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Joshua E. Ducey, Lauren Engelthaler, Jacob Gathje, Brant
Jones, Isabel Pfaff & Jenna Plute

Abstract For integers 0 ⩽ ℓ ⩽ kr ⩽ kc ⩽ n, we give a description for the Smith group of the
incidence matrix with rows (columns) indexed by the size kr (kc, respectively) subsets of an n-
element set, where incidence means intersection in a set of size ℓ. This generalizes work of Wilson
and Bier from the 1990s which dealt only with the case where incidence meant inclusion. Our
approach also describes the Smith group of any matrix in the Z-linear span of these matrices
so includes all integer matrices in the Bose–Mesner algebra of the Johnson association scheme:
for example, the association matrices themselves as well as the Laplacian, signless Laplacian,
Seidel adjacency matrix, etc. of the associated graphs. In particular, we describe the critical
(also known as sandpile) groups of these graphs. The complexity of our formula grows with
the parameters kr and kc, but is independent of n and ℓ, which often leads to an efficient
algorithm for computing these groups. We illustrate our techniques to give diagonal forms of
matrices attached to the Kneser and Johnson graphs for subsets of size 3, whose invariants have
never before been described, and recover results from a variety of papers in the literature in a
unified way.

0. Introduction
This paper concerns abelian group invariants for a large class of integer matrices.
Given an m × n integer matrix M , one can view the rows as describing zero relations
among the generators of a finitely generated abelian group, S(M), known as the
Smith group of M . To be explicit,

S(M) = Zn/ rowZ(M),
where rowZ(M) denotes all integer-coefficient linear combinations of the rows of M .
(In this paper our vectors will be row vectors, to which we will apply our matrices
from the right.) In the case that M is an incidence matrix, this abelian group is really
an invariant of the incidence relation, because its isomorphism type is unchanged by
any reordering of the rows or columns of M .

It is well-known that a finitely generated abelian group can be described as a direct
sum of cyclic groups. Such a description of S(M) is equivalent to finding a diagonal
form of M , by which we mean a matrix D of the same dimensions as M (so “diagonal”
simply means that the (i, j)-entry of D is 0 unless i = j) satisfying

EMF = D,

where E and F are unimodular matrices. Here, a unimodular matrix is a square
integer matrix that has an integer inverse and in the situation where two integer
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matrices are related by unimodular transformations, as above, we say the matrices
are integrally equivalent. If r is the rank of M (and so of D), then we can write

D = diag(d1, d2, · · · , dr, 0, · · · , 0)
and we have

S(M) ∼= Z/d1Z ⊕ Z/d2Z ⊕ · · · ⊕ Z/drZ ⊕ Zn−r.

It turns out there is exactly one diagonal form of M that has nonnegative diagonal
entries, each dividing the next. This is called the Smith normal form of M and
corresponds to the invariant factor decomposition of the Smith group.

One incidence matrix whose Smith group has received considerable study is the
inclusion matrix of r-subsets vs. s-subsets. The study of algebraic invariants of
the inclusion matrix goes back to at least the 1960s [9]. In [16], Wilson found an
elegant diagonal form for this matrix. His motivation was to apply this diagonal form
to questions concerning the existence of t-designs. For coding theorists and others
interested in the rank of integer matrices over fields of characteristic p (the p-rank,
for short), we remark that a diagonal form gives the p-rank of the matrix for all
primes p.

In this paper we examine a generalization of the inclusion matrix, where incidence
can be defined as intersection in any fixed size.

Definition 1. For nonnegative integers 0 ⩽ ℓ ⩽ krow ⩽ kcol ⩽ n, let A = An,krow,kcol,ℓ

be the matrix whose rows (columns) correspond to the subsets of {1, 2, . . . , n} having
size krow (kcol, respectively), with entries A(A, B) = 1 whenever |A ∩ B| = ℓ and
A(A, B) = 0 otherwise. We refer to these as subset intersection matrices.

If krow = k = kcol then A is the adjacency matrix for the subset intersection
graph Γ(n, k, ℓ). For example, we obtain the Kneser graphs when ℓ = 0 and the
Johnson graphs when ℓ = k − 1. It is straightforward to see that every vertex
in Γ(n, k, ℓ) has the same degree d :=

(
n−k
k−ℓ

)(
k
ℓ

)
.

Our main result in this paper is a simple methodology for computing or describing
a diagonal form of the generalized Laplacian matrix

L = A − λI
associated to Γ(n, k, ℓ), where λ is any integer and I is the

(
n
k

)
×
(

n
k

)
identity matrix,

in a unified way. Notice that our L includes the usual graph Laplacian for Γ(n, k, ℓ)
when λ = d as well as the adjacency matrix itself (when λ = 0). Many earlier partial
results regarding these matrices have been obtained for specific values of ℓ and k; see
[1, 3, 6, 7, 16] for example. We are able to recover many of these, under one framework,
as well as provide new formulas that were not previously known.

As a byproduct of our development, we also obtain diagonal forms for the
An,krow,kcol,ℓ matrices even when krow is not necessarily equal to kcol. This generalizes
the main result of [16] on subset inclusion matrices (where ℓ = krow) to arbitrary
intersection parameters ℓ. Even more remarkable is that our techniques apply to
all integer matrices in the Z-span of the {An,krow,kcol,ℓ}

krow
ℓ=0. When krow = kcol, these

are the integer matrices in the Bose–Mesner algebra of the Johnson association
scheme.

Our methodology proceeds in three steps. In Section 1, we conjugate L by a ma-
trix P that has previously appeared in work of Bier. The resulting matrix U − λI
is upper triangular. Moreover, U has a block structure that is independent of the
parameters n, krow, kcol, and ℓ, in the sense that the zero entries of the blocks remain
the same for all parameter choices and the non-zero entries in each block all have the
same value (which does, of course, depend on the parameters; see Definition 1.4). In

Algebraic Combinatorics, Vol. 8 #1 (2025) 30



Integer diagonal forms for subset intersection relations

Section 2, we show how to diagonalize each of these blocks simultaneously using a
new unimodular matrix construction. Finally, in Section 3 we combine the ingredients
resulting from these steps to present our unified formula for the diagonal form of L
in Definition 3.1 and Theorem 3.4. In Section 4, we show how this formula specializes
in some familiar and new special cases.

1. First step: The P-matrix of Bier block-triangularizes L
To simplify our exposition, we assume n is fixed and may refer to a “subset” without
explicitly identifying the universal set {1, 2, . . . , n} to which it belongs. Fix the graph
parameters k∗ = (krow, kcol) and ℓ as well. Readers interested in the case when krow =
kcol may simply ignore the typographical decorations on k in the formulas and results
that follow.

Definition 1.1. We say that a set β = {b1, b2, . . . , bk} ⊆ {1, 2, . . . , n} is standard
if bi ⩾ 2i for all i, where the bi form an ordered labeling of the elements (so b1 < b2 <
. . . < bk).

As an example, here are the standard subsets of {1, 2, 3, 4, 5}:
∅, {2}, {3}, {4}, {5}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}.

This definition and nomenclature come from the combinatorial representation the-
ory of the symmetric group, in which we view a subset as the second row of a two-row
tableau (with the complementary entries in the first row, using the “English” conven-
tion). Then, tableau are standard when their entries increase along rows and columns.
Standard subsets have also been studied under the names “t-subsets of rank t” [8, 2]
and “ℓ-tags” [13]. We will try to use greek letters for standard subsets in order to dif-
ferentiate them. Also, observe that any subset of a standard subset will be standard
as well.

In this section, we frequently encounter two particular classes of subsets: unre-
stricted k-subsets whose size must be exactly k, and standard (⩽ k)-subsets
that must satisfy Definition 1.1 as well as have a size that is no larger than k. It is
not too difficult to see that these two classes actually contain the same number of
subsets. In fact, the inclusion matrix between them is unimodular.

Definition 1.2. Let Pk be the matrix whose rows are indexed by unrestricted k-subsets
and whose columns are indexed by standard (⩽ k)-subsets with entries

Pk(A, β) =
{

1 if β ⊆ A

0 otherwise.

Theorem 1.3. The matrix Pk is square and unimodular.

Proof. By the hook-length formula, the number of standard s-subsets is
(

n
s

)
−
(

n
s−1
)
.

Thus Pk has
∑k

s=0
(

n
s

)
−
(

n
s−1
)

=
(

n
k

)
columns, and so is square. That Pk is unimodular

(and can be used to obtain a diagonal form for the unrestricted subset-inclusion
matrices) was first discovered by Bier [2]. See also [10, Theorem 8] for an alternative
proof of this fact. □

We now describe the parameters that appear in our upper triangular block form
for L. These seem related (though are not precisely equal to) Eberlein orthogonal
polynomials that arise as eigenvalues in the Johnson association scheme.

Definition 1.4. Let

ci = ci(j; n, k∗, ℓ) =
(

krow − i

ℓ − i

)(
n − krow − j + i

kcol − ℓ − j + i

)
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β

ℓ − aa

(
krow−a

ℓ−a

) (
n−b−krow+a
kcol−b−ℓ+a

)
α

a krow − a

T = A =

Figure 1. Structure of the T subsets

and define

fi = fi(j; n, k∗, ℓ) =
i∑

v=0
(−1)i+v

(
i

v

)
cv(j; n, k∗, ℓ).

Lemma 1.5. Let A = An,k∗,ℓ be the subset intersection matrix and P = Pkcol be the
Bier matrix as in Definition 1.2. Suppose that A is an unrestricted krow-subset and
that β is a standard (⩽ kcol)-subset. Then, the (A, β) entry of the product AP is given
by ca(b; n, k∗, ℓ) where a = |A ∩ β| and b = |β|.

Proof. We compute the dot product of row A from A with column β from P. The
entries of these vectors are all zero or one, and the dot product is a summation over
unrestricted kcol-sized subsets T . Such a subset T contributes one to the dot product
precisely when:

• T intersects A in a size ℓ subset (by the row relation from A), and
• T contains β (by the column relation from P).

Thus, the (A, β) entry of AP is just the number of these subsets T . Let α = A ∩ β
with size a := |A ∩ β|.

Next, consider Figure 1 where the left side represents a schematic for our possible T s
and the right side represents the fixed krow-sized set A. The shaded section represents
the intersection between the two subsets which must have a total length of ℓ.

Assessing these constraints, we find that T is determined by the choice of entries
in two blocks. For the first block, we must choose the ℓ − a additional elements to
lie in the intersection A ∩ T . These ℓ − a elements must be chosen from the krow − a
elements of A that are not already part of the intersection α. Thus, we have

(
krow−a

ℓ−a

)
choices for the first block.

