there exists a q ∈ (Sd

C)V with rank dsG,d(p) = |E| (see Theorem A.1). Hence, the
result holds by Lemma 4.1. □

4.2. Defining the spherical d-realisation number. Let G = (V,E) be a graph
with at least d+ 1 vertices and fix a sequence of d vertices v1, . . . , vd. We now define
the algebraic set

YG,d :=
{
p ∈ (Sd

C)V : [pvk
]j = 0 if j ⩾ k + 1 and [pv1 ]1 = 1

}
(2)

Since YG,d is a connected smooth manifold, it is irreducible. We further note that YG,d

has dimension d|V | −
(

d+1
2
)
. With this, we define the morphism

s̃G,d : YG,d → ℓ∗
d(G), p 7→ sG,d(p),

i. e., the restriction of sG,d to the domain YG,d and the codomain ℓ∗
d(G). Since every

d-dimensional realisation of G is equivalent to at least one element of YG,d it follows
that s̃G,d is a dominant map.

The methods utilised in Lemma 3.2 can easily be adapted to work for realisations
in the d-dimensional sphere.

Lemma 4.3. Let G = (V,E) be a graph with |V | ⩾ d + 1, and fix a sequence of d
vertices v1, . . . , vd. Then the image of s̃G,d is Zariski dense in the image of sG,d (and
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so s̃G,d is dominant), and ∣∣∣s̃−1
G,d (sG,d(p))

∣∣∣ = 2d|C∗
d(G, p)|

for almost all p ∈ (Sd
C)V .

The spherical version of Proposition 3.4 is also proved in an analogous way.

Proposition 4.4. Let G = (V,E) be a graph with |V | ⩾ d+1. Then the following are
equivalent:

(i) G is d-rigid.
(ii) The map s̃G,d is generically finite.
(iii) There exists an n ∈ N and a non-empty Zariski open subset U ⊂ (Sd

C)V where
|C∗

d(G, p)| = n for all p ∈ U . Furthermore, if p ∈ U and q is an equivalent
d-dimensional spherical realisation of G, then rank dsG,d(q) = d|V | −

(
d+1

2
)
.

Using Proposition 4.4 we can now make the following well-defined definition of the
spherical d-realisation number for a minimally d-rigid graph.

Definition 4.5. The spherical d-realisation number of a graph G = (V,E) is an
element of N ∪ {∞} given by

c∗
d(G) :=


|C∗

d(G, p)| for a general p ∈ (Sd
C)V if |V | ⩾ d+ 1,

1 if |V | ⩽ d and G is complete,
∞ if |V | ⩽ d and G is not complete.

It follows from Proposition 4.4 that a graph G is d-rigid if and only if cd(G) < ∞.
It is worth noting that, while c∗

d(G) < ∞ if and only if cd(G) < ∞, this does not
mean the two numbers are always equal. This can be seen in the following example.

Example 4.6. We consider the 3-prism graph. It is minimally 2-rigid with six ver-
tices, all of which have degree three. For this graph we have c2(G) = 12, which can be
computed with the algorithm described in [10]. In fact, there exist edge-length assign-
ments for which we also obtain exactly 12 real realisations (see Figure 2). However,
the same graph embedded on the sphere gives c∗

2(G) = 16, which can be computed by
the algorithm described in [15]. Again there exist edge-length assignments such that
each realisation is real (see Figure 3). (Both algorithms use the alternative definitions
for realisation numbers and so the outputted numbers first need to be halved.)

The natural analogue of Corollary 3.7 also holds for spheres by a similar method.

Corollary 4.7. For each graph G = (V,E), there exists a non-empty Zariski open
subset UR ⊂ (Sd)V of real d-dimensional spherical realisations p where |C∗

d(G, p)| =
c∗

d(G).

Remark 4.8. It is currently open whether every graph G has a real generic d-
dimensional spherical realisation that is equivalent (modulo congruences) to exactly
c∗

d(G) real spherical realisations. The counter-example used in the previous section
for real realisations in the plane required the existence of a graph H where c2(H) is
odd. Similarly, any graph G where c∗

2(G) is odd would be a counter-example to the
result, however no such graph has yet been found.

We finish the section by observing that the spherical realisation number is always
equal to the realisation number when d = 1, which can be proven using the same
method as Proposition 3.8.

Proposition 4.9. For any graph G we have c∗
1(G) = c1(G).
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Remark 4.10. All of the results in this section can be extended from the sphere to the
light cone of any pseudo-Euclidean space. To be specific, we define for each 1 ⩽ k ⩽ d
the quadratic form

qd,k : Cd+1 → C, (x0, . . . , xd) 7→
k∑

j=0
x2

j −
d∑

j=k+1
x2

j ,

and we define the light cone
Hd,k :=

{
x ∈ Cd+1 : qd,k(x) = 0

}
.

The map
T : Hd,k → Hd,d, (x0, . . . , xd) 7→ (x0, . . . , xk, ixk+1, . . . , xd)

is an isometry (in the sense that qd,d(T (x) − T (y)) = qd,k(x− y)), and the space Hd,d

is isomorphic to Sd
C. Hence, the realisation number of a graph G in any space Hd,k is

equal to c∗
d(G). Notably, the hyperbolic realisation number of a graph (equivalently,

the space Hd,d−1) is equal to the spherical realisation number of a graph.

5. Coning and the spherical realisation number
In this section we prove Theorem 1.2 by observing that the number of realisations of
a framework is projectively invariant (Lemma 5.1). We then prove that cd(G ∗ o) =
c∗

d(G ∗ o) for any coned graph G ∗ o (Theorem 5.2).

5.1. Proof of Theorem 1.2. Throughout this subsection we fix the vertices used
to define our various varieties in the following way. Let G = (V,E) be a graph with
|V | ⩾ d+ 1 and let G ∗ o be its cone. We fix the vertices v1, . . . , vd ∈ V to define the
set XG,d as given in (1). From this, we fix the set

XG∗o,d+1 =
{
p′ ∈ (Cd+1)V ∗o : p′

o = 0, [p′
vk

]j+1 = 0 if k ⩽ j ⩽ d
}
.

(This is equivalent to defining the set XG∗o,d+1 as in (1) with the vertices w1, . . . , wd+1
by setting w1 = o and wj+1 = vj for all j = 1, . . . , d.) We also assume that the fixed
vertices v1, . . . , vd used to define XG,d and YG,d (see (2)) are always identical.

Lemma 5.1. Given a graph G = (V,E) with |V | ⩾ d + 1, choose any p ∈ YG,d and
(rv)v∈V ∈ (C ∖ {0})V . Define p′ ∈ XG∗o,d+1 with p′

v = (rvpv, 0) for each v ∈ V and
p′

o = 0. Then ∣∣∣f̃−1
G∗o,d+1

(
f̃G∗o,d+1(p′)

)∣∣∣ = 2
∣∣∣s̃−1

G,d

(
s̃G,d(p)

)∣∣∣ .
Proof. Define λ := s̃G,d(p) = (1 − pv · pw)vw∈E and λ′ := f̃G∗o,d+1(p′). We first note
that for any vw ∈ E we have

λ′
vw = 1

2∥p′
v − p′

w∥2(3)

= 1
2∥p′

v∥2 + 1
2∥p′

w∥2 − p′
v · p′

w = λ′
ov + λ′

ow + (rvrw)(λvw − 1).

Define S ⊂ f̃−1
G∗o,d+1(λ′) to be the set of realisations q′ ∈ XG∗o,d+1 where [q′

v1
]1 = rv1 .

Note that for each q′ ∈ f̃−1
G∗o,d+1(λ′) we have that

[q′
v1

]21 = ∥q′
v1

∥2 = ∥q′
v1

− q′
o∥2 = ∥p′

v1
− p′

o∥2 = ∥rv1pv1∥2 = r2
v1

;
the first equality follows from q′ ∈ XG∗o,d+1, the second from ov1 ∈ E ∗ o, the third
from f̃G∗o,d+1(q′) = f̃G∗o,d+1(p′), the fourth from the construction of p′ from p, and
the last from p ∈ YG,d. Hence, if q′ ∈ f̃−1

G∗o,d+1(λ′) ∖ S then we have [q′
v1

]1 = −rv1 ,
and so −q′ ∈ S, since As S ∩ (−S) = ∅ and S ∪ (−S) = f̃−1

G∗o,d+1(λ′), we have that
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|f̃−1
G∗o,d+1(λ′)| = 2|S| (note that this cardinality need not be finite). It now suffices to

prove that |s̃−1
G,d(λ)| = |S|.

Choose any q ∈ s̃−1
G,d(λ) and define q′ ∈ XG∗o,d+1 by setting q′

o = 0 and q′
v = rvqv

for each v ∈ V . It is immediate that [q′
v1

]1 = rv1 and 1
2 ∥q′

v∥2 = λ′
ov. For each vw ∈ E

we have
1
2∥q′

v − q′
w∥2 = 1

2∥q′
v∥2 + 1

2∥q′
w∥2 − q′

v · q′
w

= λ′
ov + λ′

ow + (rvrw)(λvw − 1)
(3)= λ′

vw,

and so q′ ∈ S. Hence, |s̃−1
G,d(λ)| ⩽ |S|.

