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Web invariants for flamingo Specht modules

Chris Fraser, Rebecca Patrias, Oliver Pechenik
& Jessica Striker

Abstract Webs yield an especially important realization of certain Specht modules, irreducible
representations of symmetric groups, as they provide a pictorial basis with a convenient dia-
grammatic calculus. In recent work, the last three authors associated polynomials to noncrossing
partitions without singleton blocks, so that the corresponding polynomials form a web basis of
the pennant Specht module S(d,d,1n−2d). These polynomials were interpreted as global sections
of a line bundle on a 2-step partial flag variety.

Here, we both simplify and extend this construction. On the one hand, we show that these
polynomials can alternatively be situated in the homogeneous coordinate ring of a Grassman-
nian, instead of a 2-step partial flag variety, and can be realized as tensor invariants of classical
(but highly nonplanar) tensor diagrams. On the other hand, we extend these ideas from the
pennant Specht module S(d,d,1n−2d) to more general flamingo Specht modules S(dr,1n−rd). In
the hook case r = 1, we obtain a spanning set that can be restricted to a basis in various ways.
In the case r > 2, we obtain a basis of a well-behaved subspace of S(dr,1n−rd), but not of the
entire module.

1. Introduction
The irreducible representations of the symmetric group Sn are the Specht modules
Sλ, indexed by integer partitions λ = (λ1 ⩾ λ2 ⩾ · · · ⩾ λk > 0). There are a variety
of ways to construct these modules concretely, each with various pros and cons. One
potential virtue of a construction of Sλ is that it yields a natural choice of basis with
useful properties. Our interest is in obtaining web bases, extending seminal work of
G. Kuperberg [18]. Various authors differ in precisely what properties they expect a
web basis to satisfy. For us, a web basis is one such that
(W.1) each basis element is indexed by a planar diagram with n boundary vertices,

embedded in a disk;
(W.2) there is a topological criterion allowing identification of basis diagrams;
(W.3) the long cycle c = (12 . . . n) acts on the basis by rotation of diagrams (up to

signs);
(W.4) the long element w0 = n(n−1) . . . 1 acts on the basis by reflection of diagrams

(up to signs); and
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(W.5) there is a finite list of ‘skein relations’ describing the action of a simple trans-
position si on a basis diagram.

Web bases satisfying all these properties are not known for general partitions λ. (Bases
indexed by planar diagrams appear in [4, 33, 2]; however, these bases do not satisfy
properties (W.2), (W.3), or (W.4), and indeed in some cases are not even well-defined,
depending on arbitrary choices.) For further results on the combinatorics of web bases
for particular Specht modules, see, e.g. [29, 27, 28, 13, 12, 24]. For connections to
cluster algebras, see, e.g. [3, 7]. We briefly review the supply of known web bases, in
the sense of properties (W.1)–(W.5).

• For λ = (d, d), a web basis is given by the set of noncrossing perfect matchings
of n vertices. That is, if we place vertices labeled 1, . . . , n around the bound-
ary of a disk, web basis elements correspond to ways to pair the vertices by
pairwise nonintersecting arcs embedded in the disk. Various aspects of this
web basis were known to various authors at various times; see, in particular,
[17, 18, 20, 23, 25, 32] for discussion.

• For λ = (d, d, d), a web basis was first constructed by Kuperberg [18], who
also established properties (W.1), (W.2), and (W.5) for it. Property (W.3)
was later proven in [23]; property (W.4) was first explicitly proven in [20],
although known to experts earlier.

• For λ = (d, d, d, d), a web basis satisfying all five properties was recently
constructed by the last two authors in joint work with C. Gaetz, S. Pfannerer,
and J. Swanson [10].

• For λ = (2k), the first author [5] gave a web basis by showing that the dual
canonical basis of [19] can be rendered diagrammatic in this case. Further
discussion of this ‘2-column’ web basis appears in [11].

• In [26] (building on combinatorics from [22]), B. Rhoades gave a web basis
for the two-parameter family λ = (d, d, 1n−2d) of pennant shapes, extending
the noncrossing matching basis from the case λ = (d, d). In this case, the
planar diagrams are noncrossing set partitions without singleton blocks. This
pennant web basis was realized in [16] as a space of fermionic diagonal coin-
variants, and was realized by the last three authors [21] as a basis of jellyfish
invariants in the homogeneous coordinate ring of a 2-step partial flag vari-
ety. Yet another realization of the pennant web basis was given by [14] as
a submodule of an induction product built from the web basis of the case
λ = (d, d).

The goals of this paper are twofold. As our first main goal, we reinterpret the bases
from the previous paragraph in terms of the traditional web diagram formalism which
underlies the rectangular cases. In [21], the passage from a set partition (a combina-
torial object) to a jellyfish invariant (an algebraic object) was a definition, “pulled
from thin air” (see e.g. Definition 3.7). In the present paper, we work with a copy of
the pennant Specht module in the homogeneous coordinate ring of a Grassmannian,
rather than a 2-step partial flag variety. This transferal process from a partial flag
variety to a Grassmannian is likely known to experts; however, it is difficult to find
an explicit description in the literature, so we explain the details of this construction.
We then associate to any set partition a certain tensor diagram whose corresponding
tensor diagram invariant is the jellyfish invariant from [21]. That is, the passage from
jellyfish web to jellyfish invariant is the “classical” passage from tensor diagram to
tensor diagram invariant. See Figures 4 and 5 for an illustration of this construction.

We see several advantages of this change in perspective. First, it becomes easy to
verify that jellyfish invariants lie in the pennant Specht module (cf. Theorem 4.15),
which was demonstrated by lengthy calculation in loc. cit. . Second, it explains the
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“origin” of the signs in the definition of jellyfish tableaux, as these signs are “forced”
by the tensor diagram formalism. Third, it allows for the use of classical SLn skein
relations and the classical Plücker relations as tools for proving algebraic identities
involving jellyfish invariants. Let us point out, however, that the tensor diagrams
arising from the Grassmannian perspective are quite large and highly nonplanar.

As our second main goal, we extend these new constructions and those of [21] to
the 3-parameter family of Specht modules S(dr,1n−r·d). We call these flamingo Specht
modules, since their defining feature is the first long column (cf. Figure 1); pennant
Specht modules are the case r = 2. Outside of the pennant case, our invariants do not
directly yield bases of the flamingo Specht module. Rather in the ‘hook case’ r = 1,
we obtain a spanning set of diagrams and invariants. In Section 5.4, we explain a
recipe for choosing linearly independent subsets of this hook basis; however, it is not
possible to do so while maintaining property (W.3). In the remaining case r > 2, we
obtain a linearly independent set of diagrams and invariants, but we do not know a
systematic way to extend this set to a basis. Nonetheless, the subspace spanned by
these diagrams exhibits various nice properties. For example, it is invariant under the
actions of c and w0, with those elements acting by rotation and reflection as in (W.3)
and (W.4).

Figure 1. The Young diagram (left) of the flamingo partition
(63, 15) and a flamingo (right) blending in.