Then, we must choose a second block of kcol − b − (ℓ − a) elements for T that do
not intersect A nor β. It suffices to select elements that are disjoint from β and from
A∖α, and these two sets are themselves disjoint, so there are n−b−(krow −a) possible
elements to choose from. Thus, we have

(
n−b−krow+a
kcol−b−ℓ+a

)
ways to choose the second block,

which yields the desired formula. □

We are now in a position to describe the upper triangular block form for L.

Definition 1.6. For 0 ⩽ i < j, let Wi,j be the matrix whose rows are indexed by
standard subsets of size i and whose columns are indexed by standard subsets of size
j with entries Wi,j(α, β) = 1 whenever α ⊆ β, and Wi,j(α, β) = 0 otherwise. This
same definition extends to declare that Wi,j is the identity matrix for i = j and is the
zero matrix when i > j.

Theorem 1.7. The matrix (Pkrow )−1 APkcol decomposes into a block matrix, where the
(i, j)th block, for (0, 0) ⩽ (i, j) ⩽ (krow, kcol), is equal to fi(j) Wi,j. Here, the fi(j) are
as in Definition 1.4.
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Consequently, in the case when krow = k = kcol, the matrix P−1
k LPk has a de-

composition into a (k + 1) × (k + 1) block matrix, where the (i, j)th block is equal
to:

• fi(j) Wi,j for i < j,
• (fi(i) − λ) Wi,i for i = j,
• the appropriately-sized zero matrix, otherwise.

Since the Wi,i are diagonal, we have that P−1
k LPk is an upper triangular matrix.

Proof. Define a block triangular matrix U from the fi(j) Wi,j , for (0, 0) ⩽ (i, j) ⩽
(krow, kcol). We seek to show that APkcol = Pkrow U . Then, it follows that

(A − λI)Pk = APk − λPk = PkU − λPk = Pk(U − λI)

in the case krow = k = kcol so P−1
k LPk = (U − λI) as in the statement.

To this end, fix an unrestricted krow-subset A and a standard (⩽ kcol)-subset β. By
Lemma 1.5, we know the (A, β)-entry of APkcol explicitly. Next, consider the (A, β)-
entry of Pkrow U . As in the previous proof, we compute the dot product of row A
from Pkrow with column β from U . This dot product is a summation over standard
(⩽ krow)-subsets σ. Such a subset σ contributes fi(j) to the dot product precisely
when:

• σ is a subset of A (by the row relation from Pkrow ), and
• σ is a subset of β (by the relations from the blocks Wi,j encountered in a

fixed column of U).
It is straightforward to check that the condition of being standard from Defini-

tion 1.1 is closed under taking subsets, so A ∩ β is standard, and we sum over the
subsets σ of A∩β. Breaking on the size w of σ, we therefore find that the (A, β) entry
of Pkrow U can be written

a∑
w=0

(
a

w

)
fw(b)

where a = |A ∩ β| and b = |β|. Expanding fw(b) via Definition 1.4, we obtain
a∑

w=0

(
a

w

) w∑
v=0

(−1)w+v

(
w

v

)
cv(b; n, k∗, ℓ)

and interchanging (finite) summations yields

=
a∑

v=0
cv(b; n, k∗, ℓ)

(
a∑

w=v

(−1)w+v

(
a

w

)(
w

v

))
.

For each fixed value of v, we have
a∑

w=v

(−1)w+v

(
a

w

)(
w

v

)
= (−1)v

v!

a∑
w=v

(−1)w a!
(a − w)!(w − v)! .

When v = a, this summation is 1. To evaluate for 0 ⩽ v < a, change variables to
u = w − v, obtaining (−1)v

v!
∑a−v

u=0(−1)u+v a!
(a−v−u)!(u)! =

(
a
v

)∑a−v
u=0(−1)u

(
a−v

u

)
, which

is simply
(

a
v

)
(1 − 1)a−v = 0.

Thus, our (A, β)-entry of Pkrow U is equal to ca(b; n, k∗, ℓ), which matches the (A, β)-
entry of APkcol by Lemma 1.5, as desired. □
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2. Second step: The E-matrix diagonalizes each block in the
triangular form

2.1. Some historical context. In order to proceed, we simultaneously diagonalize
all of the Wi,j blocks that appeared after conjugating A by P in Section 1.

In [16], Wilson found a diagonal form for the inclusion matrix, Wclassic
i,j say, of

unrestricted i-subsets versus unrestricted j-subsets using a rather subtle induction
argument. Remarkably, the same diagonal form, with only adjustments to the mul-
tiplicities of the entries, serves as a diagonal form for our inclusion matrix Wi,j of
standard i-subsets versus standard j-subsets.

Bier [2], building upon work of Frankl [8], observed that one could bypass the
induction by constructing suitable unimodular change-of-basis matrices directly. In
fact, the principal player has already been introduced in our narrative. The Pi matrix
from Definition 1.2 is capable of changing basis from unrestricted i-subsets to standard
(⩽ i)-subsets in essentially two different ways: in this paper, we conjugate A by Pi

to obtain a triangular form; but Bier introduced and applied P transpose
i on the left and(

P transpose
j

)−1 on the right of Wclassic
i,j to obtain a diagonal form (implicitly indexed now

by standard subsets). Subsequently, this matrix found application in the calculation
of the Smith group of the n-cube graph [5] and in the proof of the resilience of rank
of the inclusion matrices [10].

Thus, it is tempting to imagine that we could diagonalize our Wi,j matrices by
a similarly explicit unimodular change-of-basis, and give a combinatorial description
of the Es matrices that we construct in this section inductively. It emerges that one
should define some super-standard subset of the standard objects, and build the inclu-
sion matrix between the standard i-subsets and the super-standard (⩽ i)-subsets. To
carry this out rigorously, one would need to (a) define precisely which subsets satisfy
the super-standard condition, and (b) prove that the associated inclusion matrix is
actually unimodular. We did not initially pursue this as a method of proof, but see
the Appendix for results in this direction.

2.2. The index of an integer matrix. Given an integer matrix M , let rowZ(M)
denote the set of Z-linear combinations of the rows of M , let rowQ(M) denote the set
of Q-linear combinations of the rows of M , and let Z(M) denote the set of integer
vectors in rowQ(M). We have

rowZ(M) ⊆ Z(M) ⊆ rowQ(M).

The index of M is the index of rowZ(M) as a subgroup of Z(M), denoted [Z(M) :
rowZ(M)].

Example 2.1. Let x⃗1, x⃗2, x⃗3 be a basis for Z3 and let y⃗1, y⃗2, y⃗3, y⃗4 be a basis for Z4.
Consider the homomorphism of free Z-modules Z3 → Z4 defined by

x⃗1 7→ 2y⃗1

x⃗2 7→ 3y⃗2

x⃗3 7→ 0,

and which, with respect to these bases, has matrix

M =

2 0 0 0
0 3 0 0
0 0 0 0

 .

(Recall we are writing our vectors as row vectors and applying our matrices on the
right.)
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Then

rowZ(M) = {[2a, 3b, 0, 0] | a, b ∈ Z} ∼= 2Zy⃗1 ⊕ 3Zy⃗2

Z(M) = {[a, b, 0, 0] | a, b ∈ Z} ∼= Zy⃗1 ⊕ Zy⃗2

rowQ(M) = {[u, v, 0, 0] | u, v ∈ Q}
Z(M)/ rowZ(M) ∼= Z/2Z ⊕ Z/3Z,

and the index of M is 6 (the product of the nonzero entries of the diagonal form).
This quotient Z(M)/ rowZ(M) is the torsion subgroup of the full Smith group

S(M) ∼= Z/2Z ⊕ Z/3Z ⊕ Z2.

The above example shows that the index of a matrix M is a useful metric when
trying to unravel the Smith group, as it is always the product of positive entries in
any nonnegative diagonal form for M . Matrices of index 1 play a special role. These
matrices have the property that any integer vector in the rational span of the rows
rowQ(M) is already in the integer span of the rows rowZ(M). A unimodular matrix
is necessarily of index 1. Conversely, when M has index 1 then the entries in any
nonnegative diagonal form of M consist of 1s and 0s, so an index 1 matrix may fail
to be unimodular only if it is not square or does not have full rank. We will later use
the well-known fact that a full-rank matrix of index 1 can always be enlarged to a
square unimodular matrix [16, Proposition 2].

2.3. Characterizing the index of Wi,j. We begin our analysis of Wi,j with a
simple but fundamental result.

Lemma 2.2. For 0 ⩽ s ⩽ i ⩽ j, we have

Ws,iWi,j =
(

j − s

i − s

)
Ws,j .

Consequently, rowQ(Ws,j) ⊆ rowQ(Wi,j).

Proof. This is true since the (X, Y )-entry of the matrix product counts the number of
standard i-subsets contained in the standard j-subset Y , and containing the standard
s-subset X. The standard subsets form an order ideal in the lattice of unrestricted
subsets, partially ordered by inclusion; that is, any subset of a standard subset is itself
standard. Therefore we are just counting the number of unrestricted i-subsets with
this condition. This number is

(
j−s
i−s

)
if X ⊆ Y , and is 0 otherwise. □

We would like to characterize the integers that can appear in a diagonal form
for Wi,j using index computations. The most obvious recursion for W comes from
reordering rows and columns so that we obtain a 2×2 block form based on whether a
given subset contains n or not. However, this recursion runs into “initial conditions”
that are no simpler than the general case. To get around this difficulty, we employ a
stacked matrix argument.

Definition 2.3. For 0 ⩽ i ⩽ j, let

Mi,j =
i⋃

s=0
Ws,j

where the union denotes the matrix whose rows are the (multiset) union of the rows
of the given W matrices. We generally refer to this type of construction by saying that
M is a stacked matrix.
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Since Wi,j can be found at the bottom of the matrix Mi,j , we clearly have
rowQ(Wi,j) ⊆ rowQ(Mi,j). Lemma 2.2 implies that rowQ(Mi,j) ⊆ rowQ(Wi,j). There-
fore rowQ(Mi,j) = rowQ(Wi,j) and the matrices Mi,j and Wi,j have the same rank
over Q, which by dimensions is at most

µi(n) :=
(

n

i

)
−
(

n

i − 1

)
,

the number of standard i-subsets of {1, 2, . . . , n}. (Observe that this formula only
works when n ⩾ 2i − 1 as there are zero standard i-subsets if n < 2i and the formula
happens to give the correct answer at n = 2i − 1.)

The proofs of the next two lemmas, modulo some minor technical modifications,
come from ideas found in Wilson’s original proof of the diagonal form for the unre-
stricted inclusion matrices [16].

Lemma 2.4. Let 0 ⩽ i ⩽ j ⩽ n−i
2 . Then, Mi,j has index 1 and rank µi.