Now choose any q′ ∈ S and define q ∈ (Cd+1)V by setting qv = q′
v/rv for each

v ∈ V . We first note that ∥qv∥2 = ∥q′
v − q′

o∥2/r2
v = 1 for each v ∈ V , hence q ∈ YG,d.

For each vw ∈ E we have

qv · qw = q′
v · q′

w

rvrw

= ∥q′
v∥2 + ∥q′

w∥2 − ∥q′
v − q′

w∥2

2rvrw

= λ′
ov + λ′

ow − λ′
vw

rvrw

(3)= 1 − λvw,

and so q ∈ s̃−1
G,d(λ). Hence, |S| ⩽ |s̃−1

G,d(λ)|. □

A nice corollary of Lemma 5.1 is that the set Cd+1(G ∗ o, p) is projectively invari-
ant, in the sense that projecting each point pv along the complex line through the
points {pv, po} by a non-zero complex scalar does not alter the number of equivalent
realisations.

We are now ready to prove our first main theorem.

Proof of Theorem 1.2. If G = (V,E) is not d-rigid then the result follows from Theo-
rem 2.3. If |V | ⩽ d and G is complete then |V ∗ o| ⩽ d+ 1 and G ∗ o is complete, and
so cd+1(G ∗ o) = c∗

d(G). Suppose that G = (V,E) is d-rigid with |V | ⩾ d + 1. As G
is d-rigid, the coned graph G ∗ o is (d+ 1)-rigid by Theorem 2.3. By Lemma 3.2 and
Proposition 3.4, there exists a Zariski open set U ′ ⊂ (Cd+1)V ∗o such that∣∣∣f̃−1

G∗o,d+1
(
f̃G∗o,d+1(p′)

)∣∣∣ = 2d+1cd+1(G ∗ o)(4)

for all p′ ∈ U ′. Similarly, it follows from Lemma 4.3 and Proposition 4.4 that there
exists a Zariski open set U ⊂ (SC)d such that∣∣∣s̃−1

G,d

(
s̃G,d(p)

)∣∣∣ = 2dc∗
d(G)(5)

for all p ∈ U . Fix U∗ := U × (C ∖ {0})V . Since U∗ is a Zariski open subset of the
variety YG,d × CV , it is an open and dense subset of YG,d × CV with respect to the
metric topology. Similarly, since U ′ is a Zariski open subset of the variety XG∗o,d+1,
it is an open and dense subset of XG∗o,d+1 with respect to the metric topology.

Define the surjective (and hence dominant) morphism

ϕ : YG,d × CV → XG∗o,d+1,

where, given p′ = ϕ(p, r), we have p′
v = rvpv for all v ∈ V and p′

o = 0. As ϕ
is dominant and dimYG,d × CV = dimXG∗o,d+1, it follows from Theorem 3.3 and
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the inverse mapping theorem for holomorphic maps (see [14, Theorem 7.5]) that the
image of any open dense subset of YG,d × CV (with respect to the metric topology)
contains an open subset of XG∗o,d+1 (with respect to the metric topology). Hence, the
set ϕ(U∗) has a non-empty interior with respect to the metric topology of XG∗o,d+1.
Since U ′ is an open dense subset of XG∗o,d+1 with respect to the metric topology,
ϕ(U∗) ∩ U ′ contains a realisation p′. Choose p ∈ U and r ∈ (C ∖ {0})V such that
ϕ(p, r) = p′. By (4), (5) and Lemma 5.1, we have that

2d+1cd+1(G ∗ o) =
∣∣∣f̃−1

G∗o,d+1
(
f̃G∗o,d+1(p′)

)∣∣∣ = 2
∣∣∣s̃−1

G,d

(
s̃G,d(p)

)∣∣∣ = 2d+1c∗
d(G),

and so c∗
d(G) = cd+1(G ∗ o). □

5.2. Repetitive coning stabilises realisation numbers. Our previous tech-
niques of the section can be repurposed to prove the following interesting result.

Theorem 5.2. Let d be a positive integer and let G∗o be a coning of a graph G. Then
cd(G ∗ o) = c∗

d(G ∗ o).

Proof. If G has less than d vertices then the result is trivial, hence we may suppose
that G has at least d vertices. Let H = (V ′, E′) be the graph formed from G ∗ o by
coning again, with V ′ = V ∗ o ∪ {o′} = V ∪ {o, o′}. By Theorem 1.2, it suffices to
prove that cd(G ∗ o) = cd+1(H). For our varieties XG∗o,d and XH,d+1, we fix v1 = o
and choose d − 1 other vertices v2, . . . , vd ∈ V for G ∗ o, and we fix w1 = o′, w2 = o
and wj+1 = vj for each j ∈ {2, . . . , d} for H.

For any realisation p ∈ XG∗o,d of G ∗ o, define the realisation p′ ∈ XH,d+1 where
p′

o = (1, 0, . . . , 0) and p′
v = ( 1

2 , pv) for each v ∈ V . Choose any p̄ ∈ XH,d+1 that
is equivalent to p′. Since o and o′ are adjacent in H, we have that p̄o = ±p′

o =
(±1, 0, . . . , 0). Suppose that p̄o = p′

o = (1, 0, . . . , 0). For each v ∈ V we have

∥p′
v − p′

o∥2 − ∥p′
v − p′

o′∥2 = ([p′
v]1 − 1)2 − [p′

v]21 = 0,

and so

0 = ∥p̄v − p̄o∥2 − ∥p̄v − p̄o′∥2 = ([p̄v]1 − 1)2 − [p̄v]21 = −2[p̄v]1 + 1.

Hence, [p̄v]1 = 1/2 for all v ∈ V also. It now follows that there exists a realisation q ∈
f̃−1

G∗o,d(f̃G∗o,d(p)) such q′ = p̄. Hence, there exists a bijection from f̃−1
G∗o,d(f̃G∗o,d(p)) to

the subset of realisations in f̃−1
H,d+1(f̃H,d+1(p′)) with the vertex o placed at (1, 0, . . . , 0).

As the remaining realisations can be obtained by a reflection in the hyperplane normal
to (1, 0, . . . , 0), we have |f̃−1

H,d+1(f̃H,d+1(p′))| = 2|f̃−1
G∗o,d(f̃G∗o,d(p))| for every p ∈ XG,d.

Fix the set

Z :=
{
p′ ∈ XH,d+1 : p′

o = (1, 0, . . . , 0), p′
v = (1/2, pv) for each v ∈ V

}
and define the bijective map ψ : XG∗o,d → Z that maps p to its unique realisation p′

as defined above. Next, fix the dominant map ϕ : Z × CV ∗o → XH,d+1 where, given
p′′ = ϕ(p′, r), we have p′

v = rvpv for all v ∈ V ∗ o. Now choose a non-empty Zariski
set U ⊂ XG∗o,d where

|f̃−1
G∗o,d(f̃G∗o,d(p))| = 2dcd(G ∗ o)

for each p ∈ U (Lemma 3.2). Note that the set ψ(U) is a non-empty Zariski open
subset of Z. By our previous work we have that for each p′ ∈ ψ(U) we have

|f̃−1
H,d+1(f̃H,d+1(p′))| = 2|f̃−1

G∗o,d(f̃G∗o,d(p))| = 2d+1cd(G ∗ o).
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Since the set ψ(U)×(C∖{0})V ∗o is a non-empty Zariski open set, its image under the
dominant map ϕ is a Zariski dense subset of XH,d+1. It now follows from Lemma 5.1
that there exists a Zariski dense subset U ′ ⊂ XH,d+1 where for each q ∈ U ′ we have

|f̃−1
H,d+1(f̃H,d+1(q))| = 2d+1cd(G ∗ o).

Hence, by Lemma 3.2 we have cd+1(H) = cd(G ∗ o) as required. □

By combining Theorems 1.2 and 5.2, we obtain the following immediate corollary.

Corollary 5.3. Let H be a graph formed from a graph G by performing k > 0 coning
operations. Then cd+k(H) = c∗

d+k(H) = c∗
d(G).

6. Proof of Theorem 1.1
Using Theorem 1.2, we can prove Theorem 1.1 by instead proving that cd(G) ⩽
cd+1(G∗o). Because of this, we need to be able to evaluate d-dimensional realisations
of G and (d + 1)-dimensional realisations of G ∗ o at the same time. One way of
considering this is by fixing the cone vertex at the point at infinity so that the distance
constraints between the cone vertex and all other vertices becomes a set of linear
constraints forcing the vertices into a d-dimensional hyperplane. With this general
idea in mind, we begin to construct such a space and the resulting variant of the
rigidity map that comes from it.

