

ALGEBRAIC COMBINATORICS

Andrew Frohmader & Alexander Heaton Stable graded multiplicities for harmonics on a cyclic quiver Volume 7, issue 6 (2024), p. 1603-1614. <https://doi.org/10.5802/alco.391>

© The author(s), 2024.

 $\left($ ce) BY This article is licensed under the CREATIVE COMMONS ATTRIBUTION (CC-BY) 4.0 LICENSE. <http://creativecommons.org/licenses/by/4.0/>

Algebraic Combinatorics is published by The Combinatorics Consortium and is a member of the Centre Mersenne for Open Scientific Publishing <www.tccpublishing.org> <www.centre-mersenne.org>

e-ISSN: 2589-5486

Stable graded multiplicities for harmonics on a cyclic quiver

Andrew Frohmader & Alexander Heaton

Abstract We consider Vinberg *θ*-groups associated to a cyclic quiver on *k* nodes. Let *K* be the product of the general linear groups associated to each node. Then *K* acts naturally on \bigoplus Hom (V_i, V_{i+1}) and by Vinberg's theory the polynomials are free over the invariants. We therefore consider the harmonics as a representation of *K*, and give a combinatorial formula for the stable graded multiplicity of each *K*-type. A key lemma provides a combinatorial separation of variables that allows us to cancel the invariants and obtain generalized exponents for the harmonics.

1. INTRODUCTION

Consider the representations of a cyclic quiver on *k* nodes. Associate to each node a finite-dimensional complex vector space V_j , and to each arrow the space of linear transformations, $\text{Hom}(V_j, V_{j+1})$. Set $V = V_1 \oplus \cdots \oplus V_k$ and let K be the block diagonal subgroup of $G = GL(V)$ isomorphic to $GL(V_1) \times \cdots \times GL(V_k)$ acting on

 $\mathfrak{p} = \text{Hom}(V_1, V_2) \oplus \text{Hom}(V_2, V_3) \oplus \cdots \oplus \text{Hom}(V_{k-1}, V_k) \oplus \text{Hom}(V_k, V_1)$.

Here we let $\mathbf{GL}(U) \times \mathbf{GL}(W)$ act on $\text{Hom}(U, W)$ by $(g_1, g_2) \cdot T = g_2 \circ T \circ g_1^{-1}$, as usual. For $(T_1, \ldots, T_k) \in \mathfrak{p}$, we have *K*-invariant functions defined by

$$
\text{Trace}\left[(T_1 \circ \cdots \circ T_k)^p \right]
$$

for $1 \leqslant p \leqslant n = \min{\{\dim V_j\}}$. By a result of Le Bruyn and Procesi [\[13\]](#page-11-0), these generate the K-invariant functions on \mathfrak{p} . The harmonic polynomials \mathcal{H} are defined as the common kernel of all non-constant, *K*-invariant, constant-coefficient differential operators on p.

The harmonics are naturally graded by degree and we may encode the decomposition of H into K-irreducible representations by the *q*-graded character char_{*q*}(H), which places the character of the degree *d* invariant subspace as the coefficient of q^d . If s_K^{λ} is the irreducible character associated to the *K*-type λ , we may expand

$$
char_q(\mathcal{H}) = \sum_{\lambda} m_{\lambda}^{(G,K)}(q) s_K^{\lambda}.
$$

Fix the *K*-type *ν*. Our main result is a combinatorial formula for $m_\nu^\infty(q, k)$, the stable multiplicity of ν in the harmonics on a cyclic quiver of length k. We will see that, for

Manuscript received 6th April 2024, accepted 12th July 2024.

Keywords. Vinberg *θ*-group, cyclic quiver, harmonic polynomials, graded multiplicity, crystal base.

any cyclic quiver, $m_{\nu}^{\infty}(q, k)$ is equal to $m_{\nu}^{(G,K)}(q)$ up to degree $\leqslant n = \min\{\dim V_j\}$ and our main Theorem [4.17](#page-10-0) will prove

$$
m_{\nu}^{\infty}(q,k) = \sum_{T \in D(\nu)} q^{\sum_{i=1}^{k} |\lambda_i(T)|}.
$$

We sum over a certain set of *distinguished tableau* $T \in \mathcal{D}(\nu)$, and the function $\lambda_i(T)$ is computed from simple combinatorial data associated to *T*. The proof consists of several steps. First, we realize the cyclic quiver above as a θ -representation, or Vinberg pair (*G, K*), with *K* the fixed points of a finite order automorphism of *G*. A key lemma finds a combinatorial *separation of variables*, mirroring Vinberg's theorem [\[20\]](#page-11-1) that

$$
\mathbb{C}[\mathfrak{g}_1] = \mathbb{C}[\mathfrak{g}_1]^K \otimes \mathcal{H}.
$$

Our combinatorial separation of variables allows us to cancel the invariants combinatorially. Other steps include constructing an action of a larger group and then restricting to *K*, applying a branching rule involving Littlewood-Richardson coefficients, and using the combinatorics of \mathfrak{gl}_{∞} crystals to translate the $c^{\lambda}_{\mu,\nu}$ into tableau.

2. Background

2.1. VINBERG PAIRS. Let G be a connected reductive algebraic group over $\mathbb C$, and let $\theta: G \to G$ be an automorphism of *G* with finite order *k*, so $\theta^k = id$. The group of fixed points $K = G^{\theta}$ acts on g by restriction of the Adjoint representation. Each eigenspace of $d\theta$ is invariant. The Lie algebra splits into eigenspaces

$$
\mathfrak{g}=\mathfrak{g}_0\oplus\mathfrak{g}_1\oplus\cdots\oplus\mathfrak{g}_{k-1}.
$$

In [\[20\]](#page-11-1), Vinberg studied the representation of *K* on the polynomial functions on an eigenspace, and proved the following separation of variables:

$$
\mathbb{C}[\mathfrak{g}_1]=\mathbb{C}[\mathfrak{g}_1]^K\otimes\mathcal{H},
$$

where $\mathbb{C}[\mathfrak{g}_1]^K$ are the *K*-invariant functions and H are the harmonic polynomials. In general, for any representation of *K* on *V* the harmonics are defined as the common kernel for all invariant, non-constant, constant-coefficient differential operators $\mathcal{D}(V)^K$:

$$
\mathcal{H} = \{ f \in \mathbb{C}[V] : \partial f = 0 \text{ for all non-constant } \partial \in \mathcal{D}(V)^K \}.
$$

Note that with $k = 1$, Vinberg's results recover those of Kostant's paper, *Lie Group Representations on Polynomial Rings* [\[12\]](#page-11-2). There, Kostant proved the separation of variables

$$
\mathbb{C}[\mathfrak{g}]=\mathbb{C}[\mathfrak{g}]^G\otimes\mathcal{H},
$$

where *G* acts on its Lie algebra under the Adjoint representation, $\mathbb{C}[\mathfrak{g}]^G$ are the invariants, and H are the harmonics.

