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Elements of minimal length and Bruhat
order on fixed point cosets of Coxeter groups

Nathan Chapelier-Laget & Thomas Gobet

Abstract We study the restriction of the strong Bruhat order on an arbitrary Coxeter group
W to cosets xW θ

L, where x is an element of W and W θ
L the subgroup of fixed points of an

automorphism θ of order at most two of a standard parabolic subgroup WL of W . When
θ ̸= id, there is in general more than one element of minimal length in a given coset, and we
explain how to relate elements of minimal length. We also show that elements of minimal length
in cosets are exactly those elements which are minimal for the restriction of the Bruhat order.

1. Introduction
When studying Coxeter groups, one often encounters subgroups which themselves
admit a structure of Coxeter group. Although there do not seem to exist a general
theory of "Coxeter subgroups" of Coxeter groups, at least several important families
of subgroups are known to admit canonical structures of Coxeter groups: this includes
(standard) parabolic subgroups, or more generally reflection subgroups [3, 4]. Another
family is given by subgroups obtained as fixed points of automorphisms of the Coxeter-
Dynkin diagram.

Let (W, S) be a Coxeter system. In the most basic of the aforementioned situations,
one considers a subset J ⊆ S, and defines WJ as the subgroup of W generated by
the elements of J . The pair (WJ , J) is again a Coxeter system, with Coxeter-Dynkin
diagram obtained from the diagram of W by removing the vertices corresponding to
generators in S\J . In this situation, every coset xWJ admits two basic properties,
namely

(1) There is a unique element xJ ∈ xWJ which has minimal length among all
elements in xWJ ,

(2) For all y ∈ xWJ , one has xJ ⩽ y, where ⩽ denotes the strong Bruhat order
on W .

In fact, for y ∈ xWJ , one has the stronger statement that xJ is below y for the
right weak order; nevertheless, there are generalizations in which this is too much to
expect. For instance, Dyer extended these properties to the far more general setting
of reflection subgroups of Coxeter groups [5, Theorem 1.4], that is, to the case where
WJ is replaced by any subgroup W ′ of W generated by a subset of the set T =⋃

w∈W wSw−1 of reflections of W . In this setting, property 2 is only valid for the
strong Bruhat order, not for the right weak order in general.
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The purpose of this article is to study the analogue of Properties 1 and 2 above
for another class of Coxeter subgroups of Coxeter groups, given by fixed points sub-
groups of automorphisms squaring to the identity of the Coxeter-Dynkin diagram of
(a standard parabolic subgroup of) W .

To be more precise, let (W, S) be a Coxeter system and L ⊆ S be a subset. Let WL

be the corresponding standard parabolic subgroup of W . Let θ be an automorphism
of WL such that θ(L) = L. Then

W θ
L := {w ∈ WL | θ(w) = w}

admits a structure of Coxeter group; this was observed by Steinberg for finite Weyl
groups [9, Section 11], and later generalized to arbitrary Coxeter systems indepen-
dently by Hée [6] and Mühlherr [8] (see also Lusztig [7, Appendix]). The simple system
is obtained as follows. First partition L into orbits (Ji)i∈I under the action of θ. Then,
whenever Ji is such that the standard parabolic subgroup WJi is finite, consider its
longest element. The simple system Sθ

L consists of all these elements. In what follows,
we will restrict ourselves to the case where θ2 = id, in which case every WJi

is either
of type A1 or dihedral.

