
ALGEBRAIC
 COMBINATORICS

John Bamberg, Michael Giudici & Jacob P. Smith
New 2-closed groups that are not automorphism groups of digraphs
Volume 7, issue 6 (2024), p. 1793-1811.
https://doi.org/10.5802/alco.392

© The author(s), 2024.

This article is licensed under the
CREATIVE COMMONS ATTRIBUTION (CC-BY) 4.0 LICENSE.
http://creativecommons.org/licenses/by/4.0/

Algebraic Combinatorics is published by The Combinatorics Consortium
and is a member of the Centre Mersenne for Open Scientific Publishing

www.tccpublishing.org www.centre-mersenne.org
e-ISSN: 2589-5486

https://doi.org/10.5802/alco.392
http://creativecommons.org/licenses/by/4.0/
https://www.tccpublishing.org/
www.tccpublishing.org
www.centre-mersenne.org
http://www.centre-mersenne.org/


Algebraic Combinatorics
Volume 7, issue 6 (2024), p. 1793–1811
https://doi.org/10.5802/alco.392

New 2-closed groups that are not
automorphism groups of digraphs

John Bamberg, Michael Giudici & Jacob P. Smith

Abstract In this paper we extend the construction of Giudici, Morgan and Zhou [8] to give
the first known examples of nonregular, 2-closed permutation groups of rank greater than 4
that are not the automorphism group of any digraph. We also show that this construction only
gives examples for four particular primes.

1. Introduction
The orbitals of a permutation group G acting on a set Ω are the induced orbits of
G on Ω × Ω. In 1969, Wielandt [13] introduced the 2-closure G(2) of a permutation
group G on a set Ω, defined as the largest permutation group on Ω that has the same
orbitals as G. A permutation group is said to be 2-closed if it is equal to its 2-closure.
A permutation group is regular if it is transitive and all its point stabilisers are trivial.

A digraph Γ is a structure consisting of a set V (Γ) of vertices, along with a set of
arcs E ⊆ V 2 not containing (v, v) for any vertex v. A graph is defined similarly, but
with edges rather than arcs, where each edge is a 2-subset of V . Automorphism groups
of graphs and digraphs are always 2-closed, but not every 2-closed permutation group
is the automorphism group of a digraph. In this paper we give new examples of such
2-closed groups.

The classification of the finite regular permutation groups that are not the auto-
morphism group of any graph was an area of active research throughout the 1960s
and ’70s, and was completed by Godsil [9] in 1978. Babai [2] later showed that only
five of these groups are not the automorphism group of any digraph.

Few papers have studied the nonregular permutation groups that are not the au-
tomorphism group of any digraph. Ming-Yao Xu [15] motivated the search for these
groups in 2008. Defining N2R to be the set of degrees of all the 2-closed transi-
tive permutation groups with no regular subgroups, and N C to be the set of all
orders of vertex-transitive non-Cayley graphs, Xu claimed that in order to determine
N2R ∖ N C, “we should first find nonregular 2-closed groups that are not the full
automorphism groups of (di)graphs." Giudici, Morgan and Zhou [8] found the first
examples of such groups in 2023. They gave three infinite families of nonregular groups
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that are not the automorphism group of any digraph, along with several isolated ex-
amples. The groups they found all have rank 4, where the rank of a permutation
group is its number of orbitals. Moreover, they fully completed the classification of
the finite, nonregular, primitive permutation groups of rank at most 4, other than
1-dimensional affine groups, that are not the automorphism group of any digraph.

Another motivation for the study of 2-closed groups that are not the automorphism
group of a digraph is the Polycirculant Conjecture. Originally, Marušič [12] asked if
the automorphism group of a vertex-transitive digraph always contains a semiregular
permutation, that is, a nontrivial permutation with all cycles having the same length.
This question was later extended by Klin [6] to the class of all vertex-transitive 2-
closed groups and is now known as the Polycirculant Conjecture. See [5] and [1] for
more information and recent results. Understanding the 2-closed groups that are not
the automorphism group of a digraph yields information about the extent to which
the Polycirculant Conjecture is more general than Marušič’s original question.

One of the infinite families given by Giudici, Morgan and Zhou [8] is the family
containing G(m, 3), as defined in Definition 3.1, for all integers m ⩾ 2. In this paper
we show that this family can be generalised to groups of higher rank with the same
properties, thus giving the first known nonregular permutation groups of rank greater
than 4 that are not the automorphism group of any digraph.

The following theorem is the main result of this paper.

Theorem 1.1. Let m ⩾ 2 be an integer and let p be a prime. Then G(m, p), as
defined in Definition 3.1, is a 2-closed, nonregular permutation group that is not the
automorphism group of any digraph if and only if p ∈ {3, 5, 7, 13}.

This result follows from Theorems 4.1, 4.2, 4.3, 4.4 and 5.2. If p is 5, 7 or 13, the
group G(m, q) has rank 5, 5, or 7 respectively. It remains open whether examples
exist of arbitrarily large rank. We note here that all 2-closed groups constructed in
this paper contain a regular subgroup, and hence a semiregular permutation, and so
do not give counterexamples to the Polycirculant Conjecture.

2. Preliminaries
2.1. Graph theory. The Hamming graph H(d, q), where d and q are positive inte-
gers, is the graph whose vertices are the d-tuples of elements from the set {1, 2, . . . , q},
and in which two vertices are adjacent if and only if they differ in exactly one coor-
dinate. By [4, Theorem 9.2.1], its automorphism group is Sq ≀ Sd.

Let G be a group, and let S be a nonempty subset of G∖{1G}. The Cayley digraph
Cay(G, S) is the digraph whose vertices are the elements of G, and in which each pair
(g, h) ∈ G×G is an arc if and only if gh−1 ∈ S. The following is a simple consequence
of [10, Lemma 3.7.3].

Lemma 2.1. Suppose V is a vector space with a subset S, and let C be the Cayley
digraph C = Cay(V, S), where V is considered as an additive group. Then any invert-
ible linear transformation of V is an automorphism of C if and only if it preserves
S.

If G is a permutation group acting on a set Ω, then each orbital B has a corre-
sponding orbital digraph, defined as the digraph with vertex set Ω and arc set B.

2.2. Cross-ratios. Consider a line ℓ in the projective space PG(n, F ). If we choose
reference vectors v, w ∈ F n+1 such that ℓ is the 2-space generated by v and w, then
every vector in ℓ has the form λ1v + λ2w for some λ1, λ2 ∈ F . Therefore all the
1-spaces (or projective points) contained inside ℓ can be expressed as either ⟨w⟩ or
⟨v + λw⟩ for some unique λ ∈ F . This means that if we define P(λ) = ⟨v + λw⟩ for all
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σ r′

(), (PQ)(RS), (PR)(QS), (PS)(QR) r

(PR), (QS), (PQRS), (PSRQ) r
r−1

(PS), (QR), (PQSR), (PRSQ) 1 − r

(PQ), (RS), (PRQS), (PSQR) 1
r

(PQS), (PRQ), (PSR), (QRS) 1
1−r

(PQR), (PRS), (PSQ), (QSR) r−1
r

Table 1. Values of r′ in terms of r for each σ ∈ Sym({P, Q, R, S}),
given r = R(P, Q; R, S) and r′ = R(P σ, Qσ; Rσ, Sσ).

λ ∈ F , and P(∞) = ⟨w⟩, then each point P on the line ℓ can be expressed uniquely in
the form P(λ), where λ ∈ F ∪ {∞}.

Using the above notation, as well as the convention that division by zero yields
infinity and vice versa, the cross-ratio of four points P(A), P(B), P(C), P(D) on the line
ℓ is defined as follows:

R
(
P(A), P(B); P(C), P(D)

)
= (C − A) (D − B)

(C − B) (D − A) ∈ F ∪ {∞} .

Although this defines the cross-ratio in terms of the arbitrarily chosen reference
vectors v and w, it can be shown that the cross-ratio of any four collinear points
does not depend on the choice of reference vectors (see for example [7, Section 3.5,
Theorem 1]).