We begin with the following prototype function that we will improve to give our
required map. For any graph G with vertex u, fix hu to be the morphism

hu : (C(d+1))V × C → CV ∖{u}, (p, r) 7→
(r

2 ∥pv∥2 − [pv]d+1

)
v∈V ∖{u}

.

The map hu can be used to check for equivalent realisations for the coned graph when
we invert the last coordinate of the cone vertex.

Lemma 6.1. Let p, q be two realisations of G ∗ o in Cd+1 with pu = qu = 0 for
some u ∈ V , [po]j = [qo]j = 0 for each j ∈ {1, . . . , d} and [po]d+1 = [qo]d+1 ̸= 0.
Given r := 1/[po]d+1, then fG∗o,d+1(p) = fG∗o,d+1(q) if and only if fG,d+1(p|V ) =
fG,d+1(q|V ) and hu(p|V , r) = hu(q|V , r).

Proof. For each v ∈ V we have
1
2∥pv − po∥2 = 1

2∥pv∥2 − pv · po + 1
2∥po∥2

= 1
2∥pv∥2 − 1

r
[pv]d+1 + 1

2r2

= 1
r
hu(p|V , r)v + 1

2r2 ,

and similarly ∥qv −qo∥2 = 1
rhu(q|V , r)v + 1

2r2 . Hence, fG∗o,d+1(p) = fG∗o,d+1(q) if and
only if fG,d+1(p|V ) = fG,d+1(q|V ) and hu(p|V , r) = hu(q|V , r). □

For the remainder of the section we fix G = (V,E) to be a d-rigid graph with
|V | ⩾ d + 1, and we also fix the distinct vertices v1, . . . , vd of G. We first need to
reformat XG∗o,d+1. Define the ((d+ 1)(|V ∗ o|) −

(
d+2

2
)
)-dimensional linear space

X ′
G∗o,d+1 :=

{
p ∈ (Cd+1)V ∗o : [pv1 ]d+1 = 0, [po]k = 0,

[pvk
]j = 0 for all 1 ⩽ k ⩽ j ⩽ d

}
.

Importantly, this space forces the vertex v1 to lie on the origin and the cone vertex o
to lie on the (d+1)-axis. We can link our new space X ′

G∗o,d+1 with our previously used
space XG∗o,d+1 (see (1)) by the bijective linear map L : X ′

G∗o,d+1 → XG∗o,d+1 where,
given q = L(p), we have [qv]1 = [pv]d+1 − [po]d+1 and [qv]j = [pv]j−1 − [po]d+1 for
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each j ∈ {2, . . . , d+ 1}. Hence, any result that uses the space XG∗o,d+1 can be easily
replaced by a result that uses the space X ′

G∗o,d+1; for example, general realisations in
X ′

G∗o,d+1 have identical properties to general realisations in XG∗o,d+1.
Next, we define the ((d+ 1)|V | −

(
d+2

2
)

+ d)-dimensional linear space

ZG,d+1 :=
{
p ∈ (Cd+1)V : [pv1 ]d+1 = 0, [pvi ]j = 0 for all i, j ∈ {1, . . . , d}, j ⩾ i

}
.

Note that the space XG,d embeds into ZG,d+1 under the injective linear map
λ : XG,d → ZG,d+1

where, given q = λ(p) and a vertex v ∈ V , we have that [qv]j = [pv]j for each
j ∈ {1, . . . , d} and [qv]d+1 = 0. Let

ϕ : ZG,d+1 × (C∖ {0}) → X ′
G∗o,d+1

be the injective open map where, given ϕ(p, r) = q, we have qv = pv for all v ∈ V
and qo = (0, . . . , 0, 1/r). The only realisations in X ′

G∗o,d+1 not contained in the image
of ϕ are those of the form p with [po]d+1 = 0.

With all of these spaces defined, we are now ready to define our main morphism:
g : ZG,d+1 × C → CE × CV ∖{v1} × C, (p, r) 7→ (fG,d+1(p), hv1(p, r), r) .

As proven by our next result, the map g is effectively identical in behaviour to f̃G∗o,d+1
over the realisations in the image of ϕ.

Lemma 6.2. For any p, q ∈ X ′
G∗o,d+1 where [po]d+1, [qo]d+1 ̸= 0, the following are

equivalent:
(i) fG∗o,d+1(p) = fG∗o,d+1(q).
(ii) g ◦ ϕ−1(p) = g ◦ ϕ−1(q), or g ◦ ϕ−1(p) = g ◦ ϕ−1(−q).

Hence, |f̃−1
G∗o,d+1(fG∗o,d+1(p))| = 2|g ◦ ϕ−1(p)|.

Proof. It follows from our construction of X ′
G∗o,d+1 that [po]d+1 = ±[qo]d+1 ̸= 0. The

result now follows from Lemma 6.1. □

With our new set-up, any point (p, 0) will, in some sense, behave like a realisation
of the coned graph G ∗ o with the coned vertex “placed at infinity”. It also forces a
subset of such points (i.e. those where p is flat in the hyperplane Cd × {0}) to act
like they are one dimension lower (minus the coned vertex). In fact, the map g shares
many properties with the map fG,d when we restrict to a certain subset of elements
of ZG,d+1 × C.

Lemma 6.3. Let p̃ ∈ XG,d be a general realisation of G. Fix p = λ(p̃) ∈ ZG,d+1. Then
the following properties hold.

(i) For each (q, r) ∈ g−1(g(p, 0)) we have r = 0, fG,d+1(q) = fG,d+1(p) and
[qv]d+1 = 0 for each v ∈ V .

(ii) For each q̃ ∈ XG,d where fG,d(q̃) = fG,d(p̃), we have g(λ(q̃), 0) = g(p, 0).
(iii) |f̃−1

G,d(fG,d(p̃))| = |g−1(g(p, 0))|.
(iv) For every (q, r) ∈ ZG,d+1 × C we have rank dg(p, 0) ⩾ rank dg(q, r).
(v) For every (q, r) ∈ g−1(g(p, 0)), the left kernels of dg(q, r) and dg(p, 0) are

identical.

Proof. (i): As g(q, r) = g(p, 0), we have that r = 0 and fG,d+1(q) = fG,d+1(p). Hence,
hv1(q, 0) = hv1(q, r) = hv1(p, 0) = 0,

with the latter equality holding since [pv]d+1 = 0 for all v ∈ V . Since hv1(q, 0) = 0,
it now follows that [qv]d+1 = 0 for each v ∈ V ∖ {v1}. The equality [qv1 ]d+1 = 0 also
holds since q ∈ ZG,d+1.
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(ii): This follows immediately from the observation that fG,d(q̃) = fG,d+1(λ(q))
and fG,d(p̃) = fG,d+1(p).

(iii): This follows from points (i) and (ii) and the observation that λ is a bijection
between realisations in XG,d and realisations in ZG,d where the (d+ 1)-th coordinate
of each vertex is zero.

(iv): For any (q, r) ∈ ZG,d+1 ×C, the Jacobian of g at (q, r) will be a (|E| + |V |) ×
((d+ 1)|V | + 1) matrix of the form

dg(q, r) =

dfG,d+1(q) 0|E|×1
A

( 1
2 ∥qv∥2)

v∈V ∖{v1}
01×(d+1)|V | 1

 ,
where 01×(d+1)|V | is the 1×(d+1)|V | all zeroes matrix and A is the (|V |−1)×(d+1)|V |
matrix where for the (v, (w, i)) entry (with v ∈ V ∖{v1} and (w, i) ∈ V ×{1, . . . , d+1})
we have

Av,(w,i) =


r[qv]i if w = v, i ⩽ d

r[qv]d+1 − 1 if w = v, i = d+ 1
0 otherwise.

Note that the rank of dg(q, r) must satisfy the following upper bound:

rank dg(q, r) ⩽ dim(ZG,d+1 × C) = (d+ 1)|V ∗ o| −
(
d+ 2

2

)
.(6)

Now we observe the Jacobian of g when (q, r) = (p, 0). By moving all columns of
dg(p, 0) that correspond to the (d+ 1)-th coefficients of the vertices to the right, we
obtain the matrix  dfG,d(p̃) 0|E|×1 0|E|×|V |

0(|V |−1)×1 ( 1
2 ∥pv∥2)v∈V ∖{v1} −I|V |−1

01×(d+1)|V | 1 01×|V |

 ,(7)

where I|V |−1 is the (|V |−1)×(|V |−1) identity matrix. Since p̃ is a general realisation
of a d-rigid graph, we have that

rank dg(p, 0) = rank dfG,d(p̃) + |V |

= d|V | −
(
d+ 1

2

)
+ |V | = (d+ 1)|V ∗ o| −

(
d+ 2

2

)
.

(8)

By combining Equations (6) and (8), we have that the derivative of g has maximal
rank at (p, 0).

