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Tridendriform algebras on hypergraph
polytopes

Pierre-Louis Curien, Bérénice Delcroix-Oger & Jovana
Obradović

Abstract We extend the works of Loday–Ronco and Burgunder–Ronco on the tridendriform
decomposition of the shuffle product on the faces of associahedra and permutohedra, to other
families of hypergraph polytopes (or nestohedra), including simplices, hypercubes and some
new families. We also extend the shuffle product to take more than two arguments, and define
accordingly a new algebraic structure, that we call polydendriform, from which the original
tridendriform equations can be crisply synthesized.

1. Introduction
In 1998, Loday–Ronco introduced a Hopf algebra on the linear span of rooted planar
binary trees [14]. This Hopf algebra is closely related to the Malvenuto– Reutenauer
Hopf algebra on permutations [16]. Planar binary trees and permutations label the
vertices of two well-known families of polytopes: associahedra and permutohedra. The
associative products of these Hopf algebras were then extended to associative products
on all faces of these polytopes labeled respectively by planar trees and surjections by
Loday–Ronco [15] and Burgunder–Ronco [2]. More precisely, Loday–Ronco introduced
an associative product ∗ on planar trees as a shuffle of trees, where, for two trees T
and S, T ∗ S is defined as a formal sum of trees whose nodes originate either from
T , or from S, or from merging a node of S with a node of T . Loday and Ronco
remarked that it is possible to split this product ∗ according to where the roots of
the resulting trees originate from, giving rise to three operations “≺”, “≻” and “ · ”,
with ∗ = (≺) + (≻) + ( · ), forming an algebraic structure called tridendriform. For
instance, the following product
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∗ = + + + + + +

+ + + + + +

= + + + + + +

+ + + + + +

is split into

≺ = + + + +

· = + +

≻ = + + + +

Burgunder and Ronco applied a similar ternary splitting to surjections, also known
as packed words, and obtained also a tridendriform structure.

Associahedra and permutohedra are instances of polytopes called hypergraph poly-
topes [8], which are obtained by truncating some faces of simplices, and are also
known as nestohedra [19]. The description of faces of hypergraph polytopes in terms
of tree structures – called constructs – used as working definition in [7] provides an
adapted framework to extend the setting of Loday–Ronco and Burgunder–Ronco to
other families of polytopes.

We find it convenient to work in an “unbiased” setting, where our operations may
have any finite arity (think of the product a×b×c of three numbers a, b, c as opposed
to (a × b) × c or a × (b × c)). This leads us to a reformulation of the tridendriform
(actually q-tridendriform – see below) structure, that we call polydendriform. We
exhibit conditions under which we can define such a polydendriform structure.

The underlying (binary) associative product that we obtain specializes to the asso-
ciative product defined by Ronco [20] in the setting of graph associahedra [3], which
are the hypergraph polytopes where the associated hypergraphs have only hyperedges
of cardinality at most two (see Remark 4.25). Our results apply also to some families of
hypergraph polytopes that are not graph associahedra, such as simplices, hypercubes
and erosohedra.

Therefore, with respect to [20], our extension is two-fold: we describe not only an
associative product, but also a tridendriform splitting of it, and our framework applies
in situations that are not covered there.

The article is organized as follows. In §2, we explain in detail the case of the
permutohedra, and motivate and recall Burgunder–Ronco’s notion of q-tridendriform
algebra, i.e. an algebra with operations “≺”, “≻” and “ · ”, satisfying the same equa-
tions as in tridendriform algebras, but with the associated (associative) product being
now defined as ∗ = (≺) + (≻) + q( · ) for an arbitrary q ∈ K, where K is the ambient
field. In §3, we recall some notions on hypergraph polytopes and constructs. In §4, we
introduce our conditions for the set of faces of a family of polytopes to be endowed
with a polydendriform algebra structure. We first give a so-called “strict” condition
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that makes it possible to define q-tridendriform algebras, for arbitrary q. We then give
a weaker condition called “quasi-strict”, which allows us to deal with a wider class
of examples, but for which q has to be −1. In §3 and §4, we provide a bunch of new
examples that do not fit in the framework of graph associahedra, such as simplices,
hypercubes and a family that we call erosohedra. We also introduce a family of graph
associahedra that we call friezohedra and will serve as a running example throughout
the paper.
Warning. We would like to mention the existence of the terms “polydendriform” [12]
and “hypergraphic polytope” [1] in the literature, which designate different concepts
from the ones presented in this article.

2. Prologue
We recall Burgunder–Ronco’s shuffle product on the faces of permutohedra [2]. We
set [n] = {1, . . . , n}, and identify a function f : [n] → X (for some set X) with the
sequence (f(1), . . . , f(n)).

By surjection, we mean a function f : [m] → [n] (for some m,n ⩾ 1) that is sur-
jective. For arbitrary h : [m] → [n], we can build a surjection pack(h) := ϕ ◦ h :
[m] → [|Im(h)|], where ϕ is the unique increasing bijection Im(h) → [|Im(h)|]. For
example, we have pack(1, 4, 3, 4) = (1, 3, 2, 3). Surjections label the faces of permuto-
hedra, as shown by Chapoton in [4]. Surjections also appear in [17] under the name
of packed words as building blocks of the Hopf algebra WQSym, isomorphic to the
one defined for permutohedra by Chapoton. The computations we make below in
Burgunder–Ronco style correspond precisely to the computations and the tridendri-
form decomposition in WQSym as described in [17].

If f : [m1] → [n1] and g : [m2] → [n2] are surjections, we look for all surjections
(h, k) : [m1 + m2] → [n], for max(n1, n2) ⩽ n ⩽ n1 + n2, such that pack(h) = f
and pack(k) = g. Below, we do this for f := (1, 2, 1) and g := (2, 1), underlining the
maximum elements of h and of k.

• n = 2: (1, 2, 1, 2, 1)
• n = 3: (1, 2, 1, 3, 1), (1, 3, 1, 3, 2), (2, 3, 2, 2, 1), (1, 2, 1, 3, 2), (1, 3, 1, 2, 1), (2, 3, 2, 3, 1)
• n = 4: (1, 2, 1, 4, 3), (1, 3, 1, 4, 2), (1, 4, 1, 3, 2), (2, 3, 2, 4, 1), (2, 4, 2, 3, 1), (3, 4, 3, 2, 1).

We collect those pairs in the following formal sums (cf. §1):
f ≺ g := (2, 3, 2, 2, 1) + (1, 3, 1, 2, 1) + (1, 4, 1, 3, 2) + (2, 4, 2, 3, 1) + (3, 4, 3, 2, 1)

(max(h) > max(k))
f · g := (1, 2, 1, 2, 1) + (1, 3, 1, 3, 2) + (2, 3, 2, 3, 1)

(max(h) = max(k))
f ≻ g := (1, 2, 1, 3, 1) + (1, 2, 1, 3, 2) + (1, 2, 1, 4, 3) + (1, 3, 1, 4, 2) + (2, 3, 2, 4, 1)

(max(h) < max(k))
f ∗ g := (f ≺ g) + (f · g) + (f ≻ g).

The operations ≺, · and ≻ satisfy the following tridendriform equations
(a ≺ b) ≺ c = a ≺ (b ∗ c) (≺∗)
(a ≻ b) ≺ c = a ≻ (b ≺ c) (≻≺)
(a ∗ b) ≻ c = a ≻ (b ≻ c) (∗≻)
(a · b) · c = a · (b · c) (·ass)
(a ≻ b) · c = a ≻ (b · c) (≻ ·)
(a ≺ b) · c = a · (b ≻ c) (≺ ·≻)
(a · b) ≺ c = a · (b ≺ c) (·≺)

and the operation ∗ is associative.
The tridendriform structure was first recognized and defined by Loday and

Ronco [13] on Schröder trees, i.e. planar trees without unary nodes. We will denote
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such trees as •(T1, . . . , Tn), for n ̸= 1, where T1, . . . , Tn are themselves Schröder trees.
The tree with only one leaf is then •(). Schröder trees with at least two leaves label
the faces of associahedra. The three tridendriform operations (already illustrated in
§1) are defined as follows (with the convention that •() ∗ S = S = S ∗ •()):

•(S1, . . . , Sn) ≺ T := •(S1, . . . , Sn−1, Sn ∗ T )
S ≻ •(T1, . . . , Tn) := •(S ∗ T1, T2, . . . , Tn)

•(S1, . . . , Sm) · • (T1, . . . , Tn) := •(S1, . . . , Sm−1, Sm ∗ T1, T2 . . . , Tn).

Associahedra and permutohedra are examples of hypergraph polytopes, also known
as nestohedra [19, 10]. Our goal is to define in this more general framework, and under
suitable conditions, an associative product, with associated tridendriform decompo-
sition, instantiating to these two examples and more.

We close this section by studying the relation between tridendriform structures and
associativity more closely. Burgunder and Ronco [2] have introduced a variation of
tridendriform algebras, called q-tridendriform algebras (for q ∈ R, or more generally
q ∈ k for some field k), where the equations are the same as above, except that now
the operation · is weighted, i.e. a ∗ b is redefined as (a ≺ b) + q(a · b) + (a ≻ b). This
is justified by the following proposition.

Proposition 2.1. Setting a∗b := λ1(a ≺ b)+λ2(a · b)+λ3(a ≻ b), if the tridendriform
equations are satisfied (with this definition of ∗), then ∗ is associative if λ1 = λ3 = 1.

Proof. We match
λ1λ1 (a ≺ b) ≺ c︸ ︷︷ ︸

(≺∗)

+ λ1λ2 (a · b) ≺ c︸ ︷︷ ︸
(·≺)

+ λ1λ3 (a ≻ b) ≺ c︸ ︷︷ ︸
(≻≺)

+ λ2λ1 (a ≺ b) · c︸ ︷︷ ︸
(≺·≻)

+ λ2λ2 (a · b) · c︸ ︷︷ ︸
(·ass)

+ λ2λ3 (a ≻ b) · c︸ ︷︷ ︸
(≻·)

+ λ3 (a ∗ b) ≻ c︸ ︷︷ ︸
(∗≻)

with
λ1 a ≺ (b ∗ c)︸ ︷︷ ︸

(≺∗)

+ λ2λ1 a · (b ≺ c)︸ ︷︷ ︸
(·≺)

+ λ2λ2 a · (b · c)︸ ︷︷ ︸
(·ass)

+ λ2 λ3a · (b ≻ c)︸ ︷︷ ︸
(≺·≻)

+ λ3λ1 a ≻ (b ≺ c)︸ ︷︷ ︸
(≻≺)

+ λ3λ2 a ≻ (b · c)︸ ︷︷ ︸
(≻·)

+ λ3λ3 a ≻ (b ≻ c)︸ ︷︷ ︸
(∗≻)

using (≺∗) (resp. (∗≻), (≺ ·≻)) and the assumption λ1 = 1 (resp. λ1 = λ3 = 1). □

3. Hypergraph polytopes
We first recall all the needed definitions in §3.1, and then give a number of examples
in §3.2.

3.1. Basic definitions. A hypergraph is given by a set H of vertices (the carrier),
and a subset H ⊆ P(H)\∅ such that

⋃
H = H. The elements of H are called

the hyperedges of H. We always assume that H is atomic, by which we mean that
{x} ∈ H, for all x ∈ H. Identifying x with {x}, H can be seen as the set of hyperedges
of cardinality 1, also called vertices. We shall use the convention to give the same name
to the hypergraph and to its carrier, the former being the bold version of the latter. A
hyperedge of cardinality 2 is called an edge. Note that any ordinary graph (V,E) can
be viewed as the atomic hypergraph {{v} | v ∈ V } ∪ {e | e ∈ E} (with no hyperedges
of cardinality ⩾ 3).

If H is a hypergraph, and if X ⊆ H, we set HX := {Z | Z ∈ H and Z ⊆ X},
and H\X = HH\X . We say that H is connected if there is no non-trivial partition
H = X1∪X2 such that H = HX1 ∪HX2 , and that X ⊆ H is connected in H, or that X
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y

v

u

x

Figure 1. This polytope is obtained from the tetrahedron (with
facets identified with x, y, u and v, as indicated by dotted arrows)
by truncating three of its vertices (as dictated by the tubes {x, y, u},
{x, y, v}, and {x, u, v} of H) and four of its edges (as dictated by the
four hyperedges of cardinality 2 of H).

is a tube (1) of H, if HX is connected. For each finite hypergraph there exists a unique
partition H = X1 ∪ . . . ∪ Xm such that each HXi

is connected and H =
⋃

(HXi
).