The harmonics are naturally graded by degree, and we may encode the decomposition of H into *G*-irreducible representations by the *q*-graded character char_{*q*}(H), which places the character of the degree-*d* invariant subspace as the coefficient of q^d . If s_G^{λ} denotes the character of the *G*-irreducible representation parametrized by λ , then we have

$$
char_q(\mathcal{H}) = \sum_{\lambda} \mathcal{K}_{\lambda,0}^G(q) s_G^{\lambda}.
$$

In the Kostant setting, the polynomials $\mathcal{K}_{\lambda,0}^G(q)$ are called *generalized exponents* of *G* and coincide with the Lusztig *q*-analogues associated to the zero weight subspaces, by

a theorem of Hesselink [\[5\]](#page-11-3). Thus,

$$
\mathcal{K}_{\lambda,0}^G(q) = \sum_{w \in W} (-1)^{l(w)} P_q(w(\lambda + \rho) - \rho),
$$

where ρ is the half sum of positive roots, *W* is the Weyl group of *G*, P_q is the *q*-Kostant partition function, and $l(w)$ is the length of $w \in W$.

Much work has been done in relation to these ideas, see [\[9,](#page-11-4) [14,](#page-11-5) [17\]](#page-11-6) and the references within.

The separation of variables above was generalized to the linear isotropy representation for a symmetric space by Kostant and Rallis [\[11\]](#page-11-7), and yet further to finite order automorphisms by Vinberg [\[20\]](#page-11-1). Vinberg's work recovers the Kostant-Rallis results when $k = 2$, which makes $\theta^2 = id$ an involution, and (G, K) a symmetric pair. We may expand the *q*-graded character of the harmonics analogously in the Vinberg setting as

$$
\mathrm{char}_q(\mathcal{H})=\sum_{\lambda}m_{\lambda}^{(G,K)}(q)\,s_K^{\lambda}.
$$

The polynomials $m_{\lambda}^{(G,K)}$ $\lambda^{(G,A)}(q)$ are much less understood.

In the Kostant-Rallis setting, the graded multiplicities of an irreducible representation λ in H may be described in terms of the eigenvalues of a certain element of \mathfrak{k} , see [\[11,](#page-11-7) Theorem 21]. In [\[21\]](#page-11-8), Wallach and Willenbring obtained formulas similar to Hesselink for some examples including: $(GL_{2n}, Sp_{2n}), (SO_{2n+2}, SO_{2n+1}),$ and (*E*6*, F*4). Wallach and Willenbring also worked out the example of (*SL*4*, SO*4) explicitly and other results in special cases have appeared, [\[19,](#page-11-9) [10\]](#page-11-10). There are also stable results stemming from the classical restriction rules of Littlewood [\[7,](#page-11-11) [8,](#page-11-12) [15,](#page-11-13) [16,](#page-11-14) [24\]](#page-11-15). Recently, Frohmader developed a combinatorial formula for (**GL***n,* **O***n*) which is expected to generalize to the other classical symmetric pairs [\[2\]](#page-10-1).

Moving outside of the Kostant-Rallis setting, even less is known. To our knowledge the only graded result is due to Heaton [\[4\]](#page-11-16), in which he determined the graded multiplicity for $(\mathbf{GL}_{2r}, \mathbf{GL}_2 \times \cdots \times \mathbf{GL}_2)$ by counting integral points on the intersection of polyhedra. Wallach has developed ungraded multiplicity formulas, see [\[22,](#page-11-17) [23\]](#page-11-18). Our contribution is a stable formula for $m_{\lambda}^{(G,K)}$ \mathbf{GL}_N ^{(*G*}*,K*) (q) for $(G, K) = (\mathbf{GL}_N, \mathbf{GL}_{n_1} \times \cdots \times \mathbf{GL}_{n_k}),$ where $N = \sum_{i=1}^{k} n_i$.

2.2. PARTITIONS, TABLEAUX, AND GL_n representations. For a partition λ , let $l(\lambda)$ denote length(λ) and $|\lambda|$ the size (number of boxes) of λ . Let \mathcal{P}_n denote the set of partitions with length $\leq n$ (including the empty partition \varnothing) and \varnothing the set of all partitions. Two bases are useful in discussing irreducible polynomial representations of \mathbf{GL}_n : $\epsilon_1, \ldots, \epsilon_n$ and $\omega_1, \ldots, \omega_n$, where $\omega_i = \epsilon_1 + \epsilon_2 + \cdots + \epsilon_i$. The polynomial representations of GL_n are in one to one correspondence with highest weights $\lambda =$ $a_1\epsilon_1 + \cdots + a_n\epsilon_n$, where $a_1 \geq a_2 \geq \cdots \geq a_n \geq 0$ are non-negative integers. This gives a bijection between partitions and irreducible polynomial GL_n representations. In terms of the ω_i basis, the highest weights are given by $\lambda = b_1 \omega_1 + \cdots + b_n \omega_n$ where all $b_i \in \mathbb{Z}_{\geq 0}$. There are no order conditions. So the ω_i basis allows us to identify irreducible polynomial GL_n representations with *n*-tuples of non-negative integers. Computing the change of basis matrices, we see

$$
\lambda = (a_1 - a_2)\omega_1 + \dots + (a_{n-1} - a_n)\omega_{n-1} + a_n\omega_n
$$

$$
\lambda = (b_1 + \dots + b_n)\epsilon_1 + (b_2 + \dots + b_n)\epsilon_2 + \dots + (b_{n-1} + b_n)\epsilon_{n-1} + b_n\epsilon_n.
$$

In terms of partitions, ϵ_i corresponds to a box in row *i* and ω_i corresponds to a column of length *i*.

Figure 1. Cyclic quiver on *k* nodes

Define a partial order on P by $\mu \leq \lambda$ if $\lambda - \mu \in \mathcal{P}$. In what follows, we will view the product order on $\mathbb{Z}^{\infty} = \{(a_1, a_2, \dots) : a_i \in \mathbb{Z}, a_i = 0 \text{ for all but finitely many } i\}$ as extending \leq . This is the order $(b_1, b_2, \ldots) \leq (a_1, a_1, \ldots)$ if and only if $a_i - b_i \in \mathbb{Z}_{\geqslant 0}$ for all *i*. To accomplish this, write $\lambda = a_1 \omega_1 + \cdots + a_n \omega_n$ and $\mu = b_1 \omega_1 + \cdots + b_n \omega_n$ in terms of the ω_i basis. Notice $\lambda - \mu \in \mathcal{P}$ if and only if $(a_1, \ldots, a_n, 0, 0, \ldots)$ $(b_1, \ldots, b_n, 0, 0, \ldots) \in \mathbb{Z}_{\geqslant 0}^{\infty}$ if and only if $a_i - b_i \in \mathbb{Z}_{\geqslant 0}$.