(v): It follows from (i) that r = 0 and there exists q̃ ∈ XG,d where λ(q̃) = q
and fG,d(q̃) = fG,d(p̃). As p̃ is a general realisation, it follows from Proposition 3.4
that rank dfG,d(q̃) = rank dfG,d(p̃), which is maximal over all points in (Cd)V . By
reformatting the matrix dg(q, 0) into the same format as the matrix in Equation (7),
we see that the left kernels of dg(q, 0) and dg(p, 0) agree if and only if left kernels of
dfG,d(p̃) and dfG,d(q̃) agree. Since p̃ is a general realisation, its image is a smooth
point in the Zariski closure ℓd(G) of the image of fG,d: indeed if this was not true then
p̃ would be contained in the preimage of a proper algebraic subset of ℓd(G) under the
morphism fG,d, contradicting that it is a general realisation. It follows from the inverse
mapping theorem for holomorphic maps (see for example [14, Chapter I, Theorem 7.5])
that the tangent space of ℓd(G) at fG,d(p̃) (respectively, fG,d(q̃)) is exactly the left
kernel of dfG,d(p̃) (respectively, dfG,d(q̃)). Since fG,d(p̃) = fG,d(q̃), the left kernels of
dfG,d(p̃) and dfG,d(q̃) are equal. This now concludes the proof. □
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Lemmas 6.2 and 6.3 indicate that our map g can be used to consider both the
d-realisation number of G and the (d + 1)-realisation number of G ∗ o by observing
the fibres of either specific or general elements of the domain of g respectively. Our
next lemma allows us to compare the fibre sizes of these two types of elements.

Lemma 6.4. Let f : Cm → Cn be a holomorphic map and let x ∈ Cn be a point in Cn

where:
(i) |f−1(f(x))| < ∞,
(ii) rank df(x) ⩾ rank df(y) for all y ∈ Cm, and,
(iii) the left kernels of df(x) and df(z) are identical for all z ∈ f−1(f(x)).

Then there exists an open neighbourhood U ⊂ Cm of x (with respect to the metric
topology for Cn) where rank df(y) = rank df(x) and |f−1(f(x))| ⩽ |f−1(f(y))| for
all y ∈ U .

Proof. Label the points in f−1(f(x)) as x1, . . . , xk, with x1 = x. As a consequence of
the inverse mapping theorem for holomorphic maps (see for example [14, Chapter I,
Theorem 7.5]), pairwise disjoint open sets U1, . . . , Uk ⊂ Cm and smooth manifolds
V1, . . . , Vk ⊂ Cn so that for each j ∈ {1, . . . , k} the following properties hold: (i)
xj ∈ Uj , (ii) the set Vj is an open neighbourhood of f(xj) in the image of f , (iii)
the tangent space of Vj is the left kernel of df(xj), and (iv) the restricted map f |Vj

Uj

is biholomorphic (i.e. invertible with holomorphic inverse). Since the left kernel of
each Jacobian df(xj) is identical, we may choose our sets so that V1 = . . . = Vk.
Choose any y ∈ U1. Since f |V1

U1
is biholomorphic, rank df(y) = rank df(x). For each

j ∈ {1, . . . , k}, we observe that, since Vj = V1, there exists a unique point yj ∈ Uj so
that f(yj) = f(y). As the sets U1, . . . , Uk are pairwise disjoint, |f−1(f(y))| ⩾ k. □

We are now ready to use the map g to prove our second main theorem of the paper.

Proof of Theorem 1.1. By Theorem 1.2, it suffices to prove that cd(G) ⩽ cd+1(G ∗ o).
By Theorem 2.3, it also suffices for us to prove the specific case where G is d-rigid
(and hence G ∗ o is (d+ 1)-rigid) with at least d+ 1 vertices. All notation we now use
is in line with our prior notation for the section.

Choose a general realisation p̃ ∈ XG,d of G and define p = λ(p̃) ∈ ZG,d+1. It
follows from Lemma 6.3(iv), Lemma 6.3(v) and Lemma 6.4 that there exists an open
neighbourhood U ⊂ ZG,d+1 × C of (p, 0) (with respect to the metric topology) where
for all (p′, r′) ∈ U we have |g−1(g(p, 0))| ⩽ |g−1(g(p′, r′))|. Since the map ϕ is an
injective open map with dense image, it follows that there exists a general realisation
q ∈ X ′

G∗o,d+1 where ϕ(q) ∈ U . Hence, by Lemma 6.2, Lemma 6.3(iii) and Lemma 3.2,
we have that

2d+1cd(G) = 2|f̃−1
G,d(fG,d(p̃))|

= 2|g−1(g(p, 0))| ⩽ 2|g−1(g(ϕ(q)))|
= |f̃−1

G∗o,d+1(fG∗o,d+1(q))|

= 2d+1cd+1(G ∗ o).

Thus cd(G) ⩽ cd+1(G ∗ o) as required. □

Remark 6.5. The map p 7→ |Cd(G, p)| has two important properties: (i) it is constant
over the set of general realisations, and (ii) it is locally minimized at every realisation
of G that is mapped to a smooth point of ℓd(G) by the rigidity map. Theoretically, any
algebraic property that satisfies points (i) and (ii) will be amenable to the techniques
given in this section.
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7. How and when do spherical and planar realisation numbers
differ?

In this section we compare the d-realisation number and spherical d-realisation num-
bers of graphs using computational means. Since we are utilising computational meth-
ods, we will, for the most part, restrict to results for minimally d-rigid graphs. The
reason for this is two-fold: (i) all known deterministic algorithms for computing re-
alisation numbers require that the graph is minimally 2-rigid, and (ii) Gröbner basis
computational methods are too expensive even for comparably small graphs.

A common operation we use in this section is the (d-dimensional) 0-extension.
This is the graph operation where a new vertex is added to a graph and is set to
be adjacent to exactly d vertices of the original graph. It is well-known that, given a
graph G and a graph G′ formed from G by a d-dimensional 0-extension, the graph
G′ is (minimally) d-rigid if and only if G is (minimally) d-rigid (see for example [29,
Proposition 5.1]). As can be seen by the following result, this operation also behaves
very well with realisation numbers. (See Appendix C for a proof of this result.)

Lemma 7.1. If G′ is a 0-extension of a graph G, then cd(G′) = 2cd(G) and c∗
d(G′) =

2c∗
d(G).

In what follows we use the combinatorial algorithms from [10, 15] respectively their
implementations [9, 16, 18]. Note again that the results from these computations are
the double of the realisation numbers of what we consider in this paper. We include
computations for all minimally rigid graphs with at most 12 vertices. The respective
numbers of realisations for the plane can be found in [11].

7.1. Ratio of spherical to planar realisation numbers. In this subsection
we evaluate the ratio of spherical d-realisation number to d-realisation number for
minimally d-rigid graphs. We begin by first proving that the minimum possible ratio
is, due to our previous results, not an especially interesting value to look into.

Proposition 7.2. For any pair of positive integers n > d,

min{c∗
d(G)/cd(G) : G is minimally d-rigid with n vertices} = 1.

Proof. By Theorem 1.1, the minimum for any given value of n is at least 1. Define
Gd+1 to be the complete graph with d + 1 vertices. Then cd(Gd+1) = c∗

d(Gd+1) = 1.
Now construct a sequence Gd+1, Gd+2, . . . of minimally d-rigid graphs, whereby Gn+1
is formed from Gn by a 0-extension. It now follows from Lemma 7.1 that for each
n > d we have cd(Gn) = c∗

d(Gn) = 2n−d−1. □

We now turn from the minimum of the ratio to its maximum. For any positive
integers n > d, define

θd(n) := max {c∗
d(G)/cd(G) : G is minimally d-rigid with n vertices} .

Here things seem to be possibly more interesting. For example, it follows from Fig-
ures 2 and 3 that θ2(6) ⩾ 16/12 = 4/3. In fact we have θ2(6) = 4/3, since every other
minimally 2-rigid graph G with 6 vertices has c∗

2(G) = c2(G) = 8.
Our first easy observation about θd(n) is that it is increasing: this is an immediate

corollary of Lemma 7.1. Our next (slightly less easy) observation about θd(n) is that
it is bounded above by an exponential function.

Proposition 7.3. For each positive integer d, there exists a constant α ⩾ 1 such that
θd(n) = O(αn).
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Proof. As shown in [6], there exists a constant α > 1 such that
max {c∗

d(G) : G is minimally d-rigid with n vertices} = O(αn).

Since cd(G) ⩾ 1 for any minimally d-rigid graph G with at least d + 1 vertices, it
follows that θd(G) = O(αn) also. □

Following from Proposition 7.3, we define αd to be the infimum of all values α ⩾ 1
such that θd(n) = O(αn). By Proposition 7.2, we have αd ⩾ 1 for any positive integer
d. An immediate corollary to Proposition 4.9 is that α1 = 1. To prove that αd > 1
for any d ⩾ 2, it in fact suffices to prove that θd(n) > 1 for some positive integer n.