The HXi
are the connected components of H. The notation H, X ⇝ H1, . . . ,Hn will

mean that H1, . . . ,Hn are the connected components of H\X.
Došen and Petrić [8] have proposed the following insightful reading of the data of a

finite connected hypergraph H as a truncated simplex: the elements of H are identified
with the facets (i.e. codimension 1 faces) of the (|H| − 1)-dimensional simplex, and
each ∅ ⊊ X ⊊ H, |X| ⩾ 2, such that HX is connected designates the intersection of
the facets in X as a face to be truncated. The obtained polytopes, called hypergraph
polytopes, extend the construction of graph associahedra [3, 21], and are equivalent
to nestohedra.

Example 3.1. The hypergraph
H = {{x}, {y}, {u}, {v}, {x, y}, {x, u}, {x, v}, {u, v}, {x, u, v}}

can be represented pictorially as follows:

x

y

u v

Here, the hyperedge {x, u, v} is represented by the circled-out area around the vertices
x, u and v. We show in Figure 1 the polytope encoded by H. △

Given a finite connected hypergraph H, the faces of the polytope obtained by
performing all the truncations prescribed by H are labeled by non-planar trees, called
constructs, whose nodes are decorated by non-empty subsets of H and whose recursive
definition is given next using the syntax introduced in [7].

Let ∅ ̸= Y ⊆ H. If H, Y ⇝ H1, . . . ,Hn, and if T1, . . . , Tn are constructs of
H1, . . . ,Hn, respectively, then the tree obtained by grafting T1, . . . , Tn on the root
node decorated by Y , denoted by Y (T1, . . . , Tn) (or sometimes Y {Ti | 1 ⩽ i ⩽ n}), is

(1)The name “tube” was originally introduced in the setting of graphs and graph associahedra
[3]. We extend here its use to hypergraphs.
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Y

X

T11· · · T1m T2 · · · Tn

⊆

X ∪ Y

T11· · · T1m T2 · · · Tn

Figure 2. Immediate face inclusion

a construct of H. We write Y = root(Y (T1, . . . , Tn)). The base case is when Y = H
(and hence n = 0): then the one-node tree H() (written simply H) is a construct. We
write T : H to denote that T is a construct of H.

Convention 3.2. In order to facilitate the notation for constructs, we shall represent
their singleton vertices without the braces. For example, instead of {x}({u, v}, {y})
and {x}({u}({v}), {y}), we shall write x({u, v}, y) and x(u(v), y). Also, we shall freely
confuse the vertices of constructs with the sets decorating them, since they are a fortiori
all distinct. We shall use the following graphical representation for constructs: the
constructs, say, x(y, {u, v}) and x(u(v), y) will be drawn as

x

{u, v} y

and
x

yu

v

,

respectively.

The description of faces as trees is particularly nice for encoding (immediate) face
inclusions: by contracting an edge of a construct representing a face of dimension
p, and merging the decorations of the two nodes related by that edge, one gets a
face of dimension p + 1, as illustrated in Figure 2. We shall not make use of the
resulting partial order on faces in the present paper (see however §5), but it helps in
understanding what is going on in the pictures.

Remark 3.3. Constructs as presented here are just an alternative description of the
tubings and of the nested sets in the literature on graph associahedra [3] and nestohe-
dra [19], respectively. Indeed, let us denote, for every node Y of a construct T : H, by
↑T (Y ) the union of the labels of the descendants of Y in T (all the way to the leaves),
including Y . By definition of constructs, ↑T (Y ) is a tube of H. We then associate
with T the following nested set, in the terminology of [19]:

ψ(T ) = {↑T (Y ) | Y is a (label of a) node of T}.

Therefore, there are as many tubes in the nested set associated to a construct T as
there are nodes in T . Alternatively, the function ψ is defined recursively by

ψ(X(T1, . . . , Tn)) = {H}
⋃

(
⋃

i=1,...,n

ψ(Ti)).

We refer to [7, Proposition 2] for an exact characterization of inductively defined
constructs as nested sets. We just note here that the function ψ defined above provides
a bijection from constructs to nested sets. In addition, we note that, if H is an ordinary
graph, the notion of nested set comes down to that of a tubing of H, in the terminology
of [3], making the above correspondence a bijection from constructs to graph tubings.
We illustrate the constructs-as-tubings characterization in Example 3.10, and we come
back to it again in §4.4.
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3.2. Notable families of hypergraph polytopes. We next give examples of
hypergraph polytopes, most of which will be revisited later in the paper. We start
with the family of simplices, which are the limit cases of hypergraph polytopes for
which no truncation is prescribed by the corresponding hypergraphs.

Example 3.4. Simplices are “encoded” by the hypergraphs
SX = {{x} | x ∈ X} ∪ {{X}},

having only trivial hyperedges (i.e. the vertices and the maximal hyperedge ensuring
that the hypergraph is connected). The constructs have the form

Y

y1 y2 · · · yk

where ∅ ⊊ Y ⊆ X and {y1, . . . , yk} = H\Y , and are therefore in bijection with the
non-empty subsets of X, which can also be seen as pairs (X,Y ) standing for X in
which all elements of Y have been pointed. In the picture below, we label the simplex
S{x,y,u,v} by the constructs associated to each face:

y

v

v

x y z

y

x u v

u

x y v

x

y u v

{x, v}

y u

{u, v}

x y

{y, u}

x v

{x, y}

u v

{y, v}

x u

{x, u}

y v

{x, y, v}

u

{x, y, u}

v

{x, u, v}

y
{y, u, v}

x

u

x

Here, identifying the facets of the tetrahedron with the elements of the set {x, y, u, v}
(as we do by using dotted arrows), the construct associated to the face defined as
the intersection of facets contained in a subset ∅ ⊊ Y ⊊ {x, y, u, v} has the set
{x, y, u, v}\Y as root vertex, and the interior of the simplex is labeled by the single-
node construct

{x, y, u, v} .
In particular, the faces of dimension k are labeled by constructs whose roots are the
sets of size k + 1. △

In our next example, we illustrate how the hypergraph structure dictates trunca-
tions, and how to associate a construct to a face resulting from a truncation. The
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xz

y

y

x z

{x, z}
y

{y, z}
x

{x, y}
z

{x, y, z}

z

x y

x

y z

x
z

y

y

x z

{x, z}
y

{y, z}
x

{x, y}
z

{x, y, z}

x
z

y

x

y
z

{y, z}
x

z

x y

x

y z

(a) (b)

y

x z

{x, z}
y

{y, z}
x

{x, y}
z

{x, y, z}

x
z

y

z
x

y

x

y
z

z

y
x

{y, z}
x

{x, y}
z

z

x y

x

y z

y

x z

{x, z}
y

{y, z}
x

{x, y}
z

{x, y, z}

x
z

y

z
x

y

x

y
z

z

y
x

y
x
z

y
z
x

{y, z}
x

{x, y}
z

{x, z}
y

z

x y

x

y z

(c) (d)

Figure 3. The sequence of 2-dimensional hypergraph polytopes

latter association is an instance of the order-isomorphism between the posets of com-
binatorial and geometric faces of hypergraph polytopes that has been established in
[8] (see also [7, Theorem 25]).

Example 3.5. We consider the sequence of hypergraphs

x

y z

x

y z

x

y z

x

y z

Triangle −→ Square −→ Pentagon −→ Hexagon
on the vertex set {x, y, z}, which starts from the hypergraph that has no hyperedges
of cardinality 2, and in which each of the following hypergraphs is obtained from
the previous one by adding exactly one hyperedge of cardinality 2. (Note that, in
the transition from the Square to the Pentagon , the hyperedge {x, y, z} is no longer
necessary to ensure that the hypergraph is connected.) These four hypergraphs encode
all possible 2-dimensional hypergraph polytopes, namely the triangle, the square, the
pentagon and the hexagon, as indicated above. In Figure 3, we present the complete
face lattice descriptions of these polytopes in terms of constructs.
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We now explain the corresponding sequence of truncations. Starting with the 2-
dimensional simplex with facets identified with x, y and z, the Triangle, having no
hyperedges of cardinality 2, trivially dictates 0 vertex truncations, thereby leaving the
simplex unaffected, the Square encodes the truncation of the bottom left vertex (the
intersection of facets y and z), the Pentagon additionally dictates the truncation of
the bottom right vertex (the intersection of facets x and y), and finally the Hexagon
additionally incorporates the truncation of the top vertex (the intersection of facets
x and z), encoding thereby the truncations of all the vertices of the starting simplex.

The association of constructs to geometric faces goes as follows. For the trian-
gle, we do as described in Example 3.4. In the transition from the triangle to the
square, the truncation of the bottom left vertex is reflected combinatorially by the

fact that the tree
x

y z

, which is a construct of the Triangle, is not a construct of

the Square. Indeed, since {y, z} is connected in the Square,
x

y z

gets replaced by
3 new constructs:

x
z
y

,
x

y
z

and {y, z}
x

,

encoding two vertices and one edge. Note that the remaining faces of the square carry
over their construct description from the triangle. Moving on to the pentagon and
ultimately to the hexagon, it is now easy to associate constructs to the new faces
obtained by truncations of the two remaining vertices of the starting triangle. △

Example 3.6. As a slightly more involved example, we show in Figure 4 the construct
description of the 2-dimensional geometric faces of the polytope from Example 3.1.
The four 2-dimensional faces that originate from the facets of the starting simplex
carry over their construct description from the one given for those facets in Example
3.4. Clearly, the association of constructs to the facets of the above polytope unam-
biguously extends to the association of constructs to all the remaining faces of that
polytope. For example, the unique common edge of the facets

{x, u, v}
y and

{x, u}
{y, v} is given by the construct

{x, u}
v
y

.

△

We next give two examples that do not fit in the framework of graph associahedra:
hypercubes and erosohedra.

Example 3.7 (Hypercubes). For a finite ordered set X = {x1 < · · · < xn}, consider
the hypergraph

CX = {{x1}, . . . , {xn}} ∪ {{xj | 1 ⩽ j ⩽ i} | 1 ⩽ i ⩽ n}.

The constructs of CX are in one-to-one correspondence with the set of words of
length n over the alphabet {+,−, •} starting with +, and hence decorate the faces
of an (n− 1)-dimensional hypercube. More precisely, we recursively read a construct
from such a word (w1 + w2), where + does not occur in w2, as follows:

- The positions of the occurrences of • in w2 plus the last occurrence of + in
w, form the root R of the construct.

- w1 encodes a construct S (if not empty).
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y

v

u

x

{x, u}
{y, v}

{u, v}
{x, y}

{x, y, u}
v

{x, u, v}
y

{x, y, v}
u

{x, v}
{y, u}

{x, y}
{u, v}

Figure 4. The association of constructs to the facets
of the polytope encoded by the hypergraph H =
{{x}, {y}, {u}, {v}, {x, y}, {x, u}, {x, v}, {u, v}, {x, y, u, v}}.

- The children of R in the construct are S (if any), and the positions of the
occurrences of − in w2.

For instance, the constructs

3

{1, 2} 4
, {2, 3}

1 4

, 4
1

2 3

and 4
3
2
1

of C{1,...,4} correspond to the words
+ • +− + + •− + − −+ and + + ++ ,

respectively. We have already listed all the constructs of the hypercube C{y<z<x}

in the top right picture of Figure 3. The corresponding words can be read from the
picture below:

+ − −

+ + •

+ • −+ − •

+ • •

+ + +

+ − +

+ • +

+ + −

△

Example 3.8 (Erosohedra). They are obtained by truncating every vertex in the
simplex. We name them so by analogy with erosion of rocks. Erosohedra in dimension
2 and 3 are represented on Figure 5. The associated hypergraphs are given by:

EX = {{x1}, . . . , {xn}} ∪ {{xj | j ̸= i} | 1 ⩽ i ⩽ n},
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Figure 5. Erosohedra in dimension 2 and 3

where X = {x1, . . . , xn}.
The constructs of the erosohedra are of the form

· · ·

Y

y1 yk

(with |Y | ⩾ 2) or

· · ·

x

Z

y1 yk

.

△
The number of faces in the erosohedron is given as follows.

