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A type B analog of the Ish arrangement

Tan N. Tran & Shuhei Tsujie

Abstract The Shi arrangement due to Shi (1986) and the Ish arrangement due to Armstrong
(2013) are deformations of the type A Coxeter arrangement that share many common proper-
ties. Motivated by a question of Armstrong and Rhoades since 2012 to seek for Ish arrangements
of other types, in this paper we introduce an Ish arrangement of type B. We study this Ish
arrangement through various aspects similar to as known in type A with a main emphasis on
freeness and supersolvability. Our method is based on the concept of ψ-digraphic arrangements
recently introduced due to Abe and the authors with a type B extension.

1. Introduction
Let V = Rℓ be a finite-dimensional real vector space. Let {x1, . . . , xℓ} be a basis

for the dual space V ∗. Our discussion starts with the Shi arrangement Shi(Aℓ−1)
due to Shi [22, Chapter 7], and the Ish arrangement Ish(Aℓ−1) due to Armstrong
[4] defined as

(1)
Shi(Aℓ−1) := Cox(Aℓ−1) ∪ { xi − xj = 1 | 1 ⩽ i < j ⩽ ℓ } ,
Ish(Aℓ−1) := Cox(Aℓ−1) ∪ { x1 − xj = i | 1 ⩽ i < j ⩽ ℓ } ,

where Cox(Aℓ−1) := { xi − xj = 0 | 1 ⩽ i < j ⩽ ℓ } is the Coxeter arrangement
of type Aℓ−1. The Ish arrangement is defined in the inspiration of the so-called
combinatorial symmetry [5]

(2) {xi − xj = 1} ←→ {x1 − xj = i} (1 ⩽ i < j ⩽ ℓ).

This correspondence is simply a set bijection yet led to many common properties
of the Shi and Ish arrangements from different aspects, among others, the perspec-
tive of freeness and supersolvability. See §2.1 and §2.2 for the definitions of free and
supersolvable arrangements.

We call any property that the Shi and Ish arrangements share in common a
“Shi/Ish duality". The following Shi/Ish dualities hold:

Theorem 1.1 ([11, 6, 4, 5]). The arrangements Shi(Aℓ−1) and Ish(Aℓ−1) have the
same characteristic polynomial t(t− ℓ)ℓ−1.
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Theorem 1.2 ([7, 2, 27]). The cones over Shi(Aℓ−1) and Ish(Aℓ−1) are both free.
Moreover, the cone over Ish(Aℓ−1) is supersolvable.

Theorem 1.3 ([5, 17]). The arrangements Shi(Aℓ−1) and Ish(Aℓ−1) have the same
number of regions (connected components of the arrangement’s complement) with c
ceilings and d degrees of freedom for any nonnegative integers c, d.

It was questioned by Armstrong and Rhoades [5, §5.3(6)] to define and study Ish
arrangements for root systems of other types. The main purpose of this paper is to
introduce, for the first time, an Ish arrangement for type B root system which has
properties similar to the ones in Theorems 1.1, 1.2 and 1.3. Here is our main definition.

Definition 1.4. The Shi arrangement Shi(Bℓ) and the Ish arrangement Ish(Bℓ)
of type Bℓ are defined by

Shi(Bℓ) := Cox(Bℓ) ∪ { xi = 1 | 1 ⩽ i ⩽ ℓ } ∪ { xi − xj = 1 | 1 ⩽ i < j ⩽ ℓ }
∪ { xi + xj = 1 | 1 ⩽ i < j ⩽ ℓ } ,

Ish(Bℓ) := { xi ± xj = 0 | 1 ⩽ i < j ⩽ ℓ }
∪ { xi = a | 1 ⩽ i ⩽ ℓ, i− ℓ ⩽ a ⩽ ℓ− i+ 1 }

= Cox(Bℓ) ∪ { xi = 1 | 1 ⩽ i ⩽ ℓ } ∪ { xi = ℓ+ 2− j | 1 ⩽ i < j ⩽ ℓ }
∪ { xi = −(ℓ+ 1− j) | 1 ⩽ i < j ⩽ ℓ } ,

where Cox(Bℓ) := { xi ± xj = 0 | 1 ⩽ i < j ⩽ ℓ } ∪ { xi = 0 | 1 ⩽ i ⩽ ℓ } is the Cox-
eter arrangement of type Bℓ. (The case when ℓ = 2 is depicted in Figure 1.)

Figure 1. Shi(B2) and Ish(B2)

Let us describe a relation between the Coxeter, Shi and Ish arrangements of types
A and B. For an arrangement A, let Aess denote its essentialization (see §2.1).
Apply the transformation x1 7→ x1, xi 7→ x1 − xℓ+2−i (2 ⩽ i ⩽ ℓ+ 1) we know that
Cox(Aℓ)ess ≃ { xi − xj = 0 | 1 ⩽ i < j ⩽ ℓ } ∪ { xi = 0 | 1 ⩽ i ⩽ ℓ } ,
Shi(Aℓ)ess ≃ { xi − xj = 0, 1 | 1 ⩽ i < j ⩽ ℓ } ∪ { xi = 0, 1 | 1 ⩽ i ⩽ ℓ } ,
Ish(Aℓ)ess ≃ { xi − xj = 0 | 1 ⩽ i < j ⩽ ℓ } ∪ { xi = ℓ+ 2− j | 1 ⩽ i < j ⩽ ℓ+ 2 } ,

where “≃" means affine equivalence (see §2.2). The combinatorial symmetry (2)
between Shi(Aℓ)ess and Ish(Aℓ)ess can now be written as

(3)
{xi = 1} ←→ {xi = 1} (1 ⩽ i ⩽ ℓ),

{xi − xj = 1} ←→ {xi = ℓ+ 2− j} (1 ⩽ i < j ⩽ ℓ).
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Cox(Aℓ)ess

Cox(Bℓ)

Shi(Aℓ)ess

Shi(Bℓ)

Ish(Aℓ)ess

Ish(Bℓ)

Figure 2. The Coxeter, Shi and Ish arrangements of types A and
B ordered by inclusion.

By this way, Cox(Bℓ) and Ish(Aℓ)ess can be regarded as subarrangements of Ish(Bℓ)
in the same way as Cox(Bℓ) and Shi(Aℓ)ess for Shi(Bℓ). Figure 2 shows the Hasse
diagram of these arrangements ordered by inclusion.

In this paper, we extend Theorems 1.1 and 1.2 to Shi(Bℓ) and Ish(Bℓ). More
precisely, we show that their associated cones share the characteristic polynomial and
freeness, and the cone over Ish(Bℓ) is supersolvable (Corollary 1.9). An extension of
Theorem 1.3 to the regions of Shi(Bℓ) and Ish(Bℓ) will be given in the upcoming
paper [20] of Numata, Yazawa and the second author.

More generally, we introduce three families of arrangements related to Shi(Bℓ)
and Ish(Bℓ) in analogy to the case of type A, and investigate their freeness and
supersolvability:

• type B Shi descendants which generalize both Shi and Ish arrangements
(§1.1),
• type B N-Ish arrangements which generalize Ish arrangement (§1.2),
• type B deleted Shi and Ish arrangements which provide “partial" inter-

polation between Coxeter, Shi and Ish arrangements (§1.3).
Finally, in §1.4 we give a result on period collapse in the characteristic quasi-

polynomials of the arrangements in the first and last columns of the type B Shi
descendant matrix.

The original motivation of Armstrong [4] for defining the Ish arrangement Ish(Aℓ−1)
was to give a new combinatorial interpretation of the q, t-Catalan numbers of Garsia
and Haiman from diagonal coinvariant theory. In this paper we focus on common
properties that the Shi and Ish arrangements share (Shi/Ish dualities); a question
whether the type B Shi and Ish arrangements have a similar algebraic interpretation
is left for future research.

1.1. Type B Shi descendants. We begin by recalling the definition of arrange-
ments interpolating between Shi(Aℓ−1) and Ish(Aℓ−1) due to Duarte and Guedes de
Oliveira [9]. Let 2 ⩽ k ⩽ ℓ. Define

Hk
ℓ := Cox(Aℓ−1) ∪ { x1 − xj = i | 1 ⩽ i < j ⩽ ℓ, i < k }

∪ { xi − xj = 1 | k ⩽ i < j ⩽ ℓ } .

These arrangements interpolate between Shi(Aℓ−1) = H2
ℓ and Ish(Aℓ−1) = Hℓ

ℓ as k
varies. A notable property of these arrangements is that they share the same charac-
teristic polynomial t(t− ℓ)ℓ−1 [9, Theorem 2.2].

The relationship of the arrangements Hk
ℓ is studied more closely in terms of ψ-

digraphic arrangements (Definition 3.1) in recent work by Abe and the authors
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[3]. It is shown that the sequence

Shi(Aℓ−1) = H2
ℓ −→ H3

ℓ −→ · · · −→ Hℓ
ℓ = Ish(Aℓ−1)

can be derived by certain operations on digraphs, the so-called coking elimination
[3, Definition 2.15 and Theorem 3.13]. Compared to the combinatorial symmetry (2),
this gives another way to understand the Ish arrangement Ish(Aℓ−1) as the final
arrangement in the digraphic sequence above starting from Shi(Aℓ−1).

Furthermore, it was proved that the coking elimination operations mentioned pre-
viously preserve characteristic polynomial and freeness [3, Theorems 3.1 and 4.1]. In
particular, the supersolvability (hence freeness) of the cone c Ish(Aℓ−1) implies the
freeness of all other cones in the sequence.

If an element e appears d ⩾ 0 times in a multiset M , we write ed ∈M .

Theorem 1.5 ([9, Theorem 2.2], [3, Theorem 1.6]). The cones cHk
ℓ over the arrange-

ments Hk
ℓ (2 ⩽ k ⩽ ℓ) all are free with the same multiset of exponents

exp(cHk
ℓ ) = {0, 1, ℓℓ−1}.

Notation. For subsequent discussion, we need to fix some notation. For integers
a ⩽ b and ℓ ⩾ 1, denote [a, b] := {n ∈ Z | a ⩽ n ⩽ b} and [ℓ] := [1, ℓ]. For a subset
N ⊆ Z, denote −N := {−n | n ∈ N}. For notational convenience, when writing the
defining equation of a hyperplane, e.g. by xi = N and xi = Nz we mean the affine
coordinate hyperplanes xi = n and its homogenizations xi = nz for all n ∈ N .

More recently, Mücksch, Röhrle and the first author [19] defined the Shi descen-
dants as generalization of the arrangements Hk

ℓ in the study of flag-accurate ar-
rangements (Definition 2.6), a subclass of free arrangements involving freeness and
exponents of restrictions.

Let m ⩾ 0, 1 ⩽ k ⩽ ℓ, 0 ⩽ p ⩽ ℓ be integers. The Shi descendant Ap,k
ℓ (m)

(see [19, Definition 7.15] when d = 0) is the arrangement consisting of the following
hyperplanes:

xi − xj = 0 (1 ⩽ i < j ⩽ ℓ),
xi − xj = 1 (1 ⩽ i < j ⩽ ℓ+ 1− k),

xi = [1−m−min{ℓ− i+ 1, k}, 0] (1 ⩽ i ⩽ p),
xi = [−m−min{ℓ− i+ 1, k}, 0] (p < i ⩽ ℓ).