This paper is organized as follows. In Section 2, we recall necessary back-
ground material. In Section 3, we extend the definition of jellyfish tableaux and jel-
lyfish invariants, introduced in [21], from r = 2 to general r. Jellyfish invariants are
polynomials that we associate to ordered set partitions. In Section 4, we use ideas
about Grassmann–Cayley algebras and tensor diagrams to realize jellyfish invariants
as elements of the homogeneous coordinate ring of a Grassmannian. We then ob-
serve that jellyfish invariants are elements of flamingo Specht modules S(dr,1n−r·d).
In Section 5, we develop a diagrammatic calculus for ordered set partitions and the
corresponding jellyfish invariants. Our key technical tool is a (2r +1)-term recurrence
relation established in Section 5.2. Using this recurrence, we establish skein relations
for jellyfish invariants, as well as diagrammatic characterizations of the action of c
and w0. In Theorem 5.9, we show that jellyfish invariants are linearly independent
in the cases r > 1. Section 5.4 is devoted to the distinctive case r = 1. Finally, Sec-
tion 5.5 contains some remarks on further relations among jellyfish invariants and a
conjectural extension of Theorem 5.9.
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2. Background
2.1. Ordered set partitions. We write [n] = {1, 2, . . . , n}. An ordered set par-
tition of n is a sequence π = (π1, π2, . . . , πd) of sets where

• each πi ̸= ∅,
•
⋃

i πi = [n], and
• πi ∩ πj = ∅ if i ̸= j.

We write such an ordered set partition as (π1 | π2 | · · · | πd) for visual distinctiveness.
The sets πi are called the blocks of the ordered set partition. If we forget the ordering
of the blocks in an ordered set partition, the result is an (unordered) set partition
{π1, . . . , πd}.

We draw a set partition π = {π1, . . . , πd} of n by placing dots labeled 1, 2, . . . n
clockwise around the boundary of a disk and then, for each πi, drawing the convex
hull of the boundary dots whose labels are in πi. If these convex hulls do no intersect,
we call the set partition a noncrossing set partition. We use N C(n, d, r) to denote
the set of a noncrossing set partitions of n with d blocks and blocks size at least r.

Let OP(n, d, r) denote the set of ordered set partitions of n with d blocks and
blocks of size at least r. For example, (2 5 6 | 3 | 1 4) and (3 | 2 5 6 | 1 4) are
distinct ordered set partitions in OP(6, 3, 1), but they are not distinct when viewed
as unordered set partitions. Note that if r ⩽ r′, then OP(n, d, r′) ⊆ OP(n, d, r). We
write N COP(n, d, r) for the noncrossing subset of OP(n, d, r).

1

2

3

4

5

6

Figure 2. A visual depiction of the ordered set partition (2 5 6 |
3 | 1 4) considered in Section 2.1. In this picture, the ordering of the
blocks is not recorded. In later examples, we will occasionally use
color-coding to illustrate the intended ordering, as needed.

2.2. Grassmannians and exterior algebras. The Grassmannian Gr(k, n) is
the parameter space of k-dimensional complex vector subspaces of Cn. (In this paper,
we will mostly be interested in the case of Gr(n, 2n).) We realize Gr(k, n) as a smooth
projective variety as follows. Consider a k × n matrix of distinct indeterminates

M =


x11 x12 . . . x1n

x21 x22 . . . x2n

...
...

. . .
...

xk1 xk2 . . . xkn


and let C[M ] be the polynomial ring in these kn variables. Let R be the subring
generated by all of the k × k minors of M . Then R is the homogeneous coordinate
ring of Gr(k, n), meaning that we can take Gr(k, n) := ProjR.
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The action of SLk(C) on M by left multiplication induces an action of C[M ]. By
the Fundamental Theorem of Invariant Theory, the subring R consists exactly of those
polynomials in C[M ] that are invariant under this SLk(C) action.

It is often convenient to replace the ring R by an isomorphic ring R′. Here,
R′ = C[x∆ : ∆ ∈

([n]
k

)
]/∼, where

([n]
k

)
denotes the collection of k-element subsets

of {1, 2, . . . , n}, each x∆ stands in for the corresponding degree k generator of R, and
∼ is the ideal corresponding to the relations among the generating minors of R. In
this language, the indeterminates x∆ are called Plücker variables and elements of ∼
are called Plücker relations. We will treat these two perspectives interchangeably.

2.3. Specht modules. Consider a Zn-grading on C[M ], where each variable xij has
degree ej , where ej is the jth standard basis vector of Zn. We are especially interested
in the vector subspace S of R spanned by polynomials of multihomogeneous degree
(1, 1, . . . , 1) =

∑n
j=1 ej . Note that S consists exactly of multilinear SLk-invariant

functions of the columns of M . We will assume that n = dk for some integer d, so
that S is nontrivial.

It is well-known that S is a finite-dimensional complex vector space whose dimen-
sion is given by the hook-length formula for standard Young tableaux of shape (dk).
Precisely,

dimS =
k∏

i=1

(d+ k − i)!
(k − i)! .

The symmetric group Sn acts on M by permuting columns, and hence on C[M ].
Note that S is an invariant subspace for this action. In fact, it is irreducible as an
Sn-module and is the Specht module S(dk).

In general, there is a Specht module Sλ for every integer partition λ = (λ1 ⩾ λ2 ⩾
. . . 0) with

∑
i λi = n; moreover, every irreducible complex representation of Sn is

isomorphic to exactly one of these Specht modules. Here, we give an explicit but terse
construction of general Specht modules along the lines of the construction of S(dk)

above; for more details of this approach, see [21, §2.3], while for more standard (and
more thorough) textbook treatments, see e.g. [9, 8, 30].

Let λ be any partition of n and let µ be the partition whose Young diagram is the
transpose of that of λ. For example, if λ = (dr, 1n−r·d), then µ = (n−(r−1) ·d, rd−1).
Suppose that

µ = (µ1 ⩾ µ2 ⩾ · · · ⩾ µℓ > 0).
Let M be the matrix of indeterminates from Section 2.2 with k = µ1. Consider the
polynomial ring C[M ] in those n · µ1 variables. For each µi, let Si denote the set of
sequences j = (j1, j2, . . . , jµi

) with 1 ⩽ j1 < j2 < · · · < jµi
. (Note that if µi = µi′ ,

then Si = Si′ .) For j ∈ Si, let pj ∈ C[M ] denote the polynomial that is the µi × µi

minor of M involving the top µi rows and the columns indexed by the sequence j.
Now, consider the set S of tuples of sequences (j1, . . . , jℓ) such that each ji ∈ Si and
the sets ji partition [n] (that is, they are pairwise disjoint with union [n]). For each
(j1, . . . , jℓ) ∈ S, let

p(j1,...,jℓ) :=
ℓ∏

i=1
pji
.

The vector span of the polynomials p(j1,...,jℓ) for (j1, . . . , jℓ) ∈ S is the Specht module
Sλ. Here, the symmetric group Sn is acting by permuting the columns of M .

The construction above naturally identifies Sλ with a slice of the multihomogeneous
coordinate ring of a partial flag variety, extending the construction above of S(dk)

inside the homogeneous coordinate ring of a Grassmannian; for more details, see [21,
§2.3]. One of our main results in Section 4 will be a new, and somewhat mysterious,
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construction of the Specht module S(dr,1n−r·d) inside the homogeneous coordinate ring
of the Grassmannian Gr(n, 2n).

3. Jellyfish tableaux and invariants
In this section, we define a polynomial associated to each ordered set partition in
OP(n, d, r); these polynomials will be our web invariants. Although an ordered set
partition π ∈ OP(n, d, r) is also an element of OP(n, d, r′) for any r′ ⩽ r, the associ-
ated web invariant depends on the specified r. When r is even, the invariants we define
will be independent of the ordering of the blocks; that is to say, they depend only
on the underlying unordered set partition. When r is odd, the ordering of the blocks
changes the invariant by a predictable global sign, which we discuss in Lemma 5.3.
For the case r = 2, our invariants recover those introduced in [21].

We begin by defining a set of tableaux that we will use to construct polynomials
associated to ordered set partitions. Because the shape consists of r full rows of boxes
followed by one box in each additional row and thus resembling jellyfish, we call these
r-jellyfish tableaux (cf. Example 3.9).