Note that, when W is irreducible and L = S, there may not be a lot of nontrivial
automorphisms θ of the Coxeter-Dynkin diagram, but for L ̸= S the subgroup WL

may not be irreducible, yielding many possible automorphisms permuting irreducible
components that are isomorphic as Coxeter groups. Such a situation arose in work of
Chaput, Fresse and the second author [2, Section 3], where a study of the analogues
of Properties 1 and 2 of cosets xW θ

L for subsets L of a certain form was an important
step in the understanding of a partial order defined on the quotient W/W θ

L, which
in type A describes a "Bruhat-like order" given by inclusion of certain nilpotent orbit
closures. More precisely, while the classical Bruhat order on a finite Weyl group W
describes the inclusion order of Schubert varieties, which are the closures of the B-
orbits on the flag variety G/B, in the aforementioned situation the Bruhat order on
W/W θ

L describes the inclusion order of B-orbit closures for the action of B on the
G-orbit of a 2-nilpotent matrix (in the case G = GLn). See [2, Theorem 9.1] for more
details.

Unfortunately, unlike for the case of standard parabolic subgroups (or more gener-
ally reflection subgroups), there is not a unique element of minimal length in a given
coset in general. The main results addressing the analogues of Properties 1 and 2 may
be summarized as follows:

Theorem 1.1 (Relation between elements of minimal length in a given coset). Let
u, v ∈ W , y ∈ W θ

L such that v = uy and u, v are both of minimal length in uW θ
L =

vW θ
L. Let y1y2 · · · yk be an Sθ

L-reduced expression of y in W θ
L. Then we have

ℓ(u) = ℓ(uy1) = ℓ(uy1y2) = · · · = ℓ(uy1 · · · yk−1) = ℓ(v).
In other words, for all i = 1, . . . , k − 1, we have that uy1 · · · yi is of minimal length in
uW θ

L = vW θ
L.

The main ingredient for proving Theorem 1.1 is the following proposition, which
will also be useful for the proof of Theorem 1.3 below addressing the analogue of
Property 2:

Proposition 1.2. Let u, w ∈ W such that u is of minimal length in wW θ
L. Let z ∈

W θ
L such that w = uz and let x1x2 · · · xk be an Sθ

L-reduced expression of z. For all
i = 0, . . . , k − 1, exactly one of the following two situations occurs:

• either ℓ(ux1 · · · xi) = ℓ(ux1 · · · xi+1),
• or ux1 · · · xi < ux1 · · · xi+1.
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In particular, if xi+1 is a reflection of W , then we are in the second situation, while
the first situation can only occur if xi+1 is not a reflection of W .

The analogue of Property 2 is then given by the following statement:

Theorem 1.3 (Elements of minimal length are minimal for the strong Bruhat order).
Let x ∈ W . There is an element w ∈ W which is of minimal length in xW θ

L, and
such that w ⩽ x. In other words, the elements of minimal length in any coset xW θ

L

are precisely those elements which are minimal with respect to the restriction of the
strong Bruhat order ⩽ on W to xW θ

L.

We illustrate Theorem 1.1 with an example:

Example 1.4. Let W = F4, L = S = {s1, s2, s3, s4} and θ be the diagram automor-
phism of L given by the following figure:

s1 s2 s3 s4

4

We have Sθ
L = {s1s4, s2s3s2s3} and W θ

L is a dihedral group of order 16. There are
72 classes in W/W θ

L, each of them having 16 elements. Let X ∈ W/W θ
L and let u ∈ X.

By computational experimentations with the software SageMath we found that

|Min(u)| ∈ {1, 2, 3, 4, 5, 6, 8, 16}.

We now give two examples of such classes where we see how the minimal elements
are related by the elements of Sθ

L = {s1s4, s2s3s2s3} when multiplying on the right,
as an illustration of Theorem 1.1. Write x = s1s4 and y = s2s3s2s3. For simplicity we
will denote a reduced expression si1si2 · · · sik

of an element of W simply by i1i2 · · · ik.
(1) If u = 42312342 then the minimal elements of X are given in Figure 1.
(2) If u = 343231234312 then the minimal elements of X are given in Figure 2.

Note that in this particular class, every element has minimal length in its
coset. The conclusion of Theorem 1.1 is thus trivially verified in this case.

42312342 42312321 43123121 43123412
x y x

Figure 1. Minimal elements of a class having 4 minimal elements.