Let $SST_n(\lambda)$ be the set of semistandard tableaux on λ with entries in $\{1,\ldots,n\}$ and *SST*(λ) the set of semistandard tableaux on λ with entries in $\mathbb{Z}_{>0}$. We view $SST_n(\lambda)$ and $SST(\lambda)$ as \mathfrak{gl}_n and \mathfrak{gl}_∞ crystals, see [\[1,](#page-10-2) [6\]](#page-11-19). Define the weight of a tableau $T \in SST(\lambda)$ by $wt(T) = k_1 \epsilon_1 + \cdots + k_n \epsilon_n$ where k_i denotes the number of *i*'s appearing in *T*. Writing $wt(T)$ in terms of the ω_i , we see the reason for extending \leq to Z^{∞} is to enable comparison with non-dominant weights. For example, given T a tableau on a one-box shape with content 2, $wt(T) = \epsilon_2 = -\omega_1 + \omega_2$ which we identify with (−1*,* 1*,* 0*,* 0*, . . .*).

3. THE ACTION OF K^2

Let M_{n_i,n_j} denote the space of n_i by n_j complex matrices. We have an action of $K =$ $\mathbf{GL}_{n_1} \times \mathbf{GL}_{n_2} \times \cdots \times \mathbf{GL}_{n_k}$ on $\mathfrak{p} = M_{n_2,n_1} \oplus M_{n_3,n_2} \oplus \cdots \oplus M_{n_k,n_{k-1}} \oplus M_{n_1,n_k}$ by

$$
(g_1, g_2, \ldots, g_k) \cdot (X_1, X_2, \ldots, X_k) = (g_2 X_1 g_1^{-1}, g_3 X_2 g_2^{-1} \ldots g_1 X_k g_k^{-1}).
$$

This yields an action of *K* on $\mathbb{C}[\mathfrak{p}], k \cdot f(X) = f(k^{-1} \cdot X)$ for $k \in K$ and $X \in \mathfrak{p}$. We would like to understand the graded multiplicities of this action. (Notice the indices are cyclically permuted, as in Figure [1\)](#page-4-0).

We can approach the problem through branching starting from the action of $K^2 =$ $\mathbf{GL}_{n_1}^2 \times \mathbf{GL}_{n_2}^2 \times \cdots \times \mathbf{GL}_{n_k}^2$ on $\mathbb{C}[\mathfrak{p}]$ by

$$
(g_1, h_1, \ldots, g_k, h_k) \cdot f(X_1, X_2, \ldots, X_k) = f(g_2^{-1}X_1h_1, \ldots g_1^{-1}X_kh_k).
$$

Here $\mathbf{GL}_{n_i}^2$ denotes $\mathbf{GL}_{n_i} \times \mathbf{GL}_{n_i}$. Of course, we want to restrict this action to the diagonal subgroup $\Delta = \{(g_1, g_1, g_2, g_2, \ldots, g_k, g_k)\}\cong K$. So we have two tasks: first understand the representation of the big group K^2 , second understand how this representation restricts to Δ .

We begin by determining the of K^2 irreducible representations in $\mathbb{C}[\mathfrak{p}]$. First, recall,

PROPOSITION 3.1 ([\[3,](#page-11-20) Proposition 4.2.5]). *The irreducible representations of* GL_{n_1} × $GL_{n_2} \times \cdots \times GL_{n_l}$ are the representations $V_1 \otimes V_2 \otimes \cdots \otimes V_l$ where V_i is an irreducible *representation of* GL_{n_i} .

 $\text{Next, notice } \mathbb{C}[\mathfrak{p}] = \mathbb{C}[M_{n_2,n_1} \oplus \cdots \oplus M_{n_1,n_k}] \cong \mathbb{C}[M_{n_2,n_1}] \otimes \cdots \otimes \mathbb{C}[M_{n_1,n_k}], \text{see } [3,$ $\text{Next, notice } \mathbb{C}[\mathfrak{p}] = \mathbb{C}[M_{n_2,n_1} \oplus \cdots \oplus M_{n_1,n_k}] \cong \mathbb{C}[M_{n_2,n_1}] \otimes \cdots \otimes \mathbb{C}[M_{n_1,n_k}], \text{see } [3,$ Lemma A.1.9 and we have *k* commuting actions. For example, $\mathbf{GL}_{n_2} \times \mathbf{GL}_{n_1}$ acts by

$$
f_1(X_1) \otimes \cdots \otimes f_k(X_k) \to f_1(g_2^{-1}X_1h_1) \otimes \cdots \otimes f_k(X_k).
$$

In fact, we can recognize this representation as the tensor product of *k* distinct actions, so we can decompose the actions separately.

Now recall,

THEOREM 3.2 ([\[3,](#page-11-20) Theorem 5.6.7]). The degree *d* component of $\mathbb{C}[M_{n_i,n_j}]$ under the *action of* $GL_{n_i} \times GL_{n_j}$ *decomposes as follows*

$$
\mathbb{C}^d[M_{n_i,n_j}]\cong \bigoplus_{\lambda}(F_{n_i}^{\lambda})^*\otimes (F_{n_j}^{\lambda})
$$

with the sum over all nonnegative dominant weights λ of size d and length at $most\ min\{n_i, n_j\}.$

Hence we have the following graded decomposition of the K^2 representation (Note: in all that follows we consider our indexing with respect to the cyclic quiver, i.e., mod *k* with representatives $1, 2, \ldots, k$:

THEOREM 3.3. The degree *d* component of $\mathbb{C}[\mathfrak{p}]$ under the action of K^2 decomposes *as follows*

$$
\mathbb{C}[\mathfrak{p}] \cong \bigoplus_{\lambda_1, \lambda_2, \dots, \lambda_k} [(F^{\lambda_1}_{n_2})^* \otimes F^{\lambda_1}_{n_1}] \otimes [(F^{\lambda_2}_{n_3})^* \otimes F^{\lambda_2}_{n_2}] \otimes \dots \otimes [(F^{\lambda_k}_{n_1})^* \otimes F^{\lambda_k}_{n_k}]
$$

$$
\cong \bigoplus_{\lambda_1, \lambda_2, \dots, \lambda_k} \bigotimes_{i=1}^k (F^{\lambda_i}_{n_{i+1}})^* \otimes F^{\lambda_i}_{n_i}]
$$

with the sum over all nonnegative dominant weights $\lambda_1, \lambda_2, \ldots, \lambda_k$ *such that* $|\lambda_1|$ + $|\lambda_2| + \cdots + |\lambda_k| = d$ *and length* $(\lambda_i) \leqslant \min\{n_i, n_{i+1}\}.$

Proof. As discussed above, we can decompose each $\mathbb{C}^d[M_{n_i,n_j}]$ factor separately. Ap-ply Theorem [3.2.](#page-5-0) \Box

With the action of K^2 understood, we turn to the problem of branching to the diagonal subgroup ∆.