We may regard Ap,k
ℓ (m) as the entry ap,k in an (ℓ+1)×ℓ matrix (ap,k)0⩽p⩽ℓ,1⩽k⩽ℓ.

We call this matrix the Shi descendant matrix. We use the same name for the
matrix consisting of the cones over the Shi descendants.

The motivation to define the Shi descendants is that each row of the matrix can
also be constructed by coking elimination starting from a Shi-like arrangement [19,
Proposition 7.16]. These Shi arrangements (or Ap,1

ℓ (m) for 0 ⩽ p ⩽ ℓ in the first
column of our matrix) were considered earlier by Athanasiadis [7, Theorem 3.1] with
a nice property that they contain sufficient deletions and restrictions in order to apply
the addition-deletion theorem 2.4 to guarantee their (inductive) freeness.

The essentialization of the arrangement Hk+1
ℓ+1 for each 1 ⩽ k ⩽ ℓ is affinely equiv-

alent to Aℓ,k
ℓ (1) = A0,k

ℓ (0) [3, Proposition 2.11]. Thus Hk+1
ℓ+1 can be found in the ℓ-th

row of the Shi descendant matrix when m = 1, or in the 0-th row when m = 0.
In this way the Shi descendants can be viewed as “vertical" generalization of the
arrangements Hk

ℓ .
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Theorem 1.6 ([19, Theorem 7.22]). Let m ⩾ 0, 1 ⩽ k ⩽ ℓ and 0 ⩽ p ⩽ ℓ. The cone
cAp,k

ℓ (m) in the Shi descendant matrix is flag-accurate with exponents

exp(cAp,k
ℓ (m)) = {1, (ℓ+m)p, (ℓ+m+ 1)ℓ−p}.

We remark that the freeness of the Shi descendants can be shown by using the
method in [3] which relies on the supersolvability of the Ish-like arrangements in the
last column (see [19, Remark 7.19]). In particular, the arrangements in the same row
have the same multiset of exponents hence characteristic polynomial. The Shi/Ish
duality for flag-accuracy in Theorem 1.6 is proved by a different “reverse” approach
by first employing the flag-accuracy of the Shi-like arrangements in the first column,
then extending to all other arrangements in the matrix.

All concepts discussed above are defined based on a root system of type A. We
now introduce a type B analog of the Shi descendants.
Definition 1.7. Let m ⩾ 1, 1 ⩽ k ⩽ ℓ and 0 ⩽ p ⩽ ℓ. The type B Shi descendant
Bp,k

ℓ (m) is the arrangement in Rℓ consisting of the following hyperplanes
xi ± xj = 0 (1 ⩽ i < j ⩽ ℓ),
xi ± xj = 1 (1 ⩽ i < j ⩽ ℓ+ 1− k),

xi = [2−m−min{ℓ− i+ 1, k}, min{ℓ− i+ 1, k}+m− 1] (1 ⩽ i ⩽ p),
xi = [1−m−min{ℓ− i+ 1, k}, min{ℓ− i+ 1, k}+m− 1] (p < i ⩽ ℓ).

We will define further concepts for type B. For simplicity, sometimes we omit the
term “type B" if no confusion arises. For example, we will call the arrangements in
Definition 1.7 the Shi descendants Bp,k

ℓ (m).
We may view each Ap,k

ℓ (m) as a subarrangement of Bp,k
ℓ (m+ 1). In a similar way

we define the type B Shi descendant matrix as the matrix consisting of the Shi
descendants Bp,k

ℓ (m): B
0,1
ℓ (m) k varies−→ B0,ℓ

ℓ (m)

↓ p varies
...

...
Bℓ,1

ℓ (m) · · · Bℓ,ℓ
ℓ (m)

 .

Similar to the type A case, we will describe the relation between the arrangements
in the same row when we introduce the type B ψ-digraphic arrangement and
coking elimination in §3.1 (see Theorem 3.11). This will also justify the definition
of Bp,k

ℓ (m) as a counterpart of Ap,k
ℓ (m).

The arrangements Bp,1
ℓ (m) in the first and Bp,ℓ

ℓ (m) in the last column play a role of
Shi-like and Ish-like arrangements, respectively. These arrangements are of our main
interest, and we give their descriptions explicitly below. For 0 ⩽ p ⩽ ℓ,

(4) Bp,1
ℓ (m) :


xi ± xj = [0, 1] (1 ⩽ i < j ⩽ ℓ),
xi = [1−m,m] (1 ⩽ i ⩽ p),
xi = [−m,m] (p < i ⩽ ℓ).

(5) Bp,ℓ
ℓ (m) :


xi ± xj = 0 (1 ⩽ i < j ⩽ ℓ),
xi = [1−m+ i− ℓ,m+ ℓ− i] (1 ⩽ i ⩽ p),
xi = [−m+ i− ℓ,m+ ℓ− i] (p < i ⩽ ℓ).

In particular, take m = 1, we obtain Shi(Bℓ) = Bℓ,1
ℓ (1) at bottom-left corner, and

Ish(Bℓ) = Bℓ,ℓ
ℓ (1) at bottom-right corner. See Figure 3 for the Shi descendant matrix

for ℓ = 3.
Our first main result in the present paper is an analog of Theorem 1.6.

Algebraic Combinatorics, Vol. 8 #1 (2025) 271



T. N. Tran & S. Tsujie

Theorem 1.8. Let m ⩾ 1, 1 ⩽ k ⩽ ℓ and 0 ⩽ p ⩽ ℓ. The cone cBp,k
ℓ (m) in the Shi

descendant matrix is flag-accurate with exponents
exp(cBp,k

ℓ (m)) = {1, (2m+ 2ℓ− 2)p, (2m+ 2ℓ− 1)ℓ−p}.

Moreover, if ℓ ⩾ 2 then cBp,k
ℓ (m) is not supersolvable except the arrangements in the

last column of the matrix.

Corollary 1.9. The cones over Shi(Bℓ) and Ish(Bℓ) are free with the same multiset
of exponents {1, (2ℓ)ℓ}. In particular, Shi(Bℓ) and Ish(Bℓ) have the same character-
istic polynomial (t− 2ℓ)ℓ. Moreover, the cone over Ish(Bℓ) is supersolvable.

The proof of Theorem 1.8 is similar in spirit to Theorem 1.6. The argument for
the Ish arrangements in the last column is easiest which follows directly from the
modular coatom technique 2.12. For the remaining arrangements, we first need to
show the flag-accuracy of the Shi arrangements in the first column, then use the
modular coatom technique to transfer this property to the other arrangements along
each row in the matrix.

It was observed in [5, §1] that the Ish arrangement Ish(Aℓ−1) is sort of a “toy
model" for the Shi arrangement Shi(Aℓ−1) in the sense that for any property P that
they share, the proof that Ish(Aℓ−1) satisfies P is easier than the proof that Shi(Aℓ−1)
satisfies P . As the preceding paragraph suggests, this observation continues to be the
case for type B regarding the flag-accuracy in Theorem 1.8.

1.2. Type B N-Ish arrangements. Let N = (N2, . . . , Nℓ) be a tuple of finite sets
Ni ⊆ Z (not necessarily of the form [ai, bi]). Abe, Suyama, and the second author [2]
defined the N-Ish arrangement A(N) as a generalization of the Ish arrangement
Ish(Aℓ−1) (or more generally, of the Ish arrangements Ap,ℓ

ℓ (m) for 0 ⩽ p ⩽ ℓ in the
last column of the type A Shi descendant matrix). The N -Ish arrangement A(N)
consists of the following hyperplanes:

xi − xj = 0 (1 ⩽ i < j ⩽ ℓ),
x1 − xi = Ni (2 ⩽ i ⩽ ℓ).

It is shown that freeness and supersolvability of the cone over A(N) are synonyms.

Theorem 1.10 ([2, Theorems 1.3 and 1.4]). The following are equivalent:
(1) N is a nest. Namely, there exists a permutation w of {2, . . . , ℓ} such that

Nw(i) ⊆ Nw(i−1) for every 3 ⩽ i ⩽ ℓ.
(2) The cone cA(N) is supersolvable.
(3) The cone cA(N) is free.

In this case, the exponents of cA(N) are given by
exp(cA(N)) = {0, 1} ∪ {|Nw(i)|+ i− 2}ℓ

i=2,

where w is any permutation of {2, . . . , ℓ} such that Nw(i) ⊆ Nw(i−1) for every 3 ⩽ i ⩽
ℓ.

We now introduce the notion of type B N-Ish arrangement as a generalization
of the Ish arrangements Bp,ℓ

ℓ (m) for 0 ⩽ p ⩽ ℓ in the last column of the type B Shi
descendant matrix (see (5)) by extending the weights of the coordinate hyperplanes.

Definition 1.11. Let N = (N1, . . . , Nℓ) be an ℓ-tuple of finite sets Ni ⊆ Z. The type
B N-Ish arrangement B(N) is the arrangement in Rℓ consisting of the following
hyperplanes:

xi ± xj = 0 (1 ⩽ i < j ⩽ ℓ),
xi = Ni (1 ⩽ i ⩽ ℓ).
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Some example of the type B N -Ish arrangements already appeared in the litera-
ture, e.g. it was used by Ziegler [30, Proposition 10] to show that the exponents of
free multiarrangements (see §2.3) are in general not combinatorial. To study the
freeness and supersolvability of B(N), we consider some special conditions on tuples.

Definition 1.12. Let N = (N1, . . . , Nℓ) be an ℓ-tuple of finite sets Ni ⊆ Z. The tuple
N is said to be

(1) centered if 0 ∈ Ni for each 1 ⩽ i ⩽ ℓ,
(2) uneven if for any 1 ⩽ i < j ⩽ ℓ either |Ni| ≠ |Nj | or |Ni| = |Nj | is an odd

integer, otherwise it is called even (i.e. there exist 1 ⩽ i < j ⩽ ℓ such that
|Ni| = |Nj | is an even number),

(3) nonnegative if Ni ⊆ Z⩾0 consists of only nonnegative integers for each
1 ⩽ i ⩽ ℓ,

(4) a signed nest if there exists a permutation w of [ℓ] such that ±Nw(i) ⊆
Nw(i−1) (equivalently, Nw(i) ∪ (−Nw(i)) ⊆ Nw(i−1)) for every 2 ⩽ i ⩽ ℓ. Thus
N is a signed nest if and only if the 2-tuple (Ni, Nj) is a signed nest for all
1 ⩽ i < j ⩽ ℓ.

Our second main result is an analog of Theorem 1.10.

Theorem 1.13. Let N = (N1, . . . , Nℓ) be an ℓ-tuple of finite sets Ni ⊆ Z satisfying
two conditions: (a) N is centered and (b) N is uneven. The following are equivalent:

(1) N is a signed nest.
(2) The cone cB(N) is supersolvable.
(3) The cone cB(N) is free.

In this case, the exponents of cB(N) are given by

exp(cB(N)) = {1} ∪ {|Nw(i)|+ 2(i− 1)}ℓ
i=1,

where w is any permutation of [ℓ] such that ±Nw(i) ⊆ Nw(i−1) for every 2 ⩽ i ⩽ ℓ.