1 3 5 2
4 8 6 7
12 10 9 11

16
13

15
14

Figure 3. A jellyfish tableau and a cute happy jellyfish.

Definition 3.1. Given an ordered set partition π = (π1 | π2 | . . . | πd) ∈ OP(n, d, r),
let Jr(π) be the set of generalized tableaux Tij (in English notation with matrix in-
dexing) with d columns (so 1 ⩽ j ⩽ d) and n− (d− 1)r rows (1 ⩽ i ⩽ n− (d− 1)r)
obeying the following constraints:

(1) Tij ∈ [n] or Tij is empty.
(2) If i ∈ [r], Tij is nonempty.
(3) If i > r, there exists exactly one j such that Tij is nonempty.
(4) The nonempty entries in column j are exactly the elements of πj, in increasing

order.
Call Jr(π) the set of r-jellyfish tableaux for π.

Definition 3.2. For w ∈ Sn, the inversion number inv(w) is the number of in-
versions in w, i.e. pairs i < j such that w(i) > w(j). The sign of w is sgn(w) =
(−1)inv(w).

For T ∈ Jr(π), we define its inversion number inv(T ) to be the number of
inversions in its row reading word (left to right, top to bottom) and its sign to be the
sign of its row reading word.

Note that i < j form an inversion of T if and only if either j appears in a higher
row than i or else j appears left of i in the same row.
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The following lemma describes how the signs of r-jellyfish tableaux change under
a permutation of the blocks of the corresponding ordered set partition. Note the sign
is preserved when r is even.

Lemma 3.3. Given an ordered set partition π = (π1 | π2 | . . . | πd) ∈ OP(n, d, r), a
permutation σ ∈ Sd induces a bijection between Jr(π) and Jr(σ(π)), where σ(π)i =
πσ−1(i). In this bijection, T ∈ Jr(π) maps to T ′ ∈ Jr(σ(π)) by permuting columns
according to σ. Then

sgn(T ) = sgn(σ)rsgn(T ′).

Proof. It suffices to prove the lemma for σ = si a simple transposition, swapping i
and i + 1. Suppose π = (π1 | π2 | . . . | πd) ∈ OP(n, d, r) and suppose π′ is obtained
from π by swapping πi and πi+1.

For each T ∈ Jr(π), there is a corresponding tableau T ′ ∈ Jr(π′) given by swapping
columns i and i+ 1 of T . It remains to compare the inversion counts between T and
T ′. Inversions in T between entries in different rows are the same as inversions in
T ′ between entries in different rows. Moreover, inversions involving a column other
than i or i + 1 are the same in T and T ′. Thus, we need only consider inversions
between entries in columns i and i + 1 that are in a single row. The only rows that
have more than one entry are rows 1, 2, . . . , r. If there were an inversion between the
pair of entries in cells (s, i) and (s, i+1) of T , where 1 ⩽ s ⩽ r, there would not be an
inversion between the pair of entries in cells (s, i) and (s, i+1) of T ′. If there were not
an inversion between the pair of entries in cells (s, i) and (s, i+ 1) of T , there would
be an inversion between the pair of entries in cells (s, i) and (s, i+ 1) of T ′. This does
not change the parity of the number of inversions when r is even and does change
the parity when r is odd. Thus each simple transposition of columns of the tableau
changes the sign of the tableau: sgn(T ) = (−1)rsgn(T ′). The lemma follows. □

Example 3.4. Consider the tableaux U , T , U ′, and T ′ shown below. Let π = (2 3 6 10 |
5 7 8 9 | 1 4) and let π′ = (5 7 8 9 | 1 4 | 2 3 6 10) = σ(π), where σ is the permutation
312. We see that U ∈ J2(π) and T ∈ J2(π′). Let ρ = (2 3 6 7 12 | 1 8 10 | 4 5 9 11)
and let ρ′ = (4 5 9 11 | 1 8 10 | 2 3 6 7 12) = τ(ρ), where τ is the permutation 321.
Then U ′ ∈ J3(ρ) and T ′ ∈ J3(ρ′). Note that sgn(σ) = (−1)2 = 1, while sgn(τ) =
(−1)3 = −1.

The pairs of entries (4, 7), (3, 5), and (9, 10), for example, form inversions in T .
The reader may check that inv(T ) = 9 and inv(U) = 7. We may also find that
inv(U ′) = 9 and inv(T ′) = 12. While inv(U) ̸= inv(T ), we see that sgn(U) = sgn(T ),
as predicted by Lemma 3.3. On the other hand, sgn(U ′) ̸= sgn(T ′), which is consistent
with Lemma 3.3 since r = 3 in this case and sgn(τ) = −1.

U = 2 5 1
3 7 4
6

8
10

9

T = 5 1 2
7 4 3

6
8

10
9

U ′ = 2 1 4
3 8 5
6 10 9
7
12

11

T ′ = 4 1 2
5 8 3
9 10 6

7
12

11

Recall the matrix M from Section 2.2. Let I and J be finite subsets of N and let MJ
I

denote the determinant of the submatrix of M with rows indexed by I and columns
indexed by J , in increasing order. (For convenience, we sometimes write elements
separated by commas in the subscript and superscript rather than formal sets.) Note
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since these minors may not be top-justified, they are not naturally expressed in Plücker
variables.

Definition 3.5. Given π = (π1 | π2 | . . . | πd) ∈ OP(n, d, r) and T ∈ Jr(π), define
the product of determinants

J(T ) =
d∏

i=1
Mπi

Ri(T ),

where Ri(T ) is the set of rows of T containing an entry in πi.

Example 3.6. For example, below is a 3-jellyfish tableau and its corresponding prod-
uct of determinants.

T = 2 1 4
3 8 5
6 10 9
7

11
12

J(T ) =

∣∣∣∣∣∣∣∣∣∣
x12 x13 x16 x17 x1,12
x22 x23 x26 x27 x2,12
x32 x33 x36 x37 x3,12
x42 x43 x46 x47 x4,12
x62 x63 x66 x67 x6,12

∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣
x11 x18 x1,10
x21 x28 x2,10
x31 x38 x3,10

∣∣∣∣∣∣ ·

∣∣∣∣∣∣∣∣
x14 x15 x19 x1,11
x24 x25 x29 x2,11
x34 x35 x39 x3,11
x54 x55 x59 x5,11

∣∣∣∣∣∣∣∣
Note that Definition 3.5 reduces to the Plücker case when π is an ordered set

partition with equally sized blocks.
We now define a polynomial invariant for each ordered set partition π ∈ OP(n, d, r).

Definition 3.7. Given an ordered set partition π ∈ OP(n, d, r), let [π]r denote the
r-jellyfish invariant

[π]r =
∑

T ∈Jr(π)

sgn(T ) J(T ).

If θ is an ordered set partition with a block of size less than r, we set [θ]r = 0.

Remark 3.8. In [21], 2-jellyfish invariants for noncrossing set partitions were called
web invariants. In Section 4, we explain how to realize arbitrary r-jellyfish invari-
ants as classical tensor invariants; however, the associated tensor diagrams are highly
nonplanar, even when the set partition is noncrossing.

Example 3.9. Suppose π = (2 3 6 10 | 5 7 8 9 | 1 4). Then [π]r = 0 for r > 2. To
compute [π]2, we first see that J2(π) consists of the 2-jellyfish tableaux below.