It is well known that if θ ∈ PGL(n + 1, F ), then θ preserves the cross-ratio of
any four collinear points P, Q, R, S ∈ PG(n, F ). That is to say, R

(
P θ, Qθ; Rθ, Sθ

)
=

R(P, Q; R, S). The following result [3, Lemma 4.4] illustrates how the cross-ratio
R(P, Q; R, S) of any four points is affected by a reordering of the points.

Lemma 2.2. Let P, Q, R, S be four collinear points in PG(n, F ), and let σ ∈
Sym({P, Q, R, S}) be a permutation of these points. Let r = R(P, Q; R, S), and let
r′ be the cross-ratio of the points’ images under σ, that is, r′ = R(P σ, Qσ; Rσ, Sσ).
Then the relation between r and r′ is given in Table 1.

2.3. Tensor product decompositions. Suppose V and W are n- and m-
dimensional vector spaces over a field F , with bases, respectively, {v1, v2, . . . , vn}
and {w1, w2, . . . , wm}. If A ∈ GL(V ) and B ∈ GL(W ), denote by A ◦ B the linear
transformation of V ⊗W mapping vi ⊗wj to vA

i ⊗wB
j for all 1 ⩽ i ⩽ n and 1 ⩽ i ⩽ m.

Denote by GL(V ) ◦ GL(W ) the group of all such linear transformations.
The following is from Lemma 4.4.5 of [14].

Lemma 2.3. Let X = V ⊗ W . If θ ∈ GL(X) preserves the set of all simple tensors,
then θ preserves the tensor product decomposition V ⊗ W .

3. The group G(m, q)
Here we define the main family of groups discussed in this paper.

Algebraic Combinatorics, Vol. 7 #6 (2024) 1795



John Bamberg, Michael Giudici & Jacob P. Smith

Definition 3.1. Let F be the field GF(q) where q is an odd prime power, and let
V and W be 2- and m-dimensional vector spaces over F , respectively, with m ⩾ 2.
Let {e1, e2} be a basis for V , and let {f1, f2, . . . , fm} be a basis for W . Now define
D8 ⩽ GL(2, q) to be the following group of linear transformations of V , expressed with
respect to the basis {e1, e2}:

D8 =
〈[

1 0
0 −1

]
,

[
0 1
1 0

]〉
.(1)

Finally, the group G(m, q) is defined as follows.
G(m, q) = (V ⊗ W ) ⋊ (D8 ◦ GL(m, q)) ⩽ AGL(2m, q).

3.1. Suborbits. Let V , W and F be as defined in Definition 3.1, and for convenience
let G = G(m, q). We will refer to the orbits of the point stabiliser G0 = D8 ◦GL(m, q)
as the suborbits of G. The following lemma will be of use in determining the suborbits.

Lemma 3.2. (e1, e2)D8 = {(e1, ±e2), (−e1, ±e2), (e2, ±e1), (−e2, ±e1)}.

Proof. This follows from the definition of D8 in Equation (1). □

Clearly, the set δ = {0} ⊆ V ⊗ W is an orbit of G0 on V ⊗ W . Let ∆A be the orbit
of G0 containing the vector e1 ⊗ f1. Then

∆A = (e1 ⊗ f1)G0 = {ea
1 ⊗ fg

1 | a ∈ D8, g ∈ GL(m, q)}.

It can be seen from Lemma 3.2 that eD8
1 = {±e1, ±e2}, hence we have

∆A = {±e1 ⊗ w, ±e2 ⊗ w | w ∈ W ∖ {0}}
=
(

(⟨e1⟩ ⊗ W ) ∪ (⟨e2⟩ ⊗ W )
)
∖ {0}.

Let ∆B be the orbit of G0 containing the vector e1 ⊗ f1 + e2 ⊗ f2. Then

∆B = (e1 ⊗ f1 + e2 ⊗ f2)G0 = {ea
1 ⊗ fg

1 + ea
2 ⊗ fg

2 | a ∈ D8, g ∈ GL(m, q)}.

Using Lemma 3.2 and the fact that GL(m, q) acts transitively on the set of pairs of
linearly independent vectors, we find that
∆B = {e1 ⊗ w1 ± e2 ⊗ w2, −e1 ⊗ w1 ± e2 ⊗ w2 | w1, w2 ∈ W∖{0}, dim ⟨w1, w2⟩ = 2}

= {e1 ⊗ w1 + e2 ⊗ w2 | w1, w2 ∈ W ∖ {0}, dim ⟨w1, w2⟩ = 2}.

That is, ∆B is the set of all non-simple tensors in V ⊗ W .
The remaining orbits of G0 will each be denoted by ∆λ for some λ ∈ F ∖{0} using

the following definition:
∆λ =

{
(e1 ± λe2) ⊗ w,

(
e1 ± λ−1e2

)
⊗ w | w ∈ W ∖ {0}

}
.(2)

To see that each ∆λ is a (not necessarily distinct) orbit of G0, let λ ∈ F ∖ {0}, and
let ∆ be the orbit containing the vector (e1 + λe2) ⊗ f1. Then

∆ = ((e1 + λe2) ⊗ f1)G0

= {(e1 + λe2)a ⊗ fg
1 | a ∈ D8, g ∈ GL(m, q)}

= {(ea
1 + λea

2) ⊗ fg
1 | a ∈ D8, g ∈ GL(m, q)}.

Using Lemma 3.2, we have
∆ =

{
(e1 ± λe2) ⊗ w, (−e1 ± λe2) ⊗ w,

(e2 ± λe1) ⊗ w, (−e2 ± λe1) ⊗ w | w ∈ W ∖ {0}
}

=
{

(e1 ± λe2) ⊗ w,
(
e1 ± λ−1e2

)
⊗ w | w ∈ W ∖ {0}

}
= ∆λ.
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To summarise, the suborbits of G are δ, ∆A, ∆B , and ∆λ for each λ ∈ F ∖
{0}, noting that different values of λ may correspond to the same suborbit (see the
following lemma).

Lemma 3.3. If λ, µ ∈ F ∖ {0}, then ∆λ = ∆µ if and only if µ ∈
{

±λ, ±λ−1}.

Proof. This follows immediately from the definition given in Equation (2) above. □

3.2. Orbital digraphs. Denote the non-trivial orbitals of G(m, q) by BA, BB and
Bλ such that they correspond to the suborbits ∆A, ∆B and ∆λ respectively for each
λ ∈ F ∖ {0}. Denote by ΓA, ΓB and Γλ the corresponding orbital digraphs. Since
G(m, q) contains the regular normal subgroup V ⊗W , the orbital digraph correspond-
ing to any suborbit ∆ is the Cayley digraph Cay(V ⊗ W, ∆).

To check whether G(m, q) is the automorphism group of any digraph, it suffices
to check only the unions of the non-trivial orbital digraphs. Some of these orbital
digraph unions are isomorphic to the Hamming graph H(2, qm); to see this, we first
note [8, Lemma 3.1] which is as follows.

Lemma 3.4. Suppose X and Y are m-dimensional subspaces of V ⊗ W such that
V ⊗W = X ⊕Y , and let S = (X ∪ Y )∖{0}. Then the Cayley digraph Cay(V ⊗ W, S)
is isomorphic to the Hamming graph H(2, qm).

Using this result, we can prove the following two lemmas.

Lemma 3.5. The group G = G(m, q) is not the automorphism group of its orbital
digraph ΓA, nor of ΓB.

Proof. If we let X = ⟨e1⟩ ⊗ W and Y = ⟨e2⟩ ⊗ W , then X and Y are m-dimensional
subspaces of V ⊗ W that intersect only at 0, so V ⊗ W = X ⊕ Y . Since ΓA =
Cay(V ⊗ W, ∆A) and ∆A = X ∪ Y ∖ {0}, it follows from Lemma 3.4 that ΓA is
isomorphic to the Hamming graph H(2, qm). Since this has automorphism group
Sqm ≀ S2, it is clear that Aut(ΓA) is much larger than G.