Lemma 3.9. The number of vertices in the erosohedron of dimension n is n(n + 1)
and the number of faces of dimension k is (n− k)

(
n

k+1
)
. The total number of faces is

thus 2n−1(n+ 2) − 2n− 1 for n > 1.

Proof. The vertices of the erosohedron EX correspond to constructs of the form
x(y(z1, . . . , zk)), where x, y ∈ X and {z1, . . . , zk} = X\{x, y}. Faces of dimension
k > 0 correspond to two types of constructs:

• {x0, x1, . . . , xk}(y1, . . . , yp), where {y1, . . . , yp} = X\{x0, . . . , xk}, and

• x0({x1, . . . , xk+1}(y1, . . . , yp)), where {y1, . . . , yp} = X\{x0, . . . , xk+1}.
Hence, there are (n − k − 1)

(
n

k+1
)

+
(

n
k+1

)
such faces. The total number of faces is

then given by summing the previous formulas. □

Example 3.10. We get associahedra and permutohedra from the linear and com-
plete graphs, respectively:

KX = {{x1}, . . . , {xn}, {x1, x2}, . . . , {xn−1, xn}, {x1, . . . , xn}},

for X = {x1 < · · · < xn}, and

PX = {{x1}, . . . , {xn}, {x1, . . . xn}} ∪ {{xi, xj} | 1 ⩽ i ̸= j ⩽ n},

for X = {x1, . . . , xn}. One can indeed check that the constructs of KX (resp. PX)
are in one-to-one correspondence with the planar trees (resp. surjections) of §2. The
labeling enabling to identify planar trees with constructs of the associahedra is ob-
tained as a generalization of the one for binary search trees: given a planar tree with
root of arity p+ 1, the root is labeled by {xi1 , . . . , xip

}, and each subtree T0, . . . , Tp is
labeled recursively, in such a way that the condition max Tj < xij+1 < minTj+1 for
any 0 ⩽ j ⩽ p− 1 is satisfied. For permutations, note that we can arrange the data of
a surjection f : [m] → [n] as the linear construct f−1(n)(f−1(n− 1)(. . . (f−1(1)))) of
height n. In Figure 6, we show the planar trees (resp. surjections) that correspond to
the constructs of the 2-dimensional associahedron (resp. permutohedron) from Figure
3(c) (resp. Figure 3(d)). Finally, as an example of the correspondence between con-
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212

122221

111

312 213

321 123

231 132

211 112

121

Figure 6. Left: the planar-tree labeling of the faces of the associahe-
dron Kx<y<z. Right: the association of surjections f : {x, y, z} → [i],
for 1 ⩽ i ⩽ 3, to the faces of the hexagon P{x,y,z}, written using the
abbreviation f(x)f(y)f(z) for (f(x), f(y), f(z)).

x

y z

x

y z

x

y z

x

y z

x

y z

x

y z

x

y z

x

y z

x

y z

x

y z

x

y z

Figure 7. The tubing description of the associahedron Kx<y<z. The
tubings are presented in the standard way, as nested structures of
connected subgraphs of Kx<y<z (cf. [3, Figure 1]).

structs and tubings from Remark 3.3, in Figure 7 we show the tubing description of
the 2-dimensional associahedron from Figure 3(c). △

Example 3.11. Our final example is the family of friezohedra. Consider the infinite
graph F on Z with the set of edges {(x, y)||x − y| ⩽ 2}, and its restrictions FX

to finite sets X = {x1 < · · · < xn} ⊆ Z such that FX is connected, which we
call friezohedra. Note that FX is connected exactly when there is no i such that
xi+1 − xi > 2,. We distinguish the compact friezohedra, which are the friezohedra
such that X is an interval in Z (implying a fortiori that FX is connected). Families
constructed from an infinite hypergraph through restrictions as in this example are
called restrictohedra and are studied in full generality in §4.2. The name "friezohedron"
comes from the shape of the hypergraphs of a compact friezohedron for X sufficiently
large, as illustrated in Figure 8.
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1
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3

4

Figure 8. Top: three examples of friezohedra. The rightmost one is
the (compact) friezohedron on {1, . . . , 10}. Bottom: the polytope for
the compact friezohedron on 4 vertices.

n
k 1 2 3 4 5 Sum over k

1 1 1
2 1 1 2
3 1 6 6 13
4 1 13 33 22 69
5 1 25 119 188 94 427

Figure 9. Number of constructs with k vertices of the compact
friezohedron on n vertices

We do not have at the time of writing a “simple” combinatorial interpretation of the
constructs of the compact friezohedra. In Figure 9, we give the number of constructs
with k nodes for |X| = n, for low values of k, n. △

More examples of truncations and constructs are to be found in [8, 7], and also in
the sections that follow.

4. Shuffle product
In this main section, we unify the above mentioned works of Burgunder, Loday and
Ronco into a notion that we call shuffle product of constructs (defined in an unbiased
style, cf. §1). Towards achieving this goal, in §4.1 we introduce a general framework
based on the formalism of hypergraph polytopes of §3, which will serve as “carrier” of
the algebraic structure that we define by induction in §4.3. We show that the structure
satisfies an equation that we call polydendriform, and derive an associative product
from it. We show that associahedra and permutohedra fit in this framework, as well
as all families of restrictohedra, which we define and study in §4.2. We illustrate the
notions introduced with the example of friezohedra. In §4.4, we give an alternative
non-recursive definition of the associated associative product. In §4.5, we further
enlarge the framework in order to cover more examples.

4.1. Strict teams, clans and delegations. As announced just above, the first
step towards defining the shuffle product of constructs consists in establishing a for-
mal underlying setting. The latter consists in the notions of universe, teams, clans
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and delegations. Before defining those formally, we shall introduce them through the
example of permutohedra.

Let us first reformulate the shuffle product described in §2 in terms of constructs,
using the dictionary given in Example 3.10. We read the surjections f = (1, 2, 1) and
g = (2, 1) as the constructs b({a, c}) and d(e) of P{a,b,c} and P{d,e}, respectively.
(Slowly, we read f as a surjection from {a, b, c} to [2], and note that f−1(1) = {a, c}
and f−1(2) = {b}.) Under this guise, we rephrase the definitions of f · g and f ≺ g
(leaving f ≻ g to the reader) as follows:

f · g = {b, d}({a,c,e})+{b,d}(e({a,c}))+{b,d}({a,c}(e))
f ≺ g = b({a,c,d}(e))+b(d({a,c,e}))+b(d(e({a,c})))+b(d({a,c}(e)))+b({a,c}(d(e))),

where {b, d}({a, c, e}) reads back as (1, 2, 1, 2, 1), and so on. The algorithmic reading
of a construct appearing in the shuffle product f ∗ g is as follows: we can build such
a construct by choosing for its root either the union of the roots of f and g, or only
the root of f (resp. of g), and then proceed recursively. We then obtain:

f · g = {b, d}({a, c} ∗ e)
f ≺ g = b({a, c} ∗ d(e))

= b({a, c, d}(e)) + b(d({a, c} ∗ e)) + b({a, c}(d(e))),

and analogously for f ≻ g.
In general, and in the unbiased setting, we shall have a finite collection {Ha | a ∈

A} of hypergraphs with disjoint sets of vertices, and constructs Ca : Ha for each
a ∈ A which we shall call collectively a delegation. Our aim will be to define the
shuffle product of those constructs as a sum of constructs of some hypergraph H
such that H =

⋃
a∈A Ha. Above, we have A = {1, 2}, H1 = P{a,b,c}, H2 = P{d,e},

and H = P{a,b,c,d,e}. The pair ({Ha | a ∈ A},H) will be called a preteam, and
we shall say that it is the support of the above delegation. We shall impose some
connectedness conditions on our preteams to make the inductive definition of the
shuffle product possible. In this paper we shall consider two styles of conditions: strict
(in this section) and quasi-strict (in §4.5), leading to the notions of strict and quasi-
strict teams, respectively. Let us zoom a bit more on what “making possible” means:
in the recursive definition, we want to be able to form shuffle products of “smaller”
delegations (like {a, c} ∗ e and {a, c} ∗ d(e) above), which we need to synthesize from
our original delegation, and which need to have a support that is again a team,
and so on. This leads us to collect teams in so-called clans, that are defined as sets
of teams closed under certain operations naturally associated with the conditions
defining teams among preteams. Finally, all hypergraphs involved in our clan are
taken from a certain reference collection of hypergraphs, called a universe. Our results
are parameterized by the choice of a universe and of a clan on this universe. We now
proceed to the formal definition of these notions.

We first specify a collection (or universe) U of connected hypergraphs. Note that
some universes may contain several hypergraphs on the same set of vertices. It is
for instance the case for the universe of erosohedra, which, in fact, contains both
erosohedra and simplices, as we point out in Example 4.32.

A preteam is a pair τ = ({Ha | a ∈ A},H) of a finite set {Ha ∈ U | a ∈ A} of
hypergraphs (for some indexing set A) and a hypergraph H ∈ U, such that the Ha’s
are mutually disjoint and H =

⊔
a∈A Ha. We call H and the Ha’s the coordinating

hypergraph and the participating hypergraphs, respectively.
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Example 4.1. Let us first consider the universe formed by all permutohedra PX . An
example of preteam is given by:

(4.1) τP =
(

{P{♥,♦},P{♣,♠},P{✻},P{★}},P{♥,♦,♣,♠,✻,★}
)
.

The reader may wonder why we do not simply take X = [n] (for varying n), as in §2.
We refer to Remark 4.13 for a discussion. △

Example 4.2. An example of preteam for the universe of friezohedra is given by

({H1 = F{1,3,5},H2 = F{2,4},H3 = F{6,7,8}},F{1,...,8}). △

We next move to our strict condition on preteams. The reader is advised to read
it side by side with the definition of shuffle product given in §4.3. A preteam is called
a strict team if for each choice of a subset ∅ ̸= B ⊆ A and of a subset ∅ ̸= Xb ⊆
Hb for each b ∈ B, inducing the decompositions Hb, Xb ⇝ H(b,1), . . . ,H(b,nb) and
H,

⋃
b∈B Xb ⇝ HB

1 , . . . ,HB
nB

, we have that, for each

ã ∈ Ã := (A\B) ∪ {(b, i) | b ∈ B, 1 ⩽ i ⩽ nb},

Hã ∈ U, and Hã is included in a connected component of H\(
⋃

b∈B Xb).
As an intuitive guide, let us anticipate as above that we have constructs Ca for all

a ∈ A, and suppose that Xb is the root of Cb for all b ∈ B. Then in the above definition
we prepare the ground for defining those contributions to the shuffle product of the
constructs Ca that share the initial step of picking together the roots of all constructs
Cb, for b ranging over B.

The following is an example of a non-strict preteam.

Example 4.3. Let us consider the following preteam of hypercubes (cf. Example 3.7):({
H1 = C{1},H2 = C{2,3},H3 = C{4}

}
,C{1,2,3,4}

)
.

Choosing B = 1 and X1 = {1}, we get that H2 is not included in a connected com-
ponent of H\{1}. However, this preteam will fit in the extended quasi-strict setting
(see Example 4.31). △

As we shall see, preteams associated respectively with associahedra, permutohedra
and friezohedra are strict. On the other hand, preteams associated with simplices,
erosohedra and hypercubes are not strict, as some Hã are not included in a connected
component of H\(

⋃
b∈B Xb): these last examples fit in the formalism of quasi-strict

teams introduced in §4.5.

Lemma 4.4. A preteam ({Ha | a ∈ A},H) is strict iff, for all a ∈ A and e ∈ Ha, e is
a tube of H. Also, in the above definition of strict team, it holds that Hã is a tube of
H, for all ã ∈ Ã.

Proof. We shall prove the equivalence (1) ⇔ (2) ⇔ (3), where (1) is the definition of
strict team given above, (2) is the characterization claimed in the statement, and (3)
is the definition of team above, enhanced with the additional property claimed in the
statement.