In particular, the arrangements cBp,ℓ
ℓ (m) for 0 ⩽ p ⩽ ℓ in the last column of the Shi

descendant matrix given in (5) are supersolvable since they are N -Ish arrangements
whose associated tuples are signed nests.

We remark that without centeredness or unevenness the tuple N being a signed
nest is not enough to guarantee the freeness or supersolvability or equivalence be-
tween these properties of cB(N) (see Example 4.2). Thus unlike type A, freeness and
supersolvability of cB(N) are not synonyms. A full characterization of freeness or
supersolvability for a type B N -Ish arrangement remains open to us.

If a tuple N is centered and nonnegative, we give a characterization for freeness
and supersolvability of cB(N) without the need of unevenness (see Theorem 4.7).
This characterization will play an important role in the proof of Theorem 1.16 in the
next subsection.

In the type A case, an explicit basis for the module of logarithmic derivations
(Definition 2.1) of a free (= supersolvable) N -Ish arrangement is known [2, Theorem
1.4]. The situation is more complicated in type B. We give an explicit basis for cB(N)
when Ni = [−mi,mi] with m1 ⩾ m2 ⩾ · · · ⩾ mℓ ⩾ 0 (Theorem 4.3). This cB(N) also
satisfies all conditions in Theorem 1.13, and has the top-right descendant cB0,ℓ

ℓ (m)
and Cox(Bℓ) as its specializations. It would be interesting to find a basis for other
free (or just supersolvable) type B N -Ish arrangements.

1.3. Type B deleted Shi and Ish arrangements. For a loopless digraph G =
([ℓ], EG) on [ℓ] with edge set EG ⊆ {(i, j) | 1 ⩽ i < j ⩽ ℓ}, Athanasiadis [6, 7]
defined the deleted Shi arrangement Shi(G) that interpolates between Cox(Aℓ−1)
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and Shi(Aℓ−1), and characterized completely its freeness and supersolvability. Using
the following digraphic version of the combinatorial symmetry (2)

{xi − xj = 1} ←→ {x1 − xj = i} ((i, j) ∈ EG),
Armstrong and Rhoades [5] defined the deleted Ish arrangement Ish(G) that in-
terpolates between Cox(Aℓ−1) and Ish(Aℓ−1):

(6)
Shi(G) := Cox(Aℓ−1) ∪ { xi − xj = 1 | (i, j) ∈ EG } ,
Ish(G) := Cox(Aℓ−1) ∪ { x1 − xj = i | (i, j) ∈ EG } .

The following analog of Theorems 1.1, 1.2 and 1.3 for the deleted Shi and Ish
arrangements holds.

Theorem 1.14 ([5, Main Theorem], [17, Theorem 6], [2, Corollary 5.3]). The following
Shi/Ish dualities hold:

(1) The arrangements Shi(G) and Ish(G) have the same characteristic polyno-
mial.

(2) c Shi(G) is free ⇔ c Ish(G) is free ⇔ c Ish(G) is supersolvable.
(3) The arrangements Shi(G) and Ish(G) have the same number of regions with

c ceilings and d degrees of freedom for any nonnegative integers c, d.

Recall Shi(Bℓ) and Ish(Bℓ) from Definition 1.4. One may wonder whether an analog
of Theorem 1.14 holds for type B. Unfortunately, it is not always the case. The
subarrangement Shi(B3) ∖ {x1 = 1} of Shi(B3) has characteristic polynomial t3 −
17t2 + 98t−191. However, there is no subarrangement of Ish(B3) containing Cox(B3)
such that the characteristic polynomial coincides with this polynomial.

In order to have a valid analogy, we need to consider “partial" deleted versions of
Shi(Bℓ) and Ish(Bℓ). A natural idea is to consider an analogous digraphic version of
(3). In that case it is necessary to consider digraphs with loops.

In the remainder of this subsection, assume G = ([ℓ], EG, LG) is a digraph on [ℓ]
with loop set LG ⊆ [ℓ] and edge set EG ⊆ {(i, j) | 1 ⩽ i < j ⩽ ℓ}.

Definition 1.15. Define arrangements S(G) and I(G) in Rℓ by
S(G) := Cox(Bℓ) ∪ { xi = 1 | i ∈ LG } ∪ { xi − xj = 1 | (i, j) ∈ EG } ,
I(G) := Cox(Bℓ) ∪ { xi = 1 | i ∈ LG } ∪ { xi = ℓ+ 2− j | (i, j) ∈ EG } .

The arrangements above are “partial" deleted versions of Shi(Bℓ) and Ish(Bℓ) in
the sense that S(G) (resp. I(G)) interpolates between Cox(Bℓ) and Shi−(Bℓ) (resp.
Ish−(Bℓ)) defined as below

Cox(Bℓ) ⊆ S(G) ⊆ Shi−(Bℓ) := Shi(Bℓ) ∖ { xi + xj = 1 | 1 ⩽ i < j ⩽ ℓ } ,
Cox(Bℓ) ⊆ I(G) ⊆ Ish−(Bℓ) := Ish(Bℓ) ∖ { xi = −(ℓ+ 1− j) | 1 ⩽ i < j ⩽ ℓ } .

Our third main result is an analog of Theorem 1.14(2).

Theorem 1.16. The following Shi/Ish duality between the cones over S(G) and I(G)
holds:
cS(G) is free ⇔ cS(G) is supersolvable ⇔ cI(G) is free ⇔ cI(G) is supersolvable.
Furthermore, any of the above conditions occurs if and only if G has one of the
following forms:

(a) |EG| ⩾ 1 and all the edges in G have the same initial vertex with possible loop
at this vertex, and there are no loops at any other vertices,

(b) |EG| ⩾ 2 and all the edges in G have the same terminal vertex, and there are
no loops at any vertices (including the terminal vertex),
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(c) G has no edges but loops at some vertices.
In this case, the exponents of cS(G) and cI(G) are both given by

exp(cS(G)) = exp(cI(G)) = {|EG|+ |LG|+ 1} ∪ {2i− 1}ℓ
i=1.

In particular, the deleted arrangements S(G) and I(G) have the same characteristic
polynomial when their associated cones are free. Our calculation so far suggests the
following analog of Theorem 1.14(1).

Conjecture 1.17. S(G) and I(G) have the same characteristic polynomial for any
digraph G.

Notice that Shi(Bℓ) and Ish(Bℓ) are the first and last arrangements in the last row
of the Shi descendant matrix. It would also be interesting to define similar “partial"
deleted versions of the first and last arrangements in the other rows, and study the
Shi/Ish dualities similar to Theorem 1.14.

1.4. Characteristic quasi-polynomials and period collapse. Given an in-
tegral arrangement, Kamiya, Takemura and Terao [14, 16] introduced the notion of
characteristic quasi-polynomial, which enumerates the cardinality of the comple-
ment of the arrangement modulo a positive integer (Theorem 2.16). The most popular
candidate for periods of these quasi-polynomials is the lcm period (Definition 2.15).

The lcm period is known to be the minimum period when the arrangement
is central [12, Theorem 1.2]. The minimum period in the noncentral case remains
unknown. We say that period collapse occurs in the characteristic quasi-polynomial
of a noncentral arrangement when the minimum period is strictly less than the lcm
period.

The first example of period collapse arises from the extended Shi arrangement
of a root system of an arbitrary type but type A [29, Theorem 5.1]. Note that in
type A, the lcm period is equal to 1 (see e.g. [15, Corollary 3.2]) hence no period
collapse occurs. In particular, the characteristic polynomial and quasi-polynomial of
Shi(Aℓ−1) or Ish(Aℓ−1) coincide.

Higashitani, Yoshinaga and the first author showed that period collapse occurs in
any dimension ⩾ 1, occurs for any lcm period ⩾ 2, and the minimum period when
it is not the lcm period can be any proper divisor of the lcm period [12, Theorem
1.2]. Despite the fact that any sort of period collapse is possible, what makes period
collapse happen is still an interesting question.

Our fourth (and final) main result is a new example of period collapse.

Theorem 1.18. The characteristic quasi-polynomial of each arrangement Bp,1
ℓ (m) for

0 ⩽ p ⩽ ℓ in the first column of the Shi descendant matrix given in (4) is actually a
polynomial. Hence period collapse occurs in these quasi-polynomials.

One may wonder if a Shi/Ish duality regarding period collapse holds for Shi(Bℓ)
and Ish(Bℓ). Unfortunately, it is not the case. It can be readily verified that both lcm
and minimum periods for Ish(B2) are equal to 2 (see also §5 for further details).

2. Preliminaries
2.1. Free arrangements. We begin by recalling basic concepts and preliminary
results on free arrangements. Our standard reference is [21]. Let K be a field and
let V = Kℓ. A hyperplane in V is an affine subspace of codimension 1 of V . An
arrangement is a finite collection of hyperplanes in V . An arrangement is called
central if every hyperplane in it passes through the origin.
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Let A be an arrangement. Define the intersection poset L(A) of A by

L(A) :=
{ ⋂

H∈B
H ̸= ∅

∣∣∣∣ B ⊆ A} ,
where the partial order is given by reverse inclusion X ⩽ Y ⇔ Y ⊆ X for X,Y ∈
L(A). We agree that V is a unique minimal element in L(A) as the intersection over
the empty set. Thus L(A) is a semi-lattice which can be equipped with the rank
function r(X) := codim(X) for X ∈ L(A). We also define the rank r(A) of A as the
rank of a maximal element of L(A). The intersection poset L(A) is often referred to
as the combinatorics of A.

The characteristic polynomial χA(t) ∈ Z[t] of A is defined by

χA(t) :=
∑

X∈L(A)

µ(X)tdim X ,

where µ denotes the Möbius function µ : L(A)→ Z defined recursively by

µ (V ) := 1 and µ(X) := −
∑

Y ∈L(A)
X⊊Y ⊆V

µ(Y ).

Let {x1, . . . , xℓ} be a basis for the dual space V ∗ and let S := K[x1, . . . , xℓ]. The
defining polynomial Q(A) of A is given by

Q(A) :=
∏

H∈A
αH ∈ S,

where αH = a1x1 + · · ·+ aℓxℓ + d (ai, d ∈ K) satisfies H = kerαH .
The cone cA over A is the central arrangement in Kℓ+1 with the defining polyno-

mial
Q(cA) := z

∏
H∈A

hαH ∈ K[x1, . . . , xℓ, z],

where hαH := a1x1 + · · · + aℓxℓ + dz is the homogenization of αH , and z = 0 is the
hyperplane at infinity, denoted H∞.

A K-linear map θ : S → S which satisfies θ(fg) = θ(f)g + fθ(g) is called a
derivation. Let Der(S) be the set of all derivations of S. It is a free S-module with
a basis {∂/∂x1, . . . , ∂/∂xℓ} consisting of the usual partial derivatives. We say that a
nonzero derivation θ =

∑ℓ
i=1 fi∂/∂xi is homogeneous of degree p if each nonzero

coefficient fi is a homogeneous polynomial of degree p [21, Definition 4.2]. In this case
we write deg θ = p.

The concept of free arrangements was defined by Terao for central arrangements
[25]. In the remainder of this section, unless otherwise stated, assume A is a central
arrangement in V = Kℓ.