2. Preliminaries and notation
Let (W, S) be a Coxeter system (with S finite) with set of reflections T =⋃

w∈W wSw−1, let L ⊆ S, and let θ be a diagram automorphism of L. It in-
duces an automorphism of the standard parabolic subgroup WL, which we still
denote θ. It is well-known that the subgroup

W θ
L := {w ∈ WL | θ(w) = w}

of θ-fixed elements of WL admits a structure of Coxeter group (see for instance [6, 8]).
The generators as Coxeter group are given by the following set. Let K ⊆ L be an
orbit of the action of θ. If WK is finite, let wK

0 denote its longest element. The set of
Coxeter generators of W θ

L is given by the set of all such elements. We denote by Sθ
L

the set of generators of W θ
L as a Coxeter group. We denote by ℓ the classical length

function on W .
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343231234312 432343123121 432342312321 234323123432
x y x

343231234123

342312341231

342312342312

312343123121

y

x

y

x

312342312321 123423123432 123423123423 231234231231

y

x y x

234323123423

423123431231

423123432312

231234323121

y

x

y

x

y

Figure 2. Minimal elements of a class having 16 minimal elements.

Note that the elements of Sθ
L are not elements of S in general. For instance, if W

has type A1 × A1 with Coxeter generators s and t, L = S and θ exchanges s and t,
then W θ

L = W θ has type A1, with Coxeter generator st = ts.
We will furthermore assume that θ satisfies θ2 = id. In this case, the elements of

Sθ
L are longest elements of finite standard parabolic subgroups of W of type A1 or

dihedral. In particular, if such elements have odd length, then they are reflections of
W . It will be useful to distinguish the elements of Sθ

L depending on the parity of their
length. We thus write Sθ

L = Θ
·
∪ ΘT , where

Θ := {x ∈ Sθ
L | ℓ(x) is even} = {x ∈ Sθ

L | x /∈ T},

ΘT := {x ∈ Sθ
L | ℓ(x) is odd} = {x ∈ Sθ

L | x ∈ T}.

For u ∈ W , we denote by Min(u) ⊆ W the set of elements of minimal length in
uW θ

L, that is, the set

{v ∈ uW θ
L | ℓ(w) ⩾ ℓ(v) for all w ∈ uW θ

L}.

Let
M =

⋃
w∈W

Min(w)

denote the set of elements which are of minimal length in their coset. We have the
following (see [8, Proposition 3.5]).

Proposition 2.1. Let x ∈ W θ
L and x1, x2, . . . , xk ∈ Sθ

L such that x1x2 · · · xk is an
Sθ

L-reduced expression of x. Then

ℓ(x) =
k∑

i=1
ℓ(xi).

We denote by ⩽ the (strong) Bruhat order on W . Recall that it is defined as the
transitive closure of the relation x < xt whenever x ∈ W , t ∈ T , and ℓ(x) < ℓ(xt). One
has the following characterization, which we will use extensively in the next sections
(see for instance [1, Corollary 2.2.3])

Proposition 2.2. Let u, v ∈ W . The following are equivalent
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(1) u ⩽ v,
(2) There is a reduced expression of v admitting a reduced expression of u as a

subword,
(3) Every reduced expression of v admits a reduced expression of u as a subword.

Note that by subword we mean that some letters may not be consecutive in the
bigger expression.

Also recall that, given J ⊆ S, the subgroup WJ of W generated by J is a Coxeter
system with simple system J . Denoting

W J = {w ∈ W | ℓ(ws) > ℓ(w) ∀s ∈ J},

every w ∈ W admits a unique decomposition w = wJwJ with wJ ∈ W J and wJ ∈ WJ ,
and it satisfies ℓ(w) = ℓ(wJ) + ℓ(wJ). See for instance [1, Section 2.4]. In particular,
every coset xWJ admits a unique element of minimal length x0, and for every y ∈
xWJ , one has x0 ⩽ y.