• (1) ⇒ (2). If ({Ha | a ∈ A},H) is a strict team in the sense of the definition
given above, then, in particular, for each a ∈ A and e ∈ Ha, taking B = A,
Xb = Hb for b ̸= a and Xa = (Ha\e), we get that Ha, Xa ⇝ He, and hence
that e is included in a connected component K of H\(

⋃
b∈B Xb). But for our

choice of B, we have H\(
⋃

b∈B Xb) = e, hence this forces K = e, and a fortiori
e is a tube of H.
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Ha0

Ha1 Ha2
Ha3

H

Ha0

Ha1\Xa1 Ha2
Ha3\Xa3

H\(Xa1 ∪Xa3)

a) b)

Figure 10. a) A preteam τ = ({Ha0 ,Ha1 ,Ha2 ,Ha3},H) is repre-
sented as a cobordism whose upper and lower boundary disks fea-
ture the participating and coordinating hypergraphs, respectively. b)
For Xa1 ⊆ Ha1 and Xa3 ⊆ Ha3 , the decompositions Ha1 , Xa1 ⇝
H(a1,1),H(a1,2),H(a1,3), Ha3 , Xa3 ⇝ H(a3,1) and H, (Xa1 ∪ Xa2) ⇝
H1,H2,H3 are represented by “embeddings of little disks into big
disks”, in such a way that the little disks represent the correspond-
ing connected components, and their complements in big disks are
the removed sets. This allows us to visualize the induced preteams
τ,Xa1 ∪Xa2 ⇝ τ1, τ2, τ3 as cobordisms in the interior of τ .

• (2) ⇒ (3). Let ã ∈ Ã and ẽ ∈ Hã. Then a fortiori ẽ ∈ Hπ(a), where π : Ã → A
is defined by π(ã) = ã if ã ∈ A\B and π(b, i) = b. Since we assume (2), we have
that ẽ is a tube of H. Thus, all hyperedges of Hã are tubes of H. By standard
connectedness arguments, this, together with the fact that Hã is connected,
implies that Hã is a tube of H: informally, every path of hyperedges of Hã

witnessing the connectedness of Hã, for arbitrary chosen vertices in Hã, can
be turned into a path of hyperedges of H witnessing the connectedness of Hã

in H for the same chosen vertices.
• (3) ⇒ (1). Obvious.

□

Note that, for each ∅ ̸= B ⊆ A and choice of ∅ ̸= Xb ⊆ Hb for each b ∈ B,
inducing the decomposition H,

⋃
b∈B Xb ⇝ H1, . . . ,HnB

, the structure of a strict
team τ implies the existence of a surjective function

φB,{Xb|b∈B}
τ : Ã → {1, . . . , nB} (written φB

τ for short),
which associates to ã ∈ Ã the index of the connected component of H\

⋃
b∈B Xb that

contains Hã. By Lemma 4.4, this determines preteams
τi = ({Hã | ã ∈ Ã and φτ (ã) = i},HB

i ) (1 ⩽ i ⩽ nB).
We summarize this by the notation τ,

⋃
b∈B Xb ⇝ τ1, . . . , τnB

. In order to ease the un-
derstanding of the decomposition τ,

⋃
b∈B Xb ⇝ τ1, . . . , τnB

, in Figure 10, we suggest
an interpretation of preteams and strict teams in terms of cobordisms.

Example 4.5. Consider the preteam in Example 4.2 :
({H1 = F{1,3,5},H2 = F{2,4},H3 = F{6,7,8}},F{1,...,8})

and consider B = {1, 2}, X1 = {3} and X2 = {2}, inducing the decompositions
H1, X1 ⇝ H(1,1) = F{1},H(1,2) = F{5},
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H2, X2 ⇝ H(2,1) = F{4}

and
H,∪i∈BXi ⇝ HB

1 = F{1},HB
2 = F{4,...,8}.

The map φB,{Xb|b∈B}
τ associates 1 to (1, 1) and 2 to the other elements. This leads to

two preteams τ1 = ({F{1}},F{1}) and τ2 = ({F{4},F{5},F{6,7,8}},F{4,...,8}). △

A strict clan is a set Ξ of strict teams such that, for each team τ ∈ Ξ, and each
situation τ,

⋃
b∈B Xb ⇝ τ1, . . . , τn as above, we have that τi ∈ Ξ for all i.

Let us fix a strict clan Ξ, and some q ∈ R (our product will be parameterized by
q, cf. end of §2). A Ξ-delegation (or delegation for short) is a pair

δ = ({Ca : Ha | a ∈ A},H) such that τ := ({Ha | a ∈ A},H) ∈ Ξ.
We say that τ is the support of δ, and that Ca is the construct of δ at position a.
Observe that, for ∅ ̸= B ⊆ A and Ã as above, assuming that Xa is the root vertex of
Ca for each a ∈ A, there is a canonical association of a construct Cã to each ã ∈ Ã,
which gives rise to delegations

(4.2) δB
i = ({Cã : Hã | ã ∈ Ã and φB

τ (ã) = i},HB
i ),

for 1 ⩽ i ⩽ nB . More precisely, for b ∈ B, we set Cb = Xb(C(b,1), . . . , C(b,nb)) with
C(b,i) : H(b,i). We summarize this by the notation δ,

⋃
b∈B Xb ⇝ δB

1 , . . . , δ
B
nB

. All of
these induced delegations feature in the definition of shuffle product given in §4.3.

Example 4.6. The strict clan associated with permutohedra is obtained by consider-
ing the set of all preteams

({PVi}i∈I ,PV ),
where {Vi}i∈I forms a partition of V (in the universe of permutohedra, it is easily
checked that all preteams are in fact strict). △

Example 4.7. The strict clan associated with friezohedra is obtained by considering
the set of all strict teams

({FVi}i∈I ,FV ),
where {Vi}i∈I forms a partition of V and each hypergraph FVi and FV are connected.
A delegation associated with the strict team of Example 4.2 is given by:

({3(1, 5) : F{1,3,5}, 2(4) : F{2,4}, {6, 7, 8} : F{6,7,8}},F{1,...,8}).
Considering B = {1, 2}, X1 = {3} and X2 = {2} as in Example 4.5, we get

delegations
δB

1 = ({1 : F{1}},F{1})
and δB

2 = ({4 : F{4}, 5 : F{5}, {6, 7, 8} : F{6,7,8}},F{4,...,8}). △

We end this section by defining further conditions on clans:
• A clan Ξ is associative if, for all

τ=({Ha | a ∈ A},H) ∈ Ξ , a0 ∈ A , τ ′ =({H(a0,a′) | a′ ∈ A′},Ha0) ∈ Ξ,
we have

τ ′′ := ({Ha | a ∈ A\{a0}} ∪ {H(a0,a′) | a′ ∈ A′},H) ∈ Ξ.
We shall refer to τ ′′ as the grafting of τ ′ to τ along a0. (Note that, again, we
set the scene here for an unbiased version of associativity). We shall need this
condition in order to phrase and prove the associativity of the product that
we define in §4.3.
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• In a different direction, we define the notion of ordered (strict) universe,
preteam, team and clan. We suppose given an ordered set, say Z. For X1, X2 ⊆
Z, we write X1 < X2 if max(X1) < min(X2). An ordered universe is a universe
U such that, for all H ∈ U, H ⊆ Z, and such that all decompositions H, X ⇝
H1, . . . ,Hp can be indexed in such a way that Hi < Hi+1 for all i. An ordered
preteam is a pair ((H1, . . . ,Hp),H) such that ({H1, . . . ,Hp},H) is a preteam
and such that H1 < · · · < Hp. Ordered teams are teams whose underlying
preteam is ordered. Note that when τ is ordered, if τ,

⋃
b∈B Xb ⇝ τ1, . . . , τnB

,
then each τi is ordered (to see this, one uses the assumption that U is ordered).
An ordered clan is a clan whose teams are all ordered.

4.2. Restrictohedra. Our main provision of strict clans comes from the universes
of restrictohedra, that we define next. Fix a (possibly infinite) hypergraph R, and let
UR be the universe consisting of all hypergraphs RX , such that X ⊆ R is non-empty
and finite, and RX is connected: we call them the R-restrictohedra, or restrictohedra
for short. Let ΞR be the set of all pairs ({RVa

|a ∈ A},RV ) where V ⊆ R, {Va}a∈A

forms a partition of V , and the hypergraphs RVa
and RV are all in UR. We can

restrict this to an ordered setting if R is order-friendly, meaning that R ⊆ Z and that
the connected components RV1 , . . . ,RVp of RV , for any finite V ⊆ Z such that RV

is not connected, can be indexed in such a way that Vi < Vi+1 for all i. A provision
of order-friendly graphs is provided by Proposition 4.10 below.

Example 4.8. The following hypergraph is not order-friendly

Rnof := {{a}|a ∈ Z} ∪ {{n,−n}|n ∈ N∗}}.

Indeed, the connected components of Rnof
{−2,1,2} are Rnof

{−2,2} and Rnof
{1} . △

Proposition 4.9. For all R, ΞR is an associative clan. If R is order-friendly, then
the restriction of ΞR (still denoted by ΞR) to its ordered preteams is an ordered
associative clan.

Proof. We first note that every preteam ({RVa
|a ∈ A},RV ) satisfies

⋃
a∈A RVa

⊆ RV

by definition, and hence, by Lemma 4.4, is a fortiori a strict team. Next, if (in the
notation of §4.1) τ,

⋃
b∈B Xb ⇝ τ1, . . . , τnB

, we have to prove that τi ∈ ΞR for all
i. This follows from the fact that, for any V and W ⊆ V , (RV )\W = RV \W and
that, for all X ⊆ R, the connected components of RX are all of the form RY for
some Y ⊆ X. Finally, the clan is associative since ΞR includes all “possible” preteams
in the sense that for any X ⊆ R and any partition {Xa | a ∈ A} of X, we have
({RXa |a ∈ A},RX) ∈ ΞR if and only if RX and RXa (for all a ∈ A) are connected.

Suppose now that R is moreover order-friendly. Then it is immediate that UR
is ordered. Since we limit ourselves to ordered preteams ((H1, . . . ,Hm),RV ) with
Hi = RVi

and Vi < Vi+1 for all i, and since R is order-friendly, then, for all B ⊆ A =
{1, . . . ,m}, there is an induced order on Ã such that, if ã1 < ã2, then Vã1 < Vã2 , where
Hã = RVã

. This in turn implies that (φB
τ )−1(1),. . . , (φB

τ )−1(nB) form successive
intervals of Ã, and hence that each τi is ordered. □

Proposition 4.10. For all 1 ⩽ k ∈ N ∪ {∞}, the following graph is order-friendly:

Γk := {{a} | a ∈ Z} ∪ {{a, a+ l} | a ∈ Z, l ∈ N, 1 ⩽ l ⩽ k}.

Proof. A subset V ⊆ Z is not connected in Γk if and only if there is a set X of at least k
consecutive integers in ] min(V ); max(V )[, which does not intersect V . If X1, . . . , Xp

are the sets of such maximal sequences of consecutive integers, then the interval
[min(V ),max(V )] in Z is the union of consecutive intervals I0, X1, I1, . . . , Xp, Ip, and
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the connected components of (Γk)V are (Γk)V ∩I0 , . . . , (Γk)V ∩Ip
. Then (V ∩ Ij) <

(V ∩ Ij+1) follows a fortiori from Ij < Ij+1. □

By Propositions 4.10 and 4.9, we get an induced associative ordered clan ΞΓk .
In the extreme cases k = 1 and k = ∞, we have our old friends Γ1

X = KX

(for X interval of Z) and Γ∞
X = PX (for finite X ⊆ Z), respectively. The teams

are of the form ({Γ1
X1
, . . . ,Γ1

Xp
},Γ1⋃

Xi

) (where the Xi are adjacent intervals) and
({Γ∞

X1
, . . . ,Γ∞

Xp
},Γ∞⋃

Xi

) (where Xi < Xi+1 for all i < p), respectively. For k = 2, we
have Γ2 = F, and hence we recover also friezohedra as a special case.

We end the section with a characterization of universes arising as restrictohedra.
Proposition 4.11. A universe U is of the form UR, for some hypergraph R, if and
only if it satisfies the following four conditions:

(1) For any hypergraphs H1 and H2 in U, if H1 = H2, then H1 = H2.
(2) If H ∈ U and e ∈ H, if G ∈ U is such that e ⊆ G, then e ∈ G.
(3) If H ∈ U, and if X ⊆ H is such that HX is connected, then there exists G ∈ U

such that G = X.
(4) If H1,H2 ∈ U are such that H1 ∩ H2 is non-empty, then there exists H ∈ U

such that H1,H2 ⊆ H.
Proof. We first check that any universe of the form UR satisfies the conditions in the
statement. Condition (1) is immediate. Conditions (2), (3) and (4) follow immediately
from the observations that, by definition, for arbitrary X, we have e ∈ RX if and only
if e ∈ R and e ⊆ X, that (RH)X = RX , and that the union of two connected sets
with a non-empty intersection is connected.