Definition 2.1 (Free arrangement [21, Definitions 4.5 and 4.15]). The module D(A)
of logarithmic derivations is defined by

D(A) := {θ ∈ Der(S) | θ(Q(A)) ∈ Q(A)S}.
We say that A is free if the module D(A) is a free S-module.

If A is a free arrangement, we may choose a homogeneous basis {θ1, . . . , θℓ} for
D(A). Then the degrees of the θi’s are called the exponents of A [21, Definition
4.25]. They are uniquely determined by A. In that case we write

exp(A) := {deg θ1, . . . ,deg θℓ}
for the multiset of exponents of A. If exp(A) = {d1, . . . , dℓ} with d1 ⩽ · · · ⩽ dℓ, we
write exp(A) = {d1, . . . , dℓ}⩽.
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Though the freeness was defined in an algebraic sense, it is related to the combi-
natorics of arrangements due to a remarkable result of Terao.

Theorem 2.2 (Factorization theorem [26, Main Theorem], [21, Theorem 4.137]). If
A is free with exp(A) = {d1, . . . , dℓ}, then

χA(t) =
ℓ∏

i=1
(t− di).

For each X ∈ L(A), define the localization of A on X by

AX := {K ∈ A | X ⊆ K} ⊆ A,

and the restriction AX of A to X by

AX := {K ∩X | K ∈ A∖AX}.

Fix H ∈ A, denote A′ := A ∖ {H} and A′′ := AH . We call (A,A′,A′′) the triple
with respect to the hyperplane H ∈ A.

Theorem 2.3 (Deletion-restriction formula [21, Theorem 2.56]). If (A,A′,A′′) is a
triple of arrangements, then

χA(t) = χA′(t)− χA′′(t).

Theorem 2.4 (Addition-deletion theorem [25], [21, Theorems 4.46 and 4.51]). Let A
be a nonempty arrangement and let H ∈ A. Then two of the following imply the third:

(1) A is free with exp(A) = {d1, . . . , dℓ−1, dℓ}.
(2) A′ is free with exp(A′) = {d1, . . . , dℓ−1, dℓ − 1}.
(3) A′′ is free with exp(A′′) = {d1, . . . , dℓ−1}.

Moreover, all the three hold true if A and A′ are both free.

We recall an improvement of the addition part of the theorem above ((2) + (3)⇒
(1)) due to Abe.

Theorem 2.5 (Division theorem [1, Theorem 1.1]). Assume that there is a hyperplane
H ∈ A such that χA′′(t) divides χA(t) and that A′′ is free. Then A is free.

Let ∅ℓ denote the ℓ-dimensional empty arrangement, that is, the arrangement
in V consisting of no hyperplanes. An arrangement A in V is called essential if
r(A) = ℓ. Any arrangement A of rank r in V can be written as the product (see e.g.
[21, Definition 2.13]) Aess × ∅ℓ−r, where Aess is the essentialization (see e.g. [24,
§1.1]) of A which is an essential arrangement of rank r. Moreover, A is free if and
only if Aess is free [21, Proposition 4.28]. In this case, exp(A) = exp(Aess) ∪ {0ℓ−r}.

A special subclass of free arrangements is recently studied by Mücksch, Röhrle and
the first author.

Definition 2.6 (Flag-accurate arrangement [19, Definition 1.1]). A free arrangement
A of rank r with exp(A) = {0ℓ−r, d1, . . . , dr}⩽ is called flag-accurate if there exists
a flag of subspaces in L(A)

X1 ⊆ X2 ⊆ · · · ⊆ Xℓ−1 ⊆ Xr = V

such that dim(Xi) = ℓ − r + i and AXi is free with exp(AXi) = {0ℓ−r, d1, . . . , di}⩽
for each 1 ⩽ i ⩽ r.

The flag-accurate arrangements form a subclass of both accurate and division-
ally free arrangements, concepts due to Mücksch and Röhrle [18], and Abe [1], re-
spectively. In particular, flag-accuracy is a combinatorial property [19, Remark 1.3].

Algebraic Combinatorics, Vol. 8 #1 (2025) 277



T. N. Tran & S. Tsujie

2.2. Supersolvable arrangements. Now we recall the definition of supersolv-
able arrangements following e.g. [10, §2].

Definition 2.7. Given a subarrangement B ⊆ A of a central arrangement A, we say
B is a modular coatom of A if

(1) r(A) = r(B) + 1, and
(2) for any distinct H,H ′ ∈ A∖ B, there exists H ′′ ∈ B such that H ∩H ′ ⊆ H ′′.

Proposition 2.8 ([8, Theorem 4.3]). A subarrangement B ⊆ A is a modular coatom
if and only if B = AX for some coatom X ∈ L(A) such that X + Y ∈ L(A) for all
Y ∈ L(A).

Definition 2.9 (Supersolvable arrangement). A central arrangement A of rank r is
called supersolvable if there exists a chain of arrangements, called an M-chain,

∅ = A0 ⊆ A1 ⊆ · · · ⊆ Ar = A,

in which Ai is a modular coatom of Ai+1 for each 0 ⩽ i ⩽ r − 1.

Next we describe a relationship between supersolvable and free arrangements.

Theorem 2.10 ([13, Theorem 4.2]). If A is supersolvable, then A is free. Further-
more, if A has an M-chain ∅ = A0 ⊆ A1 ⊆ · · · ⊆ Ar = A, then exp(A) =
{0ℓ−r(A), d1, . . . , dr(A)} where di := |Ai ∖Ai−1|.

The theorem below says supersolvability and freeness are closed under taking lo-
calization.

Theorem 2.11 ([23, Proposition 3.2] and [21, Theorem 4.37]). If A is supersolvable
(resp. free), then the localization AX is supersolvable (resp. free) for any X ∈ L(A).

The following well-known property of modular coatoms (see e.g. [19, Proposition
3.3]) will be used often in the proofs of our results to come.

Proposition 2.12 (Modular coatom technique). Let A be a central arrangement and
let B ⊆ A be a modular coatom of A. The following statements hold.

(1) A is supersolvable (resp. free) if and only if B is supersolvable (resp. free). In
this case, exp(Aess) = exp(Bess) ∪ {|A∖ B|}.

(2) If B is flag-accurate whose exponents do not exceed |A ∖ B|, then A is flag-
accurate.

Two (central) hyperplane arrangements A and A′ in V are said to be (linearly)
affinely equivalent if there is an invertible (linear) affine endomorphism φ : V → V
such that A′ = φ(A) = {φ(H) | H ∈ A}. In particular, the intersection posets of two
affinely equivalent arrangements are isomorphic. One can prove that supersolvability,
flag-accuracy and freeness all are preserved under linear equivalence. In the rest of
the paper, we will often identify affinely equivalent arrangements. Note that for two
affinely equivalent noncentral arrangements A and A′, the cones cA and cA′ are
linearly equivalent.

2.3. Multiarrangements. A multiarrangement is a pair (A,m) where A is a
central arrangement in V = Kℓ and m is a map m : A → Z⩾0, called multiplicity.
Let (A,m) be a multiarrangement. The defining polynomial Q(A,m) of (A,m) is
given by

Q(A,m) :=
∏

H∈A
α

m(H)
H ∈ S = K[x1, . . . , xℓ].
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When m(H) = 1 for every H ∈ A, (A,m) is simply a hyperplane arrangement. The
module D(A,m) of logarithmic derivations of (A,m) is defined by

D(A,m) := {θ ∈ Der(S) | θ(αH) ∈ αm(H)
H S for all H ∈ A}.

We say that (A,m) is free with the multiset exp(A,m) = {d1, . . . , dℓ} of expo-
nents if D(A,m) is a free S-module with a homogeneous basis {θ1, . . . , θℓ} such that
deg θi = di for each i. It is known that (A,m) is always free for ℓ ⩽ 2 [30, Corollary
7].

For θ1, . . . , θℓ ∈ D(A,m), we define the (ℓ× ℓ)-matrix M(θ1, . . . , θℓ) as the matrix
with (i, j)-th entry θj(xi).

Theorem 2.13 ([21, Theorem 4.19], [30, Theorem 8]). Let θ1, . . . , θℓ ∈ D(A,m). Then
{θ1, . . . , θℓ} forms a basis for D(A,m) if and only if

detM(θ1, . . . , θℓ) ∈ K∗ ·Q(A,m).

Let H ∈ A. The Ziegler restriction (AH ,mH) of A onto H is a multiarrangement
defined by

mH(X) := |AX | − 1 for X ∈ AH .

We will need the following characterization for freeness of a simple arrangement in
dimension 3.

Theorem 2.14 ([28, Corollary 3.3]). A central arrangement A in K3 is free if and
only if

χA(t) = (t− 1)(t− d2)(t− d3),
where exp(AH ,mH) = {d2, d3} with H ∈ A.

2.4. Characteristic quasi-polynomials. A function φ : Z→ C is called a quasi-
polynomial if there exist a positive integer ρ ∈ Z>0 and polynomials fk(t) ∈ Q[t]
(1 ⩽ k ⩽ ρ) such that for any q ∈ Z>0 with q ≡ k mod ρ,

φ(q) = fk(q).

The number ρ is called a period, and the polynomial fk(t) is called the k-
constituent of the quasi-polynomial φ. The smallest such ρ is called the minimum
period of φ. The minimum period is necessarily a divisor of any period.

Let ℓ, n ∈ Z>0 be positive integers. Denote by Matℓ×n(Z) the set of all ℓ × n
matrices with integer entries. Let C = (c1, . . . , cn) ∈ Matℓ×n(Z) with nonzero column

and let b = (b1, . . . , bn) ∈ Zn. Set A :=
(
C
b

)
∈ Mat(ℓ+1)×n(Z). The matrix A defines

the following hyperplane arrangement, called integral arrangement in Rℓ

A = A(A) := {Hj : 1 ⩽ j ⩽ n},

where
Hj = Hcj

:= {x ∈ Rℓ | xcj = bj}.
Let q ∈ Z>0 and Zq := Z/qZ. For a ∈ Z, let a := a + qZ ∈ Zq denote the q-

reduction of a. For a matrix or vector A′ with integral entries, denote by A′ the
entry-wise q-reduction of A′.

The q-reduction Aq of A is defined by

Aq = Aq(A) := {Hj,q | 1 ⩽ j ⩽ n},

where
Hj,q := {z ∈ Zℓ

q | zcj = bj}.
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Denote Z×
q := Zq ∖ {0}. The complement M(Aq) of Aq is defined by

M(Aq) := Zℓ
q ∖

n⋃
j=1

Hj,q = {z ∈ Zℓ
q | zC − b ∈ (Z×

q )n}.

For ∅ ̸= J ⊆ [n], let CJ ∈ Matℓ×#J(Z) denote the submatrix of C consisting of
the columns indexed by J . Set r(J) := rankCJ . Let 0 < eJ,1 | eJ,2 | · · · | eJ,r(J) be
the elementary divisors of CJ .

Definition 2.15. Define the lcm period of C by

ρC := lcm{eJ,r(J) | ∅ ̸= J ⊆ [n]}.

For simplicity, suppose each column of matrix A is primitive and no repetition is
allowed so that one can recover A from the arrangement A.

