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Stable graded multiplicities for harmonics
on a cyclic quiver

Andrew Frohmader & Alexander Heaton

Abstract We consider Vinberg θ-groups associated to a cyclic quiver on k nodes. Let K

be the product of the general linear groups associated to each node. Then K acts naturally
on ⊕Hom(Vi, Vi+1) and by Vinberg’s theory the polynomials are free over the invariants. We
therefore consider the harmonics as a representation of K, and give a combinatorial formula for
the stable graded multiplicity of each K-type. A key lemma provides a combinatorial separation
of variables that allows us to cancel the invariants and obtain generalized exponents for the
harmonics.

1. Introduction
Consider the representations of a cyclic quiver on k nodes. Associate to each node
a finite-dimensional complex vector space Vj , and to each arrow the space of linear
transformations, Hom(Vj , Vj+1). Set V = V1⊕· · ·⊕Vk and let K be the block diagonal
subgroup of G = GL(V ) isomorphic to GL(V1) × · · · × GL(Vk) acting on

p = Hom(V1, V2) ⊕ Hom(V2, V3) ⊕ · · · ⊕ Hom(Vk−1, Vk) ⊕ Hom(Vk, V1).

Here we let GL(U) × GL(W ) act on Hom(U, W ) by (g1, g2) · T = g2 ◦ T ◦ g−1
1 , as

usual. For (T1, . . . , Tk) ∈ p, we have K-invariant functions defined by

Trace [(T1 ◦ · · · ◦ Tk)p]

for 1 ⩽ p ⩽ n = min{dim Vj}. By a result of Le Bruyn and Procesi [13], these
generate the K-invariant functions on p. The harmonic polynomials H are defined as
the common kernel of all non-constant, K-invariant, constant-coefficient differential
operators on p.

The harmonics are naturally graded by degree and we may encode the decompo-
sition of H into K-irreducible representations by the q-graded character charq(H),
which places the character of the degree d invariant subspace as the coefficient of qd.
If sλ

K is the irreducible character associated to the K-type λ, we may expand

charq(H) =
∑

λ

m
(G,K)
λ (q) sλ

K .

Fix the K-type ν. Our main result is a combinatorial formula for m∞
ν (q, k), the stable

multiplicity of ν in the harmonics on a cyclic quiver of length k. We will see that, for
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any cyclic quiver, m∞
ν (q, k) is equal to m

(G,K)
ν (q) up to degree ⩽ n = min{dim Vj}

and our main Theorem 4.17 will prove

m∞
ν (q, k) =

∑
T ∈D(ν)

q
∑k

i=1
|λi(T )|.

We sum over a certain set of distinguished tableau T ∈ D(ν), and the function λi(T )
is computed from simple combinatorial data associated to T . The proof consists of
several steps. First, we realize the cyclic quiver above as a θ-representation, or Vinberg
pair (G, K), with K the fixed points of a finite order automorphism of G. A key lemma
finds a combinatorial separation of variables, mirroring Vinberg’s theorem [20] that

C[g1] = C[g1]K ⊗ H.

Our combinatorial separation of variables allows us to cancel the invariants com-
binatorially. Other steps include constructing an action of a larger group and then
restricting to K, applying a branching rule involving Littlewood-Richardson coeffi-
cients, and using the combinatorics of gl∞ crystals to translate the cλ

µ,ν into tableau.

2. Background
2.1. Vinberg Pairs. Let G be a connected reductive algebraic group over C, and
let θ : G → G be an automorphism of G with finite order k, so θk = id. The group
of fixed points K = Gθ acts on g by restriction of the Adjoint representation. Each
eigenspace of dθ is invariant. The Lie algebra splits into eigenspaces

g = g0 ⊕ g1 ⊕ · · · ⊕ gk−1.

In [20], Vinberg studied the representation of K on the polynomial functions on an
eigenspace, and proved the following separation of variables:

C[g1] = C[g1]K ⊗ H,

where C[g1]K are the K-invariant functions and H are the harmonic polynomials.
In general, for any representation of K on V the harmonics are defined as the
common kernel for all invariant, non-constant, constant-coefficient differential opera-
tors D(V )K :

H = { f ∈ C[V ] : ∂f = 0 for all non-constant ∂ ∈ D(V )K}.