4. Stable Multiplicities via Branching

Let $n = \min\{n_1, \ldots, n_k\}$. We work with the pairs $\mathbf{GL}_{n_1}^2$, $\mathbf{GL}_{n_2}^2$, ..., $\mathbf{GL}_{n_k}^2$ separately. Essentially, we choose to group the decomposition from Theorem [3.3](#page-5-1) as

$$
\bigoplus_{\lambda_1, \lambda_2, \dots, \lambda_k} [F^{\lambda_1}_{n_1} \otimes (F^{\lambda_k}_{n_1})^*] \otimes [F^{\lambda_2}_{n_2} \otimes (F^{\lambda_1}_{n_2})^*] \otimes \dots \otimes [F^{\lambda_k}_{n_k} \otimes (F^{\lambda_{k-1}}_{n_k})^*]
$$

$$
\cong \bigoplus_{\lambda_1, \lambda_2, \dots, \lambda_k} \bigotimes_{i=1}^k [F^{\lambda_i}_{n_i} \otimes (F^{\lambda_{i-1}}_{n_i})^*]
$$

Recall,

THEOREM 4.1 (Stable Branching Rule, [\[8,](#page-11-12) Theorem 2.1.4.1]). *For* $l(\lambda_i) + l(\lambda_{i-1}) \leq n_i$,

$$
\dim Hom_{\operatorname{GL}_{n_i}}(F_{n_i}^{\nu^+,\nu^-}, F_{n_i}^{\lambda_i}\otimes (F_{n_i}^{\lambda_{i-1}})^*)=\sum_{\alpha}c_{\alpha,\nu^+}^{\lambda_i}c_{\alpha,\nu^-}^{\lambda_{i-1}}.
$$

 $F^{\nu^+,\nu^-}_{n_i}$ is our notation for the rational representation of \mathbf{GL}_{n_i} corresponding to the tuple of partitions (ν^+, ν^-) . Both ν^+ and ν^- are partitions, and if ν^+

 $(a_1, a_2, \ldots, a_\ell)$ and $\nu^- = (b_1, b_2, \ldots, b_m)$ then $F^{\nu^+, \nu^-}_{n_i}$ is the rational representation of \mathbf{GL}_{n_i} with highest weight

$$
(a_1, a_2, \ldots, a_\ell, 0, \ldots, 0, -b_m, -b_{m-1}, \ldots, -b_2, -b_1),
$$

with the number of interior zeros arranged appropriately, see [\[18\]](#page-11-21). Hence we have,

THEOREM 4.2. For degree $d \leq n$, the degree *d* component of $\mathbb{C}[\mathfrak{p}]$ under the action *of K decomposes as follows,*

$$
\bigoplus_{\alpha_i, \lambda_i, \nu^\pm_i} \bigotimes_{i=1}^k c^{\lambda_i}_{\alpha_i, \nu^\pm_i} c^{\lambda_{i-1}}_{\alpha_i, \nu_i^-} F^{\nu^\pm_i, \nu_i^-}_{n_i}
$$

with the sum over all $\{\alpha_i, \lambda_i, \nu_i^{\pm}\}_{i=1}^k$ *in* \mathcal{P}_n *such that* $|\lambda_1| + \cdots + |\lambda_k| = d$ *. In particular, the multiplicity of the K irrep* $\nu = (\nu_1^{\pm}, \dots, \nu_k^{\pm})$ *appearing in degree d is given by*

$$
\sum_{\alpha_i,\lambda_i} (\prod_{i=1}^k c^{\lambda_i}_{\alpha_i,\nu_i^+} c^{\lambda_{i-1}}_{\alpha_i,\nu_i^-}).
$$

Proof. Say $d \leq n$. Then for any $\lambda_i, \lambda_{i-1}, l(\lambda_i) + l(\lambda_{i-1}) \leq |\lambda_i| + |\lambda_{i-1}| \leq d \leq n \leq n_i$ so Theorem [4.1](#page-5-2) applies and we understand the branching down to *K*. We also note it suffices to consider partitions in \mathcal{P}_n since if a partition α_i, λ_i or ν_i^{\pm} has length greater than n , it contributes to a degree greater than n and so only impacts multiplicities outside the stable range. \Box

COROLLARY 4.3. The following gives the graded character char_{*q*}($\mathbb{C}[\mathfrak{p}]$) up to degree *n*,

$$
\sum_{\alpha_i,\lambda_i,\nu_i^{\pm}} q^{\sum |\lambda_i|} \prod_{i=1}^k c^{\lambda_i}_{\alpha_i,\nu_i^{\pm}} c^{\lambda_{i-1}}_{\alpha_i,\nu_i^{\pm}} s^{\nu_i^{\pm},\nu_i^-}_{n_i}
$$

where $s_{n_i}^{\nu_i^+, \nu_i^-}$ is the \bm{GL}_{n_i} character of $F_{n_i}^{\nu_i^+, \nu_i^-}$ and the sum is taken over all $\{\alpha_i, \lambda_i, \nu_i^{\pm}\}_{i=1}^k$ *in* \mathcal{P}_n *.*

Next, we handle the invariants, which are generated by $Tr([X_1X_2...X_k]^i)$ for $1 \leq i \leq n$ by a result in [\[13\]](#page-11-0).

Proposition 4.4. *We have the separation of variables*

$$
\mathbb{C}[\mathfrak{p}]=\mathbb{C}[\mathfrak{p}]^K\otimes\mathcal{H}.
$$

Proof. Notice that $K = G^{\theta}$ where $\theta : G \to G$ is given by conjugation by the diagonal matrix with entries equal to *k*th roots of unity $1, \zeta, \zeta^2, \ldots, \zeta^{k-1}$, each appearing with multiplicities n_1, \ldots, n_k . The conjugation action of K on the ζ -eigenspace is isomorphic to the action of *K* on **p**. The result now follows from Vinberg's theory [\[20\]](#page-11-1). \Box

Hence, the graded character of $\mathcal H$ is given by

$$
\mathrm{char}_q(\mathcal{H}) = [\prod_{i=1}^n (1-q^{ki})] \mathrm{char}_q(\mathbb{C}[\mathfrak{p}]).
$$

COROLLARY 4.5. The following gives the graded character char_{*a*}(H) up to degree *n*,

$$
[\prod_{i=1}^n(1-q^{ki})]\sum_{\alpha_i,\lambda_i,\nu_i^\pm}q^{\sum|\lambda_i|}\prod_{i=1}^kc_{\alpha_i,\nu_i^+}^{\lambda_i}c_{\alpha_i,\nu_i^-}^{\lambda_{i-1}}s_{n_i}^{\nu_i^+,\nu_i^-}
$$

where $s_{n_i}^{\nu_i^+, \nu_i^-}$ is the \bm{GL}_{n_i} character of $F_{n_i}^{\nu_i^+, \nu_i^-}$ and the sum is taken over all partitions $\{\alpha_i, \lambda_i, \nu_i^{\pm}\}_{i=1}^k$ *in* \mathcal{P}_n *.*