Theorem 2.16 ([14, Theorem 2.4], [16, Theorem 3.1]). There exists a monic quasi-
polynomial χquasi

A (q) of degree ℓ with a period ρC such that for sufficiently large q,

|M(Aq)| = χquasi
A (q).

This quasi-polynomial is called the characteristic quasi-polynomial of A.

The name “characteristic quasi-polynomial" is inspired by the following fact.

Theorem 2.17 (e.g. [16, Remark 3.3]). The 1-constituent f1
A(t) of χquasi

A (q) coincides
with the characteristic polynomial χA(t) of A:

f1
A(t) = χA(t).

3. Type B Shi descendants
We first fix some notation throughout this section. By G = (VG, EG) we mean

a digraph with vertex set VG = [ℓ] and edge set EG ⊆ {(i, j) | 1 ⩽ i < j ⩽ ℓ}.
A directed edge (i, j) ∈ EG is considered to be directed from i to j. A vertex-
weighted digraph is a pair (G,ψ) where G is a digraph on [ℓ] and ψ : [ℓ]→ 2Z is a
map, called a weight on G. A weight ψ is called an interval weight if each ψ(i) is
an integral interval, i.e. ψ(i) = [ai, bi] ⊆ Z where ai ⩽ bi are integers for every i ∈ [ℓ].

Definition 3.1 ([3, Definition 2.1]). Let (G,ψ) be a vertex-weighted digraph. The
(type A) ψ-digraphic arrangement A(G,ψ) in Rℓ is defined by

A(G,ψ) := Cox(Aℓ) ∪ {xi − xj = 1 | (i, j) ∈ EG} ∪ {xi = ψ(i) | 1 ⩽ i ⩽ ℓ}.

We will be interested in following digraphs.

Definition 3.2. The transitive tournament T[ℓ] and edgeless digraph K [ℓ] on [ℓ]
are defined by

ET[ℓ] := {(i, j) | 1 ⩽ i < j ⩽ ℓ},
EK[ℓ]

:= ∅.

For simplicity we often use the notation Tℓ and Kℓ for T[ℓ] and K [ℓ], respectively.
For 1 ⩽ k ⩽ ℓ, define the digraph T k

ℓ on [ℓ] by

ET k
ℓ

:= {(i, j) | 1 ⩽ i < j ⩽ ℓ− k + 1}.
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3.1. Type B ψ-digraphic arrangements. In this subsection we introduce an ana-
log of ψ-digraphic arrangements for a type B root system. Let (G,ψ) be a vertex-
weighted digraph on [ℓ].

Definition 3.3. The type B ψ-digraphic arrangement B(G,ψ) is the arrangement
in Rℓ consisting of the following hyperplanes:

xi ± xj = 0 (1 ⩽ i < j ⩽ ℓ),
xi ± xj = 1 ((i, j) ∈ EG, i < j),
xi ± xj = −1 ((j, i) ∈ EG, i < j),

xi = ψ(i) (1 ⩽ i ⩽ ℓ).

In comparison with the type A case (Definition 3.1), in type B we associate to each
directed edge two hyperplanes instead of one. We have A(G,ψ) ⊊ B(G,ψ).

Example 3.4. The type B Shi descendants (Definition 1.7) are type B ψ-digraphic
arrangements:

Bp,k
ℓ (m) = B(T k

ℓ , ψ
p,k
ℓ ),

where T k
ℓ is the digraph defined in Definition 3.2 and the map ψp,k

ℓ : [ℓ]→ 2Z is given
by

ψp,k
ℓ (i) :=

{
[2−m−min{ℓ− i+ 1, k}, min{ℓ− i+ 1, k}+m− 1] (1 ⩽ i ⩽ p),
[1−m−min{ℓ− i+ 1, k}, min{ℓ− i+ 1, k}+m− 1] (p < i ⩽ ℓ).

Example 3.5. The type B N -Ish arrangement from Definition 1.11 is a type B ψ-
digraphic arrangement: B(N) = B(G,ψ) where G = Kℓ is the edgeless digraph on [ℓ]
and ψ(i) = Ni for each i.

In the type B case, we need the following variant of simplicial vertex in a vertex-
weighted digraph from [3, Definition 3.10].

Definition 3.6. Let v be a vertex in G and let B(v) ⊆ B(G,ψ) be the subarrangement
of B(G,ψ) consisting of the following hyperplanes:

xi ± xj = 0 (i, j ∈ [ℓ] ∖ {v}),
xi ± xj = 1 ((i, j) ∈ EG, i < j, i, j ∈ [ℓ] ∖ {v}),
xi ± xj = −1 ((j, i) ∈ EG, i < j, i, j ∈ [ℓ] ∖ {v}),

xi = ψ(i) (i ∈ [ℓ] ∖ {v}).
The vertex v is called B-simplicial in (G,ψ) if cB(v) is a modular coatom of
cB(G,ψ).

Let G ∖ v denote the subgraph obtained from G by removing v and the edges
incident from or on v. Thus

cB(v) = cB
(
G∖ v, ψ|[ℓ]∖{v}

)
.

Proposition 3.7. Let v be an isolated vertex in (G,ψ), i.e. there are no edges of G
incident from or on v. If 0 ∈ ψ(i) for all i ∈ [ℓ] and ±ψ(v) ⊆ ψ(i) for all i ∈ [ℓ]∖{v},
then v is B-simplicial in (G,ψ).

Proof. We need to check Conditions 2.7(1) and (2). Condition (1) is clear. We show
Condition (2) for some cases, the remaining ones are treated similarly. If H = {xi +
xv = 0} and H ′ = {xi−xv = 0} for i ̸= v, then we can choose H ′′ = {xi = 0} ∈ cB(v)
(since 0 ∈ ψ(i)) and H ∩H ′ ⊆ H ′′. If H = {xi +xv = 0} and H ′ = {xv = a} for i ̸= v
and a ∈ ψ(v), then we can choose H ′′ = {xi = −a} ∈ cB(v) (since −ψ(v) ⊆ ψ(i))
and H ∩H ′ ⊆ H ′′. □
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The modular coatom technique 2.12 can be translated into digraphical terms as
follows.

Proposition 3.8. Let v be a B-simplicial vertex in (G,ψ). The following statements
hold.

(i) cB(G,ψ) is supersolvable (resp. free) if and only if cB(v) is supersolvable
(resp. free). In this case,

exp(cB(G,ψ)) = exp(cB(v)) ∪ {|ψ(v)|+ 2e+ 2ℓ− 2},
where e denotes the number of edges incident from or on v.

(ii) If cB(v) is flag-accurate whose exponents do not exceed |ψ(v)|+ 2e+ 2ℓ− 2,
then cB(G,ψ) is flag-accurate.

Definition 3.9. A vertex v in a digraph G is called a king (resp. coking) if (v, u) ∈
EG (resp. (u, v) ∈ EG) for every u ∈ VG ∖ {v}.

King and coking elimination operations for type A were defined in [3, Definition
2.14]. Now we introduce an analog for type B.

Definition 3.10. Let (G,ψ) be a vertex-weighted digraph with nonempty interval
weight, i.e. ψ(i) = [ai, bi] ̸= ∅ for every i ∈ [ℓ]. Let v be a vertex in G.

(1) Suppose that v is a coking in G. The type B coking elimination (BCE) on
G w.r.t. v is a construction of a new vertex-weighted digraph (G′, ψ′) where
G′ = ([ℓ], EG′) is a digraph and ψ′ is a weight given by

EG′ := EG ∖ { (i, v) | i ∈ [ℓ] ∖ {v} } , ψ′(i) :=
{

[ai − 1, bi + 1] (i ∈ [ℓ] ∖ {v}),
[av, bv] (i = v).

(2) Dually, suppose that v is a king in G. The type B king elimination (BKE)
on G w.r.t. v produces a new vertex-weighted digraph (G′′, ψ′′) given by

EG′′ := EG ∖ { (v, i) | i ∈ [ℓ] ∖ {v} } , ψ′′(i) :=
{

[ai − 1, bi + 1] (i ∈ [ℓ] ∖ {v}),
[av, bv] (i = v).

Let Gconv denote the converse of G, namely, Gconv is the digraph obtained by
reversing the direction on each edge of G. Similar to the type A case, we have
B(G,ψ) = B(Gconv,−ψ) via xi 7→ −xi. Hence taking BCE w.r.t. a coking v in
(G,ψ) is equivalent to taking BKE w.r.t. the king v in (Gconv,−ψ). Also, the BCE
(resp. BKE) w.r.t. v induces a set bijection between the associated arrangements
B(G,ψ) −→ B(G′, ψ′) (resp. B(G,ψ) −→ B(G′′, ψ′′)).

The following analog of [19, Proposition 7.16] is the main result of this subsection.

Theorem 3.11. Let 0 ⩽ p ⩽ ℓ. The sequence
Bp,1

ℓ (m) −→ Bp,2
ℓ (m) −→ · · · −→ Bp,ℓ

ℓ (m)
consisting of the Shi descendants in the p-th row of the Shi descendant matrix and
bijections between them can be constructed by BCE and the operation of adding isolated
vertices on the underlying vertex-weighted digraphs.

Moreover, for fixed 1 ⩽ k ⩽ ℓ each vertex n ∈ [ℓ − k + 2, ℓ] is isolated and B-
simplicial in (T k

ℓ [n], ψp,k
ℓ |[n]), the induced subgraph of (T k

ℓ , ψ
p,k
ℓ ) (Example 3.4) by

[n] = {1, 2, . . . , n}.

Proof. The proof is similar in spirit to the proofs of [19, Propositions 7.12 and 7.16].
Fix 1 ⩽ k ⩽ ℓ− 1. In view of Example 3.4, we shall show that there exists a bijection
Bp,k

ℓ (m) −→ Bp,k+1
ℓ (m) that can be constructed by taking BCE and adding isolated

vertices on the underlying digraphs.
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Observe that each vertex i ∈ [ℓ− k+ 2, ℓ] is isolated, and its weight is the same in
both (T k

ℓ , ψ
p,k
ℓ ) and (T k+1

ℓ , ψp,k+1
ℓ ).

Set v := ℓ− k+ 1. Then v is a coking of the induced subgraph T k
ℓ [v]. Now we show

that after applying the BCE to (T k
ℓ [v], ψp,k

ℓ |[v]) w.r.t. v we obtain (T k+1
ℓ [v], ψp,k+1

ℓ |[v]).
Clearly, (T k

ℓ [v])′ = T k+1
ℓ [v]. We need to show

(ψp,k
ℓ |[v])′ = ψp,k+1

ℓ |[v].

There are two cases: 1 ⩽ v ⩽ p and p < v ⩽ ℓ. Since the proofs are similar, we
consider only the latter (which is a bit harder). Suppose p < v ⩽ ℓ. Then by Definition
3.10(1),

(ψp,k
ℓ |[v])′(v) = [1−m−min{ℓ− v + 1, k}, min{ℓ− v + 1, k}+m− 1]

= [1−m− k, k +m− 1] = ψp,k+1
ℓ |[v](v).

Moreover, for every 1 ⩽ i ⩽ p,

(ψp,k
ℓ |[v])′(i) = [1−m−min{ℓ− i+ 1, k}, min{ℓ− i+ 1, k}+m]

= [1−m− k, k +m] = ψp,k+1
ℓ |[v](i).