2 5 1
3 7 4
6
10

8
9

2 5 1
3 7 4
6

8
10

9

2 5 1
3 7 4
6

8
9

10

2 5 1
3 7 4

8
6
10

9

2 5 1
3 7 4

8
6

9
10

2 5 1
3 7 4

8
9

6
10

The leftmost tableau has row reading word 2 5 1 3 7 4 6 10 8 9 and thus has 8
inversions. Reading the list of tableaux from left to right, the tableaux have 8, 7, 6,
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8, 7, and 8 inversions, respectively. Finally, we have that

[π]2 =M2,3,6,10
1,2,3,4 · M5,7,8,9

1,2,5,6 · M1,4
1,2 − M2,3,6,10

1,2,3,5 · M5,7,8,9
1,2,4,6 · M1,4

1,2 + M2,3,6,10
1,2,3,6 · M5,7,8,9

1,2,4,5 · M1,4
1,2

+M2,3,6,10
1,2,4,5 · M5,7,8,9

1,2,3,6 · M1,4
1,2 − M2,3,6,10

1,2,4,6 · M5,7,8,9
1,2,3,5 · M1,4

1,2 + M2,3,6,10
1,2,5,6 · M5,7,8,9

1,2,3,4 · M1,4
1,2 .

To compute [π]1, we would first find all
( 7

3,3,1
)

= 140 jellyfish tableaux in J1(π). We
have listed four such tableaux below.

2 5 1
3

7
8
9

6
10

4

2 5 1
7

3
8
9

6
10

4

2 5 1
7
8

4
3

9
6
10

2 5 1
4

7
3

8
6
10

9

The associated polynomials are, respectively,

(−1)12M2,3,6,10
1,2,6,7 ·M5,7,8,9

1,3,4,5 ·M1,4
1,8 ,

(−1)13M2,3,6,10
1,3,6,7 ·M5,7,8,9

1,2,4,5 ·M1,4
1,8 ,

(−1)12M2,3,6,10
1,5,7,8 ·M5,7,8,9

1,2,3,6 ·M1,4
1,4 , and

(−1)9M2,3,6,10
1,4,6,7 ·M5,7,8,9

1,3,5,8 ·M1,4
1,2 .

Example 3.10. Consider π = (2 3 6 7 12 | 1 8 10 | 4 5 9 11). The set J3(π) is shown
below.

2 1 4
3 8 5
6 10 9
7
12

11

2 1 4
3 8 5
6 10 9
7

11
12

2 1 4
3 8 5
6 10 9

11
7
12

From this, we compute that

[π]3 = (−1)9M2,3,6,7,12
1,2,3,4,5 ·M1,8,10

1,2,3 ·M4,5,9,11
1,2,3,6 + (−1)8M2,3,6,7,12

1,2,3,4,6 ·M1,8,10
1,2,3 ·M4,5,9,11

1,2,3,5

+(−1)9M2,3,6,7,12
1,2,3,5,6 ·M1,8,10

1,2,3 ·M4,5,9,11
1,2,3,4 .

4. Jellyfish invariants are tensor diagram invariants
In this section, we first recall background on Grassmann–Cayley algebras and tensor
diagrams. We then use these ideas to realize jellyfish invariants as elements of the
homogeneous coordinate ring of a Grassmannian in two steps: first we show that that
jellyfish invariants can be computed via a certain expression in the Grassmann–Cayley
algebra, and second we interpret this Grassmann–Cayley expression in terms of tensor
diagrams. Finally, we establish that jellyfish invariants are elements of flamingo Specht
modules S(dr,1n−r·d) in Theorem 4.15.
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4.1. Jellyfish tableaux and Grassmannians. With a fixed value of n in mind,
let M0 be the n×n diagonal matrix whose diagonal entries read +1,−1,+1, starting

from the upper left corner. Thus, for n = 2, we have M0 =
(

1 0
0 −1

)
and, for n = 3,

we have M0 =

1 0 0
0 −1 0
0 0 1

.

Given an n× n matrix M , we have an associated n× 2n matrix

(4.1) Φ(M) :=
(
M0 M

)
obtained by concatenating M0 with M . Clearly, Φ(M) has rank n, so we may think
of Φ(M) as representing a point in the Grassmannian Gr(n, 2n) by taking the span
of the rows. The map M 7→ Φ(M) is an isomorphism between Matn×n and the open
Schubert cell defined by ∆[1,n] ̸= 0 inside Gr(n, 2n). We also denote this isomorphism
of algebraic varieties by Φ. We write Φ∗ for the induced map on coordinate rings,
that is, on polynomials in the matrix entries. This ring map is the key bridge which
allows us to translate the constructions from the previous section to the setting of
Grassmannians.

One computes that

(4.2) (−1)|I|∆([n]∖I)∪(J+n)(Φ(M)) = MJ
I ,

which allows us to translate statements about matrix minors of arbitrary size to
statements about Plücker coordinates on Gr(n, 2n). The advantage of this translation
is that we already have a notion of tensor diagrams and webs in place for functions
on Grassmannians. This translation is known to experts; the map Φ (or rather, a
slight variant of this map with different choices of signs) appears frequently in the
total positivity literature, as it allows one to translate the classical notion of total
positivity for GLn as a special case of total positivity for the Grassmannian Gr(n, 2n).
However, we are unaware of any explicit description in the literature for this approach
to constructing Specht modules.

Example 4.1. Recall the jellyfish tableau

T = 2 1 4
3 8 5
6 10 9
7

11
12

from Example 3.6. We computed in that example that J(T ) = M2,3,6,7,12
1,2,3,4,6 · M1,8,10

1,2,3 ·
M4,5,9,11

1,2,3,5 . We have by Equation (4.2) that

M2,3,6,7,12
1,2,3,4,6 = (−1)5∆5,7,8,9,10,11,12,2+12,3+12,6+12,7+12,12+12(Φ(M)),

M1,8,10
1,2,3 = (−1)3∆4,...,12,1+12,8+12,10+12(Φ(M)), and

M4,5,9,11
1,2,3,5 = (−1)4∆4,6,...,12,4+12,5+12,9+12,11+12(Φ(M)).

Thus, J(T ) can be realized as an element of the homogeneous coordinate ring of
Gr(12, 24), by multiplying these three signed Plücker coordinates.
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4.2. Background on Grassmann–Cayley algebras. Let V = Cn with exterior
powers

∧a(V ) and exterior algebra
∧

(V ) =
⊕

a

∧a(V ).
The wedge product is a map

∧a(V ) ⊗
∧b(V ) →

∧a+b(V ). There is also a “dual”
map of sorts ∩ :

∧n−a(V ) ⊗
∧n−b(V ) →

∧n−a−b(V ) defined by
v1 ∧ · · · ∧ vn−a ⊗ w1 ∧ · · · ∧ wn−b 7→(4.3)∑

i1<···<ib

sign(i1, . . . , ib, j1, . . . , jn−a−b) det (vi1 , . . . , vib , w1, . . . , wn−b) vj1 ∧ · · · ∧ vjn−a−b

where for each choice of i1, . . . , ib we define j1, . . . , jn−a−b to be the elements of
[n− a] ∖ {i1, . . . , ib} written in ascending order. We refer to this operation as cap.

The cap operation ∩ is associative. It is commutative up to a predictable sign. See
[31, Chapter 3] for these and other properties. The exterior algebra together with
the ∩ operation is known as the Grassmann–Cayley algebra, and the operations
of ∧ and ∩ are referred to as the join and meet operations in this context. For us,
this is a succinct algebraic formalism for writing down complicated polynomials in
Plücker coordinates. Note that [31] uses the symbols ∨ and ∧ where we use ∧ and ∩,
respectively; we motivate our notation in the following remark.