Note that with k = 1, Vinberg’s results recover those of Kostant’s paper, Lie Group
Representations on Polynomial Rings [12]. There, Kostant proved the separation of
variables

C[g] = C[g]G ⊗ H,

where G acts on its Lie algebra under the Adjoint representation, C[g]G are the
invariants, and H are the harmonics.

The harmonics are naturally graded by degree, and we may encode the decom-
position of H into G-irreducible representations by the q-graded character charq(H),
which places the character of the degree-d invariant subspace as the coefficient of qd.
If sλ

G denotes the character of the G-irreducible representation parametrized by λ,
then we have

charq(H) =
∑

λ

KG
λ,0(q) sλ

G.

In the Kostant setting, the polynomials KG
λ,0(q) are called generalized exponents of G

and coincide with the Lusztig q-analogues associated to the zero weight subspaces, by
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a theorem of Hesselink [5]. Thus,

KG
λ,0(q) =

∑
w∈W

(−1)l(w)Pq(w(λ + ρ) − ρ),

where ρ is the half sum of positive roots, W is the Weyl group of G, Pq is the q-Kostant
partition function, and l(w) is the length of w ∈ W .

Much work has been done in relation to these ideas, see [9, 14, 17] and the references
within.

The separation of variables above was generalized to the linear isotropy representa-
tion for a symmetric space by Kostant and Rallis [11], and yet further to finite order
automorphisms by Vinberg [20]. Vinberg’s work recovers the Kostant-Rallis results
when k = 2, which makes θ2 = id an involution, and (G, K) a symmetric pair. We may
expand the q-graded character of the harmonics analogously in the Vinberg setting
as

charq(H) =
∑

λ

m
(G,K)
λ (q) sλ

K .

The polynomials m
(G,K)
λ (q) are much less understood.

In the Kostant-Rallis setting, the graded multiplicities of an irreducible repre-
sentation λ in H may be described in terms of the eigenvalues of a certain ele-
ment of k, see [11, Theorem 21]. In [21], Wallach and Willenbring obtained formulas
similar to Hesselink for some examples including: (GL2n, Sp2n), (SO2n+2, SO2n+1),
and (E6, F4). Wallach and Willenbring also worked out the example of (SL4, SO4) ex-
plicitly and other results in special cases have appeared, [19, 10]. There are also stable
results stemming from the classical restriction rules of Littlewood [7, 8, 15, 16, 24].
Recently, Frohmader developed a combinatorial formula for (GLn, On) which is ex-
pected to generalize to the other classical symmetric pairs [2].

Moving outside of the Kostant-Rallis setting, even less is known. To our knowledge
the only graded result is due to Heaton [4], in which he determined the graded mul-
tiplicity for (GL2r, GL2 × · · · × GL2) by counting integral points on the intersection
of polyhedra. Wallach has developed ungraded multiplicity formulas, see [22, 23]. Our
contribution is a stable formula for m

(G,K)
λ (q) for (G, K) = (GLN , GLn1 ×· · ·×GLnk

),
where N =

∑k
i=1 ni.

2.2. Partitions, Tableaux, and GLn representations. For a partition λ, let l(λ)
denote length(λ) and |λ| the size (number of boxes) of λ. Let Pn denote the set of
partitions with length ⩽ n (including the empty partition ∅) and P the set of all
partitions. Two bases are useful in discussing irreducible polynomial representations
of GLn: ϵ1, . . . , ϵn and ω1, . . . , ωn, where ωi = ϵ1 + ϵ2 + · · · + ϵi. The polynomial
representations of GLn are in one to one correspondence with highest weights λ =
a1ϵ1 + · · · + anϵn, where a1 ⩾ a2 ⩾ · · · ⩾ an ⩾ 0 are non-negative integers. This
gives a bijection between partitions and irreducible polynomial GLn representations.
In terms of the ωi basis, the highest weights are given by λ = b1ω1 + · · · + bnωn where
all bi ∈ Z⩾0. There are no order conditions. So the ωi basis allows us to identify
irreducible polynomial GLn representations with n-tuples of non-negative integers.
Computing the change of basis matrices, we see

λ = (a1 − a2)ω1 + . . . (an−1 − an)ωn−1 + anωn

λ = (b1 + · · · + bn)ϵ1 + (b2 + · · · + bn)ϵ2 + · · · + (bn−1 + bn)ϵn−1 + bnϵn.