Proposition 7.4. Suppose that there exists a minimally d-rigid graph G where
c∗

d(G)/cd(G) > 1. Then αd > 1.

Proof. Fix H to be any minimally d-rigid graph where c∗
d(H)/cd(H) > 1. If H has

d vertices or less then c∗
d(H) = cd(H) = 1, thus H has at least d + 1 vertices and

at least one edge. Choose any edge v0v1 of H. Given H1 = H, we inductively define
the graphs H1, . . . ,Hd by constructing Hj+1 from Hj by adding a new vertex vj+1
adjacent to v0, . . . , vj and d−j−1 other vertices. Now fix G := Hd. Since G is formed
from H by a sequence of d-dimensional 0-extensions, it is also minimally d-rigid. By
Lemma 7.1 we have that

c∗
d(G)
cd(G) = 2d−1c∗

d(H)
2d−1cd(H) = c∗

d(H)
cd(H) > 1.

We now fix S := {v0, . . . , vd} to be the constructed clique in G.
Fix v and e to be the number of vertices and edges of G respectively. We now

construct for each positive integer k the n = (v−d)k+d vertex graph Gk by gluing k
copies of G at the clique S; see Figure 4 for an example of G4 when G is the minimally
2-rigid 3-prism.

Figure 4. Gluing four copies of the 3-prism at a common triangle subgraph.

We first claim that each graph Gk is minimally d-rigid. It is relatively intuitive that
Gk is d-rigid (for a rigorous proof of this statement see [20, Theorem 2.5.2]). Since
each graph Gk has k(v − d− 1) + d+ 1 vertices and

k

(
e−

(
d+ 1

2

))
+
(
d+ 1

2

)
= k

((
dv −

(
d+ 1

2

))
−
(
d+ 1

2

))
+
(
d+ 1

2

)
= d(k(v − d− 1) + d+ 1) −

(
d+ 1

2

)
edges, Gk is also minimally d-rigid.

We next claim that cd(Gk) = cd(G)k and c∗
d(Gk) = c∗

d(G)k. In lieu of a technical
proof, we sketch a proof of this claim as follows. Choose a general realisation p of

Algebraic Combinatorics, Vol. 7 #6 (2024) 1636



The number of realisations of a rigid graph

G in Cd (respectively, Sd). If we fix the vertices v0, . . . , vd and count the number of
equivalent realisations of (G, p), then we see that (G, p) has cd(G) (respectively, c∗

d(G))
such equivalent realisations. Hence, each time we glue another copy of G to go from
Gi to Gi+1, we must scale the number of realisations by cd(G) (respectively, c∗

d(G)).
Given the graph Gk has n = k(v − d− 1) + d+ 1 vertices, we see that

c∗
d(Gk)
cd(Gk) =

(
c∗

d(G)
cd(G)

)k

=
(
c∗

d(G)
cd(G)

)n−d−1
v−d−1

=
(
c∗

d(G)
cd(G)

) −d−1
v−d−1

((
c∗

d(G)
cd(G)

) 1
v−d−1

)n

.

Hence, αd ⩾ (c∗
d(G)/cd(G))

1
v−d−1 > 1. □

Corollary 7.5. (4/3)3/8 ⩽ α2 ⩽ 2 · 31/2.

Proof. The upper bound for α2 follows from the method employed in Proposition 7.3
with the upper bound for c∗

2 over all n vertex minimally 2-rigid graphs being given by

8 · 3−7/2 · (2 · 31/2)n−2;

see [5, Theorem 18] (remember that our d-realisation number is exactly half of the
defined d-realisation number used in [5]).

It follows from the proof of Proposition 7.4 that we can maximise our lower bound
for α2 by searching for minimally 2-rigid graphs G with v vertices that contain a trian-
gle where the value (c∗

2(G)/c2(G))
1

v−3 is high. In Table 1 we have collected some exam-
ples where this value is high. The name of each graph comes from an integer represen-
tation of its adjacency matrix, where we take the entries of the upper triangular part
(since we always have loop-free graphs) and consider the sequence of row-wise entries
as binary digits. For example, the triangle graph K3 can be written as (1, 1, 1)2=̂7,
and the 3-prism (Figure 2) can be written as (1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0)2=̂7916.
See [19] or [11] for more details. The graphs in the table are those that achieve the
highest value for (c∗

2/c2)1/(v−3) with the respective number of vertices.

v G c2 c∗
2 c∗

2/c2 (c∗
2/c2)1/(v−3)

6 7916 12 16 1.3333 1.10064
7 1256267 24 32 1.3333 1.07457
8 170957470 64 96 1.5 1.08447
9 2993854888 160 288 1.8 1.10292
10 4847160401729 400 768 1.92 1.09767
11 5366995734673421 864 2048 2.3704 1.11391
12 37615476241376327552 2016 5120 2.5397 1.10911
Table 1. Graphs and the ratios we obtain from their number of realisations.

Fix G to be the 11 vertex graph 5366995734673421, pictured in Figure 5. From
observation of the table, G has the highest value for (c∗

2/c2)
1

v−3 at (2048/864)
1

11−3 ≈
1.11391. Hence, α2 ⩾ (4/3)3/8 = (2048/864)1/8 as required. (Note that there can be
graphs with more vertices which give a better bound but have not been computed
yet.) □

By rounding the lower bound down and the upper bound up, Corollary 7.5 informs
us that 1.1139 ⩽ α2 ⩽ 3.4642. It is conjectured in [19] that c2(G) ⩾ 2|V |−3. If this con-
jecture is true, we could immediately improve our upper bound to be roughly 1.7321.

We conclude the subsection by making the following conjecture.
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Figure 5. A graph (known as 5366995734673421) with 864 realisa-
tions in the plane and 2048 on the sphere which gives a bound for
the triangle-fan of (2048/864)1/8 = (4/3)3/8.

Conjecture 7.6. For every d > 1 we have αd > 1.

As can be seen from Proposition 7.4, it suffices for us to find a single minimally
d-rigid graph in each dimension d > 2 where c∗

d(G) > cd(G). It follows from Corol-
lary 5.3 that the problem cannot be solved by merely finding a suitable graph for one
dimension and then coning to obtain similar suitable graphs in higher dimensions.
Since no feasible deterministic algorithm exists for higher dimensions, we could only
use polynomial system solving tools (e.g. Gröbner basis) with random edge lengths.
As well as only being able to give a probabilistic answer, this method is computation-
ally infeasible and can only be done for small numbers of vertices. For the graphs we
could compute using this method, we saw that c∗

d(G) = cd(G) always, however this is
most likely because such graphs were too small for the two values to differ.

7.2. Exploring data sets. The next computational question we approach is the fol-
lowing: how often do the spherical d-realisation number and the d-realisation number
agree for minimally d-rigid graphs? Interestingly, these two numbers seem to differ
more than they agree. Figure 6 shows the amount of minimally 2-rigid graphs for
which the two realisation numbers differ. We solely consider those minimally 2-rigid
graphs with minimal degree 3 since the removal of a degree 2 vertex alters both the
spherical 2-realisation number and the 2-realisation number by a factor of 1/2.

n = 6 1 1 2

n = 7 1 3 4

n = 8 7 25 32

n = 9 42 222 264

n = 10 330 2859 3189

n = 11 3063 43614 46677

n = 12 32855 781020 813875

# graphs with c2 = c∗
2 # graphs with c2 ̸= c∗

2

Figure 6. The number of minimally 2-rigid graphs (up to isomor-
phism) with n vertices and minimum degree 3 for which c2(G) is the
same as/different from c∗

2(G).

In light of this experimental data, we believe that the following conjecture is true.

Conjecture 7.7. Let d be an integer greater than 1. Let An,d (respectively, Bn,d)
be the set of all minimally d-rigid graphs (up to isomorphism) with n vertices and
minimum degree 2d − 1 where c∗

d(G) = cd(G) (respectively, c∗
d(G) ̸= cd(G)). Then

|An,d|/|Bn,d| → 0 as n → ∞.
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Now let us investigate how the realisation counts can differ. Figure 7 shows this re-
lation for all 813875 minimally 2-rigid graphs with 12 vertices and minimum degree 3.
We observe that there are 9916 different pairs (c2(G), c∗

2(G)) (ignoring repetition) that
occur. Only five of those pairs have equal coordinates (i.e. c2(G) = c∗

2(G)): (512, 512),
(768, 768), (869, 869), (960, 960) and (1024, 1024). The majority (30789) of graphs for
which c2(G) = c∗

2(G) have 512 realisations. In the figure we colour-coded the amount
of occurrences of the pairs (c2(G), c∗

2(G)), with blue indicating few occurrences and
red implying many occurrences. The most frequent pair is (768, 1024), which occurs
for 76025 graphs. The pair with the largest difference is (2496, 6144), which is ob-
tained by a single graph. Including the graph indicated in the last row of Table 1,
there are 20 graphs with the pair (2016, 5120), which gives the largest ratio.