Recall that ∆B is the set of all non-simple tensors in V ⊗ W , and is therefore
invariant under GL(2, q) ◦ GL(m, q). Hence G0 < GL(2, q) ◦ GL(m, q) ⩽ Aut(ΓB)0 by
Lemma 2.1, so G is not the full automorphism group of ΓB . □

Lemma 3.6. The group G(m, q) is not the automorphism group of its orbital digraph
Γ1, nor of Γi for any i ∈ GF(q) such that i2 = −1.

Proof. Let X = ⟨e1 + e2⟩ ⊗ W , and let Y = ⟨e1 − e2⟩ ⊗ W . Then X and Y are
m-dimensional subspaces of V ⊗ W that intersect only at 0, so V ⊗ W = X ⊕ Y .

Recalling the definition of ∆1, we see that

∆1 = {(e1 ± e2) ⊗ w | w ∈ W ∖ {0}} = X ∪ Y ∖ {0},

so by Lemma 3.4 we have Γ1 = Cay(V ⊗ W, ∆1) ∼= H(2, qm).
Now if i2 = −1, then i−1 = −i. It follows that

∆i = {(e1 ± ie2) ⊗ w | w ∈ W ∖ {0}}.

Using the same argument as above, but with X = ⟨e1 + ie2⟩⊗W and Y = ⟨e1 − ie2⟩⊗
W , we see that Γi is also isomorphic to H(2, qm). The automorphism group of
H(2, qm) is Sqm ≀ S2, which is much larger than G, so we conclude that G is not
the automorphism group of Γ1 nor Γi. □

Proposition 3.7. The group G(m, q) acts primitively on V ⊗ W .
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Proof. By [11, 1.12], it suffices to show that all the nontrivial orbital digraphs are
connected. We have seen in the proof of Lemma 3.5 that ΓA is isomorphic to the
Hamming graph H(2, qm) and is therefore connected. Recall that ΓB is the set of
tensors in V ⊗ W that are not simple, and observe that any nonzero simple tensor
v ⊗ w ∈ V ⊗ W is the sum of two simple tensors via

v ⊗ w =
(

1
2v ⊗ w + v′ ⊗ w′

)
+
(

1
2v ⊗ w − v′ ⊗ w′

)
for some v′ ∈ V and w′ ∈ W such that dim ⟨v, v′⟩ = dim ⟨w, w′⟩ = 2. Hence ∆B is a
generating set for the group V ⊗ W , so ΓB = Cay(V ⊗ W, ∆B) is connected.

Now consider the orbital digraph Γλ = Cay(V ⊗ W, ∆λ) where λ ∈ GF(q) ∖ {0}.
Let X = ⟨e1 + λe2⟩ ⊗ W , let Y = ⟨e1 − λe2⟩ ⊗ W , and let δλ = (X ∪ Y ) ∖ {0}.
Observe then that δλ is a subset of ∆λ, so it suffices to show that Cay(V ⊗ W, δλ)
is connected since it is a subgraph of Γλ. Since X and Y are m-dimensional sub-
spaces of V ⊗ W that intersect only at 0, we have that V ⊗ W = X ⊕ Y . Hence by
Lemma 3.4, Cay(V ⊗ W, δλ) is isomorphic to the Hamming graph H(2, qm), and is
therefore connected as required. □

3.3. Automorphisms of the orbital digraphs. In this section we take z ∈ {4, 6}
and I = {1, 2, . . . , z}. For each i ∈ I we define µi ∈ GF(q), such that each µi is distinct.

Definition 3.8. For each odd i ∈ I, consider the following direct sum decomposition
of V ⊗ W :

V ⊗ W = (⟨e1 + µie2⟩ ⊗ W ) ⊕ (⟨e1 + µi+1e2⟩ ⊗ W ).
Then for each odd i ∈ I and each x ∈ V ⊗ W , define πi(x) and πi+1(x) to be the
unique vectors in W such that

x =
(

(e1 + µie2) ⊗ πi(x)
)

+
(

(e1 + µi+1e2) ⊗ πi+1(x)
)

.

Lemma 3.9. Let x, y ∈ V ⊗ W , let κ ∈ GF(q) and let i ∈ I. Then πi(x + y) =
πi(x) + πi(y) and πi(κx) = κπi(x).

Proof. We have

x + y = (e1 + µ1e2) ⊗ π1(x) + (e1 + µ2e2) ⊗ π2(x)
+ (e1 + µ1e2) ⊗ π1(y) + (e1 + µ2e2) ⊗ π2(y)

= (e1 + µ1e2) ⊗ (π1(x) + π1(y)) + (e1 + µ2e2) ⊗ (π2(x) + π2(y))

and

κx = κ ((e1 + µ1e2) ⊗ π1(x) + (e1 + µ2e2) ⊗ π2(x))
= (e1 + µ1e2) ⊗ κπ1(x) + (e1 + µ2e2) ⊗ κπ2(x),

so we see the lemma holds for i ∈ {1, 2}. The proof is similar for i ∈ {3, 4, 5, 6}. □

Lemma 3.10. Let i, j, k ∈ I such that i ̸= j. Then there exist κ1, κ2 ∈ GF(q) such that

πk(x) = κ1πi(x) + κ2πj(x)

holds for all x ∈ V ⊗ W . Moreover, if i, j, k are all distinct then κ1 ̸= 0 and κ2 ̸= 0.

Proof. This is clearly true if k = i or k = j, so assume that i, j, k are all distinct.
First, suppose z = 4. It follows from Definition 3.8 that

e1 ⊗ (π1(x) + π2(x)) + e2 ⊗ (µ1π1(x) + µ2π2(x))
= e1 ⊗ (π3(x) + π4(x)) + e2 ⊗ (µ3π3(x) + µ4π4(x))
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for all x ∈ V ⊗ W , and hence
e1 ⊗ (π1(x) + π2(x) − π3(x) − π4(x))
+ e2 ⊗ (µ1π1(x) + µ2π2(x) − µ3π3(x) + µ4π4(x)) = 0

for all x ∈ V ⊗ W . This gives us
π1(x) + π2(x) − π3(x) − π4(x) = 0,(3)

µ1π1(x) + µ2π2(x) − µ3π3(x) − µ4π4(x) = 0(4)
for all x ∈ V ⊗ W , from which we can solve for πk(x) in terms of πi(x) and πj(x).
For example, if k = 1 we have

π1(x) = µ4 − µ2

µ1 − µ4
π2(x) + µ3 − µ4

µ1 − µ4
π3(x),

π1(x) = µ3 − µ2

µ1 − µ3
π2(x) + µ4 − µ3

µ1 − µ3
π4(x),

π1(x) = µ3 − µ2

µ1 − µ2
π3(x) + µ4 − µ2

µ1 − µ2
π4(x)

for all x ∈ V ⊗ W . Since µ1, µ2, µ3, µ4 are distinct, the above coefficients are defined
and non-zero. It is simple to verify that this also holds for k ∈ {2, 3, 4}.

If z = 6, then we have the following in addition to Equations (3) and (4):
π1(x) + π2(x) − π5(x) − π6(x) = 0,(5)

µ1π1(x) + µ2π2(x) − µ5π5(x) − µ6π6(x) = 0(6)
for all x ∈ V ⊗ W . We can then use Equations (3), (4), (5) and (6) to solve for πk(x)
in terms of πi(x) and πj(x) similarly to the case where z = 4. □

Lemma 3.11. Given any i, j ∈ I with i ̸= j, and any w, w′ ∈ W , there exists a unique
x ∈ V ⊗ W such that πi(x) = w and πj(x) = w′.