In particular, the following formula provides the graded multiplicity of the K irrep $\nu = (\nu_1^{\pm}, \dots, \nu_k^{\pm})$ *in* \mathcal{H} *, denoted* $m_{\nu}(q)$ *, up to degree n,*

$$
\left[\prod_{i=1}^n (1-q^{ki})\right] \sum_{\alpha_i,\lambda_i} q^{\sum |\lambda_i|} \prod_{i=1}^k c^{\lambda_i}_{\alpha_i,\nu_i^+} c^{\lambda_{i-1}}_{\alpha_i,\nu_i^-}.
$$

Proof. Immediate from above discussion. □

COROLLARY 4.6. For *v* a K irrep, if either $\sum_{i=1}^{k} |v_i^+| > n$ or $\sum_{i=1}^{k} |v_i^-| > n$, then $m_{\nu}(q) = 0$ *in the stable range.*

Proof. Notice in the formula of Corollary [4.5,](#page-6-0) the smallest degrees come from the $q^{\sum |\lambda_i|}$ terms. Now, by basic properties of Littlewood-Richardson coefficients, if the term $q^{\sum |\lambda_i|} \prod_{i=1}^k c_{\alpha_i}^{\lambda_i}$ $\frac{\lambda_i}{\alpha_i,\nu_i^+}c^{\lambda_{i-1}}_{\alpha_i,\nu_i}$ $\frac{\lambda_{i-1}}{\alpha_i,\nu_i}$ is not zero, $|\lambda_i| \geqslant |\nu_i^+|$ for all *i*, but then $q^{\sum |\lambda_i|} \geqslant q^{\sum |\nu_i^+|} > q^n$. So $m_{\nu}(q)$ is 0 in degree less than or equal to *n*. □

We now turn our attention to stable multiplicities and make the following key definition.

DEFINITION 4.7.

$$
m_{\nu}^{\infty}(q,k) = \left[\prod_{i=1}^{\infty} (1-q^{ki})\right] \sum_{\alpha_i,\lambda_i} q^{\sum |\lambda_i|} \prod_{i=1}^k c_{\alpha_i,\nu_i^+}^{\lambda_i} c_{\alpha_i,\nu_i^-}^{\lambda_{i-1}},
$$

where the sum is taken over all partitions $\{\alpha_i, \lambda_i\}_{i=1}^k$ *in* \mathcal{P} *. This is the stable* q *multiplicity for ν on a quiver of length k.*

It is easy to see that $m_{\nu}^{\infty}(q, k) = m_{\nu}(q)$ up to degree *n*. These stable *q*-multiplicities will be our focus for the remainder of the paper.

We would like to cancel the $\left[\prod_{i=1}^{\infty} (1-q^{ki})\right]$ factor from the formula for $m_{\nu}^{\infty}(q, k)$. We $\text{recall, see [2], that } c^{\lambda}_{\alpha,\nu} = |\text{CLR}^{\lambda}_{\alpha,\nu}| := |\{T \in SST(\nu) \mid \alpha \geqslant \varepsilon(T) \text{ and } \alpha + \text{wt}(T) = \lambda\}|.$ $\text{recall, see [2], that } c^{\lambda}_{\alpha,\nu} = |\text{CLR}^{\lambda}_{\alpha,\nu}| := |\{T \in SST(\nu) \mid \alpha \geqslant \varepsilon(T) \text{ and } \alpha + \text{wt}(T) = \lambda\}|.$ $\text{recall, see [2], that } c^{\lambda}_{\alpha,\nu} = |\text{CLR}^{\lambda}_{\alpha,\nu}| := |\{T \in SST(\nu) \mid \alpha \geqslant \varepsilon(T) \text{ and } \alpha + \text{wt}(T) = \lambda\}|.$ Here we are viewing $SST(\nu)$ as a \mathfrak{gl}_{∞} crystal with Kashiwara operators \tilde{e}_i and \tilde{f}_i $\text{for } i = 1, 2, \ldots$ and we define $\varepsilon_i(T) = \max\{k \geq 0 \mid \tilde{e}_i^k T \in \tilde{S}ST(\lambda)\}, \phi_i(T) =$ $\max\{k \geq 0 \mid \tilde{f}_i^k T \in SST(\lambda)\}\$, and

$$
\phi(T) = \sum_{i=1}^{n-1} \phi_i(T)\omega_i, \qquad \qquad \varepsilon(T) = \sum_{i=1}^{n-1} \varepsilon_i(T)\omega_i.
$$

In this notation, we have,

$$
m_{\nu}^{\infty}(q,k) = \left[\prod_{i=1}^{\infty} (1-q^{ki})\right] \sum_{\alpha_i,\lambda_i} q^{\sum |\lambda_i|} \prod_{i=1}^k |\text{CLR}_{\alpha_i,\nu_i^+}^{\lambda_i}| |\text{CLR}_{\alpha_i,\nu_i^-}^{\lambda_{i-1}}|.
$$

Notice the formula for $m_{\nu}^{\infty}(q, k)$ has ν_i^{\pm} fixed for all *i*, so we are just computing various subsets of $\underline{\mathrm{SST}}(\nu) := \prod_{i=1}^k [SST(\nu_i^+) \times SST(\nu_i^-)].$ The key is to understand which $T = (T_1^+, T_1^-, \ldots, T_k^+, T_k^-) \in \underline{\mathrm{SST}}(\nu)$ appear in some $\underline{\text{CLR}}_{\alpha,\nu}^{\lambda} := \prod_{i=1}^{k} \text{CLR}_{\alpha_i,\nu_i^+}^{\lambda_i} \times \text{CLR}_{\alpha_i,\nu_i^-}^{\lambda_{i-1}}$ and with what multiplicity. In this context, $\lambda = (\lambda_1, \ldots, \lambda_k), \alpha = (\alpha_1, \ldots, \alpha_k)$, and $\nu = (\nu_1^{\pm}, \ldots, \nu_k^{\pm})$ are tuples of partitions.

As $T_i = (T_i^+, T_i^-)$ is associated with the rational \mathbf{GL}_{n_i} representation $F_{n_i}^{\nu_i^+, \nu_i^-}$, let $wt(T_i) := wt(T_i^+) - wt(T_i^-)$. Also denote the set of all *k*-tuples of tableaux \mathcal{P}^k . We first isolate those *T* contributing with the following definition.