To each element w ∈ W , consider its set N(w) of (right) inversions, which is a
subset of T defined by

N(w) = {t ∈ T | ℓ(wt) < ℓ(w)} = {t ∈ T | wt < w}.

Recall that |N(w)| = ℓ(w) and that for all x, y ∈ W , we have
N(xy) = N(y)∆(y−1N(x)y),

where ∆ denotes the symmetric difference (see for instance [1, Chapter 1, Exercise
12]).

Lemma 2.3. Let (W, S) be a Coxeter system and let t, t′ ∈ T with t ̸= t′ and tt′ = t′t.
Then t /∈ N(t′).

Proof. Let s1s2 · · · sk−1sksk−1 · · · s2s1 be a palindromic S-reduced expression of t′.
Assume for contradiction that t ∈ N(t′). Then two cases can occur: either there is
1 ⩽ i < k such that t = s1s2 · · · si−1sisi−1 · · · s2s1, or there is 1 ⩽ i < k such that
t = s1s2 · · · sksk−1 · · · sisi+1 · · · sksk−1 · · · s1 (the case where i = k yields t = t′).

In the first case, we have t′ = tt′t = s1s2 · · · si−1si+1 · · · sksk−1 · · · si+1si−1 · · · s1,
which is an expression for t′ in the elements of S that is of strictly smaller length than
s1s2 · · · sk · · · s2s1, a contradiction, since the latter was assumed to be S-reduced.

In the second case, we have tt′ = s1s2 · · · sksk−1 · · · si+1si−1 · · · s2s1. But
we also have t′t = s1 · · · si−1si+1 · · · sksk−1 · · · s2s1. Since tt′ = t′t we get
si+1 · · · sksk−1 · · · si = si · · · sksk−1 · · · si+1, yielding sisi+1 · · · sksk−1 · · · si+1si =
si+1 · · · sksk−1 · · · si+1, contradicting again the fact that s1s2 · · · sksk−1 · · · s2s1 is
reduced. □

Remark 2.4. Lemma 2.3 can also be proven using root systems. Let Φ be the general-
ized root system attached to (W, S). We have Φ = Φ+ ∐

(−Φ+), where Φ+ = {αt | t ∈
T} is the set of positive roots. In this setting, for w ∈ W we have

N(w) = {t ∈ T | w(αt) ∈ (−Φ+)}.

Let t, t′ satisfying the assumptions of Lemma 2.3 and assume for contradiction that t ∈
N(t′). Then t′(αt) ∈ (−Φ+). But t′(αt) = ±αt′tt′ = ±αt, which forces t′(αt) = −αt.
It follows that αt is an eigenvector of t′ for the eigenvalue −1, hence it is proportional
to αt′ , yielding αt = αt′ , a contradiction.

We now prove two Lemmatas that will be useful in the proofs of the main results:

Lemma 2.5. For all x ∈ Sθ
L and u, w ∈ W such that u ⩽ w and ℓ(w) = ℓ(wx), there

is v ∈ {u, ux} such that ℓ(v) ⩽ ℓ(u) and v ⩽ wx.
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Proof. Let u, w ∈ W and x ∈ Sθ
L such that u ⩽ w and ℓ(wx) = ℓ(w). Since θ2 = id,

this forces x to be the longest element in a dihedral standard parabolic subgroup WI

where I = {s, t} and I is of type I2(2k) for some k ⩾ 1; indeed, in all the other
cases, x has to be the longest element in a standard parabolic subgroup of type A1 or
I2(2k + 1), hence it is a reflection, hence ℓ(wx) ̸= ℓ(w). There are exactly two distinct
elements w1, w2 ∈ WI of length k, and they satisfy w2

1 = x = w2
2 if k is even (in which

case w1 = w−1
2 ) and w1w2 = x = w2w1 if k is odd (in which case w1 and w2 are

reflections). In all cases we have w1x = w2 and w2x = w1. We have uI ⩽ wI because
the map x 7→ xI preserves the (strong) Bruhat order (see [1, Proposition 2.5.1]) .