Proof. From Lemma 3.10 there exist some κ1, κ′
1, κ2, κ′

2 ∈ GF(q) such that
π1(x) = κ1πi(x) + κ′

1πj(x),(7)
π2(x) = κ2πi(x) + κ′

2πj(x)(8)
for all x ∈ V ⊗ W . Therefore letting

x = (e1 + µ1e2) ⊗ (κ1w + κ′
1w′) + (e1 + µ2e2) ⊗ (κ2w + κ′

2w′),
we know that Equations (7) and (8) must hold. Note that if κ1κ′

2 = κ′
1κ2, then

solving these equations simultaneously for πi(x) and πj(x) would not be possible,
contradicting Lemma 3.10. Solving the equations simultaneously therefore yields

πi(x) = κ′
2π1(x) − κ′

1π2(x)
κ1κ′

2 − κ′
1κ2

= κ′
2 (κ1w + κ′

1w′) − κ′
1 (κ2w + κ′

2w′)
κ1κ′

2 − κ′
1κ2

= w,

πj(x) = κ2π1(x) − κ1π2(x)
κ′

1κ2 − κ1κ′
2

= κ2 (κ1w + κ′
1w′) − κ1 (κ2w + κ′

2w′)
κ′

1κ2 − κ1κ′
2

= w′.

To see that x is the only vector that satisfies these criteria, suppose that πi(y) = w
and πj(y) = w′ for some y ∈ V ⊗ W . Since Equations (7) and (8) hold if each
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occurrence of x is replaced with y, we have π1(y) = κ1w + κ′
1w′ and π2(y) = κ2w +

κ′
2w′. Hence

y = (e1 + µ1e2) ⊗ (κ1w + κ′
1w′) + (e1 + µ2e2) ⊗ (κ2w + κ′

2w′) = x. □

Definition 3.12. For each i ∈ I and x ∈ V ⊗ W , we define the set
ℓi(x) = {α ∈ V ⊗ W | πi(α) = πi(x)}.

Lemma 3.13. If y ∈ ℓi(x), then ℓi(y) = ℓi(x).

Proof. This follows trivially from Definition 3.12. □

Lemma 3.14. Let x, y ∈ V ⊗ W and let i, j ∈ I such that i ̸= j. Then ℓi(x) and ℓj(y)
intersect at exactly one vector.

Proof. For any α ∈ V ⊗W , we know that α ∈ ℓi(x)∩ℓj(y) if and only if πi(α) = πi(x)
and πj(α) = πj(x). This is true for precisely one vector in V ⊗ W according to
Lemma 3.11. □

Lemma 3.15. Let x, y ∈ V ⊗ W and let i ∈ I. If ℓi(x) ∩ ℓi(y) is nonempty, then
y ∈ ℓi(x).

Proof. Let α ∈ ℓi(x)∩ℓi(y). Then πi(α) = πi(x) = πi(y), so y ∈ ℓi(x) as required. □

Definition 3.16. Let ∆ be the subset of V ⊗ W defined by
∆ = {(e1 + µie2) ⊗ w | i ∈ I, w ∈ W ∖ {0}},

and let Γ denote the Cayley digraph Cay(V ⊗ W, ∆).

Lemma 3.17. Each ℓi(x) is a clique of size qm of the Cayley digraph Γ.

Proof. We will demonstrate this for i = 1; the proof is similar if i ∈ {2, 3, 4, 5, 6}.
If x ∈ V ⊗ W , then

ℓ1(x) = {y ∈ V ⊗ W | π1(y) = π1(x)}
= {(e1 + µ1e2) ⊗ π1(x) + (e1 + µ2e2) ⊗ w | w ∈ W},

so |ℓ1(x)| = |W | = qm.
Now let y and y′ be distinct vectors in ℓ1(x). Then π1(y) = π1(y′) = π1(x), but

π2(y) ̸= π2(y′) since y ̸= y′. Therefore
y − y′ = ((e1 + µ1e2) ⊗ π1(y) + (e1 + µ2e2) ⊗ π2(y))

− ((e1 + µ1e2) ⊗ π1(y′) + (e1 + µ2e2) ⊗ π2(y′))
= (e1 + µ2e2) ⊗ (π2(y) − π2(y′))
∈ ∆

so x and y are adjacent in Γ. □

Lemma 3.18. Let x, y ∈ V ⊗ W be adjacent in Γ. Then πi(x) = πi(y) for some i ∈ I.

Proof. We have y−x ∈ ∆, so y−x = (e1 + µje2)⊗w for some j ∈ I and w ∈ W ∖{0}.
If j = 1, then

(e1 + µ1e2) ⊗ w = y − x

= ((e1 + µ1e2) ⊗ π1(y) + (e1 + µ2e2) ⊗ π2(y))
− ((e1 + µ1e2) ⊗ π1(x) + (e1 + µ2e2) ⊗ π2(x))

= (e1 + µ1e2) ⊗ (π1(y) − π1(x)) + (e1 + µ2e2) ⊗ (π2(y) − π2(x))
and therefore π2(y) − π2(x) = 0 as required. The proof is similar if j ∈ {2, 3, 4, 5, 6}.

□
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Lemma 3.19. If q > z and ℓ is a clique of size qm of Γ, then ℓ = ℓi(x) for some i ∈ I
and some x ∈ V ⊗ W .

Proof. Since z2 < q2 ⩽ qm, there exist distinct vectors x, y1, y2, . . . , yz2 ∈ ℓ. By
Lemma 3.18, each of the yk lies in at least one of the cliques {ℓ1(x), ℓ2(x), . . . , ℓz(x)},
so there must exist some ℓi(x) that contains at least z elements of {y1, y2, . . . , yz2}.
Denote these by x1, x2, . . . , xz.

Now assume for contradiction that ℓ ̸= ℓi(x). Using Lemma 3.17 we see that ℓ
and ℓi(x) have the same cardinality, so ℓ is not contained in ℓi(x). Hence there must
exist some u ∈ ℓ ∖ ℓi(x). Since u is adjacent to each of the vectors x1, . . . , xz, by
Lemma 3.18 there must exist some i1, i2, . . . , iz ∈ I such that xk ∈ ℓik

(u) for all
k ∈ {1, 2, . . . , z}. Since u /∈ ℓi(x), Lemma 3.15 implies that ℓi(x) and ℓi(u) do not
intersect. It follows that none of the xk lie in ℓi(u), so none of the ik are equal to i.
But |I ∖ {i}| = z − 1, so by the pigeonhole principle there exists some j ∈ I ∖ {i}
such that at least two of the ik are equal to j. Thus ℓj(u) contains at least two of the
xk, so ℓj(u) ∩ ℓi(x) contains at least two vectors. This contradicts Lemma 3.14, so we
conclude that ℓ = ℓi(x). □

Lemma 3.20. Let q > z, let x, y ∈ V ⊗W , let i ∈ I and let θ ∈ Aut(Γ). Then there exist
x′, y′ ∈ V ⊗ W and a unique i′ ∈ I such that (ℓi(x))θ = ℓi′(x′) and (ℓi(y))θ = ℓi′(y′).

Proof. Since ℓi(x) is a clique of size qm of Γ by Lemma 3.17, it follows that (ℓi(x))θ

must also be a clique of size qm of Γ. Therefore, by Lemma 3.19, there exist some
x′ ∈ V ⊗ W and i′ ∈ I such that (ℓi(x))θ = ℓi′(x′), with i′ being unique as the
existence of multiple possible values would contradict Lemma 3.14. Similarly, there
exist some y′ ∈ V ⊗ W and i′′ ∈ I such that (ℓi(y))θ = ℓi′′(y′).

First suppose y ∈ ℓi(x). Then we have ℓi(y) = ℓi(x) from Lemma 3.13 and hence
(ℓi(y))θ = (ℓi(x))θ = ℓi′(x′), so the result holds in this case.

Now suppose instead that y /∈ ℓi(x). By the contrapositive of Lemma 3.15 we have
ℓi(x)∩ℓi(y) = ∅. Hence (ℓi(x))θ ∩ (ℓi(y))θ = ∅. This means that ℓi′(x′)∩ℓi′′(y′) = ∅,
which contradicts Lemma 3.14 unless i′ = i′′. The result follows. □

As a consequence of Lemma 3.20, provided q > z we can define an action of Aut(Γ)
on I such that, if (ℓi(x))θ = ℓi′(x′) for any x, x′ ∈ V ⊗W and θ ∈ Aut(Γ), then iθ = i′.

Lemma 3.21. Let q > z, let x, y ∈ V ⊗ W , and let θ ∈ Aut(Γ). If πi(x) = πi(y), then
πiθ

(
xθ
)

= πiθ

(
yθ
)
.