Conversely, suppose that U satisfies the four conditions of the statement. We set
R =

⋃
{H | H ∈ U}. We shall show the following two properties, which (together

with (1)) imply immediately that U = UR.
(a) If X is a finite set such that there exists a hypergraph H such that H = X

and H ∈ R, then there exists a hypergraph H′ ∈ UK such that H ′ = X and
H ⊆ H′.

(b) If X is a finite set such that there exists a hypergraph H′ such that H ′ = X
and H′ ∈ UR, then there exists a hypergraph H ∈ U such that H = X and
H′ ⊆ H.

For (a), we note that H ⊆ R by definition of R, hence H ⊆ RH , so we can set
H′ := RH , noticing that RH is connected since it contains a connected hypergraph
(namely H) with the same set of vertices.

We now proceed to prove (b). By definition of UR, the assumptions of (b) can
be rephrased as saying that H′ = RX is connected. Also, by definition of R, for
each e ∈ RX , there exists a hypergraph He ∈ U such that e ∈ He. So we have
RX ⊆

⋃
{He | e ∈ RX}, this union being finite since X is. Suppose that RX has more

than one hyperedge and pick e0 ∈ RX . We claim that there exists e1 ∈ RX such that
He0 ∩He1 is non-empty. If it were not the case, then RX would be the disjoint union of
RX ∩ He0 and of RX

⋂
(
⋃

{He | e ̸= e0}), which would contradict the connectedness
of RX . We can thus replace {He | e ∈ RX} by {He | e ̸= e0, e1} ∪ {H01}, where
H01 ∈ U is obtained from He0 and He1 by applying (4). By iterating this, we obtain
a hypergraph H′ ∈ U such that RX ⊆ H′. Note that we can write this as well
as RX ⊆ H′

X , and, as above, we have that the connectedness of RX implies the
connectedness of H′

X .
Our next (independent) observation is that in the presence of (2), condition (3)

can be reinforced as follows. If H ∈ U and if X ⊆ H is such that HX is connected,
then there exists G ∈ U such that G = X and HX ⊆ G. Indeed, let G be obtained
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by applying (3), and let e ∈ HX : then this latter assumption reads as e ⊆ G, and
hence e ∈ G by (2).

Coming back to the proof of (b), we can apply the reinforced version of (3) to
deduce the existence of a hypergraph H ∈ U such that H = X and H′

X ⊆ H. We
thus have RX ⊆ H′

X ⊆ H, which concludes the proof. □

4.3. Shuffle product of delegations of strict clans. We now define the
shuffle product ∗(δ), for a Ξ-delegation δ, where Ξ is a strict clan. Until §4.5, we shall
mostly omit the adjective “strict” for brevity, but its presence is understood.

A linear construct of a hypergraph H is an element of the vector space spanned by
all the constructs of H. We shall denote linear constructs with bold capital letters,
e.g. C = Σi∈IλiCi, where Ci : H, for each i ∈ I, and the notation C : H will mean
that C is a linear construct of H. We then define X(C1, . . . ,

∑
i∈I λiC

i
j , . . . ,Cn) as∑

i∈I λiX(C1, . . . , C
i
j , . . . ,Cn). A rooted linear construct is a linear construct of the

form C = X{Ca | a ∈ A}, and we write root(C) = X.
The shuffle product (or product) of a delegation δ = ({Ca : Ha | a ∈ A},H), with

root(Ca) = Xa for all a ∈ A, is the linear construct of H defined recursively as follows
(with δB

1 , . . . , δ
B
nB

as in (4.2)):

(4.3) ∗(δ) =
∑

∅⊊B⊆A

q|B|−1 ∗B (δ), where ∗B (δ) = (
⋃

b∈B

Xb)(∗(δB
1 ), . . . , ∗(δB

nB
)).

The instantiations of this shuffle product to associahedra and permutohedra are the
ones recalled in §2. We detail the case of permutohedra in the next example.

Example 4.12. We restrict ourselves to teams with only two participating hyper-
graphs (which corresponds to the usual binary product on permutohedra). Then the
shuffle product of a delegation
δ = ({C1 : PY , C2 : PZ},PX), where X = Y ∪ Z,C1 = X1(C ′

1), and C2 = X2(C ′
2),

rewrites as:
∗(δ) = ∗{1}(δ) + ∗{2}(δ) + q ∗{1,2} (δ),

where
∗{1}(δ) = X1(∗({C ′

1 : PY \X1 , C2 : PZ},PX\X1)),
∗{2}(δ) = X2(∗({C1 : PY , C ′

2 : PZ\X2},PX\X2)),
∗{1,2}(δ) = (X1 ∪X2) (∗({C ′

1 : PY \X1 , C ′
2 : PZ\X2},PX\(X1∪X2))).

Writing ∗{1} = ≺, ∗{2} = ≻ and ∗{1,2} = · , and using an infix notation, the formula
for the shuffle product on permutohedra on two constructs C1 = X1(C ′

1) and C2 =
X2(C ′

2) writes as:
C1 ∗ C2 = C1 ≺ C2 + C1 ≻ C2 + q(C1 ·C2),

where
C1 ≺ C2 = X1(C ′

1 ∗ C2),
C1 ≻ C2 = X2(C1 ∗ C ′

2),
C1 ·C2 = (X1 ∪X2) (C ′

1 ∗ C ′
2),

with the convention that if C ′
1 or C ′

2 is the empty construct, then its shuffle prod-
uct with another construct C is C. It can be checked by direct induction that this
definition coincides with the one given in §2. △

Remark 4.13. Let us now explain in a few words why we found convenient to con-
sider permutohedra on a given X which is not necessarily the usually considered set
{1, . . . , n}. Consider the basic example:
(4.4) (1, 2) · (2, 1) = (1, 2, 2, 1) + (1, 3, 3, 2) + (2, 3, 3, 1).
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In terms of constructs, this rewrites as:

(4.5) 2(1) · 3(4) = {2, 3}(1 ∗ 4).

Equation 4.5 invites us to compute products of constructs in the complete graph on
{1, 4}, rather than doing some renamings. This is naturally in phase with the general
philosophy of species. The assignment that maps X to the set of constructs of PX is
functorial (with respect to finite sets and bijections), giving rise to a species in the
sense of Joyal.

Example 4.14. As a second example, we consider friezohedra. Consider the delegation

δ = ({2(1) :F{1,2} , 3(4) :F{3,4}, } , F{1,...,4}).

The associated shuffle product is given by:

∗(δ) = 2(1(3(4))) + 2(3(1, 4)) + q2({1, 3}(4)) + 3(4(2(1)))
+ 3(2(1, 4)) + q3({2, 4}(1)) + q{2, 3}(1, 4).

Consider now the delegation

({3(1, 5) :F{1,3,5} , 2(4) :F{2,4} , {6, 7, 8} :F{6,7,8}} , F{1,...,8}).

of Example 4.7. The associated shuffle product is too big to be written here. Let us
focus on the term associated with B = {1, 2}. We have

∗B(δ) = {2, 3}(1, ∗(δB
2 )),

with
δB

2 = ({4:F{4} , 5:F{5} , {6, 7, 8} :F{6,7,8}} , F{4,...,8})
(as already seen in Example 4.7). By definition, we can express ∗(δB

2 ) as a sum over
∅ ⊊ B′ ⊆ {1, 2, 3}. Let us again make a focus, say on B′ = {3}. We get

∗B′(δB
2 ) = {6, 7, 8}(∗({4:F{4} , 5:F{5}} , F{4,5}))

= {6, 7, 8}(4(5)) + {6, 7, 8}(5(4)) + q {6, 7, 8}({4, 5}). △

When dealing with the associativity of the product in Theorem 4.17 below, we
shall have to take products of (delegations made of) linear constructs, which is not
a problem, as the above definitions of ∗ and ∗B of course extend by linearity (with
the notion of delegation accordingly extended to linear constructs). The following
lemmas show two situations in which the linear extension of ∗B still satisfies its
“defining” equation 4.3 (now a property!). To see the need for such lemmas, note
that the definitions of the delegations δB

i do depend on the root of the constructs
Cb (b ∈ B), which no longer exists if Cb is replaced by a linear construct that is not
rooted.

Lemma 4.15. Let ({Ha | a ∈ A},H) be a strict team, and suppose that we are given
rooted linear constructs Ca for each a ∈ A with root Xa, forming a delegation δ
(in the extended sense). Let ∅ ⊂ B ⊆ A and let XB =

⋃
b∈B Xb. Then we have

∗B(δ) = (
⋃

b∈B Xb)(∗(δB
1 ), . . . , ∗(δB

nB
)), with the same definition of δB

i as above.

Proof. We first notice that we can indeed still define δB
i as before, since the only

information used on constructs are their roots. Let us assume for simplicity that
only one of the Ca, say Cb0 , is a rooted linear construct, all the others being plain
constructs, and that b0 ∈ B, as Lemma 4.16 will a fortiori cover the case where b0 ̸∈ B.
We shall also assume for simplicity that Cb0 = Xb0{Cb0,i | 1 ⩽ i ⩽ nb0}, where only
one of the Cb0,i, say Cb0,i0 =

∑
k∈K λkCb0,i0,k, is a linear construct, all the others

being plain constructs (and we write then Ca = Ca for a ̸= b0 and Cb0,i = Cb0,i
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for i ̸= i0). Then, by “outward” linearity, we can write Cb0 =
∑

k∈K λkCb0,k, where
Cb0,k = Xb0({Cb0,i | i ̸= i0}

⋃
{Cb0,i0,k}). We have

∗B({Ca | a ∈ A\{b0}}
⋃

{Cb0},H) =
∑
k∈I

λk ∗B ({Ca | a ∈ A\{b0}}
⋃

{Cb0,k},H).

By definition, we have

∗B({Ca | a ∈ A\{b0}}
⋃

{Cb0},H) = (
∑
k∈K

λkXk(∗((δk)B
1 ), . . . , ∗((δk)B

nB
))),

where for all j ̸= j0 = φτ (b0, i0), all (δk)B
j are equal to δB

j , and where the (δk)B
j0

differ
only in one (and the same) position (the one indexed by (b0, i0)), filled with Cb0,i0,k.
Then we conclude by applying “inward” linearity. □

Lemma 4.16. Let ({Ha | a ∈ A},H) be a strict team, and let a0 ∈ A, and suppose
that we are given constructs Ca : Ha with root Xa for all a ̸= a0, and a linear
construct Ca0 . Let B ⊆ A\{a0}, and let XB =

⋃
b∈B Xb. Then we have ∗B(δ) =

(
⋃

b∈B Xb)(∗(δB
1 ), . . . , ∗(δB

nB
)), with the same definition of the teams δB

i as above.

Proof. The proof proceeds as in Lemma 4.15. The only difference is that, under the
assumption that a0 ̸∈ B, no information at all is required on Ca0 =

∑
k∈K λkCa0,k.

□

So far, we have a magmatic unbiased notion of product. The following theorem
establishes the associativity of the product for strict associative clans.

Theorem 4.17. Let Ξ be an associative clan, and suppose that τ = ({Ha | a ∈
A},H) ∈ Ξ, a0 ∈ A, and τ ′ = ({H(a0,a′) | a′ ∈ A′},Ha0) ∈ Ξ, and that we are given
constructs Ca : Ha for all a ∈ A\{a0} and constructs C(a0,a′) : H(a0,a′) for all all
a′ ∈ A′. Taking τ ′′ to be the grafting of τ ′ to τ along a0 and setting A′′ := (A\{a0}) ∪
{(a0, a

′) | a′ ∈ A′}, denote the corresponding delegations by δ′′ = (τ ′′, {Ca′′ | a′′ ∈ A′′})
and δ′ = (τ ′, {C(a0,a′) | a′ ∈ A′}). We then have that, for each ∅ ̸= B′′ ⊆ A′′, the
following polydendriform equation holds:

∗τ ′′

B′′(δ′′) =
{

∗τ
B′′({Ca | a ∈ A\{a0}} ∪ {∗τ ′(δ′)}), if B′′ ⊆ A\{a0}

∗τ
B({Ca | a ∈ A\{a0}} ∪ {∗τ ′

B′(δ′)}), if B′′ ̸⊆ A\{a0}
,

where the superscripts record the respective support teams, and where, in the second
case, B = (B′′ ∩ (A\{a0})) ∪ {a0}, B′ = {a′ ∈ A′ | (a0, a

′) ∈ B′′} (both non-empty).
Moreover, the polydendriform equation implies the following associativity equation:

∗τ ′′
(δ′′) = ∗τ ({Ca | a ∈ A\{a0}} ∪ {∗τ ′

(δ′)}).