The condition ℓ(w) = ℓ(wx) yields ℓ(wIx) = ℓ(wI), which forces wI to lie in
{w1, w2}, say wI = w1 (the roles of w1 and w2 are symmetric). Consider the de-
composition u = uIuI . If ℓ(uI) > k, then ℓ(uIx) < k and hence the unique reduced
expression of uIx is a subword of the unique reduced expression of w2. We thus have
ux = uIuIx ⩽ wIw2, but wIw2 = wIw1x = wIwIx = wx. We thus have the result
with v = ux, since we also have

ℓ(v) = ℓ(ux) = ℓ(uI) + ℓ(uIx) < ℓ(uI) + k < ℓ(uI) + ℓ(uI) = ℓ(u).

If ℓ(uI) < k, then the unique reduced expression of uI is a subword of the unique
reduced expression of w2. We thus have u = uIuI ⩽ wIw2, but wIw2 = wIw1x =
wIwIx = wx. We thus get the result with v = u. It remains to treat the case where
ℓ(uI) = k, that is, where uI ∈ {w1, w2}. If uI = w1, then ux = uIuIx = uIw1x ⩽
wIw1x = wx, hence we get the result with v = ux (also using that ℓ(uIx) = ℓ(uI)),
while if uI = w2, we have that u = uIuI = uIw2 ⩽ wIw2 = wIw1x = wx, hence we
get the result with v = u. □

Lemma 2.6. Let u ∈ W and x ∈ Sθ
L. If ℓ(u) < ℓ(ux), then u < ux.

Proof. We have x = w0,I for some I ⊆ L, where w0,I is the longest element in the
finite standard parabolic subgroup WI ; since θ has order two, we have |I| = 1 or 2.
If |I| = 1, then x ∈ S and we have u < ux. Hence we can assume that |I| = 2, say
I = {s, t}. Let u = uIuI be the decomposition of u in W IWI . We have ux = uIuIw0,I

and ℓ(u) = ℓ(uI) + ℓ(uI), ℓ(ux) = ℓ(uI) + ℓ(uIw0,I). Hence, setting u′
I := uIw0,I , we

deduce from the assumption that ℓ(uI) < ℓ(u′
I). Since uI , u′

I ∈ WI which is a dihedral
Coxeter group, we get uI < u′

I , hence u = uIuI < uIu′
I = ux, which concludes the

proof. □

3. Proof of Theorem 1.1
In this section, we prove Theorem 1.1. We keep the notation introduced in the previous
section, recalling that we always assume that θ satisfies θ2 = id.

We begin by proving Proposition 1.2.

Proof of Proposition 1.2. Let i ∈ {0, 1, . . . , k − 1}. Set y := x1x2 · · · xi. We separate
the proof into two cases depending on whether xi+1 is a reflection or not.

• Case where xi+1 ∈ ΘT . Since xi+1 is a reflection, we want to show that xi+1 /∈
N(uy). Since x1x2 · · · xi+1 is Sθ

L-reduced, we have that x1x2 · · · xi is also Sθ
L-reduced,

hence by Proposition 2.1 we have

ℓ(yxi+1) = ℓ(x1x2 · · · xi+1) =
i+1∑
j=1

ℓ(xj) = ℓ(x1 · · · xi) + ℓ(xi+1) = ℓ(y) + ℓ(xi+1).