In Figure 8 we analyse more deeply the ratios c∗
2(G)/c2(G) for minimally 2-rigid

graphs with minimal degree 3. Here we can see that the minimum achievable ratio
is 1, confirming Proposition 7.2. The maximum ratio in the range is achieved by
some graphs with 12 vertices, one of which is given in Table 1. Interestingly, the
median ratio varies between 1.39 and 1.4 depending on vertex number. Although the
maximum achievable ratio is increasing exponentially (see Corollary 7.5), the range of
the quartiles do not seem to vary much as the number of vertices is increased. Note,
however, that the size of the graphs considered is rather limited.

c2

c∗2

1000 2000 3000

2000

4000

6000

Figure 7. The distribution of pairs (c2(G), c∗
2(G)) for all minimally

2-rigid graphs G with 12 vertices and minimum degree three. We use
colour to represent the number of occurrences of a given pair: the
more often a point appears in the list of all possible pairs, the more
red its coordinate representation is in our plot. All points lie above
the dashed line representing the equality c2(G) = c∗

2(G), showing the
main result of the paper.
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Figure 8. A box plot of the distribution of ratios c∗
2(G)/c2(G) for

minimally 2-rigid graphs with between 8 to 12 vertices and minimal
degree 3.

Appendix A. Dominant morphisms
Dominant morphisms can be defined in a variety of different but equivalent ways.

Theorem A.1 ([8, Section AG, Theorem 17.3]). Let X ⊂ Cm be an algebraic set and
Y ⊂ Cn be a variety. Then the following are equivalent for any morphism f : X → Y :

(i) f is dominant.
(ii) For some irreducible component X ′ of X, there exists a point x ∈ X ′ such

that x is a non-singular point of X ′ and rank df(x) = dimY .
(iii) There exists a Zariski open subset U ⊂ X where for each x ∈ U , x is a

non-singular point of X and rank df(x) = dim Y .

It follows immediately from Theorem A.1 that for any varieties X,Y , the existence
of a dominant morphism from X to Y implies dimX ⩾ dimY . As can be seen by
Theorem 3.3, more powerful statements can be attained relating to f if dimX =
dimY . To prove Theorem 3.3, we require the following two results.

Corollary A.2 ([25, Section 8, Corollary 1]). Let X ⊂ Cm and Y ⊂ Cn be varieties
and f : X → Y be a dominant morphism. Then there exists a non-empty Zariski open
subset U ⊂ Y such that U ⊂ f(X), and for every y ∈ U , every irreducible component
of the algebraic set f−1(y) has dimension dimX − dimY .

Corollary A.3 ([21, Proposition 7.16]). Let X ⊂ Cm and Y ⊂ Cn be varieties and
f : X → Y be a dominant morphism. Suppose that there exists a non-empty Zariski
open subset U ⊂ Y where |f−1(y)| < ∞ for every y ∈ Y . Then there exists a k ∈ N
and a non-empty Zariski open subset U ′ ⊂ U where |f−1(y)| = k for every y ∈ U ′.

Proof of Theorem 3.3. It is immediate that (iii) implies (ii). Fix U ⊂ Y to be the
Zariski open set from Corollary A.2. An algebraic set is a finite set if and only if it
is zero dimensional. Hence, (i) and (ii) are equivalent. Suppose that dimX = dim Y .
Fix U ′ ⊂ U to be the non-empty Zariski open subset from Corollary A.3. Define the
set

C := {x ∈ X : x is singular or rank df(x) < n}.
By Theorem A.1, C is a proper Zariski closed subset of X. As dimC < dimX =
dimY , the set f(C) is not dense in Y . It now follows that the complement of the
Zariski closure of f(C) in U is a non-empty Zariski open subset of Y . Hence, (i)
implies (iii), concluding the proof. □

Appendix B. Proof of Lemma 3.2
We begin with the following technical lemma describing when we can “rotate” a
framework into our set XG,d.
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Lemma B.1. Let G = (V,E) be a graph with |V | ⩾ d + 1, and fix a sequence of
d vertices v1, . . . , vd. For each realisation p ∈ (Cd)V , define the (d − 1) × (d − 1)
symmetric matrix

G(p) :=

(pv2 − pv1)T

...
(pvd

− pv1)T

 [pv2 − pv1 · · · pvd
− pv1

]
.

Then there exists a realisation q ∈ XG,d congruent to p if G(p) only has non-zero
leading principal minors.(5)

The conditions stated in Lemma B.1 seem rather bizarre, especially since no such
conditions are required if we restrict ourselves to real realisations. It is also rather
easy to see they are not necessary either: simply choose any realisation p ∈ XG,d

where pvi = 0 for each i ∈ {1, . . . , d}. To see why we need to be so cautious, take
G = (V,E) to be the complete graph with 4 vertices v1, v2, v3, v4, and let p be the
3-dimensional realisation of G where

pv1 = (0, 0, 0), pv2 = (1, 0, 0), pv3 = (2, 1, i), pv4 = (0, 1, 0).

In this specific case, there are no realisations in XG,d that are congruent to p. The
framework (G, p) also has the interesting properties that its vertices affinely span C3

and ∥pv − pw∥2 > 0 for every edge vw ∈ E. Since the matrix

G(p) =
[
1 0 0
2 1 i

]1 2
0 1
0 i

 =
[
1 2
2 4

]

has rank 1, our constructed realisation is not a counter-example to Lemma B.1.

Proof. Fix p ∈ (Cd)V with the stipulated properties. With this, define p1 ∈ (Cd)V to
be the realisation where p1

v = pv − pv1 for each v ∈ V . If d = 1 then p1 ∈ XG,1, so
suppose that d ⩾ 2. We now observe that the matrix G(p1) = G(p). In fact, a much
stronger statement is true: if q is a congruent realisation then G(q) = G(p).

We now form the sequence of congruent realisations p1, . . . , pd in the following
inductive way. Fix n ∈ {2, . . . , d}, and suppose that p1, . . . , pn−1 have already been
constructed such that [pn−1

vk
]j = 0 if k ⩽ min{j, n − 1}. For each k ∈ {1, . . . , d}, fix

ek to be the vector with [ek]j = 1 if j = k and [ek]j = 0 otherwise. We observe
here that the linear space spanned by the vectors e1, . . . , en−2 contains the points
pn−1

v2
, . . . , pn−1

vn−1
. Fix z to be the vector formed from pn−1

vn
by replacing its first n− 2

coordinates with zeroes. It is immediate that z · ej = 0 for all j ∈ {1, . . . , n− 2}.
Suppose for contradiction that ∥z∥2 = 0, and fix y = pn−1

vn
− z. Set A =

[pn−1
v2

· · · pn−1
vn−1

]. The determinant of ATA is the leading principal minor of order
n − 2 of G(p) = G(pn−1), and so is non-zero. Hence, the column span of A is
exactly the linear space spanned by e1, . . . , en−2; importantly, this implies that y is
contained in the column span of A. The leading principal minor of order n − 1 of

(5)A leading principal minor (of order n) of a square matrix is the determinant of the matrix
formed by taking the first n rows and columns.
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G(p) = G(pn−1) is the determinant of the (n− 1) × (n− 1) matrix

B =

(pn−1
v2

)T

...
(pn−1

vn
)T

 [pn−1
v2

· · · pn−1
vn

]
=
[

ATA AT (y + z)
(y + z)TA (y + z)T (y + z)

]
=
[
ATA AT y
yTA yT y

]
=
[
AT

yT

] [
A y
]
.

As y is contained in the column span of A, the matrix [A y] has rank at most n− 2.
However, this implies detB = 0, contradicting our leading principal minor assumption
for G(p). Hence, ∥z∥2 ̸= 0.

Fix x := z/∥z∥2. Define the d× d matrix M̃ where M̃T = [e1 · · · en−2 x 0 · · · 0].
We note that the matrix M̃ is an isometry (in the quadratic form sense) from the linear
subspace of Cd spanned by pn−1

v2
, . . . , pn−1

vn
to the linear subspace Cn−1 × {0}d−n+1.

By Witt’s theorem (see, for example, [27, Theorem 11.15]), there exists a matrix
M ∈ O(d,C) where Mpn−1

vj
= M̃pn−1

vj
for each j ∈ {1, . . . , n}. With this we now fix

pn
v = Mpn−1

v for each v ∈ V . The result now follows from completing the inductive
argument and fixing q = pd. □

With this, we can prove Lemma 3.2.

Proof of Lemma 3.2. For every p ∈ (Cd)V , let G(p) be the matrix defined in the
statement of Lemma B.1. With this, we fix the proper algebraic set

Z :=
{
p ∈ (Cd)V : G(p) has a zero leading principal minor,

or p does not affinely span Cd

}
.

Since Z contains hypersurfaces in (Cd)V and Z ̸= (Cd)V it has dimension d|V | − 1.
By Lemma B.1, the set fG,d((Cd)V ∖ Z) is a subset of the image of f̃G,d. Hence, the
image of f̃G,d is Zariski dense in the image of fG,d.