Proof. We proceed by induction on n, so at times we will need to be slightly more
explicit in our notation to make clear the set {1, 2, · · · , n} from which our subsets are
taken. Thus, we write Wi,j = Wi,j(n) and µi = µi(n) =

(
n
i

)
−
(

n
i−1
)
.

Clearly the result holds for the base case i = j = 0 and n = 1. So assume now that
n > 1 and that 0 ⩽ i ⩽ j ⩽ n−i

2 . We consider separately three cases that exhaust the
possibilities for i and j.

Case: i = 0. Here we must have j ⩽ n
2 and so there are indeed standard j-subsets;

i.e. the matrix M0,j does not have an empty set of columns. (This is precisely why we
need the “2” in our hypothesis of the Lemma.) In this case we have

M0,j = [1, 1, · · · , 1]
which has rank µ0 = 1 and index 1.

Case: i = j. In this case we have the identity matrix Wi,i found at the bottom of
Mi,i. By integral row operations all entries in Mi,i above the bottom Wi,i block can
be cleared out using this identity matrix. Thus in this case we see Mi,i has rank µi

and index 1.
Case: 0 < i < j.
For 0 ⩽ s ⩽ j, we may recognize Ws,j as a 2 × 2 block matrix by ordering rows

and columns of Ws,j so that the standard subsets containing the element n appear
first. We have

Ws,j(n) =
[

Ws−1,j−1(n − 1) 0
Ws,j−1(n − 1) Ws,j(n − 1)

]
.

In the same way, letting ∼ denote equivalence by row and column operations, we
obtain

Mi,j(n) ∼
[

Mi−1,j−1(n − 1) 0
Mi,j−1(n − 1) Mi,j(n − 1)

]
=

Mi−1,j−1(n − 1) 0
Mi−1,j−1(n − 1) Mi−1,j(n − 1)
Wi,j−1(n − 1) Wi,j(n − 1)


∼

Mi−1,j−1(n − 1) 0
Wi,j−1(n − 1) Wi,j(n − 1)

Mi−1,j−1(n − 1) Mi−1,j(n − 1)

 ∼

Mi−1,j−1(n − 1) 0
Wi,j−1(n − 1) Wi,j(n − 1)

0 Mi−1,j(n − 1)


=

Mi,j−1(n − 1) 0
Wi,j(n − 1)

0 Mi−1,j(n − 1)

 .

Recall that our assumption on Mi,j(n) is 2j + i ⩽ n. Since 0 < i < j, none of the
block matrices written above are empty. In particular, Mi,j−1(n−1) and Mi−1,j(n−1)

Algebraic Combinatorics, Vol. 8 #1 (2025) 36



Integer diagonal forms for subset intersection relations

satisfy the induction hypothesis (even though Mi,j(n − 1) might not!) and so we have

Mi,j(n) ∼


I1 0
0 0 ?

0 I2 0
0 0


where I1, I2 are identity matrices of orders µi(n−1) and µi−1(n−1), respectively. Since
rowQ(Mi,j) = rowQ(Wi,j), we know that Mi,j(n) has rank at most µi(n), whereas the
integrally equivalent matrix from above yields that Mi,j(n) has rank at least

µi(n − 1) + µi−1(n − 1) =
(

n − 1
i

)
−
(

n − 1
i − 1

)
+
(

n − 1
i − 1

)
−
(

n − 1
i − 2

)
=
(

n

i

)
−
(

n

i − 1

)
= µi(n).

Thus, the rank of Mi,j(n) must be exactly µi(n).
Further integral row/column operations reduce Mi,j(n) to having an identity prin-

cipal submatrix I of order µi(n), from which we can clear out the blocks to the right
and below:

Mi,j(n) ∼
[

I 0
0 ?

]
.

In order to have the correct rank, the remaining diagonal block must therefore be
zero, so Mi,j(n) has index 1. □

Definition 2.5. Let di,j(n) :=
∏i

s=0
(

j−s
i−s

)µs(n)−µs−1(n), where µs(n) is
(

n
s

)
−
(

n
s−1
)
.

We will eventually show that the factors in this formula serve as entries in a diagonal
form for Wi,j . At present, we are in position to prove the following weaker result.

Lemma 2.6. Let 0 ⩽ i ⩽ j ⩽ n−i
2 . The index of Wi,j divides di,j(n).

Proof. Let 0 ⩽ i ⩽ j ⩽ n−i
2 . We will first show that there exist integer matrices

F0,j , F1,j , · · · , Fi,j such that:
(A) the rows of Fs,j lie in rowZ(Ws,j), and
(B) the rows of the stacked matrix

⋃t
s=0 Fs,j are a Z-basis for rowZ(Mt,j), when-

ever t ⩽ i.
To this end, let F0,j = W0,j . If i = 0 we are done. Otherwise, inductively, assume that
F0,j , F1,j , · · · , Ft,j have been defined for t < i. Then F0,j ∪· · ·∪Ft,j has index 1, being
a Z-basis for rowZ(Mt,j), so by [16, Proposition 2] we can adjoin µt+1 −µt row vectors
from rowZ(Wt+1,j) to get a Z-basis for rowZ(Mt+1,j) = rowZ(Mt,j) + rowZ(Wt+1,j).
These additional rows are the rows of Ft+1,j . This proves the existence of the sequence
{Fs,j}i

s=0 with Properties (A) and (B) above.
Next, we claim that the rows of the “inflated” stacked matrix

⋃i
s=0

(
j−s
i−s

)
Fs,j lie

in rowZ(Wi,j). To see this, let 0 ⩽ s ⩽ i. By Property (A) the rows of Fs,j lie in
rowZ(Ws,j), so there exists an integer matrix C so that CWs,j = Fs,j . Multiplying on
both sides by

(
j−s
i−s

)
and using Lemma 2.2, we obtain(

j − s

i − s

)
Fs,j =

(
j − s

i − s

)
CWs,j = C(Ws,iWi,j) = (CWs,i) Wi,j .

Finally, we have di,j = [rowZ(Mi,j) :
⋃i

s=0
(

j−s
i−s

)
Fs,j ] by Property (B) for the F

matrices above. On the other hand, we have as a consequence of Lemma 2.4 that
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Z(Mi,j) = rowZ(Mi,j) = Z(Wi,j). Thus,

di,j = [Z(Wi,j) :
i⋃

s=0

(
j − s

i − s

)
Fs,j ]

= [Z(Wi,j) : rowZ(Wi,j)] · [rowZ(Wi,j) :
i⋃

s=0

(
j − s

i − s

)
Fs,j ].

Thus, the index of Wi,j divides di,j =
∏i

s=0
(

j−s
i−s

)µs−µs−1 . □

2.4. Constructing the diagonal form for Wi,j. In this section we will need
the hypothesis 0 ⩽ i ⩽ j ⩽ n−i

2 of the propositions we developed so far to be satisfied
for all i ⩽ j, and in particular when i = j − 1. Thus, we need j ⩽ n+1

3 , and this will
be the hypothesis for the following results.

Definition 2.7. For 0 ⩽ i ⩽ j ⩽ n+1
3 , let Di,j denote the µi × µj diagonal matrix

with diagonal entries given by{(
j − s

i − s

)µs−µs−1

: 0 ⩽ s ⩽ i

}
where exponents denote multiplicity of the diagonal entry. Similarly, we use D′

i,j to
denote the µi × µi diagonal matrix containing the same entries; that is, D′

i,j is just
Di,j with the zero columns removed.

The proof of the following result contains the main construction of this section.

Theorem 2.8. For each 0 ⩽ s ⩽ n+1
3 , there exists a unimodular µs × µs matrix Es

such that whenever s ⩽ r ⩽ n+1
3 , we have

(*) EsWs,r = D′
s,rE′

s,r

for some µs × µr integer matrix E′
s,r.

Proof. We suppose n is fixed and proceed by induction on s. First, define E0 = [1].
Then for all r ⩾ 0 we have

E0W0,r = [1]
[
1 1 · · · 1

]
= D′

0,rE′
0,r.

Next, assume that Es has been constructed and that it satisfies Property (*) for
all valid r. Then, define E′

s,s+1 via the equation

EsWs,s+1 = D′
s,s+1E′

s,s+1.(**)

By the induction hypothesis, E′
s,s+1 is an integer matrix, and we claim that it has

index 1. Assume for a moment that this is true so we can explain how to complete the
induction. By [16, Proposition 2], we may adjoin additional rows to E′

s,s+1 to form
a µs+1 × µs+1 unimodular matrix. Do so, and define this matrix to be Es+1. Let B
denote the (µs+1 − µs) × µs+1 matrix containing the rows that we adjoined to E′

s,s+1
to build Es+1.

Now, to check that Es+1 continues to satisfy Property (*), fix r ⩾ s + 1. We have

Es+1Ws+1,r =
[

E′
s,s+1
B

]
· Ws+1,r =

[
E′

s,s+1 · Ws+1,r

B · Ws+1,r

]
=
[(

D′
s,s+1

)−1
EsWs,s+1 · Ws+1,r

B · Ws+1,r

]
, by definition of E′

s,s+1
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=
[(

D′
s,s+1

)−1
Es · (r − s)Ws,r

B · Ws+1,r

]
, by Lemma 2.2

=
[(

D′
s,s+1

)−1 (r − s)D′
s,r · E′

s,r

B · Ws+1,r

]
, by Property (*).

Examining carefully, we see that
(
D′

s,s+1
)−1 (r − s)D′

s,r is a µs × µs diagonal matrix
with entries given by[

r − s

s + 1 − t
·
(

r − t

s − t

)]µt−µt−1

=
(

r − t

s + 1 − t

)µt−µt−1

,

for 0 ⩽ t ⩽ s. If we enlarge this to a diagonal matrix of size µs+1 × µs+1 by adding
µs+1 −µs diagonal entries equal to 1, then we get precisely the matrix D′

s+1,r. There-
fore

Es+1Ws+1,r = D′
s+1,r ·

[
E′

s,r

B · Ws+1,r

]
,

as desired.
Thus, it remains only to check that E′

s,s+1 has index 1, and this is where our earlier
results on the index of Wi,j come into play. Recall that ds,t denotes the product of
all of the diagonal entries in D′

s,t, and observe that:
• By Lemma 2.6, we know Ws,s+1 has index dividing ds,s+1, so we obtain

ds,s+1 ⩾ [Z(Ws,s+1) : rowZ(Ws,s+1)].
• Since Es is unimodular, any integer linear combination x⃗Ws,s+1 of the rows

of Ws,s+1 can be written
x⃗Ws,s+1 = x⃗E−1

s EsWs,s+1 = y⃗EsWs,s+1,

and so we have rowZ(Ws,s+1) = rowZ(EsWs,s+1).
• Since Ws,s+1 has full row rank, Equation (**) shows that the rows of

E′
s,s+1 are linearly independent and therefore are a Z-basis for their Z-span

rowZ(E′
s,s+1). Therefore

[rowZ(E′
s,s+1) : rowZ(EsWs,s+1)] = [rowZ(E′

s,s+1) : rowZ(D′
s,s+1E′

s,s+1)] = ds,s+1.