Remark 4.18. The two cases of the polydendriform equation can be drawn as:



∗B′′ A′′
=

∗B′′

∗

A

A′
a0 , if B′′ ⊆ A\{a0}

∗B′′ A′′
=

∗B

∗B′

A

A′
a0 , if B′′ ̸⊆ A\{a0}.
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Ha1

Ha2\Xa2 Ha3
H(a0,b0)

H(a0,b1)\X(a0,b1) H(a0,b2)

H\(Xa2
∪X(a0,b1))

Ha1

Ha2
\Xa2 Ha3

Hb0

Hb1\Xb1 Hb2

Ha0

H\(Xa2
∪Xb1)

Figure 11. Illustration of associativity via cobordisms, with
A = {a0, . . . , a3}, A′ = {b0, . . . , b2}, A′′ = {a1, . . . , a3, (a0, b0),
(a0, b1), (a0, b2)}, B′′ = {a2, (a0, b1)}, B′ = b1 and B = a2, a0.

Proof. We set δ = (τ, {Ca | a ∈ A\{a0}}∪{∗τ ′(δ′)}). We first prove the polydendriform
equation, by induction on |H|. Denote, for each a′′ ∈ A′′, Xa′′ := root(Ca′′). By
definition of the operation ∗B′′ , supposing that H, XB′′ ⇝ HB′′

1 , . . . ,HB′′

nB′′ , where
XB′′ =

⋃
b′′∈B′′ Xb′′ , we have that

∗τ ′′

B′′(δ′′) = XB′′(∗((δ′′)B′′

1 ), . . . , ∗((δ′′)B′′

nB′′ )),

where, for 1 ⩽ i ⩽ nB′′ ,

(δ′′)B′′

i = ({C
ã′′ : H

ã′′ | ã′′ ∈ Ã′′ and φB′′

τ ′′ (ã′′) = i},HB′′

i ),

with the indexing set

Ã′′ := A′′\B′′ ∪ {(b′′, q) | b′′ ∈ B′′ and 1 ⩽ q ⩽ nb′′}

arising from Hb′′ , Xb′′ ⇝ H(b′′,1), . . .H(b′′,nb′′ ) (b′′ ∈ B′′). We examine the two cases
of the statement. Figure 11 will help the reader to visualize the notations introduced
in the second case.
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(1) If B′′ ⊆ A\{a0}, then, setting Ca0 := ∗τ ′(δ′), we have (using Lemma 4.16):

∗τ
B′′(δ) = XB′′(∗(δB′′

1 ), . . . , ∗(δB′′

nB′′ )),
where, for 1 ⩽ l ⩽ nB′′ ,

δB′′

l = ({Cã : Hã | ã ∈ Ã and φB′′

τ (ã) = l},HB′′

l ),
with the indexing set

Ã := A\B′′ ∪ {(b, p) | b ∈ B′′ and 1 ⩽ p ⩽ nb}

arising from Hb, Xb ⇝ H(b,1), . . . ,H(b,nb) (b ∈ B′′). Then, establishing ∗τ ′′

B′′(δ′′) =
∗τ

B′′(δ) amounts to showing that ∗((δ′′)B′′

l ) = ∗(δB′′

l ), for all 1 ⩽ l ⩽ nB′′ .
Let π′′ : Ã′′ → A′′ and π : Ã → A be the obvious projections (cf. proof of

Lemma 4.4). Then it is readily seen (remembering that H(a0,a′) ⊆ Ha0) that
(π′′)−1(A\{a0}) = Ã′′ ∩ Ã = π−1(A\{a0}) and

(4.6) φB′′

τ |
Ã′′∩Ã

= φB′′

τ ′′ |
Ã′′∩Ã

and φB′′

τ (a0) = φB′′

τ ′′ (a0, a
′),

for all a′ ∈ A′. It follows that for l ̸= φB′′

τ (a0) := l0 we have that (δ′′)B′′

l = δB′′

l ,
while (remembering the definition of Ca0) the equality ∗((δ′′)B′′

l0
) = ∗(δB′′

l0
) follows by

induction on Ha0 .
(2) For B′′ ̸⊆ A\{a0}, let B := (B′′ ∩ (A\{a0})) ∪ {a0} and B′ := {a′ ∈
A′ | (a0, a

′) ∈ B′′}. Let XB′ :=
⋃

b′∈B′ X(a0,b′) and suppose that Ha0 , XB′ ⇝

(Ha0)B′

1 , . . . , (Ha0)B′

mB′ . We have by definition

∗τ ′

B′(δ′) = XB′(∗((δ′)B′

1 ), . . . , ∗((δ′)B′

mB′ )),
where, for 1 ⩽ j ⩽ mB′ ,

(δ′)B′

j = ({C
ã′ : H

ã′ | ã′ ∈ Ã′ and φB′

τ ′ (ã′) = j}, (Ha0)B′

j ),
with the indexing set

Ã′ := {(a0, a
′) | a′ ∈ A′\B′}} ∪ {(a0, b

′, k) | b′ ∈ B′ and 1 ⩽ k ⩽ nb′}

arising from H(a0,b′), X(a0,b′) ⇝ H(a0,b′,1), . . . ,H(a0,b′,nb′ ) (b′ ∈ B′). Setting CB′

a0
:=

XB′(∗((δ′)B′

1 ), . . . , ∗((δ′)B′

mB′ )), the equality that we aim to prove displays as

(4.7) ∗τ ′′

B′′(δ′′) = ∗τ
B({Ca | a ∈ A\{a0}} ∪ {CB′

a0
}).

Furthermore, by setting Xa0 := XB′ and XB :=
⋃

b∈B Xb, we can write
XB′′ = (

⋃
b∈B\{a0}

Xb)
⋃

{XB′} = (
⋃

b∈B\{a0}
Xb)

⋃
{Xa0} = XB .

We can then transform (4.7) (applying Lemma 4.15) into

(4.8) XB(∗((δ′′)B′′

1 ), . . . , ∗((δ′′)B′′

nB′′ )) = XB(∗(δB
1 ), . . . , ∗(δB

nB
)),

where H, XB ⇝ HB
1 , . . . ,HB

nB
, nB = nB′′ , and for 1 ⩽ l ⩽ nB ,

δB
l = ({Cã : Hã | ã ∈ Ã and φB

τ (ã) = l},HB
l ),

with the indexing set
Ã := A\B ∪ {(b, p) | b ∈ B and 1 ⩽ p ⩽ nb}

arising from Hb, Xb ⇝ H(b,1), . . . ,H(b,nb) (b ∈ B), and where

Cã =


Ca, if ã ∈ (A\B),
∗((δ′)B′

p ), if ã = (a0, p),
C(b,p), if ã = (b, p) (b ∈ B\{a0}).
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Now, since XB′′ = XB , we can suppose, without loss of generality, that HB′′

i = HB
i ,

for all 1 ⩽ i ⩽ nB = nB′′ . Therefore, it remains to show that ∗((δ′′)B′′

i ) = ∗(δB
i ).

Observe that, since

H(a0,1), . . . ,H(a0,na0 ) ⇝Ha0 , Xa0 = Ha0 , XB′ ⇝ (Ha0)B′

1 , . . . , (Ha0)B′

mB′ ,

we have that na0 = mB′ , and we can assume (without loss of generality) that H(a0,p) =
(Ha0)B′

p , for each 1 ⩽ p ⩽ na0 .
Simple inspection (and standard argumentation with connected components) yields

π′′−1(A\{a0}) = Ã′′ ∩ Ã = π−1(A\{a0})
π′′−1(a0) = Ã′,

where π′′ : Ã′′ → A′′ and π : Ã → A are the obvious projections, and

(4.9) φB′′

τ ′′ |
Ã′′∩Ã

= φB
τ |

Ã′′∩Ã
and φB′′

τ ′′ |
Ã′ = φ̃B

τ ◦ φB′

τ ′ ,

where φ̃B
τ (j) := φB

τ ((a0, j)), for each 1 ⩽ j ⩽ na0 . We note that, thanks to (4.9),
∗((δ′′)B′′

i ) and ∗(δB
i ) look respectively like this:

∗((δ′′)B′′

i ) = ∗( . . . , Cy, . . .︸ ︷︷ ︸
y∈Ã′′∩Ã,φB′′

τ′′ (y)=i

, . . . , . . . , Cx, . . .︸ ︷︷ ︸
x∈Ã′, φB′

τ′ (x)=j∈(φ̃B
τ )−1(i)

, . . .)

∗(δB
i ) = ∗( . . . , Cy, . . .︸ ︷︷ ︸

y∈Ã′′∩Ã,φB
τ (y)=i

, . . . , ∗(. . . , Cx, . . .)︸ ︷︷ ︸
x∈Ã′, φB′

τ′ (x)=j∈(φ̃B
τ )−1(i)

, . . .)

and we conclude by applying induction to each HB′′

i (note that repeated induction,
or no induction at all, may be needed for a single fixed i, depending on the cardinality
of φB′

τ ′ (Ã) ∩ (φ̃B
τ )−1(i)).

This concludes the proof of the polydendriform equation. Associativity is derived as
follows. Writing δB′ for {Ca | a ∈ A\{a0}} ∪ {∗τ ′

B′(δ′)}, we have on one hand (in-lining
the polydendriform equation):

∗τ ′′(δ′′) =

A1︷ ︸︸ ︷∑
∅⊊B′′⊆A\{a0}

q|B′′|−1 ∗τ
B′′ (δ) +

B1︷ ︸︸ ︷∑
∅⊊B′′ ̸⊆A\{a0}

q|B′′|−1 ∗τ
B (δB′)

with B,B′ determined from B′′ as specified in the statement, and on the other hand
(expanding the second summand by linearity):

∗τ (δ) =
∑

∅⊊B⊆A\{a0}

q|B|−1 ∗τ
B (δ)

︸ ︷︷ ︸
A2

+
∑

∅⊊B ̸⊆A\{a0}

∑
∅⊊B′⊆A′

q|B|+|B′|−2 ∗τ
B (δB′)

︸ ︷︷ ︸
B2

We have A1 = A2 literally, while B1 = B2 follows by noticing that the map B′′ 7→
((B′′ ∩ (A\{a0})) ∪ {a0}, {a′ ∈ A′ | (a0, a

′) ∈ B′′}) is bijective. □

Remark 4.19. One could formulate the polydendriform structure as an algebra over
a colored operad, where the colors are hypergraphs, the operations are teams, and
the carrier of the algebra for the color H is the set of constructs of H.

We shall now relate the polydendriform structure to the tridendriform one, by
showing that the former implies (and can be considered as the unbiased version of)
the latter, in the ordered framework.

Let Ξ be an ordered associative clan. Suppose that we have

{((H1,H2′),H), ((H2,H3),H2′), ((H1′ ,H3),H), ((H1,H2),H1′)} ∈ Ξ.
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Denote by τ ′′
1 the grafting of ((H1,H2),H1′) to ((H1′ ,H3),H) along 1′, and by τ ′′

2
the grafting of ((H2,H3),H2′) to ((H1,H2′),H) along 2′. Note that the above teams
are all of the (generic) form ((Hl,Hr),L). We write (cf. Example 4.12)

≺ := ∗{l} · := ∗{l,r} ≻ := ∗{r}.

Proposition 4.20. In the ordered framework, the tridendriform equations follow from
the polydendriform one, relatively to the team τ ′′ = ((H1,H2,H3),H). More precisely,
Loday–Ronco’s seven equations, as listed in the introduction, correspond to choosing
B′′ to be {1}, {2}, {3}, {1, 2, 3}, {2, 3}, {1, 3}, {1, 2}, respectively.