In terms of partitions, ϵi corresponds to a box in row i and ωi corresponds to a column
of length i.
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Figure 1. Cyclic quiver on k nodes

Define a partial order on P by µ ⩽ λ if λ−µ ∈ P. In what follows, we will view the
product order on Z∞ = {(a1, a2, . . . ) : ai ∈ Z, ai = 0 for all but finitely many i} as
extending ⩽. This is the order (b1, b2, . . . ) ⩽ (a1, a1, . . . ) if and only if ai − bi ∈ Z⩾0
for all i. To accomplish this, write λ = a1ω1 + · · · + anωn and µ = b1ω1 + · · · + bnωn

in terms of the ωi basis. Notice λ − µ ∈ P if and only if (a1, . . . , an, 0, 0, . . . ) −
(b1, . . . , bn, 0, 0, . . . ) ∈ Z∞

⩾0 if and only if ai − bi ∈ Z⩾0.
Let SSTn(λ) be the set of semistandard tableaux on λ with entries in {1, . . . , n}

and SST (λ) the set of semistandard tableaux on λ with entries in Z>0. We
view SSTn(λ) and SST (λ) as gln and gl∞ crystals, see [1, 6]. Define the weight of a
tableau T ∈ SST (λ) by wt(T ) = k1ϵ1 + · · · + knϵn where ki denotes the number of i’s
appearing in T . Writing wt(T ) in terms of the ωi, we see the reason for extending ⩽
to Z∞ is to enable comparison with non-dominant weights. For example, given T a
tableau on a one-box shape with content 2, wt(T ) = ϵ2 = −ω1 + ω2 which we identify
with (−1, 1, 0, 0, . . . ).

3. The action of K2

Let Mni,nj denote the space of ni by nj complex matrices. We have an action of K =
GLn1 × GLn2 × · · · × GLnk

on p = Mn2,n1 ⊕ Mn3,n2 ⊕ · · · ⊕ Mnk,nk−1 ⊕ Mn1,nk
by

(g1, g2, . . . , gk) · (X1, X2, . . . , Xk) = (g2X1g−1
1 , g3X2g−1

2 . . . g1Xkg−1
k ).

This yields an action of K on C[p], k · f(X) = f(k−1 · X) for k ∈ K and X ∈ p. We
would like to understand the graded multiplicities of this action. (Notice the indices
are cyclically permuted, as in Figure 1).

We can approach the problem through branching starting from the action of K2 =
GL2

n1
× GL2

n2
× · · · × GL2

nk
on C[p] by

(g1, h1, . . . , gk, hk) · f(X1, X2, . . . , Xk) = f(g−1
2 X1h1, . . . g−1

1 Xkhk).

Here GL2
ni

denotes GLni × GLni . Of course, we want to restrict this action to the
diagonal subgroup ∆ = {(g1, g1, g2, g2, . . . , gk, gk)} ∼= K. So we have two tasks: first
understand the representation of the big group K2, second understand how this rep-
resentation restricts to ∆.

We begin by determining the of K2 irreducible representations in C[p]. First, recall,

Proposition 3.1 ([3, Proposition 4.2.5]). The irreducible representations of GLn1 ×
GLn2 ×· · ·×GLnl

are the representations V1 ⊗V2 ⊗· · ·⊗Vl where Vi is an irreducible
representation of GLni .
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Next, notice C[p] = C[Mn2,n1 ⊕· · ·⊕Mn1,nk
] ∼= C[Mn2,n1 ]⊗· · ·⊗C[Mn1,nk

], see [3,
Lemma A.1.9] and we have k commuting actions. For example, GLn2 ×GLn1 acts by

f1(X1) ⊗ · · · ⊗ fk(Xk) → f1(g−1
2 X1h1) ⊗ · · · ⊗ fk(Xk).

In fact, we can recognize this representation as the tensor product of k distinct actions,
so we can decompose the actions separately.

Now recall,

Theorem 3.2 ([3, Theorem 5.6.7]). The degree d component of C[Mni,nj ] under the
action of GLni

× GLnj
decomposes as follows

Cd[Mni,nj ] ∼=
⊕
λ

(F λ
ni

)∗ ⊗ (F λ
nj

)

with the sum over all nonnegative dominant weights λ of size d and length at
most min{ni, nj}.