Putting these facts together, we have
ds,s+1 ⩾ [Z(Ws,s+1) : rowZ(Ws,s+1)]

= [Z(Ws,s+1) : rowZ(EsWs,s+1)]
= [Z(Ws,s+1) : rowZ(E′

s,s+1)] · [rowZ(E′
s,s+1) : rowZ(EsWs,s+1)]

= [Z(Ws,s+1) : rowZ(E′
s,s+1)] · ds,s+1

and so [Z(Ws,s+1) : rowZ(E′
s,s+1)] = 1.

Finally, we claim that Z(Ws,s+1) = Z(E′
s,s+1). It follows from Equation (**) that

the rows of E′
s,s+1 are in rowQ(Ws,s+1). Therefore rowQ(E′

s,s+1) ⊆ rowQ(Ws,s+1), and
so Z(E′

s,s+1) ⊆ Z(Ws,s+1). Thus, we have
1 = [Z(Ws,s+1) : rowZ(E′

s,s+1)]
= [Z(Ws,s+1) : Z(E′

s,s+1)] · [Z(E′
s,s+1) : rowZ(E′

s,s+1)].
Therefore, [Z(E′

s,s+1) : rowZ(E′
s,s+1)] = 1 and so E′

s,s+1 has index 1. □

Remark 2.9. To summarize the construction, we begin with the matrix E0 = [1],
and then each successive unimodular matrix Ej+1 comes from applying Wj,j+1 to Ej ,
dividing each row by an integer to make the entries of that row relatively prime, and
then extending this matrix to a unimodular one. In all cases we have computed, it
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is possible to achieve this unimodular extension to Ej+1 by adjoining certain rows of
the identity matrix. This seems to suggest that these matrices could be obtained by
selecting certain “super-standard” subsets.

Finally, we complete the program we outlined at the beginning of this section by
observing that the sequence {Es} turns out to have a very nice index-uniformity
property.

Theorem 2.10. Let 0 ⩽ i ⩽ j ⩽ n+1
3 , and let {Es} be the sequence of square unimod-

ular matrices defined in Theorem 2.8. Then,
EiWi,j = Di,jEj .

Proof. We proceed by induction on the sum i + j. First, notice that the result is
clearly true when i = j = 0, and in fact when i = j ⩽ n+1

3 (since Wi,i = Di,i is the
identity matrix).

So assume that i < j ⩽ n+1
3 . We have

EiWi,j = 1
j − i

EiWi,j−1Wj−1,j , by Lemma 2.2

= 1
j − i

Di,j−1Ej−1Wj−1,j , by our induction hypothesis

= 1
j − i

Di,j−1D′
j−1,jE′

j−1,j , by the defining property in Theorem 2.8.

Following the construction given in the proof of Theorem 2.8, we have that
D′

j−1,jE′
j−1,j is Dj−1,jEj . Here, D′ is replaced by D to compensate for the change

in the dimensions that results when we add rows to E′
j−1,j to obtain Ej . Thus, we

obtain
EiWi,j = 1

j − i
Di,j−1Dj−1,jEj = Di,jEj ,

since 1
j−i

(
j−1−s

i−s

)(
j−s

j−1−s

)
=
(

j−s
i−s

)
, as desired. □

Definition 2.11. For 0 ⩽ k ⩽ n+1
3 , define an

(
n
k

)
×
(

n
k

)
block diagonal matrix E = Ek,

with diagonal blocks given by the matrices E−1
j where 0 ⩽ j ⩽ k:

E =



E−1
1 0 0 · · · 0
0 E−1

2 0 · · · 0

0 0
. . .

...
...

...
0 0 · · · Ek−1

 .

Note that by construction, the matrix E is unimodular.

By Theorem 1.7, the matrix A = An,krow,kcol,ℓ (and the generalized Laplacian L
when krow = kcol) are integrally equivalent to a block matrix comprised of integer
multiples of the standard-subset inclusion matrices Wi,j .

Corollary 2.12. When n is sufficiently large (e.g. n ⩾ 3kcol − 1), the Wi,j blocks in
this configuration can simultaneously be brought into diagonal forms Di,j with entries{(

j − s

i − s

)µs−µs−1

: 0 ⩽ s ⩽ i

}
where the exponent indicates the multiplicity of the diagonal entry and µs =

(
n
s

)
−
(

n
s−1
)

(with
(

a
b

)
= 0 whenever b < 0 or a < b), by applying Ekcol on the right and E−1

krow
on
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the left. In the case when krow = kcol, this is simply another conjugation applied to the
generalized Laplacian.

In the next section we describe how to extract from this situation a diagonal form
of the entire block matrix.

3. Third step: The matrix of diagonal blocks can itself be
diagonalized using matrices of small dimension

We are now in position to present our framework for finding a diagonal form for
L = An,krow,kcol,ℓ − λI.

Definition 3.1. For each s = 0, 1, . . . , krow, consider the (krow − s + 1) × (kcol − s + 1)
matrix Ms with entries

Ms(i, j) = −λ δi,j +
(

j − s

i − s

) i∑
v=0

(−1)i+v

(
i

v

)(
krow − v

ℓ − v

)(
n − krow − j + v

kcol − ℓ − j + v

)
.

Here, the entries are (unconventionally, but harmlessly) indexed with (s, s) ⩽ (i, j) ⩽
(krow, kcol), and δi,j is the Kronecker delta function (which is 0, unless i = j when it
is 1).

We have expanded this formula for ease of reference, independent from our devel-
opment in this paper, but it may also be written more compactly as

Ms(i, j) = −λ δi,j +
(

j − s

i − s

)
fi(j; n, k∗, ℓ),

and the reader may refer to Section 4 for some simple formulas for fi(j; n, k∗, ℓ) as
well as some examples of Ms in various cases.

Remark 3.2. When krow = k = kcol and λ is equal to the degree of Γ, we find diagonal
entries

Ms(i, i) = fi(i; n, k, ℓ) −
(

n − k

k − ℓ

)(
k

ℓ

)
(for s ⩽ i ⩽ k).

These are the eigenvalues of the “classical” Laplacian L, being the diagonal entries of
the triangular matrix P−1LP by Theorem 1.7. Although in this presentation the ith
eigenvalue, that we denote ei, is interlaced among the Ms matrices for which s ⩽ i,
the multiplicity of ei is µ0 +(µ1 −µ0)+(µ2 −µ1)+ · · ·+(µi −µi−1) = µi, as expected.

Example 3.3. In Figure 2, we show the k = 3 case of the form we obtain for
E−1P−1LPE after we have diagonalized each Wi,j block. Here, we have M0 (a 4 × 4
matrix, appearing once) in blue; M1 (a 3×3 matrix, repeated µ1 −1 times) in orange;
M2 (a 2×2 matrix, repeated µ2 −µ1 times) in gray; and M3 (a 1×1 matrix, repeated
µ3 − µ2 times) in black. The ei appearing on the diagonal are the eigenvalues of L.

As each Ms is an (upper-triangular) integer matrix, it has a diagonal form that
can be achieved by multiplying on the left and right by, possibly different, unimodular
matrices. For example, we may compute its Smith normal form. Let ∆(Ms) be the
multiset of entries from such a diagonal form; for example, we could compute the
invariant factors.

Theorem 3.4. Suppose the parameters n, k∗ = (k, k), and ℓ are fixed, with n ⩾
3k − 1. Given a subset intersection graph Γ(n, k, ℓ) and an integer λ, we find that the
generalized Laplacian L = A − λI has a diagonal form with entries

k⋃
s=0

∆(Ms)(
n
s)−2( n

s−1)+( n
s−2).
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e0 f0,1 0 · · · 0 f0,2 0 · · · · · · · · · · · · 0 f0,3 0 · · · · · · · · · · · · · · · · · · · · · 0
0 e1 0 · · · 0 2f1,2 0 · · · · · · · · · · · · 0 3f1,3 0 · · · · · · · · · · · · · · · · · · · · · 0
... 0 e1

... 0 f1,2 0 · · · · · · · · · 0 0 f1,3 0 · · · · · · · · · · · · · · · · · · 0
...

...
. . . 0

...
. . .

...
...

. . .
...

0 0 · · · 0 e1 0 · · · 0 f1,2 0 · · · 0 0 · · · 0 f1,3 0 · · · · · · · · · · · · 0
0 0 · · · · · · 0 e2 0 · · · · · · · · · · · · 0 3f2,3 0 · · · · · · · · · · · · · · · · · · · · · 0
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...
... 0 e2

... 0 2f2,3 0 · · · · · · · · · · · · · · · · · ·
...

...
...

...
...

. . .
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...
. . .

...
...

...
...

... e2
... 0 · · · 0 2f2,3 0 · · · · · · · · · · · · 0
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...
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... 0 · · · · · · 0 f2,3 0 · · · · · · · · · 0
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...
...

...
. . . 0
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. . .

...
0 0 · · · · · · 0 0 · · · · · · · · · · · · 0 e2 0 · · · · · · · · · · · · 0 f2,3 0 · · · 0
0 0 · · · · · · 0 0 · · · · · · · · · · · · · · · 0 e3 0 · · · · · · · · · · · · · · · · · · · · · 0
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...
...

...
... 0 e3

...
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...
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...
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. . .

...
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...
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... e3
...

...
...

...
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...
... e3

...
...

...
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...
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. . .

...
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...
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...
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... e3
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...
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... e3

...
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...
...
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. . . 0

0 0 · · · · · · 0 0 · · · · · · · · · · · · · · · 0 0 · · · · · · · · · · · · · · · · · · · · · 0 e3

Figure 2. Schematic for E−1P−1LPE when k = 3 with the Ms

appearing as embedded sub-matrices

Here, the exponent indicates that each element of ∆(Ms) (which may itself appear
multiple times) should be included in the diagonal form with the indicated multiplicity.

Using the language of abelian groups, we may equivalently write

S(L) ∼=
k⊕

s=0
S(Ms)(

n
s)−2( n

s−1)+( n
s−2).

Proof. This follows directly from the development in the previous sections: the expres-
sion in Definition 3.1 is the sth distinct diagonal entry from Corollary 2.12 for each
block, multiplied by the appropriate fi(j) from Definition 1.4 as per Theorem 1.7.
The multiplicity formula is µs − µs−1 from Corollary 2.12 where µs =

(
n
s

)
−
(

n
s−1
)
.