Similarly, for every p < i < v, (ψp,k
ℓ |[v])′(i) = ψp,k+1

ℓ |[v](i) = [−m− k, k +m].
By adding the isolated vertices v + 1, . . . , ℓ with their weights to (T k

ℓ [v], ψp,k
ℓ |[v])

and (T k+1
ℓ [v], ψp,k+1

ℓ |[v]), we obtain the desired bijection

Bp,k
ℓ (m) −→ Bp,k+1

ℓ (m).

Now we show that for fixed 1 ⩽ k ⩽ ℓ, each isolated vertex n ∈ [v + 1, ℓ] is B-
simplicial in (T k

ℓ [n], ψp,k
ℓ |[n]) by using Proposition 3.7. Again we consider two cases:

p < v ⩽ ℓ and 1 ⩽ v ⩽ p.
If the former occurs, then

ψp,k
ℓ (i) =


[2−m− k, k +m− 1] (1 ⩽ i ⩽ p),
[1−m− k, k +m− 1] (p < i ⩽ v),
[−m− ℓ+ i, ℓ− i+m] (v < i ⩽ ℓ).

If the latter occurs, then

ψp,k
ℓ (i) =


[2−m− k, k +m− 1] (1 ⩽ i ⩽ v),
[1−m− ℓ+ i, ℓ− i+m] (v < i ⩽ p),
[−m− ℓ+ i, ℓ− i+m] (p < i ⩽ ℓ).

In either case, one can check that ±ψp,k
ℓ (j) ⊆ ψp,k

ℓ (i) for any v < i < j ⩽ ℓ, and
±ψp,k

ℓ (n) ⊆ ψp,k
ℓ (i) for any 1 ⩽ i ⩽ v. Now Proposition 3.7 completes the proof. □

Figure 3 below depicts the Shi descendant matrix for ℓ = 3 and the relation in each
row from Theorem 3.11.

3.2. Proof of Theorem 1.8. First we study the flag-accuracy of the arrangements
Bp,1

ℓ (m) in the first column of the Shi descendant matrix given in (4). Similar to
the observation in the introduction for type A, these Shi-like arrangements contain
sufficient deletions and restrictions that can guarantee not only their freeness but also
their flag-accuracy.
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1
[−m,m]

2
[−m,m]

3
[−m,m]

B0,1
3 (m)

1
[−m−1,m+1]

2
[−m−1,m+1]

3
[−m,m]

B0,2
3 (m)

1
[−m−2,m+2]

2
[−m−1,m+1]

3
[−m,m]

B0,3
3 (m)

1
[1−m,m]

2
[−m,m]

3
[−m,m]

B1,1
3 (m)

1
[−m,m+1]

2
[−m−1,m+1]

3
[−m,m]

B1,2
3 (m)

1
[−m−1,m+2]

2
[−m−1,m+1]

3
[−m,m]

B1,3
3 (m)

1
[1−m,m]

2
[1−m,m]

3
[−m,m]

B2,1
3 (m)

1
[−m,m+1]

2
[−m,m+1]

3
[−m,m]

B2,2
3 (m)

1
[−m−1,m+2]

2
[−m,m+1]

3
[−m,m]

B2,3
3 (m)

1
[1−m,m]

2
[1−m,m]

3
[1−m,m]

B3,1
3 (m)

1
[−m,m+1]

2
[−m,m+1]

3
[1−m,m]

B3,2
3 (m)

1
[−m−1,m+2]

2
[−m,m+1]

3
[1−m,m]

B3,3
3 (m)

Figure 3. The Shi descendant matrix of type B for ℓ = 3. In par-
ticular, Shi(B3) = B3,1

3 (1) and Ish(B3) = B3,3
3 (1).

Theorem 3.12. Let a ⩾ 1, m ⩾ 1, ℓ ⩾ 1 and 0 ⩽ p ⩽ ℓ. Let Bp
ℓ (m, a) be the

arrangement consisting of the hyperplanes

xi ± xj = [1− a, a] (1 ⩽ i < j ⩽ ℓ),
xi = [1−m,m] (1 ⩽ i ⩽ p),
xi = [−m,m] (p < i ⩽ ℓ).

The cone over Bp
ℓ (m, a) is flag-accurate with exponents

exp(cBp
ℓ (m, a)) = {1, (2m+ 2aℓ− 2a)p, (2m+ 2aℓ− 2a+ 1)ℓ−p}.

As a consequence, the Shi descendant Bp,1
ℓ (m) = Bp

ℓ (m, 1) in the first column of
the Shi descendant matrix given in (4) has flag-accurate cone with exponents

exp(cBp,1
ℓ (m)) = {1, (2m+ 2ℓ− 2)p, (2m+ 2ℓ− 1)ℓ−p}.

Proof. Define the lexicographic order on the set of pairs

{(ℓ, ℓ− p) | 0 ⩽ ℓ− p ⩽ ℓ, ℓ ⩾ 1}.

We first prove by induction on (ℓ, ℓ−p) that A := cBp
ℓ (m, a) is free with the desired

exponents. When ℓ = 1, it is obvious. Suppose ℓ ⩾ 2.
Case 1. Suppose ℓ− p ⩾ 1. Let H ∈ A denote the hyperplane xp+1 = −mz. Then

A′ := A∖ {H} = cBp+1
ℓ (m, a) is free with exponents

exp(A′) = {1, (2m+ 2aℓ− 2a)p+1, (2m+ 2aℓ− 2a+ 1)ℓ−p−1}
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by the induction hypothesis since (ℓ, ℓ − p) > (ℓ, ℓ − p − 1). Moreover, A′′ := AH

consists of the following hyperplanes
z = 0,

xi ± xj = [1− a, a]z (1 ⩽ i < j ⩽ ℓ, i ̸= p+ 1, j ̸= p+ 1),
xi = [1− (m+ a),m+ a]z (1 ⩽ i ⩽ p),
xi = [−(m+ a),m+ a]z (p+ 1 < i ⩽ ℓ).

Thus A′′ = cBp
ℓ−1(m+ a, a) is free with exponents

exp(A′′) = {1, (2m+ 2aℓ− 2a)p, (2m+ 2aℓ− 2a+ 1)ℓ−p−1}
by the induction hypothesis since (ℓ, ℓ − p) > (ℓ − 1, ℓ − p − 1). Therefore, by the
addition part of Theorem 2.4, A = cBp

ℓ (m, a) is free with the desired exponents.
Case 2. Suppose ℓ = p. The arrangement in question is D′ := cBℓ

ℓ(m, a) given by
z = 0,

xi ± xj = [1− a, a]z (1 ⩽ i < j ⩽ ℓ),
xi = [1−m,m]z (1 ⩽ i ⩽ ℓ).

We need to prove that D′ is free with exponents
exp(D′) = {1, (2m+ 2aℓ− 2a)ℓ}.

Note that D := cBℓ−1
ℓ (m, a) = D′ ∪ {K}, where K ∈ D denotes the hyperplane

xℓ = −mz. By Case 1, D is free with exponents
exp(D) = {1, (2m+ 2aℓ− 2a)ℓ−1, 2m+ 2aℓ− 2a+ 1}.

Again by Case 1, DK = cBℓ−1
ℓ−1(m + a, a). Thus by the induction hypothesis, DK is

free with exponents
exp(DK) = {1, (2m+ 2aℓ− 2a)ℓ−1}.

Apply the deletion part ((1) + (3) ⇒ (2)) of Theorem 2.4, we know that D′ is free
with the desired exponents.

Now we prove that A = cBp
ℓ (m, a) is flag-accurate by induction on ℓ. When ℓ = 1,

it is obvious. Suppose ℓ ⩾ 2. It suffices to find an H ∈ A so that the restriction AH

itself is flag-accurate and its exponents are exactly the exponents of A except the
largest one.

If ℓ − p ⩾ 1, by Case 1 above we may take H to be the hyperplane xp+1 = −mz.
Then the induction hypothesis applies. However, when ℓ = p, Case 2 above does
not directly give us a candidate for the desired restriction since we have applied the
deletion theorem. In this case, we choose H to be the hyperplane xℓ = mz. A direct
computation shows AH = cBℓ−1

ℓ−1(m + a, a). Now the induction hypothesis applies
thanks to the calculation in Case 2 above. □

Before giving the proof of Theorem 1.8, we give a simple result on nonsupersolv-
ability of the Shi descendants.

Proposition 3.13. cBp,1
2 (m) is not supersolvable for any 0 ⩽ p ⩽ 2, m ⩾ 1.

Proof. Denote A := cBp,1
2 (m). Then A is given by

z = 0,
x1 ± x2 = [0, 1]z,

xi = [1−m,m]z (1 ⩽ i ⩽ p),
xi = [−m,m]z (p < i ⩽ 2).
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Suppose to the contrary that A is supersolvable. Note that by Theorem 3.12,
exp(A) = {1, (2m + 2)p, (2m + 3)2−p}. By Theorem 2.10, there exists an M-chain
A1 ⊆ A2 ⊆ A3 = A, where A2 is a modular coatom such that |A2| ⩾ 2m + 3.
However, one can check directly from the definition of A that |AX | ⩽ 2m+ 2 for any
coatom X ∈ L(A). This contradicts Proposition 2.8. □

Now we are ready to present our proof.

Proof of Theorem 1.8. By Theorem 3.12, it suffices to prove that for any fixed
0 ⩽ p ⩽ ℓ, the cone A := cBp,k

ℓ (m) for 2 ⩽ k ⩽ ℓ in the p-th row of the Shi descendant
matrix is flag-accurate with exponents

exp(A) = {1, (2m+ 2ℓ− 2)p, (2m+ 2ℓ− 1)ℓ−p}.

Set v := ℓ − k + 1. There are two cases: p < v and p ⩾ v. Since the proofs are
similar, we give a proof only for the former. First note that by the proof of Theorem
3.11 the arrangement B := cB(T k

ℓ [v], ψp,k
ℓ |[v]) is given by

z = 0,
xi ± xj = [0, 1]z (1 ⩽ i < j ⩽ v),

xi = [2−m− k,m+ k − 1]z (1 ⩽ i ⩽ p),
xi = [1−m− k,m+ k − 1]z (p < i ⩽ v).

Therefore,
B = cBp,1

v (m+ k − 1),
which is flag-accurate with exponents {1, (2m+2ℓ−2)p, (2m+2ℓ−1)v−p}, by Theorem
3.12.

Thanks to Theorem 3.11, each isolated vertex n ∈ [v + 1, ℓ] is B-simplicial in
(T k

ℓ [n], ψp,k
ℓ |[n]) with ψp,k

ℓ (n) = [−m − ℓ + n, ℓ − n + m]. By applying Proposition
3.8(i) repeatedly to the k − 1 B-simplicial vertices ℓ, ℓ− 1, . . . , v + 1 in this order, we
get

A is free (resp. supersolvable) ⇐⇒ B is free (resp. supersolvable).

Thus A is free with the desired exponents since |ψp,k
ℓ (n)|+ 2n− 2 = 2m+ 2ℓ− 1.

In particular, if k = ℓ then v = 1. Therefore, r(B) = 2 and B is always supersolv-
able. Hence the arrangements cBp,ℓ

ℓ (m) for 0 ⩽ p ⩽ ℓ in the last column of the Shi
descendant matrix are supersolvable.