Hence we have the following graded decomposition of the K2 representation (Note:
in all that follows we consider our indexing with respect to the cyclic quiver, i.e.,
mod k with representatives 1, 2, . . . , k):

Theorem 3.3. The degree d component of C[p] under the action of K2 decomposes
as follows

C[p] ∼=
⊕

λ1,λ2,...,λk

[(F λ1
n2

)∗ ⊗ F λ1
n1

] ⊗ [(F λ2
n3

)∗ ⊗ F λ2
n2

] ⊗ · · · ⊗ [(F λk
n1

)∗ ⊗ F λk
nk

]

∼=
⊕

λ1,λ2,...,λk

k⊗
i=1

[(F λi
ni+1

)∗ ⊗ F λi
ni

]

with the sum over all nonnegative dominant weights λ1, λ2, . . . , λk such that |λ1| +
|λ2| + · · · + |λk| = d and length(λi) ⩽ min{ni, ni+1}.

Proof. As discussed above, we can decompose each Cd[Mni,nj
] factor separately. Ap-

ply Theorem 3.2. □

With the action of K2 understood, we turn to the problem of branching to the
diagonal subgroup ∆.

4. Stable Multiplicities via Branching
Let n = min{n1, . . . , nk}. We work with the pairs GL2

n1
, GL2

n2
, ... , GL2

nk
separately.

Essentially, we choose to group the decomposition from Theorem 3.3 as

⊕
λ1,λ2,...,λk

[F λ1
n1

⊗ (F λk
n1

)∗] ⊗ [F λ2
n2

⊗ (F λ1
n2

)∗] ⊗ · · · ⊗ [F λk
nk

⊗ (F λk−1
nk

)∗]

∼=
⊕

λ1,λ2,...,λk

k⊗
i=1

[F λi
ni

⊗ (F λi−1
ni

)∗]

Recall,

Theorem 4.1 (Stable Branching Rule, [8, Theorem 2.1.4.1]). For l(λi)+ l(λi−1) ⩽ ni,

dim HomGLni
(F ν+,ν−

ni
, F λi

ni
⊗ (F λi−1

ni
)∗) =

∑
α

cλi

α,ν+c
λi−1
α,ν− .

F ν+,ν−

ni
is our notation for the rational representation of GLni corresponding

to the tuple of partitions (ν+, ν−). Both ν+ and ν− are partitions, and if ν+ =

Algebraic Combinatorics, Vol. 7 #6 (2024) 1607
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(a1, a2, . . . , aℓ) and ν− = (b1, b2, . . . , bm) then F ν+,ν−

ni
is the rational representation

of GLni
with highest weight

(a1, a2, . . . , aℓ, 0, . . . , 0, −bm, −bm−1, . . . , −b2, −b1),
with the number of interior zeros arranged appropriately, see [18]. Hence we have,

Theorem 4.2. For degree d ⩽ n, the degree d component of C[p] under the action
of K decomposes as follows, ⊕

αi,λi,ν±
i

k⊗
i=1

cλi

αi,ν+
i

c
λi−1

αi,ν−
i

F
ν+

i
,ν−

i
ni

with the sum over all {αi, λi, ν±
i }k

i=1 in Pn such that |λ1|+· · ·+|λk| = d. In particular,
the multiplicity of the K irrep ν = (ν±

1 , . . . , ν±
k ) appearing in degree d is given by∑

αi,λi

(
k∏

i=1
cλi

αi,ν+
i

c
λi−1

αi,ν−
i

).

Proof. Say d ⩽ n. Then for any λi, λi−1, l(λi) + l(λi−1) ⩽ |λi| + |λi−1| ⩽ d ⩽ n ⩽ ni

so Theorem 4.1 applies and we understand the branching down to K. We also note it
suffices to consider partitions in Pn since if a partition αi, λi or ν±

i has length greater
than n, it contributes to a degree greater than n and so only impacts multiplicities
outside the stable range. □

Corollary 4.3. The following gives the graded character charq(C[p]) up to degree n,∑
αi,λi,ν±

i

q
∑

|λi|
k∏

i=1
cλi

αi,ν+
i

c
λi−1

αi,ν−
i

s
ν+

i
,ν−

i
ni

where s
ν+

i
,ν−

i
ni is the GLni

character of F
ν+

i
,ν−

i
ni and the sum is taken over all

{αi, λi, ν±
i }k

i=1 in Pn.

Next, we handle the invariants, which are generated by Tr([X1X2 . . . Xk]i) for
1 ⩽ i ⩽ n by a result in [13].