Remark 4.2. A nonzero tensor x ∈
∧a(V ) is decomposable if it can be written as a

wedge of several vectors: x = v1 ∧· · ·∧va for some v1, . . . , va. (Recall that any element
of
∧a(V ) is a linear combination of decomposable tensors.) A decomposable tensor x

determines a vector subspace Ax ⊂ V , namely the subspace Ax := {v ∈ V : v∧x = 0}.
Moreover, v1, . . . , va are a basis for Ax whenever x = v1 ∧ · · · ∧ va. If x ∈

∧a(V ) and
y ∈

∧b(V ) are decomposable tensors with x ∧ y ̸= 0, one has
Ax∧y = Ax ⊕Ay.

Thus, ∧ is an exterior-algebraic interpretation of the direct sum of vector subspaces.
In the same way, ∩ is an exterior-algebraic interpretation of the intersection of

vector subspaces. That is, if x and y are decomposable with codim(Ax ∩ Ay) =
codimAx + codimAy, then x ∩ y is decomposable and

Ax∩y = Ax ∩Ay.

The decomposability is not obvious from the formula (4.3), but it is nonetheless true.

Remark 4.3. Let v1, . . . , v2n ∈ V be the columns of an n× 2n matrix representing a
point in the Grassmannian Gr(n, 2n). A standard recipe is to construct polynomial
functions on Gr(n, 2n) by repeatedly composing the ∧ and ∩ operations until we
eventually arrive at

∧0(V ) = C or
∧n(V ) = C. Any function obtained this way can

be expanded as an explicit monomial in Plücker coordinates by expanding the terms
in (4.3).

4.3. Background on tensor diagrams. Tensor diagrams are a pictorial formal-
ism for encoding elements of the Grassmannian coordinate ring. Thus, one can also
think of them as a formalism for encoding SLn-invariant polynomials or SLn tensor
invariants.

The tensor diagram formalism is very closely related to the Grassmann–Cayley
approach. An accessible introduction to these ideas is given in the introduction of [3]
in the case of SL3, which discusses both the local and global approaches we describe
below. The main reference for the general SLn case is [1]. Our viewpoint here closely
follows [6], which also handles this case.

Definition 4.4. Consider a disk with m points marked 1, . . . ,m in clockwise order on
its boundary. A tensor diagram W of type (n,m) is a bipartite graph drawn in this
disk with the property that every marked boundary point is a vertex of W and is colored

Algebraic Combinatorics, Vol. 8 #1 (2025) 245



C. Fraser, R. Patrias, O. Pechenik & J. Striker

black, all other vertices of W reside in the interior of the disk and are colored either
white or black. Moreover, the edges of W are weighted by elements of [n] such that
the sum of edge weights around every interior vertex equals n. (It will be convenient
in some formulas to write edges of weight 0, by which we mean that those edges do
not exist.) We consider tensor diagrams up to boundary-preserving isomorphism.

We do not require that tensor diagrams be planar graphs; we call a tensor diagram
a web if it is planar. By the unclasping of a tensor diagram, we mean the graph
obtained by replacing each boundary vertex of degree δ ⩾ 2 by δ vertices of degree 1
(leaving all other edges and vertices in the graph intact). We call a tensor diagram a
tree if its unclasping is a tree in the usual graph-theoretic sense.

A tensor diagram W of type (n,m) determines a tensor diagram invariant

(4.4) [W ] ∈ C[Gr(n,m)].

For a self-contained definition of [W ], we refer to [5, Definition 4.1], which is based
on [6, Lemma 5.4]. While the details of the definition will not concern us here, we can
summarize the idea of the definition as follows:

• By multilinearity, an SLn invariant polynomial is determined by how it eval-
uates on tensor products of standard basis vectors ei ∈ V .

• To any such tensor product e = ei1 ⊗ · · · ⊗ eim
, one can associate a sign,

namely the inversion number of the sequence of indices i1, . . . , im.
• The evaluation of the invariant [W ] on the tensor product e is this sign mul-

tiplied by a certain graph-theoretic count, namely the number of consistent
labelings (see [5, Definition 3.1]) of W with boundary (i1, . . . , im).

We will refer to this as the global definition of the tensor invariant [W ], to be
contrasted with the local definition introduced shortly.

Remark 4.5. The references [5, 6] restricted attention to the class of planar diagrams,
but we would like to use these definitions for nonplanar diagrams. This is a mild
extension, as one can always convert a nonplanar diagram to a linear combination of
planar diagrams using the crossing removal skein relation [1, Corollary 6.2.3] (see also
[7, Equation (34)]), invoke [6, Lemma 5.4] on each of the resulting planar diagrams,
and then undo the crossing removal skein relation to conclude that [6, Lemma 5.4]
also holds for the nonplanar diagram.

There is a second approach to defining the invariant [W ], which is the perspective
favored in [1] (see e.g. Equation (1.1) and Section 3.1 therein). Roughly speaking, in
this local approach, every white vertex encodes an invocation of the ∧ operation,
whereas every black vertex encodes an invocation of the dual exterior product
operation ψs,t :

∧s+t
V →

∧s
V ⊗

∧t
V . The vertices on the boundary of the tensor

diagram encode the input vectors (v1, . . . , vm), and the tensor invariant [W ] evaluates
on this input by composing the exterior and dual exterior product maps in the manner
indicated by the diagram W , in a similar spirit to Remark 4.3.

To develop the second approach rigorously, one modifies Definition 4.4 as follows:
(1) edges are now oriented, with each boundary vertex a source;
(2) for every interior leaf vertex, the incident edge has weight n;
(3) the sum of weights of incoming edges matches the sum of weights of outgoing

edges at every interior vertex that is not a leaf; and
(4) the bipartiteness condition is dropped (but the vertices must still be bicol-

ored).
The leaf vertices are called tags. They reflect the identifications

∧n Cn ∼= C. The
resulting combinatorial object is called a tagged tensor diagram in [6].
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The key technical result of [6] is that the tagged tensor diagram formalism is
equivalent to the global definition we gave above, in the sense that any tagged tensor
diagram Ŵ can be converted in a purely combinatorial manner to a tensor diagram
W in such a way that the invariants match up to sign (i.e. the function obtained by
composing the exterior and dual exterior product maps as described by Ŵ matches
the global definition of the invariant [W ]).

In our proof of Proposition 4.13, we will want to make this conversion precise. In
an effort to be self-contained, we appeal to the following construction [6, Remark 3.3]
for turning a tensor diagram W into a tagged one Ŵ whose corresponding invariant
agrees up to sign.

A perfect orientation O of a bipartite graph is an orientation of its edges such
that each white vertex has outdegree one and each black vertex has indegree one.
Given a tensor diagram W with a perfect orientation O, we obtain a tagged tensor
diagram by complementing the weights a 7→ n− a of all edges oriented from a white
vertex to a black vertex. The resulting graph may have some boundary sinks, and
one turns these into boundary sources by adding a tag to each such edge (see [6,
Eq. (3.3)]). Finally, one eliminates any oriented cycles by adding additional tags.

Remark 4.6. The ∩ operation can be expressed as a composition of ∧ and dual
exterior product maps. Namely one has
(v1 ∧ · · · ∧ vn−a) ∩ (w1 ∧ · · · ∧wn−b) = ψn−a−b,b(v1 ∧ · · · ∧ vn−a) ∧ (w1 ∧ · · · ∧wn−b).
Thus, any function that can be built out of iterating ∧ and ∩ operations as in Re-
mark 4.3 is a tagged tensor diagram invariant, hence coincides with an ordinary tensor
diagram invariant up to sign. Such a diagram will always be a tree, typically a non-
planar one.