See Figure 2 for a schematic in the case when k = 3.
The key point is that each copy of each Ms matrix is embedded in E−1P−1LPE

such that
• The entries in each row and column of E−1P−1LPE lying outside of Ms are

all zero, and
• the diagonal entries of Ms lie on the main diagonal of E−1P−1LPE .

Therefore, we can embed the unimodular transformations (i.e. integral row/column
operations) that diagonalize each copy of each Ms into a single pair of unimodu-
lar transformations that diagonalize E−1P−1LPE . (There is some freedom here that
can be exploited depending on the graph parameters or desired formulas, but taking
transformations obtained from the Smith normal form of Ms are always available as
a default implementation.) □

Remark 3.5. Observe that finding a diagonal form for the
(

n
k

)
×
(

n
k

)
matrix L re-

duces to finding diagonal forms for (k + 1) matrices that are each no larger than
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(k + 1) × (k + 1). This is a dramatic reduction in computational (and mathematical)
complexity!

Remark 3.6. In addition, the diagonal entries of the Ms are the eigenvalues of L.
Thus the Ms can be viewed as a transparent and precise record of the additional
information needed to proceed from diagonalizing over a field to diagonalize over the
integers.

Corollary 3.7. Suppose the parameters n, k∗ = (krow, kcol), and ℓ are fixed, with
krow ⩽ kcol and n ⩾ 3kcol − 1. The subset intersection matrix An,k∗,ℓ also has a
diagonal form with entries just as in Theorem 3.4 using the generalized Ms matrices
from Definition 3.1 with λ = 0.

4. Some examples and applications
4.1. Matrices of the Johnson scheme. When krow = k = kcol, the matrix An,k,ℓ

of Corollary 3.7 is the (k − ℓ)-association matrix of the Johnson association scheme.
Note that An,k,0 is the adjacency matrix of the Kneser graph, An,k,k−1 is the adja-
cency matrix of the Johnson graph, and An,k,k is the identity matrix.

While the authors’ primary motivation for this work was to study the classical
graph Laplacian, there is also much interest in these association matrices and es-
pecially in properties of the algebra they generate (the Bose–Mesner algebra of the
association scheme). In [12, Problem 3.7], Sin asks for a solution to the “SNF prob-
lem” for these matrices, which we have given in the theorems above and we examine
more closely in this section.

In fact, our technique extends to describe the Smith group of any integer matrix
in the Bose–Mesner algebra of the Johnson scheme. This is remarkable since knowing
the Smith groups of two matrices does not normally yield any information about the
Smith group of their sum.

Theorem 4.1. Let B =
∑k

ℓ=0 bℓAn,k,ℓ, where the bℓ are integers. Define the
(k − s + 1) × (k − s + 1) matrix Ms(B), with (i, j)-entry equal to

(4.1)
(

j − s

i − s

) k∑
ℓ=0

bℓfi(j; n, k, ℓ).

As in Definition 3.1, the matrix entry indices have the range s ⩽ i, j ⩽ k.
Then

S(B) ∼=
k⊕

s=0
S(Ms(B))(

n
s)−2( n

s−1)+( n
s−2).

Proof. Conjugating B by the matrix PE produces a linear combination of matrices
that all share the same diagonal block-form. Thus we get a diagonal block-form for
B where the block coefficients are the corresponding linear combinations in Equa-
tion (4.1) of the block coefficients fi(j; n, k, ℓ) of the An,k,ℓ. The same proof as of
Theorem 3.4 now extracts the Smith group. □

The strongest previous result on this topic may be [17, Theorem 9]. There the
authors describe a diagonal form for certain matrices in the Bose–Mesner algebra
of the Johnson scheme that satisfy a primitivity condition. However, the association
matrices themselves do not usually satisfy this condition.

Example 4.2. Let n = 12, k = 3 and consider the association matrices A1 = A12,3,1
and A2 = A12,3,2. Let B = A1 + 3A2.
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We compute the Ms matrices for B:

M0(B) = M0(A1) + 3M0(A2) =


189 33 3 0
0 57 22 3
0 0 2 3
0 0 0 −6


M1(B) = M1(A1) + 3M1(A2) =

57 11 1
0 2 2
0 0 −6


M2(B) = M2(A1) + 3M2(A2) =

[
2 1
0 −6

]
M3(B) = M3(A1) + 3M3(A2) =

[
−6
]

Applying Theorem 4.1 we get

S(B) ∼= S(M0(B))1 ⊕ S(M1(B))10 ⊕ S(M2(B))43 ⊕ S(M3(B))100

∼=
(
Z/3Z2 ⊕ Z/14364Z

)
⊕ (Z/2Z ⊕ Z/342Z)10 ⊕ (Z/12Z)43 ⊕ (Z/6Z)100

.

One can build directly the 220 × 220 matrix B = A1 + 3A2 in Sage software [11] and
see that we have indeed predicted the correct Smith group.

4.2. Johnson graphs. Although the general formula in Definition 3.1 may seem
formidable, it turns out that the fi(j; n, k, ℓ) summations often have a simple form
for particular values of ℓ. For example, there are only two non-zero diagonals in the
case when ℓ = k − 1.

Lemma 4.3. If ℓ = k − 1, we have

fi(j) =


(k − i)(n − k − i) − i if i = j

(k − i) if i = j − 1
0 otherwise.

Proof. We have

ci(j; n, k, k − 1) = (k − i)
(

n−k−(j−i)
1−(j−i)

)
=


(k − i)(n − k) if i = j

(k − i) if i = j − 1
0 if i < j − 1

so fi(j; n, k, k−1) =
∑i

v=0(−1)i+v
(

i
v

)
cv(j; n, k, k−1) is 0 unless i ⩾ j −1. If i = j −1,

we have
fj−1(j) = cj−1(j) = (k − i),

while if i = j, we have

fj(j) = −jcj−1(j) + cj(j) = −j(k − (j − 1)) + (k − j)(n − k),

as claimed. □

4.2.1. Johnson Laplacian matrix. We find that the Ms matrices have a particularly
simple structure in this case.

Corollary 4.4. If ℓ = k − 1 and λ = d = (n − k)k, the matrix Ms has diagonal
entries −i(n− (i−1)) where i runs from s to k, and the entries on the super-diagonal
correspond to values of the sequence i(t − (i − 1)) as i runs from 1 to t := k − s. All
other entries of Ms are zero.

By Remark 3.2, the diagonal entries e0 = 0, e1 = n, e2 = 2(n−1), e3 = 3(n−2), e4 =
4(n−3), . . . are the eigenvalues of L. From Corollary 4.4, it is a straightforward exercise
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to read off the entries of a diagonal form for the classical Laplacian of the Johnson
graphs. The next two theorems demonstrate this, in detail, for k = 2 and k = 3.

The proof of Theorem 4.5 introduces a template that we will use to
obtain all of the results in this section.

Theorem 4.5. The classical Laplacian of the k = 2 Johnson graph Γ(n, 2, ℓ = 1) for
n ⩾ 5 has a diagonal form with:

entry with multiplicity if . . . or in terms of eigenvalues . . .
2(n − 1)

(
n
2
)

− 2n + 1 always [e2]µ2−µ1

2(n − 1)n n − 2 always [e1e2]µ1−1

1 n − 2 always multiplicity µ1 − 1
1 1 n ≡ 1 mod 2
4 1 n ≡ 1 mod 2
2 2 n ≡ 0 mod 2
0 1 always [0]1

Proof. In this case, the Ms matrices (with λ = (n − 2)2) are

M0 =

0 2 0
0 −n 2
0 0 −2n + 2

 M1 =
[
−n 1
0 −2n + 2

]
M2 =

[
−2n + 2

]
.

We use the standard fact that the Smith invariant factors of an integer matrix can
be obtained as the pairwise consecutive ratios of the greatest common divisors of the
i × i minors (i.e. determinants of submatrices) of the given matrix [14]. Let GM(s, i)
be the gcd of the i × i minors of Ms.

As there are only two non-zero diagonals in each Ms by Corollary 4.4, each i × i
minor is simply a product of i of entries from Ms where no two entries can appear
in the same row or column. These entries consist of integers from the superdiagonal,
that we call degree zero, as well as the eigenvalues from the diagonal which are
linear functions of n.

Since the greatest common divisor (gcd) function is associative, we can take the
gcd X of the degree zero minors first, and then compare with expressions of n that
are not already divisible by X. In this way, we find that:

• GM(0, 1) = gcd(2, −n)
• GM(0, 2) = gcd(4, 2(n − 1)n) = 4
• GM(0, 3) = gcd(0, 0) = 0
• GM(1, 1) = gcd(1, 0) = 1
• GM(1, 2) = gcd(0, 2(n − 1)n) = 2(n − 1)n
• GM(2, 1) = gcd(0, −2(n − 1)) = 2(n − 1)

Treating n with cases to resolve ambiguity and taking pairwise ratios of these with
multiplicities from Theorem 3.4 yields the results stated in the table. □

This theorem agrees with [1, Corollary 9.1], where the authors study critical groups
of line graphs. As far as we know, the following k = 3 result is new.