Proposition 4.4. We have the separation of variables
C[p] = C[p]K ⊗ H.

Proof. Notice that K = Gθ where θ : G → G is given by conjugation by the diagonal
matrix with entries equal to kth roots of unity 1, ζ, ζ2, . . . , ζk−1, each appearing with
multiplicities n1, . . . , nk. The conjugation action of K on the ζ-eigenspace is isomor-
phic to the action of K on p. The result now follows from Vinberg’s theory [20]. □

Hence, the graded character of H is given by

charq(H) = [
n∏

i=1
(1 − qki)]charq(C[p]).

Corollary 4.5. The following gives the graded character charq(H) up to degree n,

[
n∏

i=1
(1 − qki)]

∑
αi,λi,ν±

i

q
∑

|λi|
k∏

i=1
cλi

αi,ν+
i

c
λi−1

αi,ν−
i

s
ν+

i
,ν−

i
ni

where s
ν+

i
,ν−

i
ni is the GLni

character of F
ν+

i
,ν−

i
ni and the sum is taken over all partitions

{αi, λi, ν±
i }k

i=1 in Pn.
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In particular, the following formula provides the graded multiplicity of the K irrep
ν = (ν±

1 , . . . , ν±
k ) in H, denoted mν(q), up to degree n,

[
n∏

i=1
(1 − qki)]

∑
αi,λi

q
∑

|λi|
k∏

i=1
cλi

αi,ν+
i

c
λi−1

αi,ν−
i

.

Proof. Immediate from above discussion. □

Corollary 4.6. For ν a K irrep, if either
∑k

i=1 |ν+
i | > n or

∑k
i=1 |ν−

i | > n, then
mν(q) = 0 in the stable range.

Proof. Notice in the formula of Corollary 4.5, the smallest degrees come from
the q

∑
|λi| terms. Now, by basic properties of Littlewood-Richardson coefficients,

if the term q
∑

|λi| ∏k
i=1 cλi

αi,ν+
i

c
λi−1

αi,ν−
i

is not zero, |λi| ⩾ |ν+
i | for all i, but then

q
∑

|λi| ⩾ q
∑

|ν+
i

| > qn. So mν(q) is 0 in degree less than or equal to n. □

We now turn our attention to stable multiplicities and make the following key
definition.

Definition 4.7.

m∞
ν (q, k) = [

∞∏
i=1

(1 − qki)]
∑

αi,λi

q
∑

|λi|
k∏

i=1
cλi

αi,ν+
i

c
λi−1

αi,ν−
i

,

where the sum is taken over all partitions {αi, λi}k
i=1 in P. This is the stable q-

multiplicity for ν on a quiver of length k.

It is easy to see that m∞
ν (q, k) = mν(q) up to degree n. These stable q-multiplicities

will be our focus for the remainder of the paper.
We would like to cancel the [

∏∞
i=1(1−qki)] factor from the formula for m∞

ν (q, k). We
recall, see [2], that cλ

α,ν = |CLRλ
α,ν | := |{T ∈ SST (ν) | α ⩾ ε(T ) and α+wt(T ) = λ}|.

Here we are viewing SST (ν) as a gl∞ crystal with Kashiwara operators ẽi and f̃i

for i = 1, 2, . . . and we define εi(T ) = max{k ⩾ 0 | ẽk
i T ∈ SST (λ)}, ϕi(T ) =

max{k ⩾ 0 | f̃k
i T ∈ SST (λ)}, and

ϕ(T ) =
n−1∑
i=1

ϕi(T )ωi, ε(T ) =
n−1∑
i=1

εi(T )ωi.

In this notation, we have,

m∞
ν (q, k) = [

∞∏
i=1

(1 − qki)]
∑

αi,λi

q
∑

|λi|
k∏

i=1
|CLRλi

αi,ν+
i

||CLRλi−1

αi,ν−
i

|.

Notice the formula for m∞
ν (q, k) has ν±

i fixed for all i, so we are just com-
puting various subsets of SST(ν) :=

∏k
i=1[SST (ν+

i ) × SST (ν−
i )]. The key is

to understand which T = (T +
1 , T −

1 , . . . , T +
k , T −

k ) ∈ SST(ν) appear in some
CLRλ

α,ν :=
∏k

i=1 CLRλi

αi,ν+
i

× CLRλi−1

αi,ν−
i

and with what multiplicity. In this con-
text, λ = (λ1, . . . , λk), α = (α1, . . . αk), and ν = (ν±

1 , . . . , ν±
k ) are tuples of partitions.