Proof. Since ℓi(x) is a clique of size qm of Γ by Lemma 3.17, it follows that (ℓi(x))θ is
also a clique of size qm. Lemma 3.19 therefore implies that (ℓi(x))θ = ℓi′(x′) for some
x′ ∈ V ⊗ W and i′ ∈ I. Then iθ = i′, and since x ∈ ℓi(x) we know xθ ∈ (ℓi(x))θ =
ℓiθ (x′). Lemma 3.13 then asserts that ℓiθ (x′) = ℓiθ

(
xθ
)
. Now since y ∈ ℓi(x), we must

have yθ ∈ (ℓi(x))θ = ℓiθ

(
xθ
)

and the result follows from Lemma 3.13. □

Lemma 3.22. Let q > z, let x ∈ V ⊗ W and let θ ∈ Aut(Γ)0. If πi(x) = 0 for some
i ∈ I, then πiθ

(
xθ
)

= 0.

Proof. Observing that πi(0) = 0 = πi(x), we have from Lemma 3.21 that πiθ

(
xθ
)

=
πiθ

(
0θ
)

= πiθ (0) = 0. □

Lemma 3.23. Suppose q > z and q is prime, and let θ ∈ Aut(Γ). If

πiθ

(
(α + β)θ

)
= πiθ

(
αθ
)

+ πiθ

(
βθ
)

holds for all α, β ∈ V ⊗ W and i ∈ I, then θ is a linear transformation of V ⊗ W .
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Proof. As V ⊗ W is a vector space over a field of prime order q, it suffices to show
that θ preserves addition. Indeed, for all α, β ∈ V ⊗ W , we see that

(α + β)θ = (e1 + µ1e2) ⊗ π1

(
(α + β)θ

)
+ (e1 + µ2e2) ⊗ π2

(
(α + β)θ

)
= (e1 + µ1e2) ⊗

(
π1
(
αθ
)

+ π1
(
βθ
))

+ (e1 + µ2e2) ⊗
(
π2
(
αθ
)

+ π2
(
βθ
))

= (e1 + µ1e2) ⊗ π1
(
αθ
)

+ (e1 + µ2e2) ⊗ π2
(
αθ
)

+ (e1 + µ1e2) ⊗ π1
(
βθ
)

+ (e1 + µ2e2) ⊗ π2
(
βθ
)

= αθ + βθ

as required. □

Lemma 3.24. Suppose q > z and q is prime, and let θ ∈ Aut(Γ)0. Then θ is a linear
transformation of V ⊗ W .

Proof. Let x, y ∈ V ⊗ W , and let i, j, k be distinct elements of I. In light of
Lemma 3.23, it suffices to show that

πiθ

(
(x + y)θ

)
= πiθ

(
xθ
)

+ πiθ

(
yθ
)
.

According to Lemma 3.10 there exist non-zero κ1, κ2, κ′
1, κ′

2 ∈ GF(q) such that

πk(u) = κ1πi(u) + κ2πj(u),(9)
πkθ (u) = κ′

1πiθ (u) + κ′
2πjθ (u)(10)

for all u ∈ V ⊗ W .
According to Lemma 3.11, we can define a ∈ V ⊗ W such that πi(a) = πi(x) and

πj(a) = 0. Hence Equation (9) gives πk(a) = κ1πi(a) + κ2πj(a) = κ1πi(x).
Now define b ∈ V ⊗ W such that πi(b) = πi(y) and πj(b) = − κ1

κ2
πi(y). Hence

Equation (9) gives πk(b) = κ1πi(b) + κ2πj(b) = 0.
Finally, define c ∈ V ⊗ W such that πi(c) = πi(x) + πi(y) and πj(c) = − κ1

κ2
πi(y).

Observe that πj(c) = πj(b), so we have

πjθ

(
cθ
)

= πjθ

(
bθ
)

(using Lemma 3.21)

= −κ′
1

κ′
2

πiθ

(
bθ
)

+ 1
κ′

2
πkθ

(
bθ
)

(using Equation (10))

= −κ′
1

κ′
2

πiθ

(
bθ
)
. (using Lemma 3.22)(11)

Observe also that

πk(c) = κ1πi(c) + κ2πj(c) = κ1πi(x) = πk(a),

which gives us

πkθ

(
cθ
)

= πkθ

(
aθ
)

(using Lemma 3.21)
= κ′

1πiθ

(
aθ
)

+ κ′
2πjθ

(
aθ
)

(using Equation (10))
= κ′

1πiθ

(
aθ
)
. (using Lemma 3.22)(12)

Making use of Lemma 3.9, we have

πi(x + y) = πi(x) + πi(y) = πi(c).
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We therefore conclude that

πiθ

(
(x + y)θ

)
= πiθ

(
cθ
)

(using Lemma 3.21)

= 1
κ′

1
πkθ

(
cθ
)

− κ′
2

κ′
1

πjθ

(
cθ
)

(using Equation (10))

= πiθ

(
aθ
)

+ πiθ

(
bθ
)

(using Equations (11) and (12))
= πiθ

(
xθ
)

+ πiθ

(
yθ
)

(using Lemma 3.21 on each term)

as required. □

Lemma 3.25. Suppose q > z and q is prime, and let θ ∈ Aut(Γ)0. Then θ ∈ GL(2, q) ◦
GL(m, q).

Proof. We first note that θ is a linear transformation of V ⊗ W by Lemma 3.24, so
it preserves the set ∆ by Lemma 2.1. If θ preserves the set of all simple tensors then
by Lemma 2.3 it would preserve the tensor product structure of V ⊗ W , and would
hence lie in GL(2, q) ◦ GL(m, q) due to the asymmetry of ∆ on this tensor product
structure. Therefore, letting x be an arbitrary simple tensor in V ⊗ W , it suffices to
show that xθ is a simple tensor.

Since x is a simple tensor, we must have x = (ν1e1 + ν2e2) ⊗ w for some ν1, ν2 ∈
GF(q) and w ∈ W . Suppose first that −µ2ν1 + ν2 = 0. Then

x = (ν1e1 + µ2ν1e2) ⊗ w = (e1 + µ2e2) ⊗ ν1w ∈ ∆ ∪ {0}.

Since ∆ ∪ {0} is preserved by θ and contains only simple tensors, it follows that xθ is
a simple tensor as required.

Now suppose instead that −µ2ν1 + ν2 ̸= 0. It is easy to check using the definition
of x that

x = (e1 + µ1e2) ⊗
(

−µ2ν1 + ν2

µ1 − µ2
w

)
+ (e1 + µ2e2) ⊗

(
µ1ν1 − ν2

µ1 − µ2
w

)
.

It follows immediately that

π2(x) = µ1ν1 − ν2

−µ2ν1 + ν2
π1(x).(13)

By Lemma 3.11 we can define y ∈ V ⊗ W such that π1(y) = π1(x) and π3(y) = 0.
Then Lemmas 3.21 and 3.22 respectively give

π1θ

(
yθ
)

= π1θ

(
xθ
)
,(14)

π3θ

(
yθ
)

= 0.(15)

According to Lemma 3.10 there exist κ1, κ3, κ′
1, κ′

3, ι1, ι2, ι′
1, ι′

2 ∈ GF(q) such that

π2(y) = κ1π1(y) + κ3π3(y),(16)
π2θ

(
yθ
)

= κ′
1π1θ

(
yθ
)

+ κ′
3π3θ

(
yθ
)
,(17)

π1
(
xθ
)

= ι1π1θ

(
xθ
)

+ ι2π2θ

(
xθ
)
,(18)

π2
(
xθ
)

= ι′
1π1θ

(
xθ
)

+ ι′
2π2θ

(
xθ
)
,(19)
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where κ1 ̸= 0. Hence we have

π2

(
µ1ν1 − ν2

κ1 (−µ2ν1 + ν2)y

)
= µ1ν1 − ν2

κ1 (−µ2ν1 + ν2)π2(y) (using Lemma 3.9)