Proof. As a sanity check, we first note that there are 23 − 1 = 7 non-empty subsets
of {1, 2, 3}. We check the equation (≻ ·). Let S : H1, T : H2, U : H3. We have

∗τ ′′
1

{2,3}(S, T, U) = ∗{1′,3}((∗{2}(S, T ), U)) = ((S ≻ T ) ·U)

and
∗τ ′′

1
{2,3}(S, T, U) = ∗τ ′′

2
{2,3}(S, T, U) = ∗{2′}(S, (∗{2,3}(T,U))) = S ≺ (T ·U).

Note that all tridendriform equations follow from the second case of the polydendri-
form equation, except (≺∗) and (∗≻) (for which we use the first case, and which are
the only tridendriform equations involving ∗). □

Combining the results of §4.2 and §4.3, we get a whole range of polydendri-
form/tridendriform structures, and in particular we get structures associated with
the graphs Γk of Proposition 4.10. As we have seen, for the instances k = 1 and
k = ∞, we recover the tridendriform structures of §2, thus fulfilling our unifying goal,
with a whole infinity of examples sitting “in the middle”. The case k=2 is that of
friezohedra.

Remark 4.21. The associative product defined here is quite different (both in form
and spirit) from the algebraic structure on the constructs of all graph associahedra
defined by Forcey and Ronco in [11], which provides an example of reconnectad, as
defined and investigated in [9]. We first note that the definitions of [11, 9] can be
straightforwardly upgraded to nestohedra. For a contrast, we briefly introduce the
Forcey-Ronco products, using notation akin to the ones used here. Our teams are
replaced by the data of a (hyper)graph H and a non empty subset X ⊆ H, giving rise
to a “reconnecteam” ((H∩X ,H1, . . . ,Hn),H), where H∩X is the so-called reconnected
restriction of H to X whose hyperedges are the intersections of the tubes of H with
X, and where H, X ⇝ H1, . . . ,Hn. Now, given constructs S : H∩X , T1 : H1, . . . , Tn :
Hn, the operad-like composition (◦H

X(S;T1, . . . , Tn)) : H is obtained by substituting S
for X, T1 for H1, . . . , Tn for Hn in the codimension 1 construct (X(H1, . . . ,Hn)) : H.
The underlying combinatorics in [11] is thus substitution in nodes of trees, while in
our work it is that of shuffles of trees. Another key difference is that in our teams
the participant hypergraphs are not determined by the coordinating hypergraph. As
a final remark, the underlying “universe" of Forcey-Ronco is the collection of all
(hyper)graphs, in contrast to the situation here.

4.4. A non-recursive definition of the product. In this subsection, we give
an equivalent, non-recursive, definition of the product, directly inspired from [20]. Let
H,L be two connected hypergraphs such that H ⊆ L and such that, for all e ∈ H, e is
a tube of L. This entails in particular that H is a tube of L. Let S = X(S1, . . . , Sn) be
a construct of L, with Si : Li where L, X ⇝ L1, . . . ,Ln. Then we define a construct
S⌈H : H, called the restriction of S to H, as follows. We distinguish two cases.

• If X ∩H = ∅, then there is a unique j such that H ⊆ Lj , and we set
S⌈H = (Sj)⌈H.
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X

t

• The compartments with red/blue border are the connected components of L\X.
• The compartments with green/red/blue border are the connected components of

H\X.
• In this example, we have (φH,L

X )−1(j) = {2, 3}.
• The small yellow compartments with orange/green borders feature the tubes in
ψ(tH),

• while those additionally marked with a dot are the tubes in ψ(tH2 ).

Figure 12. Illustration of the proof of Lemma 4.23

• If X ∩ H ̸= ∅, let H, (X ∩ H) ⇝ H1, . . . ,Hp. This determines a function
φH,L

X : {1, . . . , p} → {1, . . . , n}, and we set

S⌈H = (X ∩H)(. . . , (SφH,L
X

(i))⌈Hi

, . . .).

That S⌈H is indeed a construct of H is easily seen by induction.

Example 4.22. In the universe of friezohedra, let us consider H = F{1,3,5} and L =
F{1,...,5}. As every edge in H is also in L, the hypothesis above is satisfied. Consider
the construct S = 3({1, 4}(2, 5)) of L. Then S⌈H = 3(1, 5). △

We next give a simpler (but more “mysterious”) alternative description of S⌈H in
terms of nested sets (see Remark 3.3). In order to formulate the lemma, we need one
definition (generalized from [20] to the setting of hypergraph polytopes). With each
tube t of L we associate a construct tH as follows (note the heterogeneous nature of
this definition: we go from tubes to constructs):

• If H ⊆ t, then we set tH = H;
• if H\t ̸= ∅ yielding H, (H\t)⇝ H1, . . . ,Hk, we set tH = (H\t)(H1, . . . ,Hk).

This definition can be seen as an instantiation of our definition of S⌈H: more precisely,
we can coerce a tube t of L to a construct (L\t)(t) : L, and we have tH = ((L\t)(t))⌈H.

The following proposition gives a non-recursive definition for the above restriction
operation, providing a bridge between our definition and that of Ronco in [20].

Proposition 4.23. For H,L and S as above, we have ψ(S⌈H) =
⋃

{ψ(tH) | t ∈ ψ(S)}.

Proof. (Sketch) Let S = X(S1, . . . , Sn) and L ̸= t ∈ ψ(S), i.e. t ∈ ψ(Sj) for some j.
Then the statement follows from the observation (illustrated in Figure 12) that, with
the notation introduced above:

ψ(tH) =
⋃

{ψ(tHi) | φH,L
X (i) = j} (j, t ∈ ψ(Sj) fixed, i varying).

Indeed, by definition of ψ, we have on one hand that (
⋃

{ψ(tH) | t ∈ ψ(S)})\{H} is
the union of the sets (

⋃
{ψ(tH) | t ∈ ψ(Sj)}), indexed by 1 ⩽ j ⩽ n. On the other

hand, applying induction, we have that ψ(S⌈H)\{H} is the union of the sets ψ(tHi),
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for 1 ⩽ i ⩽ p and t ∈ ψ(SφH,L
X

(i)), which we can repackage as a union indexed by j

(gathering all i such that φH,L
X (i) = j). We then conclude by the observation. □

In particular, via the characterization of tubings as constructs, Proposition 4.23
says that the definition in terms of tubings given in [20] returns indeed a tubing.

We now come back to the promised alternative definition of the product. Let τ =
({Ha | a ∈ A},H) be a team and U = X(U1, . . . , Un) be a construct of H. We associate
with U a “measure” µτ (U) as follows (with the notation of §4.1). We set B = {b ∈
A | X ∩Hb ̸= ∅} and Xb = X ∩Hb for each b ∈ B (so that n = nB), and we set

µτ (U) = (|B| − 1) +
∑

1⩽i⩽nB

µτi(Ui).

The following proposition gives a non-inductive characterization of our product ∗.

Proposition 4.24. Let Ξ be a strict clan, and let δ = ({Ca : Ha | a ∈ A},H) be a
Ξ-delegation of support τ . Then we have:

∗(δ) =
∑

U :H and ∀a∈A,U⌈Ha
=Ca

qµτ (U) U,

and for each ∅ ̸= B ⊆ A, we have that q|B|−1(∗B(δ)) is the summand of the above
sum where U is further constrained to be such that root(U) = XB.

Proof. (Sketch) We use the same notations as above. By unfolding the definition of
U = X(U1, . . . , Un), with X = XB , the constraints on U boil down to the constraints
(for each i) (Ui)⌈Hã

= Cã for all ã ∈ Ã such that φτ
B(ã) = i. This entails that, taking

the right-hand side of the equality and its summands in the statement as a definition
of ∗ and ∗B , and noticing that

qµτ (U) XB(U1, . . . , Un) = q|B|−1 XB(. . . , qµτi (Ui) Ui, . . .),

these definitions satisfy the equation ∗B(δ) = (
⋃

b∈B Xb)(∗(δB
1 ), . . . , ∗(δB

nB
). □

Remark 4.25. In the ordered setting, and in the special case where q = 1 and where
teams have the form ((HH1 ,HH2),H)), the summation in the statement of Propo-
sition 4.24 is the definition of associative product given in [20, Theorem 3.19]. This
justifies our earlier claim that our product specializes to Ronco’s setting.

Example 4.26. We consider the delegation of friezohedra

δ = ({3(1, 5) :F{1,3,5} , 4(2) :F{2,4}},F{1,2,3,4,5}).

The shuffle product of δ is then given, up to some coefficients, by the sum of all the
constructs U of F{1,...,5} such that U⌈F{1,3,5}

= 3(1, 5) and U⌈F{2,4}
= 4(2). The power

of q in the coefficient of S = 3({1, 4}(2, 5)) in this sum is given by:

µ({F{1,3,5},F{2,4}},F{1,2,3,4,5})(S) = (1 − 1) + µ({F{1},F{5},F{2,4}},F{1,2,4,5})({1, 4}(5(2))

= (2 − 1) + µ({F{2}},F{2})(2) + µ({F{5}},F{5})(5)
= 1 + (1 − 1) + (1 − 1) = 1. △

We note that the non-recursive definition leads to another proof of the poly-
dendriform equation and of associativity – that is technically simpler but geomet-
rically less appealing than the one we gave in §4.3, based on the observation, say for
({H1,H2,H3},H), ({H1,H2},H12), ({H12,H3},H), and

δ = ({S :H1 , T :H2 , U :H3} , H),
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that the data of V : H such that V⌈H1 = S, V⌈H2 = T and V⌈H3 = U is equivalent to
the data of V : H and W : H12 such that W⌈H1 = S, W⌈H2 = T , V⌈H12 = W , and
V⌈H3 = U (2).

4.5. Extending the framework. In this subsection, we enlarge the coverage of
our formalism of teams and clans, and we adapt the product accordingly, in order to
cover other families of polytopes like simplices, hypercubes, or erosohedra.

A preteam τ = ({Ha | a ∈ A},H) is called a quasi-strict team if for each choice of
a subset ∅ ̸= B ⊆ A and of a subset ∅ ̸= Xb ⊆ Hb for each b ∈ B, we have that, for
each ã ∈ Ã,

(1) Hã is included in a connected component of H\(
⋃

b∈B Xb), or
(2) |Hã| ⩾ 2, and, for all x ∈ Hã, {x} is a connected component of H\(

⋃
b∈B Xb),

where Ã is as in §4.1. When (2) applies (and vacuously when |Hã| = 1), we say
that Hã is dissolved in H\(

⋃
b∈B Xb). Let us denote with Ãd the set of elements ã

of Ã such that case (2) applies. We define A by removing from Ã all elements ã of
Ãd and replacing them by the elements of Hã (thus expressing the atomization of
Hã), for all ã ∈ Ãd′ , i.e. A := (Ã\Ãd) + ∪ã∈Ãd

Hã. The whole situation determines a
partition A = A1 ∪ . . .∪AnB

, and nB preteams τi = ({Ha | a ∈ Ai},Hi), where Ha is
defined on the new elements x ∈ ∪ã∈Ãd

Hã as Hx = {{x}}. We still use the notation
τ,

⋃
b∈B

Xb ⇝ τ1, . . . , τnB
.

The definition of clan is unchanged, except that a clan now consists of quasi-strict
teams and not of strict teams. The definition of the product is adapted as follows. We
assign a construct Ca of Ha for all a ∈ A, via the following adjustment with respect
to the strict case: if x is an element of Hã for some ã ∈ Ãd, then we set Cx = {x}, and
we finish as in the strict case: the assignment determines delegations δB

i (1 ⩽ i ⩽ nB),
and we define the product exactly as in (4.3), but setting q = −1 (see below).

We can still define a function φB
τ from Ã\Ãd to {1, . . . , nB}, which we prefer

to see as a partial function from Ã to {1, . . . , nB}. Abusing notation, we can still
write (cf. (4.2)) δB

i = ({Cã : Hã | ã ∈ Ã and φB
τ (ã) = i},HB

i ), noticing that the
participating hypergraphs of τi that are not the hypergraphs Hã with ã ∈ (φB

τ )−1(i)
are all singleton graphs, so that the sloppy notation above extends in a unique way
to the “true” definition of δB

i .
Note however that our abuse of notation is not as innocent as it seems, since the

convention relies on the fact that a singleton hypergraph {{a}} admits a unique plain
construct a. But the same hypergraph admits all λa (λ ∈ k) as linear constructs – a
fact that is stressed in the following remark.