Note that B is flag-accurate, none of its exponents exceeds 2m + 2ℓ − 1. Upon
applying Proposition 3.8(ii) repeatedly to the k − 1 B-simplicial vertices v + 1, . . . , ℓ
in this order, we know that for each n ∈ [v+ 1, ℓ] the arrangement cB(T k

ℓ [n], ψp,k
ℓ |[n])

is flag-accurate, none of its exponents exceeds 2m + 2ℓ − 1. In particular, A is flag-
accurate.

Let ℓ ⩾ 2. The nonsupersolvability of cBp,k
ℓ (m) for 0 ⩽ p ⩽ ℓ, 1 ⩽ k < ℓ follows

from Theorem 2.11 and Proposition 3.13. The crucial point here is that (1, 2) is always
an edge in T k

ℓ for k < ℓ. □

As noted in the introduction, the freeness of the type A Shi descendants Ap,k
ℓ (m)

can be proved by the fact that the coking elimination under certain conditions of
weights preserves freeness (and characteristic polynomial) [3, Theorems 3.1 and 4.1]. It
would be interesting to find an analog of this result for the type B coking elimination.
The computation for type B is more complicated even in dimension 3 as we will see
in the next section.
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4. Type B N-Ish and deleted arrangements
4.1. Proof of Theorem 1.13. First we study the freeness and supersolvability of
rank 3 localizations of type B N -Ish arrangements.

Proposition 4.1. Let N = (N1, N2) be an uneven, centered 2-tuple of finite sets
Ni ⊆ Z (Definition 1.12). The following are equivalent:

(1) N is a signed nest, i.e. ±N1 ⊆ N2 or ±N2 ⊆ N1.
(2) The cone cB(N) is supersolvable.
(3) The cone cB(N) is free.

In this case, the exponents of cB(N) are given by {1, |N2|, |N1|+ 2} if ±N1 ⊆ N2 and
{1, |N1|, |N2|+ 2} if ±N2 ⊆ N1.

Proof. By definition, cB(N) consists of the following hyperplanes:

z = 0,
x1 ± x2 = 0,

x1 = N1z,

x2 = N2z.

The implication (1) ⇒ (2) follows from Proposition 3.7 (see also Example 3.5).
The implication (2)⇒ (3) is clear from Theorem 2.10. It remains to show (3)⇒ (1).

Let H1, H2, H∞ denote the hyperplanes x1−x2 = 0, x1+x2 = 0, z = 0, respectively.
Set n1 := |N1|, n2 := |N2|. First consider n1 ⩾ n2. Denote A := cB(N). The Ziegler
restriction (AH∞ ,mH∞) has defining polynomial

Q = Q(AH∞ ,mH∞) = xn1
1 xn2

2 (x1 − x2)(x1 + x2).

Using Theorem 2.13 we shall show that (AH∞ ,mH∞) is free with exponents {n1, n2 +
2} and a basis

θ1 = xn1
1

∂

∂x1
+ x

n1−n2−τ(n2)
1 x

n2+τ(n2)
2

∂

∂x2
,

θ2 = xn2
2 (x2

1 − x2
2) ∂

∂x2
,

where τ(n2) = 0 if n2 is odd and τ(n2) = 1 otherwise. Note that n1 ⩾ n2 + τ(n2) ⩾ 0
by the unevenness of N .

Indeed, first it is not hard to check θ1, θ2 ∈ D(AH∞ ,mH∞). For example,

θ1(x1 ± x2) = x
n1−n2−τ(n2)
1 (xn2+τ(n2)

1 ± xn2+τ(n2)
2 ) ∈ (x1 ± x2)R[x1, x2].

Moreover,

det
(
θ1(x1) θ2(x1)
θ1(x2) θ2(x2)

)
= det

(
xn1

1 0
x

n1−n2−τ(n2)
1 x

n2+τ(n2)
2 xn2

2 (x2
1 − x2

2)

)
= Q.

Now suppose that A = cB(N) is free. By Theorem 2.14, exp(A) = {1, n1, n2 + 2}.
By the deletion-restriction formula 2.3,

χA(t) = χA∖{H1,H2}(t)− χ(A∖{H1})H2 (t)− χAH1 (t).

It is easily seen that A∖ {H1, H2} is supersolvable with exponents {1, n1, n2}. Thus,
the equation for the characteristic polynomials above becomes

2n1 = |N1 ∪N2|+ |N1 ∪ (−N2)|.

This occurs if and only if ±N2 ⊆ N1. Similarly, if n1 ⩽ n2 then ±N1 ⊆ N2, which
completes the proof. □
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Proof of Theorem 1.13. A similar argument as in the proof of Proposition 4.1
yields the implications (1) ⇒ (2) ⇒ (3). It suffices to show (3) ⇒ (1). Suppose that
A = cB(N) is free. Fix 1 ⩽ i < j ⩽ ℓ, and let X ∈ L(A) be the subspace defined
by z = xi = xj = 0. Thus the localization AX is free by Theorem 2.11. Moreover,
AX is identical to the cone over the N -Ish arrangement in Proposition 4.1. Hence the
2-tuple (Ni, Nj) must be a signed nest. Therefore N = (N1, . . . , Nℓ) is a signed nest
which completes the proof. □

Example 4.2. We give examples showing that Theorem 1.13 is no longer valid if the
centeredness or unevenness is excluded.

(i) The uneven, noncentered tuple N = (N1, N2, N3) where Ni = [−i, i] ∖ {0}
for 1 ⩽ i ⩽ 3 is a signed nest. However, the cone cB(N) is not free since its
characteristic polynomial (t−6)(t2−12t+39) does not factor completely over
the integers.

(ii) On the other hand, neither of the even, centered tuples N = ([0, 1], [0, 1]) and
N ′ = ([−1, 2], [−1, 2]) is a signed nest. However, cB(N) is supersolvable, and
cB(N ′) is free but not supersolvable (see also Corollary 4.6).

We complete this subsection by giving an explicit basis for cB(N) in a particular
case.

Theorem 4.3. Let N = (N1, . . . , Nℓ) with Ni = [−mi,mi] where m1 ⩾ m2 ⩾ · · · ⩾
mℓ ⩾ 0. Define the homogeneous derivations θ0, θ1, . . . , θℓ as follows:

θ0 =
ℓ∑

i=1
xi

∂

∂xi
+ z

∂

∂z
,

θk =
ℓ∑

s=k

( ∏
a∈Nk

(xs − az)
k−1∏
t=1

(x2
t − x2

s)
)

∂

∂xs
(1 ⩽ k ⩽ ℓ).

Then θ0, θ1, . . . , θℓ form a basis for D(cB(N)).

Proof. Similar to the proof of [2, Theorem 1.4]. The proof is a routine check by using
Theorem 2.13 once we know an explicit formula of a candidate for basis. □

4.2. Proof of Theorem 1.16. In order to characterize the freeness and supersolv-
ability of the cone over the deleted Ish arrangement I(G) from Definition 1.15, we
need to characterize these properties of the cone over an N -Ish arrangement of a
nonnegative, centered tuple (see Remark 4.8).

First we study even, centered 2-tuples. Compared with Proposition 4.1, the freeness
and supersolvability in this case are not always equivalent.

Proposition 4.4. Let N = (N1, N2) be an even, centered 2-tuple of finite sets Ni ⊆ Z
with |N1| = |N2| = n ⩾ 2. The following are equivalent:

(1) |N1 ∪ (−N1)| = n+ 1, and either N1 = N2 or N1 = −N2.
(2) The cone cB(N) is free.

In this case, the exponents of cB(N) are given by {1, n+1, n+1}. In addition, cB(N)
is supersolvable if and only if either N1 = N2 = {0, a}, or N1 = −N2 = {0, a} for
some nonzero integer a ∈ Z.

Proof. We will use the same notation as in Proposition 4.1. Denote A = cB(N). The
Ziegler restriction (AH∞ ,mH∞) has defining polynomial

Q = Q(AH∞ ,mH∞) = xn
1x

n
2 (x1 − x2)(x1 + x2).
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We may use Theorem 2.13 to check that (AH∞ ,mH∞) is free with exponents {n+
1, n+ 1} and a basis

θ1 = xn
1x2

∂

∂x1
+ x1x

n
2
∂

∂x2
,

θ2 = xn+1
1

∂

∂x1
+ xn+1

2
∂

∂x2
.

By the deletion-restriction formula 2.3,
χA(t) = χA∖{H1,H2}(t)− χ(A∖{H1})H2 (t)− χAH1 (t).

It is easily seen that A ∖ {H1, H2} is supersolvable with exponents {1, n, n}. By
Theorem 2.14, A is free if and only if the equation for the characteristic polynomials
above (under the centeredness of N) becomes
(⋆) 2n+ 1 = |N1 ∪N2|+ |N1 ∪ (−N2)|.
Thus n ⩽ |N1 ∪ N2| ⩽ n + 1. If |N1 ∪ N2| = n then N1 = N2. If |N1 ∪ N2| = n + 1
then |N1 ∪ (−N2)| = n hence N1 = −N2. Clearly, if condition (1) occurs, then (⋆)
holds true trivially.

Now suppose that A is supersolvable. Hence A must be free with exp(A) = {1, n+
1, n + 1}. By Theorem 2.10, there exists an M-chain A1 ⊆ A2 ⊆ A3 = A, where A2
is a modular coatom such that |A2| ⩾ n+ 2 ⩾ 4. However, for any coatom X ∈ L(A)
we have |AX | ⩽ 4 or |AX | = n+ 1. Thus n = 2 and we obtain the proposed form of
N .

The converse can be done by proving that Cox(B2) ⊆ cB(N) is a modular coatom
of cB(N). Now apply Proposition 2.12. □

The following two corollaries are straightforward from Proposition 4.4.

Corollary 4.5. Let N = (N1, N2) be a nonnegative, even, centered 2-tuple of finite
sets Ni ⊆ Z⩾0 with |N1| = |N2| = n ⩾ 2. The following are equivalent:

(1) N1 = N2 = {0, a} for some positive integer a ∈ Z>0.
(2) The cone cB(N) is supersolvable.
(3) The cone cB(N) is free.

Corollary 4.6. Let N = (N1, N2) be an even, centered 2-tuple of finite sets Ni =
[ai, bi] ⊆ Z with |N1| = |N2| = n ⩾ 2. The following are equivalent:

(1) Either (i) N1 = N2 = [1−m,m] or [−m,m−1], or (ii) N1 = −N2 = [1−m,m]
or [−m,m− 1] where n = 2m.

(2) The cone cB(N) is free.
In addition, cB(N) is supersolvable if and only if cB(N) is free and n = 2.

Now we characterize the freeness and supersolvability of the cone over N -Ish ar-
rangements under centeredness and nonnegativity of the tuple.

Theorem 4.7. Let N = (N1, . . . , Nℓ) be a nonnegative, centered ℓ-tuple of finite sets
Ni ⊆ Z⩾0. Define D = D(N) := {i ∈ [ℓ] | |Ni| > 1} ⊆ [ℓ] and |N | := max{|Ni| | i ∈
D}. The following are equivalent:

(1) The cone cB(N) is supersolvable.
(2) The cone cB(N) is free.
(3) One of the following conditions holds: (i) |D| ⩽ 1, or (ii) |D| ⩾ 2 and Ni =
{0, a} for some a ∈ Z>0 and for every i ∈ D.