Since dim ℓd(G) = rank dfG,d(p) for any general realisation p ∈ (Cd)V , it follows
from Theorem 2.1 that G is d-rigid if and only if dim ℓd(G) = d|V | −

(
d+1

2
)
. Suppose

that G is not d-rigid. The extension of Theorem 2.1 to complex realisations gives
that the set Cd(G, p) contains infinitely many points for almost all realisations p; in
particular, it can be used to prove that for almost all p ∈ (Cd)V ∖ Z, there exists
a sequence (pn)n∈N of realisations where pn is not congruent to either pm or p for
each m ̸= n, and pn → p as n → ∞ in the standard complex norm for (Cd)V (note
that this is an actual metric and not the quadratic form ∥ · ∥2). An application of
Lemma B.1 to both p and each pn gives that f̃−1

G,d (fG,d(p)) also contains infinitely
many points as is required.

We now suppose that G is d-rigid, i. e., dim ℓd(G) = d|V | −
(

d+1
2
)
. We split the

proof into three cases.
(Case 1: fG,d(Z) is Zariski dense in ℓd(G) and |V | ⩾ d+ 2.) In this case, the

restriction of the map fG,d to Z and ℓd(G), which we now denote by g : Z → ℓd(G),
is dominant. Hence, by Theorem A.1, there exists a non-empty Zariski open subset
U ⊂ Z where

rank dg(p) = dim ℓd(G) = d|V | −
(
d+ 1

2

)
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for each p ∈ U . Since rank dg(p) ⩽ rank dfG,d(p), we have that rank dfG,d(p) =
d|V | −

(
d+1

2
)

for each p ∈ U . As Z has dimension d|V | − 1, it contains an irreducible
component of dimension d|V | − 1. It follows that the nullity of dg(p) is

(
d+1

2
)

− 1 for
each p ∈ U . If q is congruent to p ∈ Z then G(q) = G(p) and q is affinely spanning
if and only if p is, hence Z is closed under congruences. This implies that for each
p ∈ U , the map from the affine congruences of Cd to the corresponding congruent
realisation of p in Z is not injective, as otherwise the nullity of dg(p) would be at
least

(
d+1

2
)

for each p ∈ U . Hence, any realisation in U cannot affinely span Cd. The
set of realisations of G that do not affinely span Cd is the intersection of |V | − d ⩾ 2
pairwise-distinct hypersurfaces, and so U is contained in a (d|V | − 2)-dimensional
subvariety in Z. However, this now contradicts that U is a non-empty Zariski open
subset of the (d|V | − 1)-dimensional algebraic set Z.

(Case 2: fG,d(Z) is not Zariski dense in ℓd(G) and |V | ⩾ d + 2.) Fix the
non-empty Zariski open set

X :=
{
p ∈ XG,d : f̃G,d(p) is not contained in the closure of fG,d(Z)

}
.

Choose any p ∈ X. By Lemma B.1, for each realisation p′ ∈ (Cd)V that is equivalent
to p, there exists some other realisation p′′ ∈ XG,d that is congruent to p′. Hence, it
now suffices to prove that p is congruent to exactly 2d realisations (including itself)
in XG,d.

Choose any q ∈ XG,d congruent to p, and let A ∈ O(d,C) be the matrix that maps
the vertices of p to the vertices of q. As p, q ∈ XG,d, we have

k∑
n=1

Aj,n[pvk+1 ]n = [qvk+1 ]j = 0

for each 1 ⩽ k < j ⩽ d, hence Aj,k = 0 for each 1 ⩽ k < j ⩽ d. Since AT maps the
vertices of q to the vertices of p, we similarly have Aj,k = 0 for each 1 ⩽ j < k ⩽ d. As
the vertices of p linearly span Cd, the set f̃−1

G,d (fG,d(p)) is in one-to-one correspondence
with the diagonal orthogonal matrices. The set of diagonal orthogonal matrices is
exactly the set of diagonal matrices A where Aj,j = ±1 for each j ∈ {1, . . . , d}, hence
there are 2d of them. This now concludes the proof.

(Case 3: |V | = d + 1.) Since G is d-rigid, it can be easily verified that G must
be the complete graph on d+ 1 vertices. Furthermore, every element p ∈ (Cd)V ∖ Z
is only equivalent to congruent realisations ([17, Corollary 8]), and each equivalent
realisation is also contained in (Cd)V ∖ Z. We now define X = XG,d ∖ Z and repeat
the same technique as was utilised in Case 2. This now concludes the proof. □

Appendix C. The effect of 0-extensions on realisation numbers
In this section we prove Lemma 7.1. The specific case where d = 2 was originally
proven in [7]. We restrict to the non-spherical case throughout this section since the
proof is almost identical.

Lemma C.1. Let p0, . . . , pd ∈ Cd be affinely independent points where [pj ]k = 0 for all
1 ⩽ j ⩽ k ⩽ d. Then there exists exactly one point x ∈ Cd ∖ {p0} which is a solution
to the set of equations

∥x− pj∥2 = ∥p0 − pj∥2, j ∈ {1, . . . , d}.(9)

Proof. First note that we must have that [p0]d ̸= 0 for p0, . . . , pd ∈ Cd to be affinely
independent. Let x ∈ Cd be a solution to the equations in (9). Then the set of points
{x, p1, . . . , pd} have the same set of pairwise distances between them as the set of
points {p0, p1, . . . , pd}. Hence, there exists a map M ∈ O(d,C), where Mpj = pj for
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each j ∈ {1, . . . , d} and Mp0 = x; see [17, Section 10] for more details. Since M is
invariant over p1, . . . , pd, it follows that M is either the identity matrix or M is the
diagonal matrix with Mjj = 1 for each j < d and Mdd = −1. The result now follows
immediately. □

Proof of Lemma 7.1. For the linear spaces XG,d and XG′,d, fix the vertices
v1, . . . , vd ∈ V to be the vertices adjacent to the new vertex u that is appended
during the 0-extension operation. Fix a general realisation p ∈ XG,d of G. For each
q ∈ f̃−1

G,d(fG,d(p)), define the dominant morphism

fq : Cd → Cd, x 7→
(
∥x− qvj

∥2)d

j=1

and the non-empty Zariski open set Uq ⊂ Cd of points not contained in the affine
span of qv1 , . . . , qvd

. Since each map fq is dominant, it follows from Corollary A.2
that there exists a non-empty Zariski open set U ⊂ Cd such that

U ⊂
⋂{

fq(Cd) : q ∈ f̃−1
G,d(fG,d(p))

}
.

From this we note that the set

U ′ :=
⋂{

Uq ∩ f−1
q (U) : q ∈ f̃−1

G,d(fG,d(p))
}

is a non-empty Zariski open set. Hence, there exists a general realisation p′ ∈ XG′,d

of G′ with p′
v = pv for all v ∈ V and p′

u ∈ U ′. By applying Lemma C.1 to every
realisation in XG′,d that is equivalent to p′, we see that∣∣∣f̃−1

G′,d (fG′,d(p′))
∣∣∣ = 2

∣∣∣f̃−1
G,d (fG,d(p))

∣∣∣ .
The result now follows from Lemma 3.2. □

References
[1] Timothy G. Abbott, Generalizations of Kempe’s universality theorem, Master’s thesis, Mas-

sachusetts Institute of Technology, 2008.
[2] L. Asimow and B. Roth, The rigidity of graphs, Trans. Amer. Math. Soc. 245 (1978), 279–289,

https://doi.org/10.2307/1998867.
[3] Evangelos Bartzos, Ioannis Z. Emiris, Jan Legerský, and Elias Tsigaridas, On the maximal

number of real embeddings of minimally rigid graphs in R2, R3 and S2, J. Symbolic Comput.
102 (2021), 189–208, https://doi.org/10.1016/j.jsc.2019.10.015.

[4] Evangelos Bartzos, Ioannis Z. Emiris, and Josef Schicho, On the multihomogeneous Bézout
bound on the number of embeddings of minimally rigid graphs, Appl. Algebra Engrg. Comm.
Comput. 31 (2020), no. 5-6, 325–357, https://doi.org/10.1007/s00200-020-00447-7.

[5] Evangelos Bartzos, Ioannis Z. Emiris, and Charalambos Tzamos, An asymptotic upper bound
for graph embeddings, Discrete Appl. Math. 327 (2023), 157–177, https://doi.org/10.1016/
j.dam.2022.12.010.

[6] Evangelos Bartzos, Ioannis Z. Emiris, and Raimundas Vidunas, New upper bounds for the num-
ber of embeddings of minimally rigid graphs, Discrete Comput. Geom. 68 (2022), no. 3, 796–816,
https://doi.org/10.1007/s00454-022-00370-3.