= µ1ν1 − ν2

κ1 (−µ2ν1 + ν2) (κ1π1(y) + κ3π3(y)) (using Equation (16))

= µ1ν1 − ν2

−µ2ν1 + ν2
π1(x) (since π1(y) = π1(x) and π3(y) = 0)

= π2(x). (using Equation (13))
Therefore
π2θ

(
xθ
)

= π2θ

((
µ1ν1 − ν2

κ1 (−µ2ν1 − ν2)y

)θ
)

(using Lemma 3.21)

= π2θ

(
µ1ν1 − ν2

κ1 (−µ2ν1 − ν2)yθ

)
(using Lemma 3.24)

= µ1ν1 − ν2

κ1 (−µ2ν1 − ν2)π2θ

(
yθ
)

(using Lemma 3.9)

= µ1ν1 − ν2

κ1 (−µ2ν1 − ν2)
(
κ′

1π1θ

(
yθ
)

+ κ′
3π3θ

(
yθ
))

(using Equation (17))

= µ1ν1 − ν2

κ1 (−µ2ν1 − ν2)κ′
1π1θ

(
xθ
)

(by Equations (14) and (15))(20)

and finally
xθ = (e1 + µ1e2) ⊗ π1

(
xθ
)

+ (e1 + µ2e2) ⊗ π2
(
xθ
)

= (e1 + µ1e2) ⊗
(
ι1π1θ

(
xθ
)

+ ι2π2θ

(
xθ
))

+ (e1 + µ2e2) ⊗
(
ι′
1π1θ

(
xθ
)

+ ι′
2π2θ

(
xθ
))

(using Equations (18) and (19))

= (e1 + µ1e2) ⊗
(

ι1π1θ

(
xθ
)

+ ι2
µ1ν1 − ν2

κ1 (−µ2ν1 − ν2)κ′
1π1θ

(
xθ
))

+ (e1 + µ2e2) ⊗
(

ι′
1π1θ

(
xθ
)

+ ι′
2

µ1ν1 − ν2

κ1 (−µ2ν1 − ν2)κ′
1π1θ

(
xθ
))

(using Equation (20))

= (e1 + µ1e2) ⊗
(

ι1 + ι2
µ1ν1 − ν2

κ1 (−µ2ν1 − ν2)κ′
1

)
π1θ

(
xθ
)

+ (e1 + µ2e2) ⊗
(

ι′
1 + ι′

2
µ1ν1 − ν2

κ1 (−µ2ν1 − ν2)κ′
1

)
π1θ

(
xθ
)
,

so xθ is equal to((
ι1 + ι2

µ1ν1 − ν2

κ1 (−µ2ν1 − ν2)κ′
1

)
(e1 + µ1e2)

+
(

ι′
1 + ι′

2
µ1ν1 − ν2

κ1 (−µ2ν1 − ν2)κ′
1

)
(e1 + µ2e2)

)
⊗ π1θ

(
xθ
)

and is therefore a simple tensor as required. □
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Proposition 3.26. Suppose q > z and q is prime, let µ1, µ2, µ3, µ4 be distinct ele-
ments of GF(q), and let Γ be as defined in Definition 3.16. Then Aut(Γ) ⩽ (V ⊗ W )⋊
(GL(2, q) ◦ GL(m, q)).

Proof. This follows from Lemma 3.25 and the fact that the group of translations of
V ⊗ W is transitive. □

4. Specific cases of the permutation group G(m, q)
We examine first the specific case where q = 5, so let G = G(m, 5) and let F = GF(5).
From Lemma 3.3 we have ∆1 = ∆4 and ∆2 = ∆3, so G has orbitals corresponding to
the suborbits δ, ∆A, ∆B , ∆1 and ∆2. Thus G has rank 5.

Theorem 4.1. The group G(m, 5) is not the automorphism group of any digraph for
any m ⩾ 2.

Proof. Let G = G(m, 5). It suffices to show that G is not the automorphism group of
any union of its four non-trivial orbital digraphs. We know already from Lemma 3.5
that G is not the automorphism group of ΓA or ΓB . Since 22 = 4 = −1 in the field F ,
we have from Lemma 3.6 that G is not the automorphism group of Γ1 or Γ2 either.

Consider the following orbital digraph union:
∆A ∪ ∆1 = {e1 ⊗ w, e2 ⊗ w, (e1 ± e2) ⊗ w | w ∈ W ∖ {0}}

= {(1, 0) ⊗ w, (0, 1) ⊗ w, (1, 1) ⊗ w, (1, −1) ⊗ w | w ∈ W ∖ {0}}
with respect to the basis {e1, e2} of V . Consider the image of this union under the
linear transformation θ =

[ 1 1
1 −1

]
◦ I, where I denotes the m × m identity matrix. If

we take, for example, a vector of the form x = (1, 1) ⊗ w for some w ∈ W ∖ {0}, then
x ∈ ∆A ∪ ∆1 and its image under θ is given by

xθ =
(

(1, 1)
[
1 1
1 −1

])
⊗ (wI) = (2, 0) ⊗ w = (1, 0) ⊗ (2w) ∈ ∆A ∪ ∆1.

It is easy to check using a similar calculation that if x is a vector of the form (1, 0)⊗w
or (0, 1) ⊗ w or (1, −1) ⊗ w, then the image of x under θ lies in ∆A ∪ ∆1.

We have now seen that θ preserves the set ∆A ∪ ∆1, which means θ is an auto-
morphism of ΓA ∪ Γ1 by Lemma 2.1. Since θ fixes the zero vector but does not lie
in G0 = D8 ◦ GL(m, 5), it cannot be an element of G. Therefore G is not the full
automorphism group of ΓA ∪ Γ1.

Now observe that
∆A ∪ ∆2 = {e1 ⊗ w, e2 ⊗ w, (e1 ± 2e2) ⊗ w | w ∈ W ∖ {0}}

= {(1, 0) ⊗ w, (0, 1) ⊗ w, (1, 2) ⊗ w, (1, −2) ⊗ w | w ∈ W ∖ {0}}.

It can be checked that the linear transformation [ 1 2
2 1 ] ◦ I preserves the set ∆A ∪

∆2, hence it is an automorphism of ΓA ∪ Γ2 by Lemma 2.1. Once again, this is an
automorphism that does not lie in G, so G is not the full automorphism group of
ΓA ∪ Γ2.

Finally, we have
∆1 ∪ ∆2 = {(e1 ± e2) ⊗ w, (e1 ± 2e2) ⊗ w | w ∈ W ∖ {0}}

= {(1, 1) ⊗ w, (1, −1) ⊗ w, (1, 2) ⊗ w, (1, −2) ⊗ w | w ∈ W ∖ {0}}.

It can be checked that the linear transformation [ 1 0
0 2 ] ◦ I fixes the set ∆1 ∪ ∆2, hence

it is an automorphism of Γ1 ∪ Γ2 by Lemma 2.1. This automorphism does not lie in
G, so G is not the full automorphism group of Γ1 ∪ Γ2.

The remaining orbital digraph unions are ∆A∪∆B , ∆B∪∆1 and ∆B∪∆2, as well as
each union of three non-trivial orbital digraphs. However, these are the complements
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of orbital digraph unions that we have already checked, and every digraph has the
same automorphism group as its complement. Hence we conclude that the group
G(m, 5) is not the automorphism group of any digraph, as it is not the automorphism
group of any union of its non-trivial orbital digraphs. □

Next, take q = 7, let m ⩾ 2 be an integer, and let G = G(m, 7). As we are now
working in the field F = GF(7), Lemma 3.3 gives us ∆2 = ∆3 = ∆4 = ∆5 and
∆1 = ∆6. Therefore the orbitals of G are those corresponding to the suborbits δ, ∆A,
∆B , ∆1 and ∆2, so G once again has rank 5.

Theorem 4.2. The group G(m, 7) is not the automorphism group of any digraph for
any m ⩾ 2.

Proof. The orbital digraphs ΓA, ΓB and Γ1 do not have G as their automorphism
group according to Lemmas 3.5 and 3.6.