Remark 4.27. It follows from the definitions that if δ1 and δ2 are delegations of plain
constructs having the same support τ = ({Ha | a ∈ A},H), if δ1 and δ2 differ only on
one participating hypergraph Ha0 , if B is a non-empty subset of A such that a0 ̸∈ B
and φB

τ (a0) is undefined, then ∗(δ1) = ∗(δ2). Moreover, if δ is a (linear) delegation
which coincides with δ1 and δ2 on all a ∈ A\{a0} and has in position a0 a linear
construct

∑
i∈I λiCi, then we have ∗(δ) = (

∑
i∈I λi) ∗(δ1) (= (

∑
i∈I λi) ∗(δ2)).

The notion of associative clan is unchanged. The associativity theorem still holds,
but only under the assumption q = −1. The reason for this restriction stems from
Remark 4.27 and from the following lemma.

(2)In turn, this observation relies on the composability of restrictions, i.e. one can prove that
(V⌈H12

)⌈H1
= V⌈H1

.
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Lemma 4.28. If q=−1, then, for any delegation (in the quasi-strict setting) δ of plain
constructs, the sum of all coefficients in the expansion of ∗(δ) as a linear combination
of plain constructs is equal to 1.

Proof. We prove the statement by induction on |H|. From the binomial expansion (1+
x)n =

∑
0⩽i⩽n

(
n
i

)
xi expressed as (1 +x)n = 1 +x(

∑
1⩽i⩽n

(
n
i

)
xi−1) and instantiated

with x = q = −1, we readily obtain
∑

1⩽i⩽n

(
n
i

)
qi−1 = 1. The statement will then

follow if we prove that, for each ∅ ⊂ B ⊆ A, the sum of the coefficients in the
expansion of XB(∗(δ1), . . . , ∗(δnB

)) as a linear combination of plain constructs is equal
to 1. But this in turn follows by induction and by multilinearity. □

Theorem 4.29. Theorem 4.17 extends to the quasi-strict setting for q = −1.

Proof. Using the convention above of still defining the product by appealing to the
functions φB

τ , the proof of Theorem 4.17 goes through, as long as we do not use the
totality of these functions. More precisely, the reasoning in case (1) unfolds without
change until the equalities (4.6) included, which still hold but have now to be under-
stood in the partial sense, i.e. the left-hand side is defined if and only if the right-hand
side is defined, in which case they are equal.

Then two subcases arise.
(1a) If φB′′

τ (a0) is defined, then we conclude case (1) by induction as in the proof
of Theorem 4.17.

(1b) Suppose (new case!) that φB′′

τ (a0) is undefined. Let ∗τ ′(δ′) =
∑

i∈I λiCi. By
Lemma 4.28, we have

∑
i∈I λi = 1. Let δ′

i be the delegation obtained by
replacing ∗(δ′) by Ci in δ. By Remark 4.27, we have ∗B′′(δ′

i) = ∗B′′(δ′
j) for all

i, j, and, calling D the common value, we have:

∗B′′(δ) = (
∑
i∈I

λi)D = D.

On the other hand, by (4.6), we also have that φB′′

τ ′′ (a0, a
′) is undefined (for

all a′ ∈ A′), and, again, ∗τ ′′(δ′′) does not depend on the constructs C(a0,a′).
Moreover, observing that δ and δ′′ coincide on the indices a ∈ A\{a0}, we
get easily that ∗B′′(δ′′) is also equal to the common value D, which concludes
this new case in the proof of associativity.

Similarly, the reasoning in case (2) unfolds without change until the equalities (4.9)
included, which again hold in the partial sense explained above. Let us repeat here
the expressions for ∗((δ′′)B′′

i ) and for ∗(δB
i ) that we wrote at this point of the proof

of Theorem 4.17:
∗((δ′′)B′′

i ) = ∗( . . . , Cy, . . .︸ ︷︷ ︸
y∈Ã′′∩Ã,φB′′

τ′′ (y)=i

, . . . , . . . , Cx, . . .︸ ︷︷ ︸
x∈Ã′, φB′

τ′ (x)=j∈(φ̃B
τ )−1(i)

, . . .)

∗(δB
i ) = ∗( . . . , Cy, . . .︸ ︷︷ ︸

y∈Ã′′∩Ã,φB
τ (y)=i

, . . . , ∗(. . . , Cx, . . .)︸ ︷︷ ︸
x∈Ã′, φB′

τ′ (x)=j∈(φ̃B
τ )−1(i)

, . . .)

The first expression is still correct, as it displays (with i varying) all elements y and
x in the domain of definition φB′′

τ ′′ , and all constructs involved (the ones appearing
explicitly and the ones that have been dissolved) are plain constructs. The same
remarks apply to the second expression, except for the fact that some dissolved con-
structs are not plain. Indeed, we have to look at the situations . . . , Cx, . . .︸ ︷︷ ︸

x∈Ã′, φB′
τ′ (x)=j

, where

φ̃B
τ (j) is undefined. Then, by (4.9), we have that also φB′′

τ ′′ (x) is undefined for all
x ∈ (φB′

τ ′ )−1(j), and the corresponding Cx (which are plain, as stressed above) are
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dissolved in ∗B′′(δ′′) and hence do not make their way into (δ′′)B′′

i . On the other
hand, the linear constructs ∗(. . . , Cx, . . .) (where x ranges over (φB′

τ ′ )−1(j) for some
j not in the domain of definition of φB

τ ) appear in ∗B′(δ′), and are also dissolved.
It follows that the same as what we argued about the first expression can be argued
about the second one, except for the “trace” left by the constructs ∗(. . . , Cx, . . .) not
being plain constructs, which is taken care of by reasoning as in case (1b). Thus also
the second expression is still correct, and the proof of Theorem 4.17 goes through to
the end without change. □

We finish with examples of quasi-strict clans that are not strict.

Example 4.30. The universe formed by all simplices SX (for a finite set X) gives rise
to the quasi-strict clan formed by all preteams of the form ({SXa | a ∈ A},S

⋃
Xa) (for

mutually disjoint Xa). That this clan is not strict is easily checked: given a delegation
of constructs Ca and B ⊊ A, all constructs Ca for a ∈ A\B are dissolved. The product
instantiates as:

∗(Y1(. . .), Y2(. . .), . . . , Yn(. . .)) =
∑

∅ ̸=J⊆[n]

(
⋃

j∈J

Yb)(. . .),

where (. . .) is a shortcut for a tuple of singletons. We use this example to illustrate the
need to choose q=−1 in the quasi-strict setting. Take A = {a1, a2, a3} and Yi ⊆ Xai .
Then, identifying constructs Z(. . . , z, . . .) with their root Z, we have

∗Y1(Y1, Y2, Y3) = Y1.

On the other hand, we have

∗Y1(Y1, ∗(Y2, Y3)) = ∗Y1(Y1, Y2) + q ∗Y1 (Y1, Y2 ∪ Y3) + ∗Y1(Y1, Y3) = Y1 + qY1 + Y1.

Therefore, the two expressions match if and only if q=−1. △

Example 4.31. One checks easily that the universe formed by all hypercubes CX

(X = {x1 < · · · < xn}) is ordered, and gives rise to the quasi-strict clan formed by all
preteams of the form ({CX1 , . . . ,CXn},C

⋃
Xi), where

⋃
1⩽i⩽n Xi is endowed with the

order in which X1, . . . , Xn form successive intervals. To illustrate the quasi-strictness,
take the team ({C{x1<x2},C{x3<x4}},C{x1<x2<x3<x4}), and remove x1. Then all of
C{x3<x4} is dissolved in C{x1<x2<x3<x4}\{x1} = S{x2,x3,x4}.

In the notation introduced at the end of §3, the tridendriform structure instantiates
as follows (|v| stands for the length of v):

u ≺ v = u (−|v|)
u · (v1 + v2) = u (−|v1|) • v2

u ≻ (v1 + v2) =
{

(u ∗ v1) + v2 (v1 ̸= ϵ)
u+ v2 (v1 = ϵ) .

△

As a last example in this subsection, we describe the (−1)-tridendriform products
for erosohedra.

Example 4.32. Let us first recall that the family of erosohedra is given by:

EX = {{xj | j ̸= i} | 1 ⩽ i ⩽ n},

where X = {x1, . . . , xn}, and that the constructs of EX are of two shapes:
• Y (z1, . . . , zk), where Y is a subset of X of size at least 2, and
• x(Y (z1, . . . , zk)), where Y is an arbitrary subset of X.

Algebraic Combinatorics, Vol. 8 #1 (2025) 231



Pierre-Louis Curien, Bérénice Delcroix-Oger & Jovana Obradović

Note that in the second case, Y (z1, . . . , zk) is a construct of a simplex, not of an
erosohedron. Therefore, we take as universe the union of the families of erosohedra
and of simplices. Note also that if we order our sets X, then we get an ordered universe
(and the same is a fortiori true for the subuniverse of simplices). The products on two
constructs S and T are given by:

Y (z1, . . . , zk) ≺ T = Y (. . .)
x(Y (z1, . . . , zk)) ≺ T = x(Y (. . .)) + x(root(T )(. . .)) − x((Y ∪ root(T ))(. . .))

S ≻ Y (z1, . . . , zk) = Y (. . .)
S ≻ x(Y (z1, . . . , zk)) = x(Y (. . .)) + x(root(S)(. . .)) − x((Y ∪ root(S))(. . .))

S ·T = (root(S) ∪ root(T ))(. . .),
where (. . .) stands for (y1, . . . , yp), where in turn {yi}p

i=1 is the set of elements of X
not appearing elsewhere in the construct. △

5. Further work
Work in progress. In [5], building on the material of §4.4, we extend the present
work in two directions.

• We have been able to further extend our framework, so as to include in par-
ticular cyclohedra, defined as (for X = {x1 < . . . < xn < x1})
OX = {{x1}, . . . , {xn}, {x1, x2}, . . . , {xn−1, xn}, {xn, x1}, {x1, . . . , xn}}.

(For this example, we can indeed define an ad hoc shuffle product, based on
the shuffle product for associahedra – note that for ∅ ̸= Y ⊆ X, the connected
components of OX\Y are associahedra.)

For this purpose, we relax the quasi-strictness condition to yet a weaker
one, asking only (in the notation of the previous sections) that, for each ã ∈ Ã
and each i ∈ {1, . . . , nB}, Hã ∩Hi is a tube of Hã. It is easy to see that our
definition of product adapts to this semi-strict setting, as we call it, using in
a crucial way the “technology" of restrictions of constructs defined in §4.4.
We have shown that the polydendriform equation still holds in this setting.

• In [6], the first author and Guillaume Laplante-Anfossi have introduced a very
natural relation on all constructs of a given hypergraph polytope (endowed
with a total order order on its vertices). This relation coincides with the
immediate subface relation (cf. Figure 2, and using its notation) when the edge
between X and Y that is contracted is such that minY > maxX, while the
“other half” of the relation is given by the reverted immediate face inclusion
when minX > max Y . In turn, in [5], we prove that the transitive closure
of this relation admits no cycle and therefore yields a partial order, and, in
the strict setting and using and extending Proposition 4.24, we provide an
equivalent definition of our products ∗B in terms of summations over suitable
intervals in this order, generalising and unifying results from [18] and [20].

Directions for future work. We already mentioned the task of finding a nice
combinatorial interpretation of the constructs of friezohedra. Here are some other
questions we would like to address.

• Do there exist non-recursive definitions of the shuffle product in the quasi-
strict (and in the above semi-strict) setting?

• The tridendriform algebras in our examples often satisfy more equations than
the tridendrifom ones. Can we make a landscape of the corresponding operad
structures?
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• Hopf algebra structures are known for associahedra and permutohedra, see
[2, 14]. Can we find sufficient conditions for such structures to exist on a
family of polytopes?

• We also seek comparison results, in the spirit of [14, 18]: given two (families
of) hypergraphs, one pointwise included in the other, what are the relations
between the associated polytopes and between the associated algebras?

Bestiary of examples
The examples emphasized in this paper are summed up in the following diagram,
where we draw an arrow from A to B if B is “more truncated” than A, i.e. if the
connected subsets of the hypergraph generating A are connected in the hypergraph
generating B. The strict clans are circled.

simplex SX [4]

hypercube CX [4]

associahedron KX [15]

permutohedron PX [2]

erosohedron EX

friezohedron FX
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