A. Frohmader & A. Heaton

DEFINITION 4.8. *A tuple of tableaux* $T \in \underline{SST}(\nu)$ *is called* distinguished *if* $T \in \underline{CLR}_{\alpha,\nu}^{\lambda}$ *for some* $\lambda, \alpha \in \mathcal{P}^k$. We let $D(\nu)$ denote the set of all distinguished tableaux in $\frac{SST(\nu)}{L}$. LEMMA 4.9. *Suppose* $T \in \underline{CLR}_{\alpha,\nu}^{\lambda}$. *Then,*

$$
\alpha_i = \lambda_1 - wt(T_i^+) + \sum_{j=2}^i wt(T_j),
$$

$$
\lambda_i = \lambda_1 + \sum_{j=2}^i wt(T_j),
$$

$$
\sum_{j=1}^k wt(T_j) = 0,
$$

for all α_i *and* λ_i *. In particular,* α_i *and* λ_i *are uniquely determined by* λ_1 *and* T *. With T fixed, let* $\lambda(\lambda_1)$ *and* $\alpha(\lambda_1)$ *be those elements of* \mathcal{P}^k *determined by* λ_1 *.*

Proof. We begin by establishing the formula for λ_i . Proceed by induction. The base case is clear. Now assume the formula holds for λ_{i-1} with $1 \leq i \leq k$. From the term $\operatorname{CLR}_{\alpha_i,\nu_i^+}^{\lambda_i} \times \operatorname{CLR}_{\alpha_i,\nu_i^-}^{\lambda_{i-1}}$ we see $\alpha_i = \lambda_{i-1} - \operatorname{wt}(T_i^-)$ so by induction, $\alpha_i = \lambda_1 +$ $\sum_{j=2}^{i-1} \text{wt}(T_j) - \text{wt}(T_i^-)$ and $\lambda_i = \alpha_i + \text{wt}(T_i^+) = \lambda_1 + \sum_{j=2}^{i} \text{wt}(T_j)$.

Next, we establish the third equality. We have,

$$
\lambda_k = \lambda_1 + \sum_{j=2}^k \text{wt}(T_j)
$$

Notice from the $\text{CLR}_{\alpha_1,\nu_1^+}^{\lambda_1} \times \text{CLR}_{\alpha_1,\nu_1^-}^{\lambda_k}$ factor, we also have,

$$
\lambda_k = \text{wt}(T_1^-) + \alpha_1.
$$

$$
\lambda_1 = \text{wt}(T_1^+) + \alpha_1.
$$

Subtracting the two expressions for λ_k yields

$$
\sum_{j=1}^{k} \text{wt}(T_j) = 0.
$$

From the term $CLR^{\lambda_i}_{\alpha_i,\nu_i^+}$ we see $\alpha_i = \lambda_i - \text{wt}(T_i^+) = \lambda_1 + \sum_{j=2}^i \text{wt}(T_j) - \text{wt}(T_i^+).$ □

Lemma [4.9](#page-8-0) shows that with *T* fixed, there is at most a 1-parameter family of $\underline{\text{CLR}}_{\alpha,\nu}^{\lambda}$ containing *T*. We choose to parameterize this family by λ_1 , but note that any choice of a fixed λ_i or α_j uniquely constrains $\underline{CLR}_{\alpha,\nu}^{\lambda}$ and could be used as parameter. The lemma below shows that the cyclic nature of the representation constrains the set of distinguished tableaux.

LEMMA 4.10. $T \in \underline{SST}(\nu)$ *is distinguished if and only if* $\sum_{j=1}^{k} wt(T_j) = 0$.

Proof. Say *T* is distinguished. Then $T \in \underline{CLR}_{\alpha,\nu}^{\lambda}$ for some λ and α so by Lemma [4.9,](#page-8-0) $0 = \sum_{j=1}^{k} \text{wt}(T_j).$

Now suppose $\sum_{i=1}^{k} \text{wt}(T_i) = 0$. We must show $T \in \underline{\text{CLR}}_{\alpha,\nu}^{\lambda}$ for some $\lambda, \alpha \in \mathcal{P}^k$. To do this, we require two things. First, $\alpha_i \geqslant \varepsilon(T_i^+)$ and $\alpha_i \geqslant \varepsilon(T_i^-)$ for all *i*. This ensures $T_i^+ \in \text{CLR}_{\alpha_i,\nu_i^+}^{\alpha_i + \text{wt}(T_i^+)}$ α_i ^{+wt(T_{*i*}</sub>⁺) and similarly for T_i^- . Second, we have to make sure the λ_i are}

compatible, that is the two formulas for λ_i , $\lambda_i = \alpha_i + \text{wt}(T_i^+)$ and $\lambda_i = \alpha_{i+1} + \text{wt}(T_{i+1}^-)$ are equal.

By Lemma [4.9,](#page-8-0) to achieve λ_i compatibility, we must have $\lambda_i = \lambda_1 + \sum_{j=2}^i \text{wt}(T_j)$ for $i > 1$ and $\sum_{j=1}^{k} \text{wt}(T_j) = 0$, i.e. we are constrained to work within the family parameterized by λ_1 . The proof comes down to showing this family is not empty by selecting a λ_1 large enough that $\alpha_i \geqslant \varepsilon(T_i^+)$ and $\alpha_i \geqslant \varepsilon(T_i^-)$ for all *i*. As $\alpha_i =$ $\lambda_1 - \text{wt}(T_i^+) + \sum_{j=2}^i \text{wt}(T_j)$, this can be achieved by selecting $\lambda_1 \geqslant \text{sup}\{\varepsilon(T_i^{\pm}) + \sum_{j=2}^i \text{wt}(T_j) + \sum_{j=1}^i \varepsilon(T_i) + \sum_{j=1}^i \varepsilon(T_i) + \sum_{j=1}^i \varepsilon(T_i) + \sum_{j=1}^i \varepsilon(T_i)$ $\text{wt}(T_i^+) - \sum_{j=2}^i \text{wt}(T_j) \}_{i=1}^k$. Indeed, then

$$
\alpha_i = \lambda_1 - \text{wt}(T_i^+) + \sum_{j=2}^i \text{wt}(T_j)
$$

\n
$$
\geq [\varepsilon(T_i^{\pm}) + \text{wt}(T_i^+) - \sum_{j=2}^i \text{wt}(T_j)] - \text{wt}(T_i^+) + \sum_{j=2}^i \text{wt}(T_j)
$$

\n
$$
= \varepsilon(T_i^{\pm}).
$$

So we have $\alpha_i \geqslant \varepsilon(T_i^{\pm})$, which shows λ_i and α_i are partitions and hence *T* is contained in $\underline{\text{CLR}}_{\alpha,\nu}^{\lambda}$.

$$
\Box
$$

Definition 4.11. *We isolate a least upper bound from the proof of Lemma* [4.10](#page-8-1) *in this* definition. For $T \in D(\nu)$ define $\lambda_{\min}(T) = \sup \{ \varepsilon(T_i^{\pm}) + wt(T_i^+) - \sum_{j=2}^i wt(T_j) \}_{i=1}^k$.