The suborbit ∆2 as defined in Section 3.1 is given by

∆2 =
{

(e1 ± 2e2) ⊗ w,
(
e1 ± 2−1e2

)
⊗ w | w ∈ W ∖ {0}

}
= {(1, 2) ⊗ w, (1, 3) ⊗ w, (1, 4) ⊗ w, (1, 5) ⊗ w | w ∈ W ∖ {0}} .

It can be checked that this set is preserved by the linear transformation [ 1 2
2 1 ] ◦ I.

Therefore by Lemma 2.1 this transformation is an automorphism of Γ2, and since it
does not lie in G we can conclude that Aut(Γ2) ̸= G.

Similarly, observe that

∆A ∪ ∆1 =
{

e1 ⊗ w, e2 ⊗ w, (e1 ± e2) ⊗ w | w ∈ W ∖ {0}
}

=
{

(1, 0) ⊗ w, (0, 1) ⊗ w, (1, 1) ⊗ w, (1, 6) ⊗ w | w ∈ W ∖ {0}
}

,
∆A ∪ ∆2 =

{
e1 ⊗ w, e2 ⊗ w, (e1 ± 2e2) ⊗ w,

(
e1 ± 2−1e2

)
⊗ w | w ∈ W ∖ {0}

}
=
{

(1, 0) ⊗ w, (0, 1) ⊗ w, (1, 2) ⊗ w, (1, 3) ⊗ w, (1, 4) ⊗ w,
(1, 5) ⊗ w | w ∈ W ∖ {0}

}
,

∆1 ∪ ∆2 =
{

(e1 ± e2) ⊗ w, (e1 ± 2e2) ⊗ w,
(
e1 ± 2−1e2

)
⊗ w | w ∈ W ∖ {0}

}
=
{

(1, µ) ⊗ w | µ ∈ F ∖ {0}, w ∈ W ∖ {0}
}

.

It can be checked that these sets are fixed by the linear transformations
[ 1 1

1 −1
]

◦ I,
[ 1 2

2 1 ] ◦ I and [ 1 0
0 2 ] ◦ I, respectively. As these transformations do not lie in G, it follows

from Lemma 2.1 that G is not the automorphism group of ΓA ∪ Γ1, nor ΓA ∪ Γ2, nor
Γ1 ∪ Γ2.

Each of the remaining unions of non-trivial orbital digraphs is the complement of
one of the unions we have already checked. Hence G(m, 7) is not the automorphism
group of any digraph since it is not the full automorphism group of any union of its
non-trivial orbital digraphs. □

We now consider the case where q = 13, so let G = G(m, 13) and observe from
Lemma 3.3 that

∆1 = ∆12,

∆2 = ∆6 = ∆7 = ∆11,

∆3 = ∆4 = ∆9 = ∆10,

∆5 = ∆8.

Therefore the set
O = {δ, ∆A, ∆B , ∆1, ∆2, ∆3, ∆5}

is a complete set of distinct suborbits of G, so the rank of G is 7. The six non-trivial
orbital digraphs are ΓA, ΓB , Γ1, Γ2, Γ3 and Γ5.
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Orbital digraph union Automorphism Orbital digraph union Automorphism

Γ1

[
1 2
2 1

]
◦ I Γ2 ∪ Γ5

[
1 0
0 4

]
◦ I

Γ2

[
1 1
5 −5

]
◦ I Γ3 ∪ Γ5

[
1 2
2 1

]
◦ I

Γ3

[
1 1
5 −5

]
◦ I Γ1 ∪ Γ2 ∪ Γ3

[
1 0
0 2

]
◦ I

Γ5

[
1 1
1 −1

]
◦ I Γ1 ∪ Γ2 ∪ Γ5

[
1 4
4 −1

]
◦ I

Γ1 ∪ Γ2

[
1 4
4 −1

]
◦ I Γ1 ∪ Γ3 ∪ Γ5

[
1 2
2 1

]
◦ I

Γ1 ∪ Γ3

[
1 0
0 4

]
◦ I Γ2 ∪ Γ3 ∪ Γ5

[
1 1
1 −1

]
◦ I

Γ1 ∪ Γ5

[
1 0
0 5

]
◦ I Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ5

[
1 0
0 2

]
◦ I

Γ2 ∪ Γ3

[
1 1
5 −5

]
◦ I

Table 2. A linear automorphism not in G(m, 13) for each of the
given unions of orbital digraphs. The m×m identity matrix is denoted
by I.

Theorem 4.3. The group G(m, 13) is not the automorphism group of any digraph for
any m ⩾ 2.

Proof. First we examine the non-trivial orbital digraph unions that do not include ΓA

or ΓB . It can be checked that for each union of the orbital digraphs Γ1, Γ2, Γ3 and
Γ5, the invertible linear transformation given in Table 2 preserves the corresponding
union of suborbits but does not lie in G. Each is an automorphism of the respective
orbital digraph union by Lemma 2.1.

Suppose now that Γ = ΓB∪Γ′, where Γ′ is some union of Γ1, Γ2, Γ3 and Γ5. We have
just seen that there exists some θ ∈ GL(2, q)◦GL(m, q) that is an automorphism of Γ′

but that does not lie in G. But since θ preserves the set ∆B of all non-simple tensors,
it must also be an automorphism of ΓB by Lemma 2.1. It follows that θ ∈ Aut(Γ).

Finally, if a union of non-trivial orbital digraphs of G includes ΓA, then its com-
plement does not include ΓA and has therefore already been checked.

Since G is not the full automorphism group of any union of its non-trivial orbital
digraphs, we conclude that G is not the automorphism group of any digraph. □

Theorem 4.4. The groups G(m, 5), G(m, 7) and G(m, 13) are 2-closed for all m ⩾ 2.

Proof. First let G = G(m, 5), let ∆ = ∆1∪∆2, and let Γ = Γ1∪Γ2 = Cay(V ⊗ W, ∆).
If we define µ1 = 1, µ2 = 2, µ3 = 3 and µ4 = 4, then we have

∆ = {(e1 + µie2) ⊗ w | i ∈ {1, 2, 3, 4}, w ∈ W ∖ {0}},

so Proposition 3.26 asserts that Aut(Γ) ⩽ (V ⊗ W )⋊(GL(2, 5) ◦ GL(m, 5)). Therefore

G(2) ⩽ Aut(Γ1) ∩ Aut(Γ2) ⩽ Aut(Γ) ⩽ (V ⊗ W ) ⋊ (GL(2, 5) ◦ GL(m, 5)).

Algebraic Combinatorics, Vol. 7 #6 (2024) 1807



John Bamberg, Michael Giudici & Jacob P. Smith

Let A◦B ∈ G
(2)
0 . It suffices to show that A◦B ∈ G0. Since A◦B ∈ G(2) ⩽ Aut(Γ1),

we know from Lemma 2.1 that A ◦ B preserves the suborbit ∆1. It is easy then to see
that A must preserve the set

V1 = (⟨e1 + e2⟩ ∪ ⟨e1 + 4e2⟩) ∖ {0}.

Similarly, A ◦ B preserves the suborbit ∆2, so A must preserve the set

V2 = (⟨e1 + 2e2⟩ ∪ ⟨e1 + 3e2⟩) ∖ {0}.

It can be checked computationally that the stabilisers of V1 and V2 in GL(2, 5) intersect
only at D8, so A ◦ B lies in G0 as required.

Now let G = G(m, 7). If we define µ1 = 2, µ2 = 3, µ3 = 4 and µ4 = 5, then

∆2 = {(e1 + µie2) ⊗ w | i ∈ {1, 2, 3, 4}, w ∈ W ∖ {0}},

and hence
G(2) ⩽ Aut(Γ2) ⩽ (V ⊗ W ) ⋊ (GL(2, 7) ◦ GL(m, 7))

by the same reasoning as above. Letting A ◦ B ∈ G
(2)
0 , it suffices to show that A ◦ B ∈

G0. By reasoning similar to that above, A must preserve the sets

V1 = (⟨e1⟩ ∪ ⟨e2⟩) ∖ {0}

and
VA = (⟨e1 + e2⟩ ∪ ⟨e1 + 4e2⟩) ∖ {0}.