4.4. Jellyfish invariants as Grassmann–Cayley expressions. We now inter-
pret the jellyfish invariant construction π 7→ [π]r in the language of Grassmann–
Cayley algebras.

With vectors v1, . . . , v2n fixed, for J ⊆ {1, . . . , 2n} we write vJ := vj1 ∧ · · · ∧ vjb
∈∧b

V , where j1, . . . , jb are the elements of J written in ascending order.
We introduce some bookkeeping notation we will use in this section. Given π ∈

OP(n, d, r) we set νi = |πi| − r and set ν = r+ ν1 + · · · + νd = n− (r− 1)d. Thus νi is
the number of “extra” rows used in column i when we calculate jellyfish tableaux for
Jr(π). And ν is the total number of rows used, i.e. the length of the first column in
the corresponding Specht module. We put S = [r + 1, ν] and E = [ν + 1, n]. One can
think of S as the rows containing the tentacles of the jellyfish tableaux for OP(n, d, r)
and E as the rows strictly below all the tentacles.

The following definition is the main link between jellyfish invariants and the
Grassmann–Cayley algebra. If X is a set of numbers, we define X + n = {x+ n : x ∈
X}.

Definition 4.7. Let π ∈ OP(n, d, r). We obtain a function that evaluates on column
vectors v1, . . . , v2n ∈ V as follows:

v1, . . . , v2n 7→
(

d−1∧
i=1

vS ∩ vE∪(πi+n)

)
∧ vE∪(πd+n).(4.5)

We denote this function by [π]′r.

Lemma 4.8. Let π ∈ OP(n, d, r). Then [π]′r is in C[Gr(n, 2n)].

Proof. The ith term in the wedge product of (4.5) is vS ∩vE∪(πi+n) ∈
∧νi(V ). Wedg-

ing these together for i = 1, . . . , d − 1 gives an element of
∧ν1+···+νd−1(V ). Further
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wedging with vE∪(πi+n) gives an element of
∧n(V ), which is 1-dimensional and is

identified with C. Thus, we get a function on (v1, . . . , v2n). Moreover, by expanding
each parenthesized factor as a signed sum using (4.3), we can express this function
as a signed sum of monomials in Plücker coordinates. We get one Plücker coordinate
from each of the parenthesized factors, and one more Plücker coordinate from the
wedge with vE∪(πi+n), so the formula (4.5) is a signed sum of degree d monomials in
Plücker coordinates. □

Our main result in this subsection is that that r-jellyfish invariants match the
Grassmann–Cayley expression (4.5) up to sign. Recall the map Φ from (4.1).

Proposition 4.9. For an ordered set partition π ∈ OP(n, d, r), we have

Φ∗([π]′r) = ±[π]r,

i.e. the r-jellyfish invariant coincides with the Grassmann–Cayley expression up to
sign.

The proof of Proposition 4.9 yields a formula for this global sign, although it
is somewhat complicated and perhaps not very useful. It is possible that this sign
simplifies nicely, but we did not find such a simplification. An alternative way to handle
the signs in practice is to expand both the left and right hand sides as polynomials
in matrix minors and compare the sign of a matching pair of terms. Before proving
Proposition 4.9, we illustrate it with an example.

Example 4.10. In Example 3.9, recall r = 2 and π = (2 3 6 10 | 5 7 8 9 | 1 4). We
have ν1 = ν2 = 2 and ν3 = 0, have ν = 6, have n = 10. Moreover, S = {3, 4, 5, 6} and
E = {7, 8, 9, 10}. Hence, we have the function

v1, . . . , v20 7→ (v3,...,6 ∩ v7,...,10,12,13,16,20) ∧ (v3,...,6 ∩ v7,...,10,15,17,18,19) ∧ v7,...,10,11,14.

We compute the first cap v3,...,6 ∩ v7,...,10,12,13,16,20 by choosing two out of the four
vectors in v3, . . . , v6 and moving them over to v7, . . . , v10, v12, v13, v16, v20 to form a
determinant (picking up a sign in accordance with Equation (4.3)). Note, here a = 6
and b = 2, so n− a− b = 10 − 6 − 2 = 2.

The first cap is below, where in the summation, for each choice of 3 ⩽ i1 < i2 ⩽ 6,
we define j1, j2 to be the elements of {3, 4, 5, 6} ∖ {i1, i2} written in ascending order.

v3,4,5,6 ∩ v7,8,9,10,12,13,16,20 =∑
3⩽i1<i2⩽6

sign(i1, i2, j1, j2) det (vi1 , vi2 , v7, v8, v9, v10, v12, v13, v16, v20) vj1 ∧ vj2

= sign(3, 4, 5, 6) det (v3, v4, v7, v8, v9, v10, v12, v13, v16, v20) v5 ∧ v6

+sign(3, 5, 4, 6) det (v3, v5, v7, v8, v9, v10, v12, v13, v16, v20) v4 ∧ v6

+sign(3, 6, 4, 5) det (v3, v6, v7, v8, v9, v10, v12, v13, v16, v20) v4 ∧ v5

+sign(4, 5, 3, 6) det (v4, v5, v7, v8, v9, v10, v12, v13, v16, v20) v3 ∧ v6

+sign(4, 6, 3, 5) det (v4, v6, v7, v8, v9, v10, v12, v13, v16, v20) v3 ∧ v5

+sign(5, 6, 3, 4) det (v5, v6, v7, v8, v9, v10, v12, v13, v16, v20) v3 ∧ v4,
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The second cap is, where again in the summation, for each choice of i1 < i2 we
define j1, j2 to be the elements of {3, 4, 5, 6} ∖ {i1, i2} written in ascending order.

v3,4,5,6 ∩ v7,8,9,10,15,17,18,19 =∑
3⩽i1<i2⩽6

sign(i1, i2, j1, j2) det (vi1 , vi2 , v7, v8, v9, v10, v15, v17, v18, v19) vj1 ∧ vj2

= sign(3, 4, 5, 6) det (v3, v4, v7, v8, v9, v10, v15, v17, v18, v19) v5 ∧ v6

+sign(3, 5, 4, 6) det (v3, v5, v7, v8, v9, v10, v15, v17, v18, v19) v4 ∧ v6

+sign(3, 6, 4, 5) det (v3, v6, v7, v8, v9, v10, v15, v17, v18, v19) v4 ∧ v5

+sign(4, 5, 3, 6) det (v4, v5, v7, v8, v9, v10, v15, v17, v18, v19) v3 ∧ v6

+sign(4, 6, 3, 5) det (v4, v6, v7, v8, v9, v10, v15, v17, v18, v19) v3 ∧ v5

+sign(5, 6, 3, 4) det (v5, v6, v7, v8, v9, v10, v15, v17, v18, v19) v3 ∧ v4

Wedging these two caps together, dropping the terms that are zero, and noting
that, for example, we have sign(4, 6, 3, 5) = sign(3, 5, 4, 6), we then obtain

(v3,4,5,6 ∩ v7,8,9,10,12,13,16,20) ∧ (v3,4,5,6 ∩ v7,8,9,10,15,17,18,19)

= det (v3, v4, v7, v8, v9, v10, v12, v13, v16, v20) det (v5, v6, v7, v8, v9, v10, v15, v17, v18, v19) v5 ∧ v6 ∧ v3 ∧ v4

+ det (v3, v5, v7, v8, v9, v10, v12, v13, v16, v20) det (v4, v6, v7, v8, v9, v10, v15, v17, v18, v19) v4 ∧ v6 ∧ v3 ∧ v5

+ det (v3, v6, v7, v8, v9, v10, v12, v13, v16, v20) det (v4, v5, v7, v8, v9, v10, v15, v17, v18, v19) v4 ∧ v5 ∧ v3 ∧ v6