Note that λ_{\min} exists. It can be explicitly constructed as follows. Notice we can work $\inf P_N$ if we choose *N* large enough. Writing each $S_i^{\pm} = \varepsilon(T_i^{\pm}) + \text{wt}(T_i^+) - \sum_{j=2}^i \text{wt}(T_j)$ in terms of the ω_i basis as $S_j^{\pm} = a_{1j}^{\pm} \omega_1 = \cdots + a_{Nj}^{\pm} \omega_N$. Set $a_i = \max\{a_{i1}^{\pm}, \ldots, a_{ik}^{\pm}\},$ that is a_i is the maximum coefficient of ω_i across the S_i^{\pm} . Then $\lambda_{\min}(T) = a_1\omega_1 + \cdots + a_n$ $a_N \omega_N$. Notice also that $S_1^+ = \varepsilon(T_1^+) + \text{wt}(T_1^+)$ is a partition by the tensor product rule for crystals, that is $S_1^+ = a_{11}^+ \omega_1 + \cdots + a_{N1}^+ \omega_N$ with $a_{1i} \in \mathbb{Z}_{\geqslant 0}$ for all *i*. Hence, $a_i \geqslant 0$ for all *i*.

Next, we give a name to the set of partitions parameterizing the $\underline{\text{CLR}}_{\alpha,\nu}^{\lambda}$ containing *T*.

DEFINITION 4.12. For $T \in D(\nu)$ let S_T be the set of all $\lambda_1 \in \mathcal{P}$ such that $T \in$ $\frac{CLR_{\alpha(\lambda_1),\nu}^{\lambda(\lambda_1)}}{(\lambda_1),\nu}$

LEMMA 4.13. *For* $T \in D(\nu)$, $T \in \underline{CLR}_{\alpha(\lambda_1),\nu}^{\lambda(\lambda_1)}$ *if and only if* $\lambda_1 \geq \lambda_{\min}(T)$ *.*

Proof. This follows from the proof of Lemma [4.10.](#page-8-1) \Box

LEMMA 4.14. *For* $T \in D(\nu)$, $S_T = \lambda_{\min}(T) + \mathcal{P}$.

Proof. This follows from Lemma [4.13](#page-9-0) by observing that $\lambda_{\min}(T)$ is the unique minimal element in S_T so for any $\delta \in S_T$ we can write $\delta = \lambda_{\min}(T) + (\delta - \lambda_{\min}(T))$.

Hence, for $T \in D(\nu)$, we have a 1-parameter family of $\underline{\text{CLR}}_{\alpha,\nu}^{\lambda}$ containing T, now parameterized by $\delta \in \mathcal{P}$. We define the following functions

$$
\lambda_i(T, \delta) = \lambda_{\min}(T) + \delta + \sum_{j=2}^i \text{wt}(T_j),
$$

$$
\alpha_i(T, \delta) = \lambda_{\min}(T) + \delta - \text{wt}(T_i^+) + \sum_{j=2}^i \text{wt}(T_j).
$$

A. FROHMADER & A. HEATON

Then this family can be written explicitly as

$$
\{\prod_{i=1}^k \mathrm{CLR}_{\alpha_i(T,\delta),\nu_i^+}^{\lambda_i(T,\delta)} \times \mathrm{CLR}_{\alpha_i(T,\delta),\nu_i^-}^{\lambda_{i-1}(T,\delta)} \; : \; \delta \in \mathcal{P}\}
$$

Lemma 4.15.

$$
\lambda_i(T,\delta)=\lambda_i(T,\varnothing)+\delta
$$

Proof.

$$
\lambda_i(T, \delta) = \lambda_{\min}(T) + \delta + \sum_{j=2}^i \text{wt}(T_j),
$$

$$
= \lambda_{\min}(T) + \varnothing + \sum_{j=2}^i \text{wt}(T_j) + \delta,
$$

$$
= \lambda_i(T, \varnothing) + \delta.
$$

Denote $\lambda_i(T, \emptyset)$ by $\lambda_i(T)$ for simplicity. We isolate the following key lemma which should be viewed as a combinatorial separation of variables.

Lemma 4.16.

$$
\frac{1}{\prod_{i=1}^{\infty} (1 - q^{ki})} m_{\nu}^{\infty}(q, k) = \sum_{\delta \in \mathcal{P}} q^{k|\delta|} \sum_{T \in D(\nu)} q^{\sum_{i=1}^{k} |\lambda_i(T)|}
$$

Proof.

$$
\frac{1}{\prod_{i=1}^{\infty} (1-q^{ki})} m_{\nu}^{\infty}(q,k) = \sum_{T \in D(\nu)} \sum_{\delta \in \mathcal{P}} q^{\sum_{i=1}^{k} |\lambda_i(T,\delta)|}
$$
\n
$$
= \sum_{T \in D(\nu)} \sum_{\delta \in \mathcal{P}} q^{\sum_{i=1}^{k} |\lambda_i(T,\varnothing) + \delta|}
$$
\n
$$
= \sum_{T \in D(\nu)} \sum_{\delta \in \mathcal{P}} q^{k|\delta| \sum_{i=1}^{k} |\lambda_i(T,\varnothing)|}
$$
\n
$$
= \sum_{\delta \in \mathcal{P}} q^{k|\delta|} \sum_{T \in D(\nu)} q^{\sum_{i=1}^{k} |\lambda_i(T,\varnothing)|},
$$

where in the second line we used Lemma [4.15.](#page-10-3) \Box

From this, the main theorem is immediate. Cancel $\sum_{\delta \in \mathcal{P}} q^{k|\delta|}$ with the invariants $1/\prod_{i=1}^{\infty}(1-q^{ki}).$

THEOREM 4.17.

$$
m_{\nu}^{\infty}(q,k) = \sum_{T \in D(\nu)} q^{\sum_{i=1}^{k} |\lambda_i(T)|}
$$

Acknowledgements. Thanks to Jeb Willenbring for helpful discussions.

REFERENCES

- [1] Daniel Bump and Anne Schilling, *Crystal bases*, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017, <https://doi.org/10.1142/9876>.
- [2] Andrew Frohmader, *Graded multiplicities in the Kostant-Rallis setting*, 2023, [https://arxiv.](https://arxiv.org/abs/2312.11295) [org/abs/2312.11295](https://arxiv.org/abs/2312.11295).