[7] Ciprian Borcea and Ileana Streinu, The number of embeddings of minimally rigid
graphs, Discrete Comput. Geom. 31 (2004), no. 2, 287–303, https://doi.org/10.1007/
s00454-003-2902-0.

[8] Armand Borel, Linear algebraic groups, second ed., Graduate Texts in Mathematics, vol. 126,
Springer-Verlag, New York, 1991, https://doi.org/10.1007/978-1-4612-0941-6.

[9] Jose Capco, Matteo Gallet, Georg Grasegger, Christoph Koutschan, Niels Lubbes, and Josef
Schicho, An algorithm for computing the number of realizations of a Laman graph, Zenodo,
2018, https://doi.org/10.5281/zenodo.1245506.

[10] Jose Capco, Matteo Gallet, Georg Grasegger, Christoph Koutschan, Niels Lubbes, and Josef
Schicho, The number of realizations of a Laman graph, SIAM J. Appl. Algebra Geom. 2 (2018),
no. 1, 94–125, https://doi.org/10.1137/17M1118312.

Algebraic Combinatorics, Vol. 7 #6 (2024) 1644

https://doi.org/10.2307/1998867
https://doi.org/10.1016/j.jsc.2019.10.015
https://doi.org/10.1007/s00200-020-00447-7
https://doi.org/10.1016/j.dam.2022.12.010
https://doi.org/10.1016/j.dam.2022.12.010
https://doi.org/10.1007/s00454-022-00370-3
https://doi.org/10.1007/s00454-003-2902-0
https://doi.org/10.1007/s00454-003-2902-0
https://doi.org/10.1007/978-1-4612-0941-6
https://doi.org/10.5281/zenodo.1245506
https://doi.org/10.1137/17M1118312


The number of realisations of a rigid graph

[11] Jose Capco, Matteo Gallet, Georg Grasegger, Christoph Koutschan, Niels Lubbes, and Josef
Schicho, The number of realizations of all Laman graphs with at most 12 vertices, Zenodo,
2018, https://doi.org/10.5281/zenodo.1245517.

[12] R. Connelly and W. J. Whiteley, Global rigidity: the effect of coning, Discrete Comput. Geom.
43 (2010), no. 4, 717–735, https://doi.org/10.1007/s00454-009-9220-0.

[13] Yaser Eftekhari, Bill Jackson, Anthony Nixon, Bernd Schulze, Shin-ichi Tanigawa, and Walter
Whiteley, Point-hyperplane frameworks, slider joints, and rigidity preserving transformations,
J. Combin. Theory Ser. B 135 (2019), 44–74, https://doi.org/10.1016/j.jctb.2018.07.008.

[14] Klaus Fritzsche and Hans Grauert, From holomorphic functions to complex manifolds, Graduate
Texts in Mathematics, vol. 213, Springer-Verlag, New York, 2002, https://doi.org/10.1007/
978-1-4684-9273-6.

[15] Matteo Gallet, Georg Grasegger, and Josef Schicho, Counting realizations of Laman graphs on
the sphere, Electron. J. Combin. 27 (2020), no. 2, article no. 2.5 (18 pages), https://doi.org/
10.37236/8548.

[16] Matteo Gallet, Georg Grasegger, and Josef Schicho, Software for counting realizations of mini-
mally rigid graphs on the sphere, Zenodo, 2022, https://doi.org/10.5281/zenodo.6810642.

[17] Steven J. Gortler and Dylan P. Thurston, Generic global rigidity in complex and pseudo-
Euclidean spaces, in Rigidity and symmetry, Fields Inst. Commun., vol. 70, Springer, New
York, 2014, pp. 131–154, https://doi.org/10.1007/978-1-4939-0781-6_8.

[18] Georg Grasegger, RigiComp — A Mathematica package for computational rigidity of graphs,
Zenodo, 2022, https://doi.org/10.5281/zenodo.7457820.

[19] Georg Grasegger, Christoph Koutschan, and Elias Tsigaridas, Lower bounds on the number of
realizations of rigid graphs, Exp. Math. 29 (2020), no. 2, 125–136, https://doi.org/10.1080/
10586458.2018.1437851.

[20] Jack Graver, Brigitte Servatius, and Herman Servatius, Combinatorial rigidity, Graduate Stud-
ies in Mathematics, vol. 2, American Mathematical Society, Providence, RI, 1993, https:
//doi.org/10.1090/gsm/002.

[21] Joe Harris, Algebraic geometry. a first course, Graduate Texts in Mathematics, vol. 133,
Springer-Verlag, New York, 1992, https://doi.org/10.1007/978-1-4757-2189-8.

[22] John Hopcroft and Robert Tarjan, Algorithm 447: Efficient algorithms for graph manipulation,
Communications of the ACM 16 (1973), no. 6, 372–378, https://doi.org/10.1145/362248.
362272.

[23] Ivan Izmestiev, Projective background of the infinitesimal rigidity of frameworks, Geom. Dedi-
cata 140 (2009), 183–203, https://doi.org/10.1007/s10711-008-9339-9.

[24] Bill Jackson and J. C. Owen, Equivalent realisations of a rigid graph, Discrete Appl. Math. 256
(2019), 42–58, https://doi.org/10.1016/j.dam.2017.12.009.

[25] David Mumford, The red book of varieties and schemes, Lecture Notes in Mathematics, vol.
1358, Springer-Verlag, Berlin, 1988, https://doi.org/10.1007/978-3-662-21581-4.

[26] A. V. Pogorelov, Extrinsic geometry of convex surfaces, Translations of Mathematical Mono-
graphs, vol. Vol. 35, American Mathematical Society, Providence, RI, 1973, Translated from the
Russian by Israel Program for Scientific Translations.

[27] Steven Roman, Advanced linear algebra, third ed., Graduate Texts in Mathematics, vol. 135,
Springer, New York, 2008.

[28] Reinhard Steffens and Thorsten Theobald, Mixed volume techniques for embeddings of Laman
graphs, Comput. Geom. 43 (2010), no. 2, 84–93, https://doi.org/10.1016/j.comgeo.2009.04.
004.

[29] Tiong-Seng Tay and Walter Whiteley, Generating isostatic frameworks, Structural Topology
(1985), no. 11, 21–69.

[30] Walter Whiteley, Cones, infinity and 1-story buildings, Structural Topology (1983), no. 8, 53–70.

Sean Dewar, School of Mathematics, University of Bristol, Bristol, UK
E-mail : sean.dewar@bristol.ac.uk

Georg Grasegger, Johann Radon Institute for Computational and Applied Mathematics
(RICAM), Austrian Academy of Sciences, Linz, Austria
E-mail : georg.grasegger@ricam.oeaw.ac.at

Algebraic Combinatorics, Vol. 7 #6 (2024) 1645

https://doi.org/10.5281/zenodo.1245517
https://doi.org/10.1007/s00454-009-9220-0
https://doi.org/10.1016/j.jctb.2018.07.008
https://doi.org/10.1007/978-1-4684-9273-6
https://doi.org/10.1007/978-1-4684-9273-6
https://doi.org/10.37236/8548
https://doi.org/10.37236/8548
https://doi.org/10.5281/zenodo.6810642
https://doi.org/10.1007/978-1-4939-0781-6_8
https://doi.org/10.5281/zenodo.7457820
https://doi.org/10.1080/10586458.2018.1437851
https://doi.org/10.1080/10586458.2018.1437851
https://doi.org/10.1090/gsm/002
https://doi.org/10.1090/gsm/002
https://doi.org/10.1007/978-1-4757-2189-8
https://doi.org/10.1145/362248.362272
https://doi.org/10.1145/362248.362272
https://doi.org/10.1007/s10711-008-9339-9
https://doi.org/10.1016/j.dam.2017.12.009
https://doi.org/10.1007/978-3-662-21581-4
https://doi.org/10.1016/j.comgeo.2009.04.004
https://doi.org/10.1016/j.comgeo.2009.04.004
mailto:sean.dewar@bristol.ac.uk
mailto:georg.grasegger@ricam.oeaw.ac.at

	1. Introduction
	1.1. Our contributions
	1.2. Structure of the paper

	2. Preliminary results for rigidity theory
	2.1. Euclidean space rigidity
	2.2. Spherical space rigidity

	3. Counting complex realisations
	3.1. Complex rigidity map
	3.2. Defining the d-realisation number

	4. Counting realisations on a complex sphere
	4.1. Complex spherical rigidity map
	4.2. Defining the spherical d-realisation number

	5. Coning and the spherical realisation number
	5.1. Proof of Theorem 1.2
	5.2. Repetitive coning stabilises realisation numbers

	6. Proof of Theorem 1.1
	7. How and when do spherical and planar realisation numbers differ?
	7.1. Ratio of spherical to planar realisation numbers
	7.2. Exploring data sets

	Acknowledgments
	Acknowledgements
	Appendix A. Dominant morphisms
	Appendix B. Proof of Lemma
	Appendix C. The effect of 0-extensions on realisation numbers
	References