As Ti = (T +
i , T −

i ) is associated with the rational GLni
representation F

ν+
i

,ν−
i

ni , let
wt(Ti) := wt(T +

i ) − wt(T −
i ). Also denote the set of all k-tuples of tableaux Pk. We

first isolate those T contributing with the following definition.

Algebraic Combinatorics, Vol. 7 #6 (2024) 1609
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Definition 4.8. A tuple of tableaux T ∈ SST(ν) is called distinguished if T ∈ CLRλ
α,ν

for some λ, α ∈ Pk. We let D(ν) denote the set of all distinguished tableaux in SST(ν).

Lemma 4.9. Suppose T ∈ CLRλ
α,ν . Then,

αi = λ1 − wt(T +
i ) +

i∑
j=2

wt(Tj),

λi = λ1 +
i∑

j=2
wt(Tj),

k∑
j=1

wt(Tj) = 0,

for all αi and λi. In particular, αi and λi are uniquely determined by λ1 and T .
With T fixed, let λ(λ1) and α(λ1) be those elements of Pk determined by λ1.

Proof. We begin by establishing the formula for λi. Proceed by induction. The base
case is clear. Now assume the formula holds for λi−1 with 1 < i ⩽ k. From the
term CLRλi

αi,ν+
i

× CLRλi−1

αi,ν−
i

we see αi = λi−1 − wt(T −
i ) so by induction, αi = λ1 +∑i−1

j=2 wt(Tj) − wt(T −
i ) and λi = αi + wt(T +

i ) = λ1 +
∑i

j=2 wt(Tj).
Next, we establish the third equality. We have,

λk = λ1 +
k∑

j=2
wt(Tj)

Notice from the CLRλ1
α1,ν+

1
× CLRλk

α1,ν−
1

factor, we also have,

λk = wt(T −
1 ) + α1.

λ1 = wt(T +
1 ) + α1.

Subtracting the two expressions for λk yields
k∑

j=1
wt(Tj) = 0.

From the term CLRλi

αi,ν+
i

we see αi = λi − wt(T +
i ) = λ1 +

∑i
j=2 wt(Tj) − wt(T +

i ).
□

Lemma 4.9 shows that with T fixed, there is at most a 1-parameter family
of CLRλ

α,ν containing T . We choose to parameterize this family by λ1, but note
that any choice of a fixed λi or αj uniquely constrains CLRλ

α,ν and could be used
as parameter. The lemma below shows that the cyclic nature of the representation
constrains the set of distinguished tableaux.

Lemma 4.10. T ∈ SST(ν) is distinguished if and only if
∑k

j=1 wt(Tj) = 0.

Proof. Say T is distinguished. Then T ∈ CLRλ
α,ν for some λ and α so by Lemma 4.9,

0 =
∑k

j=1 wt(Tj).
Now suppose

∑k
i=1 wt(Ti) = 0. We must show T ∈ CLRλ

α,ν for some λ, α ∈ Pk. To
do this, we require two things. First, αi ⩾ ε(T +

i ) and αi ⩾ ε(T −
i ) for all i. This ensures

T +
i ∈ CLRαi+wt(T +

i
)

αi,ν+
i

and similarly for T −
i . Second, we have to make sure the λi are
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compatible, that is the two formulas for λi, λi = αi+wt(T +
i ) and λi = αi+1+wt(T −

i+1)
are equal.

By Lemma 4.9, to achieve λi compatibility, we must have λi = λ1 +
∑i

j=2 wt(Tj)
for i > 1 and

∑k
j=1 wt(Tj) = 0, i.e. we are constrained to work within the family

parameterized by λ1. The proof comes down to showing this family is not empty
by selecting a λ1 large enough that αi ⩾ ε(T +

i ) and αi ⩾ ε(T −
i ) for all i. As αi =

λ1 − wt(T +
i ) +

∑i
j=2 wt(Tj), this can be achieved by selecting λ1 ⩾ sup{ε(T ±

i ) +
wt(T +

i ) −
∑i

j=2 wt(Tj)}k
i=1. Indeed, then

αi = λ1 − wt(T +
i ) +

i∑
j=2

wt(Tj)

⩾ [ε(T ±
i ) + wt(T +

i ) −
i∑

j=2
wt(Tj)] − wt(T +

i ) +
i∑

j=2
wt(Tj)

= ε(T ±
i ).