+ det (v4, v5, v7, v8, v9, v10, v12, v13, v16, v20) det (v3, v6, v7, v8, v9, v10, v15, v17, v18, v19) v3 ∧ v6 ∧ v4 ∧ v5

+ det (v4, v6, v7, v8, v9, v10, v12, v13, v16, v20) det (v3, v5, v7, v8, v9, v10, v15, v17, v18, v19) v3 ∧ v5 ∧ v4 ∧ v6

+ det (v5, v6, v7, v8, v9, v10, v12, v13, v16, v20) det (v3, v4, v7, v8, v9, v10, v15, v17, v18, v19) v3 ∧ v4 ∧ v5 ∧ v6

=
(

det (v3, v4, v7, v8, v9, v10, v12, v13, v16, v20) det (v5, v6, v7, v8, v9, v10, v15, v17, v18, v19)

− det (v3, v5, v7, v8, v9, v10, v12, v13, v16, v20) det (v4, v6, v7, v8, v9, v10, v15, v17, v18, v19)

+ det (v3, v6, v7, v8, v9, v10, v12, v13, v16, v20) det (v4, v5, v7, v8, v9, v10, v15, v17, v18, v19)

+ det (v4, v5, v7, v8, v9, v10, v12, v13, v16, v20) det (v3, v6, v7, v8, v9, v10, v15, v17, v18, v19)

− det (v4, v6, v7, v8, v9, v10, v12, v13, v16, v20) det (v3, v5, v7, v8, v9, v10, v15, v17, v18, v19)

+ det (v5, v6, v7, v8, v9, v10, v12, v13, v16, v20) det (v3, v4, v7, v8, v9, v10, v15, v17, v18, v19)
)

v3 ∧ v4 ∧ v5 ∧ v6.

Finally, we wedge with v7,8,9,10,11,14 to get a 10-fold wedge v3,4,5,6,7,8,9,10,11,14, which
is the determinant det (v3, v4, v5, v6, v7, v8, v9, v10, v11, v14) .

Thus we have

(v3,...,6 ∩ v7,...,10,12,13,16,20) ∧ (v3,...,6 ∩ v7,...,10,15,17,18,19) ∧ v7,...,10,11,14

= det (v3, v4, v5, v6, v7, v8, v9, v10, v11, v14) ·(
det (v3, v4, v7, v8, v9, v10, v12, v13, v16, v20) det (v5, v6, v7, v8, v9, v10, v15, v17, v18, v19)

− det (v3, v5, v7, v8, v9, v10, v12, v13, v16, v20) det (v4, v6, v7, v8, v9, v10, v15, v17, v18, v19)
+ det (v3, v6, v7, v8, v9, v10, v12, v13, v16, v20) det (v4, v5, v7, v8, v9, v10, v15, v17, v18, v19)
+ det (v4, v5, v7, v8, v9, v10, v12, v13, v16, v20) det (v3, v6, v7, v8, v9, v10, v15, v17, v18, v19)
− det (v4, v6, v7, v8, v9, v10, v12, v13, v16, v20) det (v3, v5, v7, v8, v9, v10, v15, v17, v18, v19)

+ det (v5, v6, v7, v8, v9, v10, v12, v13, v16, v20) det (v3, v4, v7, v8, v9, v10, v15, v17, v18, v19)

)
.

Now replace the determinants with the appropriate MJ
I terms using Equation (4.2)

(noting that |I| = 2, so we can drop the global signs (−1)|I| in this example):
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M1,4
1,2

(
M2,3,6,10

1,2,5,6 ·M5,7,8,9
1,2,3,4 −M2,3,6,10

1,2,4,6 ·M5,7,8,9
1,2,3,5 +M2,3,6,10

1,2,4,5 ·M5,7,8,9
1,2,3,6

+M2,3,6,10
1,2,3,6 ·M5,7,8,9

1,2,4,5 −M2,3,6,10
1,2,3,5 ·M5,7,8,9

1,2,4,6 +M2,3,6,10
1,2,3,4 ·M5,7,8,9

1,2,5,6

)
.

Note that these are exactly the terms appearing in Example 3.9 (written in reverse
order) and with the same signs as appear there.

Proof of Proposition 4.9. To compute the right-hand side of Equation (4.5), we first
move ν−|πi| = ν−r−νi vectors from the left side of the ith ∩ (that is, vS) to its right
side (that is, vE∪(πi+n)). For each term τ of the right side and for each i = 1, . . . , d−1,
let Sτ,i ⊆ S be the set of vectors that are not moved into the determinant and
let Sτ,i = S ∖ Sτ,i be the set of vectors that are moved. This turns τ into an n

by n determinant and picks up the sign (−1)inv(Sτ,i,Sτ,i) from the definition of ∩ in
Equation (4.3). Next, we wedge together all of the vectors that are not moved together
with the vE∪(πd+n) term. The result is a degree d monomial in Plücker coordinates
together with a sign. The function (4.5) is the signed sum of these monomials.

Note that |Sτ,i| = νi does not depend on τ . We define Sτ,d to be S ∖
⋃d−1

i=1 Sτ,i. In
order to get a nonzero evaluation, we need the disjoint union Sτ,1 ⊔ · · · ⊔Sτ,d to equal
S. In other words, we need the Sτ,i sets to be pairwise disjoint.

The term τ is then the product

(4.6) ±
d∏

i=1
∆Sτ,i∪E∪(πi+n)

of Plücker coordinates. Applying Φ∗ to this, by Equation (4.2), we get

(4.7) ±
d∏

i=1
Mπi

[r]∪Sτ,i
.

Consider the jellyfish tableau T (τ) ∈ Jr(π) that uses rows Sτ,i ∪ [r] in column i.
(Clearly, the correspondence between terms τ and jellyfish tableaux T (τ) is bijective.)
The above monomial in matrix minors matches a the term in the definition of [πr]
corresponding to T (τ). What remains to be checked is that the signs implicit in (4.5)
match up with the signs from the definition of [π]r (i.e. the sign of the reading word
of T (τ)). For the purposes of this analysis, we say a quantity is global if it depends
only on π, i.e. not on the specific jellyfish tableau T (τ) encoded by the specific sets
Sτ,1, . . . , Sτ,d. For example, the νi’s are global quantities.

Now, fix τ and write T = T (τ). We first unpack the sign of the reading word of
T . Let word(T ) be the reading word of T . We let T̂ be the “greedily top-justified left
to right” jellyfish tableau in Jr(π). In Example 3.9, T̂ is the first tableau, and thus
word(T̂ ) = 2 5 1 3 7 4 6 10 8 9. We define a permutation jpT to be word(T̂ )−1◦word(T );
thus jpT encodes the “jellyfish pattern” of T . In Example 3.9, the first 6 symbols of
jpT are always 1, . . . , 6. (In general, the first rd symbols will be 1, . . . , rd.) The last
four symbols in our example are

7, 8, 9, 10 or 7, 9, 8, 10 or 7, 9, 10, 8 or 9, 7, 8, 10 or 9, 7, 10, 8 or 9, 10, 7, 8,
respectively, in the same order as the jellyfish tableaux of Example 3.9.

Letting Si = Sτ,i be the row indices > r that are used column i of T as above, we
see that
(4.8) inv(jpT ) = #{u < v ∈ [n] : u ∈ Si, v ∈ Sj and i > j},
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which we can write as inv(S1, . . . , Sd) (with the number of inversions of a set-tuple
defined to be the number of inversions of the permutation obtained by listing the
elements in each set in increasing order). Since word(T̂ ) is a global quantity, it suffices
to show that inv(jpT ) differs from the exterior algebra sign we discuss below by a
global sign.