Theorem 4.6. The classical Laplacian of the k = 3 Johnson graph Γ(n, 3, ℓ = 2) for
n ⩾ 7 has a diagonal form with:
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entry with multiplicity if . . . or in terms of eigenvalues . . .
3(n − 2)

(
n
3
)

− 2
(

n
2
)

+ n always [e3]µ3−µ2

6(n − 2)(n − 1)
(

n
2
)

− 2n + 1 always [e2e3]µ2−µ1

1
(

n
2
)

− 2n + 2 always multiplicity µ2 − µ1
6(n − 2)(n − 1)n (n − 2) n ≡ 1 mod 2 [e1e2e3]µ1−1

1 2(n − 2) n ≡ 1 mod 2 multiplicity 2µ1 − 2
3
2 (n − 2)(n − 1)n (n − 2) n ≡ 0 mod 2 [ 1

4 e1e2e3]µ1−1

2 2(n − 2) n ≡ 0 mod 2 multiplicity 2µ1 − 2
36 1 n ≡ 2 mod 3
1 1 n ≡ 2 mod 3
12 1 n ̸≡ 2 mod 3
3 1 n ̸≡ 2 mod 3
0 1 always [0]1

Proof. Here, we have (for λ = (n − 3)3)

M0 =


0 3 0 0
0 −n 4 0
0 0 −2n + 2 3
0 0 0 −3n + 6

 M1 =

−n 2 0
0 −2n + 2 2
0 0 −3n + 6


M2 =

[
−2n + 2 1

0 −3n + 6

]
M3 =

[
−3n + 6

]
,

and we proceed as in the previous proof. We obtain
• GM(0, 1) = gcd(1, 0) = 1
• GM(0, 2) = gcd(3, 2(n − 1)n)
• GM(0, 3) = gcd(36, 18(n − 2)(n − 1), −6(n − 2)(n − 1)n)
• GM(0, 4) = gcd(0, 0) = 0
• GM(1, 1) = gcd(2, −n, −3(n − 2))
• GM(1, 2) = gcd(4, 2(n − 1)n, −2n, 3(n − 2)n, −6(n − 2), 6(n − 2)(n − 1))
• GM(1, 3) = gcd(0, −6(n − 2)(n − 1)n)
• GM(2, 1) = gcd(1, 0) = 1
• GM(2, 2) = gcd(0, 6(n − 2)(n − 1))
• GM(3, 1) = gcd(0, −3(m − 2))

Here, we have cases based on n mod 3 to resolve GM(0, 2) and based on n mod 2 to
resolve GM(1, 1), from which we may then conclude the stated results. □

4.2.2. Johnson adjacency matrix.

Theorem 4.7. The adjacency matrix of the k = 2 Johnson graph Γ(n, 2, ℓ = 1) for
n ⩾ 5 has a diagonal form with:

entry with multiplicity if . . . or in terms of eigenvalues . . .
2 (n − 2)(n − 3)/2 always [e2]2µ0−µ1+µ2

(n − 2)(n − 4) 1 always [ e0e1
2 ]µ0

2(n − 4) n − 2 always [2e1]µ1−µ0

1 n − 2 always multiplicity µ1 − µ0

Proof. Using Lemma 4.3 to compute the Ms matrices (with λ = 0), we get

M0 =

2(n − 2) 2 0
0 n − 4 2
0 0 −2

 ∼

2(n − 2) 2 0
0 n − 4 0
0 0 2


M1 =

[
n − 4 1

0 −2

]
∼
[
1 0
0 2(n − 4)

]
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M2 =
[
−2
]

.

Only M0 requires any analysis, since the Smith groups of M1 and M2 are evident.
• GM(0, 1) = gcd(2, n)
• GM(0, 2) = gcd(4(n − 2), 4, 2(n − 4), 2(n − 2)(n − 4))
• GM(0, 3) = 4(n − 2)(n − 4)

Even though the gcds above depend on the parity of n, in both cases the Smith group
turns out to be isomorphic to

S(An,2,1) ∼= (Z/2Z)(n−2)(n−3)/2 ⊕ Z/(n − 2)(n − 4)Z ⊕ (Z/2(n − 4)Z)n−2
.

□

This theorem agrees with the result [3, Theorem SNF3]. We believe the next result
is a new one.

Theorem 4.8. The adjacency matrix of the k = 3 Johnson graph Γ(n, 3, ℓ = 2) for
n ⩾ 7 has a diagonal form with:

entry with multiplicity if . . . or in terms of eigenvalues . . .
3(n − 7)

(
n
2
)

− 2n + 1 always [e2e3]µ2−µ1

3(2n − 9)(n − 7) n − 2 always [e1e2e3]µ1−µ0

3
(

n
3
)

− 2
(

n
2
)

+ n + 1 always [e3]µ3−µ2+µ0

3(n − 3)(n − 7)(2n − 9)/X, X 1 always [ 1
X e0e1e2]µ0 , [X]µ0

1
(

n
2
)

− 2 always µ2 + µ1 − µ0

where

X = gcd(3(n − 3)(2n − 9), (n − 7)(n − 3)(2n − 9), 12, 2n(n − 7), 3(n − 7)).

Proof. We again use Lemma 4.3 to calculate the Ms matrices (with λ = 0). Instead
of going straight to gcds of minors, we try playing with some integral row/column
operations first. It turns out that we can get all but M0 directly into diagonal form.

M0 =


3(n − 3) 3 0 0

0 2n − 9 4 0
0 0 n − 7 3
0 0 0 −3

 ∼


(n − 3)(2n − 9) 2n 4 0

0 3 0 0
0 0 n − 7 0
0 0 0 3


M1 =

2n − 9 2 0
0 n − 7 2
0 0 −3

 ∼

1 0 0
0 1 0
0 0 3(2n − 9)(n − 7)


M2 =

[
n − 7 1

0 −3

]
∼
[
1 0
0 3(n − 7)

]
M3 =

[
−3
]

.

If we set

M0′ =

(n − 3)(2n − 9) 2n 4
0 3 0
0 0 n − 7

 ,

then we have

S(An,3,2) ∼= S(M0)µ0−µ−1 ⊕ S(M1)µ1−µ0 ⊕ S(M2)µ2−µ1 ⊕ S(M3)µ3−µ2

∼= S (M0′) ⊕ Z/3Z ⊕ (Z/3(2n − 9)(n − 7)Z)n−2

⊕ (Z/3(n − 7)Z)(
n
2)−2n+1 ⊕ (Z/3Z)(

n
3)−2(n

2)+n
.
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Denoting by GM(0′, i) the gcd of the i × i minors of

(n − 3)(2n − 9) 2n 4
0 3 0
0 0 n − 7

,

we observe
• GM(0′, 1) = 1
• GM(0′, 2) = gcd(3(n−3)(2n−9), (n−7)(n−3)(2n−9), 12, 2n(n−7), 3(n−7))
• GM(0′, 3) = 3(n − 3)(n − 7)(2n − 9).

Setting X = GM(0′, 2) we therefore have

M0′ ∼

1 0 0
0 X 0
0 0 3(n − 3)(n − 7)(2n − 9)/X

 .

The theorem follows. □

We note that the value of X in the above theorem depends only on n (mod 12).

4.3. A non-square subset inclusion matrix. As a demonstration of our results in
the case when A is not square, consider the subset inclusion matrix with (krow, kcol) =
(2, 3) and ℓ = 1.

Theorem 4.9. The subset intersection matrix An,2,3,1 for n ⩾ 5 has a diagonal form
with:

entry with multiplicity if . . .

2
(

n
2
)

− 2n + 1 always
2(n − 6) n − 2 always

1 n − 1 always
(n − 3)(n − 6) 1 if 3|n

6 1 if 3|n
3(n − 3)(n − 6) 1 if 3 ̸ |n

2 1 if 3 ̸ |n

Proof. The Ms matrices are (λ = 0):

M0 =

(n − 2)(n − 3) 2(n − 3) 2 0
0 1

2 (n − 3)(n − 6) 2(n − 5) 3
0 0 −2(n − 4) −6


M1 =

[ 1
2 (n − 3)(n − 6) (n − 5) 1

0 −2(n − 4) −4

]
M2 =

[
−2(n − 4) −2

]
and we have

• GM(0, 1) = 1
• GM(0, 3) = 6(n − 3)(n − 6)
• GM(1, 1) = 1
• GM(1, 2) = gcd(−(n−3)(n−4)(n−6), −2(n−3)(n−6), −2(n−6)) = 2(n−6)
• GM(2, 1) = 2.

Examining the minors in GM(0, 2), we note that all of them are divisible by 2 and
that 6 is itself a minor, so GM(0, 2) must be 2 or 6. If n is divisible by 3, we get 6,
otherwise 2. Therefore, we obtain the result. □

Note that this agrees with (and also refines for the “kcol = 3” case) [7, Theorem 4.1].
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4.4. Kneser graphs. When ℓ = 0, we obtain the following simple form for the fi(j).

Lemma 4.10. If ℓ = 0, we have

fi(j) = (−1)i

(
n − k − j

k − j

)
.

Proof. Referring back to Definition 1.4, we have

ci = ci(j; n, k, 0) =
{(

n−k−j
k−j

)
if i = 0

0 otherwise.

Thus, fi(j; n, k, 0) =
∑i

v=0(−1)i+v
(

i
v

)
cv(j; n, k, 0) = (−1)i+0(i

0
)
c0(j; n, k, 0) as

claimed. □

4.4.1. Kneser adjacency matrix.

Theorem 4.11. The adjacency matrix of the Kneser graph Γ(n, k, ℓ = 0) for n ⩾ 3k−1
has a diagonal form with:

entries with multiplicity or in terms of eigenvalues . . .(
n−k−j

k−j

) (
n
j

)
−
(

n
j−1
)

[ej ]µj for 0 ⩽ j ⩽ k

Proof. By Lemma 4.10, the matrices Ms (with λ = 0) satisfy

Ms(i, j) = (−1)i

(
j − s

i − s

)(
n − k − j

k − j

)
.

Observe that each of the diagonal entries Ms(j, j) divides each entry Ms(i, j) above
it (i < j). Thus every Ms, and therefore An,k,0, is unimodularly equivalent to the
diagonal matrix of its eigenvalues. □

The fact that the diagonal entries of a diagonal form of An,k,0 are equal (including
multiplicities) to the eigenvalues of An,k,0 has been described as “miraculous;” see [4,
Cor. 9.4.4]. This result also follows from Wilson’s original diagonal form [16, The-
orem 2] of the unrestricted inclusion matrices, since a k-subset being disjoint from
another k-subset is the same thing as being included in the size-(n − k) complement.

4.4.2. Kneser Laplacian matrix. From Lemma 4.10 the entries of the Ms matrices
(with λ = d =

(
n−k

k

)
) are

Ms(i, j) = (−1)i

(
j − s

i − s

)(
n − k − j

k − j

)
− δi,j

(
n − k

k

)
by Theorem 3.4. The minors here are more complicated than in Johnson case. How-
ever, the diagonal entries (eigenvalues)

Ms(i, i) = (−1)i

(
n − k − i

k − i

)
−
(

n − k

k

)
often seem to factor nicely; for k = 2 we obtain

0, −1
2(n − 3)n, −1

2(n − 1)(n − 4)

while for k = 3, we have

0, −1
6(n − 4)(n − 5)n, −1

6(n − 1)(n − 5)(n − 6), −1
6(n2 − 10n + 27)(n − 2).

Theorem 4.12. The classical Laplacian of the k = 2 Kneser graph Γ(n, 2, ℓ = 0) for
n ⩾ 5 has a diagonal form with:
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entry with multiplicity if . . . or in terms of eigenvalues . . .
1
2 (n − 1)(n − 4)

(
n
2
)

− 2n + 1 always [e2]µ2−µ1

1
4 (n − 1)(n − 3)(n − 4)n n − 2 always [e1e2]µ1−1

1 n − 1 always multiplicity µ1(
n−3

2
)

= 1
2 (n − 3)(n − 4) 1 always multiplicity 1

0 1 always [0]1

Proof. In this case, the Ms matrices are (for λ =
(

n−2
2
)
)

M0 =

0 n − 3 1
0 −
(

n−2
2
)

− (n − 3) −2
0 0 −

(
n−2

2
)

+ 1

 =

0 n − 3 1
0 − 1

2 (n − 3)n −2
0 0 − 1

2 (n − 4)(n − 1)


with

M1 =
[
− 1

2 (n − 3)n −1
0 − 1

2 (n − 4)(n − 1)

]
M2 =

[
− 1

2 (n − 4)(n − 1)
]

.