It can be checked computationally that the stabilisers of VA and V1 in GL(2, 7) inter-
sect only at D8, so A ◦ B lies in G0 as required.

Finally, if G = G(m, 13) then define µ1 = 2, µ2 = 6, µ3 = 7 and µ4 = 11. Then

∆2 = {(e1 + µie2) ⊗ w | i ∈ {1, 2, 3, 4}, w ∈ W ∖ {0}},

so again we have

G(2) ⩽ Aut(Γ2) ⩽ (V ⊗ W ) ⋊ (GL(2, 13) ◦ GL(m, 13)).

Using

V2 = (⟨e1 + 2e2⟩ ∪ ⟨e1 + 6e2⟩ ∪ ⟨e1 + 7e2⟩ ∪ ⟨e1 + 11e2⟩) ∖ {0},

V3 = (⟨e1 + 3e2⟩ ∪ ⟨e1 + 4e2⟩ ∪ ⟨e1 + 9e2⟩ ∪ ⟨e1 + 10e2⟩) ∖ {0},

the result follows using the same argument as the previous two cases. □

Consider now the group G = G(m, 17). The following result will be used later.

Theorem 4.5. The group G(m, 17) is the automorphism group of its orbital digraph
union Γ = Γ1 ∪ Γ2 for all m ⩾ 2.

Proof. Letting ∆ = ∆1 ∪ ∆2, we have Γ = Cay(V ⊗ W, ∆). If we define µ1 = 1,
µ2 = 2, µ3 = 8, µ4 = 9, µ5 = 15 and µ6 = 16, then

∆ = {(e1 + µie2) ⊗ w | i ∈ {1, 2, 3, 4, 5, 6}, w ∈ W ∖ {0}},

so Proposition 3.26 asserts that Aut(Γ) ⩽ (V ⊗ W )⋊(GL(2, 17) ◦ GL(m, 17)). Letting
A ◦ B ∈ Aut(Γ)0, it suffices to show that A ◦ B ∈ G0. We know from Lemma 2.1 that
A ◦ B preserves ∆. It follows that A must preserve the set

V1,2 =
6⋃

i=1
⟨e1 + µie2⟩ ∖ {0}.

It can be checked computationally that the stabiliser of V1,2 in GL(2, 17) is precisely
D8, so A ◦ B lies in G0 as required. □
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σ M

()
[
1 0
0 1

]
(PQ)(RS)

[
1 0
0 −1

]
(PR)(QS)

[
0 1
1 0

]
(PS)(QR)

[
0 −1
1 0

]
Table 3. Collineations M that permute {P, Q, R, S} by the permu-
tation σ ∈ V4.

5. Fields of prime order
In this section, let G = G(m, p) for some prime p ⩾ 5, and suppose that Aut(Γλ) > G
for some λ ∈ GF(p) with λ4 /∈ {0, 1}. Then there must exist some θ ∈ Aut(Γλ) ∖ G
that fixes the zero vector, and from Proposition 3.26 we have that θ = A ◦ B for some
A ∈ GL(2, p) and B ∈ GL(m, p). Since θ preserves ∆λ by Lemma 2.1, it follows that
A must preserve the set

Vλ = ⟨(1, λ)⟩ ∪ ⟨(1, −λ)⟩ ∪
〈(

1, λ−1)〉 ∪
〈(

1, −λ−1)〉 ⊆ V,

where the vectors are written with respect to the basis {e1, e2}.
Since A is a linear transformation of V , it must permute the one-spaces ⟨(1, λ)⟩,

⟨(1, −λ)⟩,
〈(

1, λ−1)〉 and
〈(

1, −λ−1)〉. If we label these one-spaces respectively as
P , Q, R and S, then we can say A induces some permutation σ ∈ Sym({P, Q, R, S}).

Suppose, for contradiction, that σ lies in the permutation group V4, defined as

V4 = {(), (PQ)(RS), (PR)(QS), (PS)(QR)}.

The one-spaces P , Q, R and S can be considered as points in the projective space
PG(1, p). Since PGL(2, p) acts sharply 3-transitively on PG(1, p), no two collineations
in PGL(2, p) induce the same permutation of the points {P, Q, R, S}.

Define the 2×2 matrix M as in Table 3. For each of the four possibilities for σ, it is
easy to check that the collineation M induces the permutation σ. Moreover, observe
that M ∈ D8 for any σ ∈ V4.

Since the collineation A also induces the permutation σ, we must have A = kM
for some k ∈ GF(p). But then

θ = (kM) ◦ B = M ◦ (kB) ∈ D8 ◦ GL(m, p) ⩽ G,

which contradicts our requirement that θ /∈ G. Hence σ /∈ V4.
Consider now the cross-ratio r = R(P, Q; R, S) of our four projective points. Choos-

ing the reference vectors u = (1, 0) and v = (0, 1), we find the cross-ratio to be

r = R(P, Q; R, S) = R
(
P(λ), P(−λ); P(λ−1), P(−λ−1)

)
=
(
λ−1 − λ

) (
−λ−1 + λ

)
(λ−1 + λ) (−λ−1 − λ)

=
(
λ2 − 1

)2

(λ2 + 1)2 .
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Since σ /∈ V4, Lemma 2.2 gives the following restriction on the cross-ratio r′ of the
permuted points:

r′ = R(P σ, Qσ; Rσ, Sσ) ∈
{

1
r

, 1 − r,
r

r − 1 ,
1

1 − r
,

r − 1
r

}
.(21)

Moreover, A must preserve the cross-ratio of our four points as it is a collineation
of PG(1, p). Since A induces the permutation σ, we have

r′ = R(P σ, Qσ; Rσ, Sσ) = R(P, Q; R, S) = r.(22)

From (21) and (22), we have the following five cases to examine:

Case 1: r = 1
r . Then

1 − r2 = 0 =⇒
8λ2 (λ4 + 1

)
(λ2 + 1)4 = 0 =⇒ λ4 + 1 = 0.

Case 2: r = 1 − r. Then

2r − 1 = 0 =⇒ λ4 − 6λ2 + 1
(λ2 + 1)2 = 0 =⇒ λ4 − 6λ2 + 1 = 0.

Case 3: r = r
r−1 . Then

2r − r2 = 0 =⇒
(
λ4 + 6λ2 + 1

)
(λ + 1)2 (λ − 1)2

(λ2 + 1)4 = 0

=⇒ λ4 + 6λ2 + 1 = 0.

Case 4: r = 1
1−r . Then

r2 − r + 1 = 0 =⇒ λ8 + 14λ4 + 1
(λ2 + 1)4 = 0 =⇒ λ8 + 14λ4 + 1 = 0.

Case 5: r = r−1
r . This is in fact the same equation as in Case 4.

The result we have just proved is summarised in the following lemma.

Lemma 5.1. Let λ ∈ GF(p) with λ4 /∈ {0, 1}. If Aut(Γλ) ̸= G, then

0 ∈
{

λ4 + 1, λ4 ± 6λ2 + 1, λ8 + 14λ4 + 1
}

.

This leads us to our final result.

Theorem 5.2. Let p be an odd prime and let m ⩾ 2. If p /∈ {3, 5, 7, 13} then G =
G(m, p) is the automorphism group of a digraph.

Proof. We have seen in Theorem 4.5 that G is the automorphism group of a di-
graph if p = 17, so suppose that p /∈ {3, 5, 7, 13, 17} and assume for contradiction
that G is not the automorphism group of any digraph. It follows that the orbital
digraphs Cay(V ⊗ W, ∆2) and Cay(V ⊗ W, ∆4) must have automorphisms θ2 and
θ4 respectively that do not lie in G. Since 24, 44 /∈ {0, 1}, Lemma 5.1 gives us that
0 ∈ {17, 41, −7, 481} and 0 ∈ {257, 353, 161, 69121}. Equivalently, both of these
sets must contain a multiple of p. This only holds for p = 7 and p = 13, a contradic-
tion. □
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