Algebraic Combinatorics, Vol. 7 #6 (2024) 1612

□

- [3] Roe Goodman and Nolan R. Wallach, *Symmetry, representations, and invariants*, Graduate Texts in Mathematics, vol. 255, Springer, Dordrecht, 2009, [https://doi.org/10.1007/](https://doi.org/10.1007/978-0-387-79852-3) [978-0-387-79852-3](https://doi.org/10.1007/978-0-387-79852-3).
- [4] Alexander Heaton, *Graded multiplicity in harmonic polynomials from the Vinberg setting*, J. Lie Theory **34** (2024), no. 3, 677–692.
- [5] Wim H. Hesselink, *Characters of the nullcone*, Math. Ann. **252** (1980), no. 3, 179–182, [https:](https://doi.org/10.1007/BF01420081) [//doi.org/10.1007/BF01420081](https://doi.org/10.1007/BF01420081).
- [6] Jin Hong and Seok-Jin Kang, *Introduction to quantum groups and crystal bases*, Graduate Studies in Mathematics, vol. 42, American Mathematical Society, Providence, RI, 2002, [https:](https://doi.org/10.1090/gsm/042) [//doi.org/10.1090/gsm/042](https://doi.org/10.1090/gsm/042).
- [7] Roger Howe, Eng-Chye Tan, and Jeb F. Willenbring, *Stable branching rules for classical symmetric pairs*, Trans. Amer. Math. Soc. **357** (2005), no. 4, 1601–1626, [https://doi.org/10.](https://doi.org/10.1090/S0002-9947-04-03722-5) [1090/S0002-9947-04-03722-5](https://doi.org/10.1090/S0002-9947-04-03722-5).
- [8] Roger Howe, Eng-Chye Tan, and Jeb F. Willenbring, *The stability of graded multiplicity in the setting of the Kostant-Rallis theorem*, Transform. Groups **13** (2008), no. 3-4, 617–636, [https:](https://doi.org/10.1007/s00031-008-9030-0) [//doi.org/10.1007/s00031-008-9030-0](https://doi.org/10.1007/s00031-008-9030-0).
- [9] Il-Seung Jang and Jae-Hoon Kwon, *Flagged Littlewood-Richardson tableaux and branching rule for classical groups*, J. Combin. Theory Ser. A **181** (2021), article no. 105419 (51 pages), [https:](https://doi.org/10.1016/j.jcta.2021.105419) [//doi.org/10.1016/j.jcta.2021.105419](https://doi.org/10.1016/j.jcta.2021.105419).
- [10] Kenneth D. Johnson and Nolan R. Wallach, *Composition series and intertwining operators for the spherical principal series. I*, Trans. Amer. Math. Soc. **229** (1977), 137–173, [https:](https://doi.org/10.2307/1998503) [//doi.org/10.2307/1998503](https://doi.org/10.2307/1998503).
- [11] B. Kostant and S. Rallis, *Orbits and representations associated with symmetric spaces*, Amer. J. Math. **93** (1971), 753–809, <https://doi.org/10.2307/2373470>.
- [12] Bertram Kostant, *Lie group representations on polynomial rings*, Amer. J. Math. **85** (1963), 327–404, <https://doi.org/10.2307/2373130>.
- [13] Lieven Le Bruyn and Claudio Procesi, *Semisimple representations of quivers*, Trans. Amer. Math. Soc. **317** (1990), no. 2, 585–598, <https://doi.org/10.2307/2001477>.
- [14] Cédric Lecouvey and Cristian Lenart, *Combinatorics of generalized exponents*, Int. Math. Res. Not. IMRN (2020), no. 16, 4942–4992, <https://doi.org/10.1093/imrn/rny157>.
- [15] D. E. Littlewood, *On invariant theory under restricted groups*, Philos. Trans. Roy. Soc. London Ser. A **239** (1944), 387–417, <https://doi.org/10.1098/rsta.1944.0003>.
- [16] Dudley E. Littlewood, *The theory of group characters and matrix representations of groups*, AMS Chelsea Publishing, Providence, RI, 2006, <https://doi.org/10.1090/chel/357>.
- [17] Kendra Nelsen and Arun Ram, *Kostka-Foulkes polynomials and Macdonald spherical functions*, in Surveys in combinatorics, 2003 (Bangor), London Math. Soc. Lecture Note Ser., vol. 307, Cambridge Univ. Press, Cambridge, 2003, pp. 325–370.
- [18] John R. Stembridge, *Rational tableaux and the tensor algebra of* gl*n*, J. Combin. Theory Ser. A **46** (1987), no. 1, 79–120, [https://doi.org/10.1016/0097-3165\(87\)90077-X](https://doi.org/10.1016/0097-3165(87)90077-X).
- [19] Anthony van Groningen and Jeb F. Willenbring, *The cubic, the quartic, and the exceptional group* G2, in Developments and retrospectives in Lie theory, Dev. Math., vol. 38, Springer, Cham, 2014, pp. 385–397, https://doi.org/10.1007/978-3-319-09804-3_17.
- [20] È. B. Vinberg, *The Weyl group of a graded Lie algebra*, Izv. Akad. Nauk SSSR Ser. Mat. **40** (1976), no. 3, 488–526, 709.
- [21] N. R. Wallach and J. Willenbring, *On some q-analogs of a theorem of Kostant-Rallis*, Canad. J. Math. **52** (2000), no. 2, 438–448, <https://doi.org/10.4153/CJM-2000-020-0>.
- [22] Nolan R. Wallach, *An analogue of the Kostant-Rallis multiplicity theorem for θgroup harmonics*, in Representation theory, number theory, and invariant theory, Progr. Math., vol. 323, Birkhäuser/Springer, Cham, 2017, pp. 603–626, [https://doi.org/10.1007/](https://doi.org/10.1007/978-3-319-59728-7_20) [978-3-319-59728-7_20](https://doi.org/10.1007/978-3-319-59728-7_20).
- [23] Nolan R. Wallach, *Geometric invariant theory*, Universitext, Springer, Cham, 2017, [https:](https://doi.org/10.1007/978-3-319-65907-7) [//doi.org/10.1007/978-3-319-65907-7](https://doi.org/10.1007/978-3-319-65907-7).
- [24] Jeb F. Willenbring, *An application of the Littlewood restriction formula to the Kostant-Rallis theorem*, Trans. Amer. Math. Soc. **354** (2002), no. 11, 4393–4419, [https://doi.org/10.1090/](https://doi.org/10.1090/S0002-9947-02-03065-9) [S0002-9947-02-03065-9](https://doi.org/10.1090/S0002-9947-02-03065-9).

A. FROHMADER & A. HEATON

- ANDREW FROHMADER, University of Wisconsin Milwaukee, Department of Mathematics, 3200 N. Cramer St., Milwaukee, WI 53211 (USA) E-mail : frohmad4@uwm.edu
- Alexander Heaton, Lawrence University, Department of Mathematics, Computer Science, and Statistics, 711 E. John St., Appleton, WI 54911 (USA) E-mail : alexander.m.heaton@lawrence.edu