We have
• GM(0, 1) = 1
• GM(0, 2) = gcd( 1

2 (n − 3)(n − 4), − 1
2 (n − 1)(n − 3)(n − 4), 1

4 (n − 1)(n − 3)(n −
4)n) =

(
n−3

2
)

• GM(0, 3) = 0
• GM(1, 1) = 1
• GM(1, 2) = 1

4 (n − 1)(n − 3)(n − 4)n
• GM(2, 1) = − 1

2 (n − 1)(n − 4)
Remarkably, no cases were needed! □

Theorem 4.12 agrees with the main result in [6]. As far as we know, the next result
is new.

Theorem 4.13. The classical Laplacian of the k = 3 Kneser graph Γ(n, 3, ℓ = 0) for
n ⩾ 7 has a diagonal form with:

entries with multiplicity or in terms of eigenvalues . . .
1
6 (n2 − 10n + 27)(n − 2)

(
n
3
)

− 2
(

n
2
)

+ n [e3]µ3−µ2

1
36 (n2 − 10n + 27)(n − 1)(n − 2)(n − 5)(n − 6)

(
n
2
)

− 2n + 1 [e2e3]µ2−µ1

1
(

n
2
)

− n multiplicity µ2
1

216 (n2−10n+27)(n−1)(n−2)(n−4)(n−5)2(n−6)n

X , X n − 2
[ 1

X e1e2e3
]µ1−1, [X]µ1−1

1
36 (n2−10n+27)(n−4)(n−5)2(n−6)

Y , Y 1 multiplicity 1 (twice)
0 1 [0]1

where

X =gcd
(

(n − 4)(n − 5)n
3 ,

(n2 − 7n + 18)(n − 5)
6 ,

(n2 − 10n + 27)(n − 2)(n − 4)(n − 5)n
36

)
and

Y = gcd
(

n − 5,
3(n − 4)(n − 5)

2 ,
(n − 1)(n − 3)(n − 5)

3

)
.

Proof sketch. In this case, the Ms matrices are (with λ =
(

n−3
3
)
)

M0 =


0 1

2 (n − 4)(n − 5) n − 5 1
0 − 1

6 (n − 4)(n − 5)n −2(n − 5) −3
0 0 − 1

6 (n − 1)(n − 5)(n − 6) 3
0 0 0 − 1

6 (n2 − 10n + 27)(n − 2)


M1 =

− 1
6 (n − 4)(n − 5)n −(n − 5) −1

0 − 1
6 (n − 1)(n − 5)(n − 6) 2

0 0 − 1
6 (n2 − 10n + 27)(n − 2)
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M2 =
[
− 1

6 (n − 1)(n − 5)(n − 6) 1
0 − 1

6 (n2 − 10n + 27)(n − 2)

]
M3 =

[
− 1

6 (n2 − 10n + 27)(n − 2)
]

,

and most of the minor gcd computations are straightforward:
• GM(0, 1) = GM(1, 1) = GM(2, 1) = 1
• GM(0, 3) = 1

36 (n2 − 10n + 27)(n − 4)(n − 5)2(n − 6)
• GM(0, 4) = 0
• GM(1, 3) = 1

216 (n2 − 10n + 27)(n − 1)(n − 2)(n − 4)(n − 5)2(n − 6)n
• GM(2, 2) = 1

36 (n2 − 10n + 27)(n − 1)(n − 2)(n − 5)(n − 6)
• GM(3, 1) = 1

6 (n2 − 10n + 27)(n − 2).
However, it remains to work out values for X = GM(1, 2) and Y = GM(0, 2).

For X, the complete list of minors (up to sign, obtained using Sage software [11])
is

x1 := (n − 4)(n − 5)n/3,

x2 := (n2 − 7n + 18)(n − 5)/6,

x3 := (n2 − 10n + 27)(n − 2)(n − 4)(n − 5)n/36,

(n − 1)(n − 4)(n − 5)2(n − 6)n/36,

(n2 − 10n + 27)(n − 2)(n − 5)/6,

(n2 − 10n + 27)(n − 1)(n − 2)(n − 5)(n − 6)/36
and we claim that the last three are redundant in the gcd computation. For example,
the fourth row (n−1)(n−4)(n−5)2(n−6)n/36 can already be written as an (integral!)
linear combination

−(n + 5)x1 + n(n − 4)(n − 5)
6 x2

of the first and second rows. Thus by Bézout’s identity we may ignore it in the compu-
tation of the gcd of these minors. One may obtain similar integer linear combinations
for the fifth and sixth rows, resulting in the expression for X given in the statement.

Similarly for Y , one may consider the complete list of nonzero minors
y1 := (n − 5),
y2 := (3/2)(n − 4)(n − 5),

(1/6)(n − 4)(n − 5)2(n − 6),
(1/6)(n − 4)(n − 5)(n − 9),
(1/12)(n − 1)(n − 4)(n − 5)2(n − 6),
(1/6)(n2 − 7n + 24)(n − 5),
(1/12)(n2 − 10n + 27)(n − 2)(n − 4)(n − 5),
(1/6)(n2 − 10n + 27)(n − 2)(n − 5),
(1/36)(n − 1)(n − 4)(n − 5)2(n − 6)n,

(1/2)(n − 4)(n − 5)n,

(1/2)(n2 − 7n + 18)(n − 5),
(1/36)(n2 − 10n + 27)(n − 2)(n − 4)(n − 5)n,

(1/3)(n2 − 10n + 27)(n − 2)(n − 5),
(1/36)(n2 − 10n + 27)(n − 1)(n − 2)(n − 5)(n − 6),

and observe that each may be expressed as an integral linear combination of the first
two rows, together with y3 := (1/3)(n − 1)(n − 3)(n − 5). Some helpful formulas in
this pursuit are:

n2 − 7n + 18 = n(n − 1) − 6(n − 3),
n2 − 7n + 24 = n(n − 1) − 6(n − 4),

n2 − 10n + 27 = (n − 1)(n − 3) − 6(n − 4).
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Taking pairwise ratios of the resulting gcds yields the results stated in the table. □

While we have tried to present our results in a reasonably explicit style, that
reflects existing theorems in the literature, it is difficult to avoid confronting a meta-
mathematical issue (e.g. [15]) regarding “What (precisely) constitutes a satisfactory
answer for these diagonal form problems?”

In Theorem 4.13, for example, there does not seem to be a canonical way to choose
the formulas from the list of minors of Ms to which we apply our integer gcd operation.
In fact, we did not verify that two gcd computations with three terms each is the
minimal form of a correct statement. Yet, in some sense, we feel that the Ms matrices
themselves are already the real “answer” and that any case statements on n or gcd
computations we employ are more in the direction of “fiddly details” reflecting a
subjective expectation about the form of the answer, rather than anything intrinsic
to the mathematics of the question itself.

By contrast, we have tried to highlight in the last column of each table how our
diagonal forms may be written in terms of the eigenvalues, reflecting a deeper rela-
tionship between them. These examples seem to suggest the existence of a unified
formula, independent from both n and ℓ, that realizes the Smith group directly in
terms of the eigenvalues and their multiplicities.

An appendix on some super-standard combinatorics
The careful reader will have noticed that there is some choice in our construction of
the Es matrices that diagonalize the Wi,j blocks in Theorem 2.8 at the point where we
appeal to Wilson’s Proposition 2 in order to adjoin rows in the induction. Although it
is not logically necessary for any of our results, we offer the following outline towards
a canonical choice for Es for those interested in implementing these matrices in a
standard fashion or in comparing with the non-recursive situation that Bier found
vis-à-vis P and Wclassic

i,j .

Definition E.1. We say that a set β = {b1, b2, . . . , bk} ⊆ {1, 2, . . . , n} is super-
standard if

2i ⩽ bi < (n − 2k) + 2i for all i = 1, 2, . . . , k

where the bi form an ordered labeling of the elements (so b1 < b2 < . . . < bk).

If we visualize our sorted list of entries, graphically, as an increasing selection of
columns for each row from 1 to k in a table, it may be easier to see how this definition
relates to the earlier ones we’ve used. For example, with n = 12 and k = 3, we obtain1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12

 . 2 3 4 5 6 7 8 9 10 11 12
. . . 4 5 6 7 8 9 10 11 12
. . . . . 6 7 8 9 10 11 12

 . 2 3 4 5 6 7 . . . . .
. . . 4 5 6 7 8 9 . . .
. . . . . 6 7 8 9 10 11 .


as our tables for the unrestricted, standard, and super-standard subsets, respectively.
The selection {2, 10, 11} is a valid subset (of increasing columns for each of the three
rows) in the first two tables, but not for the third. By definition, there will always be
n − 2k entries in each row of the super-standard table.

Definition E.2. Suppose W̃i,j(n) is the inclusion matrix whose rows are indexed by
super-standard i-subsets of {1, . . . , n}, and whose columns are indexed by standard
j-subsets, with entries W̃i,j(α, B) = 1 if α ⊆ B and W̃i,j(α, B) = 0 otherwise. For
0 ⩽ i, j ⩽ n, let P̃i,j(n) be the stacked matrix

⋃i
s=0 W̃s,j(n).

Based on computational evidence and the results in this appendix, we believe the
following.
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Conjecture E.3. Let 0 ⩽ i ⩽ n+1
3 and 0 ⩽ j ⩽ n+1

3 . Then, P̃i,j has dimensions
µi × µj, index 1, and full rank. Consequently, P̃k,k is unimodular for all n ⩾ 3k − 1.

Remark E.4. The j parameter for P̃ is not unrestricted: recall that when j > n
2

there are no j-standard subsets of n at all. Moreover, we empirically find failures
of the full-rank condition for some values of j even when i is within its bounds; for
example, P̃3,4(9) has dimensions 48 × 42 but rank 41.

This combinatorics was developed based a “greedy” implementation of the con-
struction in Theorem 2.8. Interestingly though, the specific inequalities in the super-
standard definition do not really play a direct role in diagonalizing the Wi,j . It turns
out that any sub-collection of standard subsets that induce the correct dimensions
could have done that! (Most sub-collections will not have unimodular change-of-basis
matrices, however.)