In this case, the exponents of cB(N) are given by

exp(cB(N)) = {|D|+ |N | − 1} ∪ {2i− 1}ℓ
i=1.
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Proof. Denote A = cB(N). First we show (3)⇒ (1). If (3i) occurs, then N is a signed
nest that satisfies all conditions in Theorem 1.13 hence (1) follows immediately. If (3ii)
occurs, then Cox(Bℓ) ⊆ A is a modular coatom of A. Since Cox(Bℓ) is supersolvable
(e.g. by Theorem 1.13), A is also supersolvable by Proposition 2.12.

It remains to show (2)⇒ (3). If N is uneven, then by Theorem 1.13 N is a signed
nest. Thus there do not exist two distinct elements Ni, Nj of N such that |Ni| > 1
and |Nj | > 1, otherwise, (Ni, Nj) cannot be a signed nest. Hence there exists at most
one Nk with |Nk| > 1, i.e. |D| ⩽ 1.

If N is even, then there exist two distinct elements Nk, Np of N having even
cardinality with |Nk| = |Np| ⩾ 2. Note that the localization AX where X ∈ L(A)
is the subspace defined by z = xk = xp = 0 is free and identical to cB(Nk, Np). By
Corollary 4.5, there exists a ∈ Z>0 such that Nk = Np = {0, a}. For any i ∈ [ℓ]∖{k, p}
again by Corollary 4.5, if (Ni, Nk) is even, then Ni = {0, a}. If (Ni, Nk) is uneven,
then Proposition 4.1 implies Ni = {0}. This completes the proof. □

In what follows, let G = ([ℓ], EG, LG) be a digraph on [ℓ] with loop set LG ⊆ [ℓ]
and edge set EG ⊆ {(i, j) | 1 ⩽ i < j ⩽ ℓ}.

Remark 4.8. Define an ℓ-tuple NG = (N1, . . . , Nℓ) by
Ni := {0} ∪ { 1 | i ∈ LG } ∪ { ℓ+ 2− j | (i, j) ∈ EG } ⊆ [0, ℓ].

Then the arrangement I(G) in Definition 1.15 is identical to the N -Ish arrangement
B(NG) with the nonnegative, centered tuple NG.

Now we characterize the freeness and supersolvability of cI(G).

Theorem 4.9. The following are equivalent:
(1) The cone cI(G) is supersolvable.
(2) The cone cI(G) is free.
(3) G has one of the forms described in Theorem 1.16.
(4) None of the directed graphs in Figure 4 can occur as an induced subgraph of

G.
In this case, the exponents of cI(G) are given by

exp(cI(G)) = {|EG|+ |LG|+ 1} ∪ {2i− 1}ℓ
i=1.

Proof. The equivalence (3) ⇔ (4) is not hard to verify, which depends only on the
underlying digraph G.

To prove (1) ⇔ (2) ⇔ (3), by Remark 4.8, it suffices to translate conditions (3i)
and (3ii) in Theorem 4.7 into digraphical terms. Condition (3i) is equivalent to one
of the following

(a′) there exists k ∈ [ℓ] such that EG = {(k, i)} for at least one i ∈ [k + 1, ℓ],
LG = {k} ({0, 1} ⊊ Nk and Ni = {0} for i ̸= k),

(a′′) there exists k ∈ [ℓ] such that EG = {(k, i)} for at least one i ∈ [k + 1, ℓ],
LG = ∅ (|Nk| ⩾ 2 with 1 /∈ Nk and Ni = {0} for i ̸= k),

(c′) EG = ∅, LG = {k} for some k ∈ [ℓ] (Nk = {0, 1} and Ni = {0} for i ̸= k),
(c′′) EG = LG = ∅ (Ni = {0} for all i).

Condition (3ii) is equivalent to one of the following
(b) there exists k ∈ [ℓ] such that EG = {(i, k)} for at least two i’s in [k − 1],

LG = ∅ (N has at least two distinct elements equal {0, a} with a ∈ Z>1 and
the other elements equal {0}),

(c′′′) EG = ∅, |LG| ⩾ 2 (N has at least two distinct elements equal {0, 1} and the
other elements equal {0}).

Summarizing the conditions above yields the desired forms of G. □
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Figure 4. Obstructions to freeness and supersolvability. Possible
loops and edges are shown as dashed lines.

Now we characterize the freeness and supersolvability of cS(G) (Definition 1.15).

Theorem 4.10. Theorem 4.9 remains true if S(G) is put in place of I(G).

Proof. It is sufficient to show (3) ⇒ (1) and (2) ⇒ (4). Denote A = cS(G). For
(3)⇒ (1) we show that Cox(Bℓ) ⊆ A is a modular coatom of S(G). We give a proof
for one case, the remaining cases are treated similarly. For example, if Condition
1.16(b) occurs, we may assume EG = {(1, ℓ), . . . , (p, ℓ)} for some p ⩽ ℓ − 1. Then
A ∖ Cox(Bℓ) = {z = 0} ∪ {xi − xℓ = z | 1 ⩽ i ⩽ p}. Definition 2.7 can be checked
easily. Now apply Proposition 2.12.

We checked by a SageMath computation that the characteristic polynomial of any
arrangement (of rank at most 4) defined by a digraph in Figure 4 has a noninteger root.
Thus the cones over the arrangements defined by these digraphs are not free by the
factorization theorem 2.2. Using Theorem 2.11 we may conclude that (2)⇒ (4). □

Proof of Theorem 1.16. It follows from Theorems 4.9 and 4.10. □

5. Proof of Theorem 1.18
First we need a variant of Theorem 3.12.

Theorem 5.1. Let a ⩾ 1, m ⩾ 0, ℓ ⩾ 1 and 0 ⩽ p ⩽ ℓ. Let B̂p
ℓ (m, a) be the arrange-

ment consisting of the hyperplanes

xi ± xj = [1− a, a] (1 ⩽ i < j ⩽ ℓ),
xi = [−m,m+ 1] (1 ⩽ i ⩽ p),
xi = [−m,m] (p < i ⩽ ℓ).

Then the cone over B̂p
ℓ (m, a) is free with exponents

exp(cB̂p
ℓ (m, a)) = {1, (2m+ 2 + 2aℓ− 2a)p, (2m+ 1 + 2aℓ− 2a)ℓ−p}.

Proof. Similar to the proof Theorem 3.12: We order the tuples {(ℓ, p) | 0 ⩽ p ⩽ ℓ, ℓ ⩾
1} lexicographically and prove by induction on (ℓ, p). □

The following lemma is crucial.

Lemma 5.2. If q > 2m+ 2 is an integer, then

χquasi
Bp,1

ℓ
(m)(q) = χquasi

B̂ℓ−p
ℓ

(m,1)
(q + 1).
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Proof. We prove the assertion by constructing a one-to-one correspondence between
the complements of the q-reductions.

χquasi
Bp,1

ℓ
(m)(q) = #

z ∈ Zℓ
q

∣∣∣∣∣∣
zi ± zj ̸= 0, 1 (1 ⩽ i < j ⩽ ℓ),

zi ̸= c (c ∈ [1−m,m], 1 ⩽ i ⩽ p),
zi ̸= c (c ∈ [−m,m], p < i ⩽ ℓ)


= #

(z1, . . . , zℓ) ∈ Zℓ

∣∣∣∣∣∣∣∣
zi − zj ̸= 0, 1 (1 ⩽ i < j ⩽ ℓ),

zi + zj ̸= q, q + 1 (1 ⩽ i < j ⩽ ℓ),
m+ 1 ⩽ zi ⩽ q −m (1 ⩽ i ⩽ p),

m+ 1 ⩽ zi ⩽ q −m− 1 (p < i ⩽ ℓ)


= #

(v1, . . . , vℓ) ∈ Zℓ

∣∣∣∣∣∣∣∣
vi − vj ̸= 0, 1 (1 ⩽ i < j ⩽ ℓ),

vi + vj ̸= −q,−(q + 1) (1 ⩽ i < j ⩽ ℓ),
−q +m ⩽ vi ⩽ −m− 1 (ℓ− p+ 1 ⩽ i ⩽ ℓ),
−q +m+ 1 ⩽ vi ⩽ −m− 1 (1 ⩽ i ⩽ ℓ− p)


= #

(t1, . . . , tℓ) ∈ Zℓ

∣∣∣∣∣∣∣∣
ti − tj ̸= 0, 1 (1 ⩽ i < j ⩽ ℓ),

ti + tj ̸= q + 1, q + 2 (1 ⩽ i < j ⩽ ℓ),
m+ 1 ⩽ ti ⩽ q −m (ℓ− p+ 1 ⩽ i ⩽ ℓ),
m+ 2 ⩽ ti ⩽ q −m (1 ⩽ i ⩽ ℓ− p)


= #

t ∈ Zℓ
q+1

∣∣∣∣∣∣
ti ± tj ̸= 0, 1 (1 ⩽ i < j ⩽ ℓ),

ti ̸= c (c ∈ [−m,m], ℓ− p+ 1 ⩽ i ⩽ ℓ),
ti ̸= c (c ∈ [−m,m+ 1], 1 ⩽ i ⩽ ℓ− p)


= χquasi

B̂ℓ−p
ℓ

(m,1)
(q + 1).

We have used the following changes of variables: vi = −zℓ+1−i, ti = vi + q + 1. □

Proof of Theorem 1.18. Note that the lcm periods of both χquasi
Bp,1

ℓ
(m)(q) and

χquasi
B̂p

ℓ
(m,a)

(q) equal the lcm period of Cox(Bℓ) since the lcm period depends only
on the matrix C. Thus they are equal to 2 (see e.g. [15, Corollary 3.2]). So these
quasi-polynomials have at most two different constituents.

By Lemma 5.2, Theorems 2.17 and 5.1, if q is a sufficiently large even integer, then
χquasi

Bp,1
ℓ

(m)(q) = (q − (2m+ 2ℓ− 2))p(q − (2m+ 2ℓ− 1))ℓ−p.

Thus by Theorem 3.12, the constituents of χquasi
Bp,1

ℓ
(m)(q) are identical. Hence

χquasi
Bp,1

ℓ
(m)(q) is a polynomial. □

The following corollary is straightforward.

Corollary 5.3. The characteristic quasi-polynomial of B̂p
ℓ (m, 1) for each 0 ⩽ p ⩽ ℓ

is a polynomial and given by
χquasi

B̂p
ℓ

(m,1)
(t) = χB̂p

ℓ
(m,1)(t) = (t− (2m+ 2ℓ))p(t− (2m+ 2ℓ− 1))ℓ−p.

Hence period collapse also occurs in this case.

For the Ish arrangements in the last column of the Shi descendant matrix when
ℓ = 2, we have verified that for 0 ⩽ p ⩽ 2

χquasi
Bp,2

2 (m)(q) =
{
χBp,2

2 (m)(q) if q is odd,
χBp,2

2 (m)(q) + 1 if q is even.

Thus the type B Shi and Ish arrangements do not share the same period collapse
property in general.
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