So we have αi ⩾ ε(T ±
i ), which shows λi and αi are partitions and hence T is

contained in CLRλ
α,ν .

□

Definition 4.11. We isolate a least upper bound from the proof of Lemma 4.10 in this
definition. For T ∈ D(ν) define λmin(T ) = sup{ε(T ±

i ) + wt(T +
i ) −

∑i
j=2 wt(Tj)}k

i=1.

Note that λmin exists. It can be explicitly constructed as follows. Notice we can work
in PN if we choose N large enough. Writing each S±

i = ε(T ±
i )+wt(T +

i )−
∑i

j=2 wt(Tj)
in terms of the ωi basis as S±

j = a±
1jω1 = · · · + a±

NjωN . Set ai = max{a±
i1, . . . , a±

ik},
that is ai is the maximum coefficient of ωi across the S±

i . Then λmin(T ) = a1ω1 +· · ·+
aN ωN . Notice also that S+

1 = ε(T +
1 )+wt(T +

1 ) is a partition by the tensor product rule
for crystals, that is S+

1 = a+
11ω1 + · · · + a+

N1ωN with a1i ∈ Z⩾0 for all i. Hence, ai ⩾ 0
for all i.

Next, we give a name to the set of partitions parameterizing the CLRλ
α,ν contain-

ing T .

Definition 4.12. For T ∈ D(ν) let ST be the set of all λ1 ∈ P such that T ∈
CLRλ(λ1)

α(λ1),ν .

Lemma 4.13. For T ∈ D(ν), T ∈ CLRλ(λ1)
α(λ1),ν if and only if λ1 ⩾ λmin(T ).

Proof. This follows from the proof of Lemma 4.10. □

Lemma 4.14. For T ∈ D(ν), ST = λmin(T ) + P.

Proof. This follows from Lemma 4.13 by observing that λmin(T ) is the unique minimal
element in ST so for any δ ∈ ST we can write δ = λmin(T ) + (δ − λmin(T )). □

Hence, for T ∈ D(ν), we have a 1-parameter family of CLRλ
α,ν containing T , now

parameterized by δ ∈ P. We define the following functions

λi(T, δ) = λmin(T ) + δ +
i∑

j=2
wt(Tj),

αi(T, δ) = λmin(T ) + δ − wt(T +
i ) +

i∑
j=2

wt(Tj).
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Then this family can be written explicitly as

{
k∏

i=1
CLRλi(T,δ)

αi(T,δ),ν+
i

× CLRλi−1(T,δ)
αi(T,δ),ν−

i

: δ ∈ P}

Lemma 4.15.
λi(T, δ) = λi(T,∅) + δ

Proof.

λi(T, δ) = λmin(T ) + δ +
i∑

j=2
wt(Tj),

= λmin(T ) + ∅ +
i∑

j=2
wt(Tj) + δ,

= λi(T,∅) + δ.

□

Denote λi(T,∅) by λi(T ) for simplicity. We isolate the following key lemma which
should be viewed as a combinatorial separation of variables.

Lemma 4.16.
1∏∞

i=1(1 − qki)
m∞

ν (q, k) =
∑
δ∈P

qk|δ|
∑

T ∈D(ν)

q
∑k

i=1
|λi(T )|

Proof.
1∏∞

i=1(1 − qki)
m∞

ν (q, k) =
∑

T ∈D(ν)

∑
δ∈P

q
∑k

i=1
|λi(T,δ)|

=
∑

T ∈D(ν)

∑
δ∈P

q
∑k

i=1
|λi(T,∅)+δ|

=
∑

T ∈D(ν)

∑
δ∈P

qk|δ|
∑k

i=1
|λi(T,∅)|

=
∑
δ∈P

qk|δ|
∑

T ∈D(ν)

q
∑k

i=1
|λi(T,∅)|,

where in the second line we used Lemma 4.15. □

From this, the main theorem is immediate. Cancel
∑

δ∈P qk|δ| with the invari-
ants 1/

∏∞
i=1(1 − qki).

Theorem 4.17.
m∞

ν (q, k) =
∑

T ∈D(ν)

q
∑k

i=1
|λi(T )|
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