It follows that xi+1 /∈ N(y). Assume for contradiction that xi+1 ∈ N(uy). Then since
N(uy) = N(y)∆(y−1N(u)y), we have xi+1 ∈ y−1N(u)y, hence t := yxi+1y−1 ∈ N(u).
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Note that t ∈ W θ
L since both y and xi+1 lie in W θ

L. But t ∈ N(u) implies that
ℓ(ut) < ℓ(u), and since ut ∈ uW θ

L, this contradicts the fact that u ∈ M.
• Case where xi+1 ∈ Θ. Then xi+1 is the longest element w0,I of a standard finite

parabolic subgroup WI , where I = {s, t} is such that WI is of type I2(2m) for some
m ⩾ 1. In particular xi+1 has exactly two reduced expressions (st)m = (ts)m in W .

If ℓ(uyxi+1) > ℓ(uy), then by Lemma 2.6 we have uyxi+1 > uy, which concludes the
proof in that case. It therefore suffices to show that the case where ℓ(uyxi+1) < ℓ(uy)
leads to a contradiction. Hence assume that ℓ(uyxi+1) < ℓ(uy). By Lemma 2.6 again,
we have uyxi+1 < uy. Setting x := uy, we consider the decomposition x = xIxI ,
where xI ∈ W I , xI ∈ WI , with respect to the standard dihedral parabolic subgroup
WI . Setting v = xxi+1, since xi+1 ∈ WI we have vI = xI and vI = xIxi+1. We thus
have

ℓ(xI) + ℓ(xI) = ℓ(x) > ℓ(v) = ℓ(vI) + ℓ(vI) = ℓ(xI) + ℓ(xIxi+1),
from what we deduce that ℓ(xI) > ℓ(xIxi+1). Since xI and xIxi+1 have the same
parity of length (because xi+1 has even length), we must in fact have ℓ(xIxi+1) ⩽
ℓ(xI) − 2. In particular, we have xI ̸= 1, and there is r ∈ I = {s, t}, say r = s without
loss of generality, such that xIs < xI . We thus have ℓ(xIs) = ℓ(xI) − 1 since s is a
simple reflection and we deduce that

ℓ(xIxi+1) < ℓ(xIs) < ℓ(xI).

Since xIxi+1, xIs and xI all lie in WI which is dihedral, we deduce that

xIxi+1 < xIs < xI .

This stays preserved when multiplying on the left by xI , yielding

v = xIxIxi+1 < xIxIs = xs < xIxI = x.

Note that q := sxi+1 ∈ T since sxi+1 = s(ts)m. We thus have v = xsq < xs < x.
Moreover, for length reasons, since sq = qs we must have xq < x (as xq > x would
contradict xqs = xsq < x as s is simple), hence both s, q lie in N(x). We now argue in
a similar way as in the first case above to obtain a contradiction: since x1x2 · · · xi+1 =
yxi+1 satisfies ℓ(yxi+1) =

∑i+1
j=1 ℓ(xj), then yxi+1 has a reduced expression obtained

by concatenating a reduced expression of y and a reduced expression of xi+1 = w0,I ,
hence y ∈ W I . Since both s and q are reflections in WI , we deduce that s, q /∈ N(y).
As x = uy and s, q both lie in N(x) but none of them lies in N(y), using N(x) =
N(uy) = (y−1N(u)y)∆N(y) we deduce that both s̃ := ysy−1 and q̃ := yqy−1 lie in
N(u). We thus have us̃ < u, uq̃ < u. We have q̃ /∈ N(s̃) by Lemma 2.3, as sq = qs
implies that s̃q̃ = q̃s̃. Since N(us̃) = (s̃N(u)s̃)∆N(s̃) and q̃ /∈ N(s̃), q̃ ∈ N(u)
(hence q̃ = s̃q̃s̃ ∈ s̃N(u)s̃), we get that q̃ ∈ N(us̃), hence us̃q̃ < us̃ < u. But
s̃q̃ = ysqy−1 = yxi+1y−1 ∈ W θ

L, hence us̃q̃ ∈ uW θ
L with ℓ(us̃q̃) < ℓ(u), contradicting

u ∈ Min(u). □

We can now prove Theorem 1.1.