Lemma E.5. Suppose i ⩽ j. If P̃i,i is any matrix with dimensions µi ×µi that encodes
the inclusion relation for some collection of “super-standard” objects (and similarly
for P̃j,j), then

P̃i,i Wi,j = Di,j P̃j,j

where D is the diagonal matrix from Definition 2.7.
Proof. Consider the (A, B)-entry of the matrix product on each side of the equality,
where A is a super-standard (⩽ i)-subset, and B is a standard j-subset. The (A, B)-
entry of the left side P̃i,iWi,j is a count of the standard i-subsets S such that A ⊆
S ⊆ B. Since B is standard, and any subset of a standard subset is standard, we may
view S as unrestricted. (The fact that A is “super-standard” places no restrictions
on S.) Letting s = |A|, we find that the (A, B)-entry is simply the number of these
subsets S, namely:

(
j−s
i−s

)
if A ⊆ B, or 0 if A ̸⊆ B.

We have that Di,j is a diagonal matrix with the same dimensions µi × µj as Wi,j .
To evaluate the right side, we assume that rows and columns are ordered compatibly
in the following sense:

The rows of P̃j,j are indexed by super-standard (⩽ j)-subsets, which
contain the super-standard (⩽ i)-subsets. We arrange the (⩽ i)-
subsets first so that the initial rows of P̃i,i and P̃j,j agree.

Then, the (A, B)-entry of Di,jP̃j,j is nominally a sum over super-standard (⩽ j)-
subsets T where T ⊆ B. But as Di,j only includes non-zero entries along the diagonal,
it really it singles out one entry: T corresponds to the row of P̃j,j that was indexed by
A on the left side of the equality. Since A is a super-standard (⩽ i)-subset, it is also
a super-standard (⩽ j)-subset and, by our compatibility assumption, these agree.

Thus, if A ⊆ B then the entry of P̃j,j corresponding to row A column B will be
1 and after multiplying by Di,j we get the same binomial coefficient formula on the
right side as we did on the left side; otherwise, we get 0. □

So, assuming that Conjecture E.3 is true (and it can be easily checked
by any code that uses it), Lemma E.5 shows we may take P̃s,s for the Es

matrices in the earlier sections of this paper.
Turning towards actually proving the conjecture, we would like to break into smaller

blocks based on the “add or remove n” bijection. Unfortunately, this immediately
fails as none of the super-standard subsets contain n. Instead, we take the following
approach.
Definition E.6. We say that a standard subset is on the boundary if it contains
any entry 2i in sorted position i. These are the leftmost entries from each row of the
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corresponding graphical tables for standard and super-standard subsets. Otherwise, we
say that the standard subset is in the interior.

As an example, {3, 4, 7} is a subset that is on the boundary while {4, 5, 8} is in the
interior. Even though both subsets contain the element 4, it is only a boundary entry
for the first subset.

Proposition E.7. Fix n and k. The super-standard k-subsets of n in the interior are
in bijection with the set of (all) super-standard k-subsets of n − 1. Thus, the “interior
block” obtained by restricting rows and columns of P̃i,j(n) to subsets in the interior
is just P̃i,j(n − 1). In addition, the “row boundary/column interior” block is zero.

Proof. We can simply subtract 1 from the value of each entry in the subset to pass
from the first collection to the second. This is a reversible operation that preserves
subset inclusion.

Also, no subset R from the boundary collection can be contained in a subset S
from the interior collection. To see this, suppose that e is a boundary entry (that is,
e = 2i in position i) of R. If R ⊆ S, there are i entries (including e), with values
between 2 and e, that would all need to appear among the first i−1 positions from S,
since all of the entries of S at position i and greater must have values larger than e,
by the interior condition. This is impossible. □

The “boundary block” of P̃i,j(n) turns out to be a bit more complicated. We need
a reversible projection (the analogue of “removing n”) in order to relate it to a matrix
we can already understand via an induction hypothesis.

Definition E.8. Given a standard k-subset of n on the boundary, called S say, we
define an operation φ(S) that removes one entry from S. Look at the graphical table
corresponding to S, and attempt to remove entries corresponding to the leftmost col-
umn, 2, 4, 6, etc. in each row of the graphical table, working from row 1, forwards to
row k. As soon as one of these entries e are found in (the correct sorted position of!)
S, remove e and subtract 1 from each of the rest of the entries, returning

φ(S) = {s − 1 : s ∈ S ∖ {e}}.

Example E.9. Here is an example from n = 12. We show that the super-standard
3-subsets of n on the boundary are in bijection with (all of) the super-standard 2-
subsets of n − 1. View each table diagram as a collection of super-standard subsets
satisfying conditions on the entries illustrated in the table. We put a ∂ symbol in front
of the diagram to mean that we only select subsets on the boundary for our collection,
and use + for union. Then we can perform the following “diagram calculus” to verify
that φ is a bijection.

In the first step, we project the subsets containing 2 to k = 2 by removing it and
shifting the remaining entries left by one, while subsets that do not contain 2 remain
to be considered:

∂

2 3 4 5 6 7
4 5 6 7 8 9

6 7 8 9 10 11

 =
(

3 4 5 6 7 8
5 6 7 8 9 10

)
+ ∂

 3 4 5 6 7
4 5 6 7 8 9

6 7 8 9 10 11

 .

Notice that when 2 is present and we remove it, we obtain all the elements (both on
the boundary and in the interior) in the projected collection for k = 2. Performing
the same dichotomy and projection for using the element 4 (when it appears in the
second position), we obtain

∂

 3 4 5 6 7
4 5 6 7 8 9

6 7 8 9 10 11

 =
(

2 . . . . .
5 6 7 8 9 10

)
+ ∂

 3 4 5 6 7
5 6 7 8

6 7 8 9 10

 .
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Here, we are using that the selected columns must increase, so if 4 was present in the
subset on the left it must have also had a 3 in the first row (which becomes a 2 after
the entries are shifted left by one). Similarly, for 6,

∂

 3 4 5 6 7
5 6 7 8

6 7 8 9 10

 =
(

2 3 . . . .
4 . . . . .

)
so we obtain

∂

2 3 4 5 6 7
4 5 6 7 8 9

6 7 8 9 10 11

 =
(

3 4 5 6 7 8
5 6 7 8 9 10

)
+
(

2 . . . . .
5 6 7 8 9 10

)
+
(

2 3 . . . .
4 . . . . .

)
=
(

2 3 4 5 6 7 8
4 5 6 7 8 9 10

)
as desired. Observe that we recover the entire interior of the image at the first step
(which itself is revealed to be isomorphic to the set of (all) super-standard (k − 1)-
subsets in n − 2), while the subsequent steps eventually recover the boundary of the
image set.

Lemma E.10. The map φ is a bijection of the various collections shown below. For
the columns of the boundary block of P̃i,j(n), we have

∂ (super-standard j-subsets of n) φ−→ (super-standard (j − 1)-subsets of n − 1)

∂ (non super-standard j-subsets of n) φ−→ (non super-standard (j − 1)-subsets of n − 1)
and for the rows, we have

∂ (super-standard (⩽ i)-subsets of n) φ−→ (super-standard (⩽ (i − 1))-subsets of n − 1) .

So, these images of φ are a permutation of the indexing elements for P̃i−1,j−1(n−1).

Proof. The first claim follows in general just as for Example E.9. To reverse the map,
look for the lowest row containing a boundary entry (2, 4, 6, etc.), call it e say, and
“inflate” by shifting every entry to the right by one and then adding a new row just
below it that contains e + 2. The third claim follows by repeated application of the
first claim. As the φ map only operates on the left side of the table diagram, it will
not ever remove an entry that witnesses a failure of the super-standard condition.
Consequently, the image in the second claim will still be non super-standard in n − 1.

□

Our bijections are already enough to recover an inductive proof for the enumeration:
there are precisely µi(n) − µi−1(n) super-standard i-subsets of n. Next, we consider
how φ affects the inclusion relations themselves.

Lemma E.11. When we apply φ to the rows and columns of the boundary block of
P̃i,j(n), each of the columns indexed by a subset that contains a 2-entry will map to
precisely the same column vector in P̃i−1,j−1(n − 1). (The other column vectors may
gain some additional 1 entries as we apply φ.)

Proof. Fix a (⩽ i) super-standard subset of n, called R say, that indexes some row
of the boundary block of P̃i,j(n). Let S be a standard j-subset of n that indexes a
column of the boundary block, and assume that 2 ∈ S (in the first position).

By definition, we know φ(S) = {s − 1 ∈ S ∖ {2}} and φ(R) = {r − 1 ∈ R ∖ {e}}
for the first e = 2, 4, 6, . . . that exists in R. If e = 2, we clearly have that R ⊆ S if
and only if φ(R) ⊆ φ(S).

So suppose e > 2. Then, 2 /∈ R to begin with so removing it from S will not change
inclusion. Thus, we have R ⊆ S implies φ(R) ⊆ φ(S). Now if R ̸⊆ S then there
exists some other element g ∈ R that is not in S. Choose this so that it has minimal
position among such elements. As long as g ̸= e, it will survive to show φ(R) ̸⊆ φ(S),
so suppose g = e.
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In this case, e−1 must be the element we selected for the row above e in R and, by
the minimality of g, we must have e − 1 ∈ S. Similarly, one of {e − 3, e − 2} must be
the element we selected for the row above e−1 in R, and by minimality of g, we must
have this same element appear in S. Eventually, though, we encounter a contradiction
in the first row: we must have selected some entry greater than 2 (and less than e)
for the first row of R, yet this entry cannot appear in S. It certainly cannot appear
in the first row since we selected 2 already, nor can it appear in any subsequent row
of S by the choices we already assumed (in order to avoid contradicting minimality
of g) earlier. □

Since the rows with sizes larger than j must be zero, the non-zero part of the
boundary block of P̃i,j(n) for j < i is square, with dimensions µj−1(n−1)×µj−1(n−1)
by Lemma E.10. Otherwise, when i ⩽ j, we have µi−1(n − 1) rows.

Referring back to the diagram calculus in Example E.9, the number of columns
in the boundary block of P̃i,j(n) whose indexing set contains a 2-entry is the same
as the number of (⩽ (j − 1)) super-standard subsets of (n − 1) lying in the interior,
or equivalently, the number of (⩽ (j − 1)) super-standard subsets of (n − 2), which
is µj−1(n − 2).

So although the matrices do not necessarily agree on every entry, they do agree by
Lemma E.11 on µj−1(n − 2) columns. Presumably, we could diagonalize the matrices
on the columns where they agree and use this to clear all the other entries in order
to obtain the result, but we have not verified this in detail. We believe it is plausible
that under appropriate parameter choices P̃i,j(n) is integrally equivalent to a block
matrix of the form

P̃i,j(n) ∼

[
P̃i−1,j−1(n − 1) 0

∗ P̃i,j(n − 1)

]
and that a proof by induction should then go through for Conjecture E.3.
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