Proof of Theorem 1.1. We apply Proposition 1.2 with w = v, z = y, and xi = yi for
all i = 1, . . . , k, which is possible since u ∈ M, v ∈ uW θ

L, and the expression y1y2 · · · yk

is Sθ
L-reduced. For all i = 0, . . . , k − 1, we thus get ℓ(uy1 · · · yi) = ℓ(uy1 · · · yi+1) or

uy1 · · · yi < uy1 · · · yi+1, hence in all cases we have ℓ(uy1 · · · yi) ⩽ ℓ(uy1 · · · yi+1). We
thus have

ℓ(u) ⩽ ℓ(uy1) ⩽ · · · ⩽ ℓ(uy1 · · · yi) ⩽ · · · ⩽ ℓ(uy1 · · · yk−1) ⩽ ℓ(v).

But since u, v ∈ M ∩ uW θ
L, we have ℓ(u) = ℓ(v), hence all inequalities in the above

sequence are in fact equalities, which concludes the proof. □
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4. Proof of Theorem 1.3
Proof of Theorem 1.3. Let u ∈ M. To show the result, it suffices to show the fol-
lowing: for all k ⩾ 0 and all x1, x2, . . . , xk ∈ Sθ

L such that x1x2 · · · xk is Sθ
L-reduced,

there is w ∈ M ∩ uW θ
L such that w ⩽ ux1x2 · · · xk. Indeed, for every x ∈ W , it then

suffices to choose u ∈ M ∩ xW θ
L, to choose an Sθ

L-reduced expression x1x2 · · · xk of
y := u−1x and apply the above result to x = ux1x2 · · · xk to find w ∈ M ∩ xW θ

L such
that w ⩽ x.

The advantage of the above reformulation is that it allows one to argue by induction
on k. For k = 0 the result is trivial since one can take w = u.

Next, assume that k ⩾ 1. By induction there is w′ ∈ M ∩ uW θ
L such that w′ ⩽

ux1x2 · · · xk−1. By Proposition 1.2, the case where ℓ(ux1x2 · · · xk) < ℓ(ux1x2 · · · xk−1)
cannot appear: we have either ux1x2 · · · xk−1 < ux1x2 · · · xk, or ℓ(ux1x2 · · · xk−1) =
ℓ(ux1x2 · · · xk). In the first case we are done with w := w′, since

w′ ⩽ ux1x2 · · · xk−1 < ux1x2 · · · xk.

Hence assume that ℓ(ux1x2 · · · xk−1) = ℓ(ux1x2 · · · xk). We now have w′ ⩽
ux1x2 · · · xk−1 and ℓ(ux1x2 · · · xk−1) = ℓ(ux1x2 · · · xk−1xk) with xk ∈ Sθ

L, hence
by Lemma 2.5, there is w ∈ {w′, w′xk} such that w ⩽ ux1x2 · · · xk−1xk and
ℓ(w) ⩽ ℓ(w′). Since w and w′ lie in the same coset modulo W θ

L and w′ ∈ M, we must
have w ∈ M ∩ uW θ

L, which concludes the proof. □

Remark 4.1. It is natural to wonder whether the conclusions of Theorems 1.1 and 1.3
still hold without the assumption θ2 = id. For Theorem 1.1, we do not know, while
Theorem 1.3 does not hold in general. As a counterexample, consider a Coxeter system
(W, S) of type D4, with S = {s0, s1, s2, s3}, where s0 is the simple reflection commut-
ing with no other simple reflection. Let L = {s1, s2, s3} and let θ be an automorphism
of (WL, L) acting as a 3-cycle on L := {s1, s2, s3}. Then W θ

L has type A1, with genera-
tor s1s2s3. The coset s1W θ

L has two elements s1 and s2s3, hence s2s3W θ
L ∩M = {s1},

but s1 ̸⩽ s2s3.
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