Secondly, we unpack the exterior algebra signs associated with the calculation of
the term τ in [π]′r. The first type of sign contribution to τ comes due to bringing the
set Si to the back of the ordered set S; hence, this first sign is

d−1∏
i=1

(−1)inv(Si,Si).

The second sign is the sign (−1)inv(S1,...,Sd−1) coming from wedging together the un-
moved vectors for i = 1, . . . , d− 1 in the wedge product.

We have inv(S1, . . . , Sd) = inv(S1, . . . , Sd−1) + inv(Sd, Sd). Therefore, the sign
(−1)inv(S1,...,Sd) computed from the jellyfish tableau formula differs from the sign
computed from Equation (4.3) by

(−1)
∑d

i=1
inv(Si,Si).

Hence, it suffices to show that this number is a global quantity. A pair u, v with u ∈ Si

and v ∈ Sj appears exactly once in this sum (it appears in the term indexed by i if
v < u and otherwise appears in the term indexed by j). The number of such pairs
only depends on the block sizes and thus is is a global quantity. (Specifically, it is
1
2
∑d

i=1 νi(ν − |πi|).) This completes the proof.
Note that we have in fact shown that the sign appearing in the proposition is

(−1)inv(word(T̂ ))+ 1
2

∑d

i=1
νi(ν−|πi|). □

4.5. Jellyfish invariants as tensor diagram invariants. As explained in Re-
mark 4.6, any Grassmann–Cayley expression obtained by iterated composition of ∧
and ∩ operations can be expressed as a tensor diagram invariant. In this section, we
give a combinatorial construction of the tensor diagram that underlies the expression
(4.5).

Definition 4.11. Given an ordered set partition π ∈ OP(n, d, r), we associate a
tensor diagram Wπ,r of type (n, 2n) using the following steps. Recall we have set
S = [r + 1, ν] and E = [ν + 1, n].

(1) For i ∈ [d], introduce a interior white vertex wi and draw edges from wi to
every boundary vertex in E, as well as to every boundary vertex in πi +n. All
of these edges receive weight 1.

(2) For i ∈ [d− 1], introduce an interior white vertex ui and draw edges from ui

to every boundary vertex in S. These edges also all receive weight 1.
(3) For i ∈ [d − 1], introduce an interior black vertex bi. For i ∈ [d − 1], draw

an edge between each bi and the corresponding wi and give this edge weight
ν − |πi|. Also, draw an edge between each bi and the corresponding ui, giving
this edge weight n − ν + r = rd. Finally, draw an edge between each bi and
the vertex wd, giving this edge weight νi.

See Figure 4 for a schematic diagram of this definition and Figure 5 for an example.
Clearly the tensor diagram Wπ,r is typically highly nonplanar.

Lemma 4.12. The diagram Wπ,r constructed in Definition 4.11 is a tensor diagram of
type (n, 2n).
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1 2 . . .
r

r + 1

r + 2

ν

ν − 1

...

r + 3

ν + 1

ν + 2

n n− 1
. .
.

...

w1

w2

w3

· · ·
wd−1

wd

b1

b2

b3

...

bd−1

u1

u2

u3

ud−1

...

ν
−
|π

1 |

ν
−
|π

2 |

ν
−
|π

3 |

ν
−
|π

d−
1 |

rd

rd

rd

rd

rd

ν 1
ν 2

ν 3

ν d
−
1

π1 + n

π2 + n

π3 + n

πd−1 + n

πd + n

Figure 4. A schematic tensor diagram Wπ,r illustrating the algo-
rithm in Definition 4.11. Vertices 1, . . . , r are not used. Vertices in
S = {r + 1, . . . , ν} and E = {ν + 1, . . . , n} are bookkeeping vertices
such that each ui connects to all vertices in S and each wi connects to
all vertices in E. The vertices πi + n are schematic, and they encode
the set partition π in the sense that wi is connected to all of the |πi|
boundary vertices in πi + n. Note these vertices will not usually be
cyclically ordered as we have drawn them here. See Figure 5 for an
explicit example.

Proof. It is enough to verify that sum of weights around every internal vertex is n.
For i ∈ [d− 1], each wi has

• |πi| edges of weight 1 connecting wi to the boundary vertices in πi,
• n− ν edges of weight 1 connecting wi to the boundary vertices in E, and
• 1 edge of weight ν − |πi| connecting wi to bi.

Thus, the edges incident at wi have weights summing to

n− ν + ν − |πi| + |πi| = n,

as desired.
The vertex wd has

• 1 edge of weight νi for each i ∈ [d− 1] connecting wd to bi,
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1
2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

17

18

19

20

b2

w1

6

6
2

2 2

w3

w2

b1

u1

u2
2

Figure 5. The tensor diagram obtained by Definition 4.11 from or-
dered set partition π = (2 3 6 10 | 5 7 8 9 | 1 4) from Examples 3.9
and 4.10. Note for example that w1 connects to boundary vertices
12, 13, 16, and 20, which is π1 + n in this example.

• |πd| = νd + r edges of weight 1 connecting wd to the boundary vertices in πd,
and

• n− ν = rd− r edges of weight 1 connecting wi to the boundary vertices in E.
Thus, the edges incident at wd have weights summing to(

d−1∑
i=1

νi

)
+ νd + r + rd− r = rd+

d∑
i=1

νi = n,

as desired.
Each vertex ui has

• 1 edge of weight n− ν + r connecting ui to the corresponding bi and
• ν − r edges of weight 1 connecting ui to the boundary vertices in S,

giving a sum of n.
Finally, each vertex bi has

• 1 edge of weight n− ν + r connecting bi and ui,
• 1 edge of weight ν − |πi| = ν − (r + νi) connecting bi and wi, and
• 1 edge of weight νi connecting bi and wd.
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Thus, the edges incident to bi have weight summing to

n− ν + r + ν − (r + νi) + νi = n,

completing the proof. □

Proposition 4.13. The tensor diagram Wπ,r encodes the Grassmann–Cayley expres-
sion (4.5) up to sign.

Proof. The structure of the proof is as follows. First, we will interpret the Grassmann–
Cayley expression (4.3) as a sequence of ∧ and dual exterior product operations, giving
rise to a tagged tensor diagram W1. By construction, this tagged tensor diagram W1
computes the Grassmann–Cayley expression. Second, we will choose a tagging W2 of
Wπ,r by choosing a perfect orientation of the latter graph. Then we can apply [6,
Lemma 5.4], which asserts that the tagged tensor invariant [W2] agrees with [Wπ,r]
up to sign. Finally we will argue that [W1] and [W2] agree up to sign, completing the
proof.

For the first step, we express the Grassmann–Cayley expression in terms of tagged
tensor diagram constructions. The tensor vE∪(πi+n) is diagrammatically encoded by
an interior white vertex wi with incoming edges of weight 1 from the boundary vertices
in E ∪ (πi + n), for i = 1, . . . , d and with one outgoing edge of weight |E| + |πi|. The
tensor vS is encoded by a white vertex ui with incoming edges of weight 1 from the
boundary vertices in S and with one outgoing edge of weight |S|, for i = 1, . . . , d− 1.
The cap vS ∩ vE∪(πi+n) of these tensors is encoded by a black vertex bi whose unique
incoming edge emanates from vertex ui and which has two outgoing edges. The first
of these outgoing edges has weight n − |E| − |πi| = ν − |πi| and meets the outgoing
edge emanating from wi at a tag; this tag represents the explicit determinant in the
definition of the meet operation (4.3). The second outgoing edge emanating from bi

has weight νi, representing the wedge after the determinant in (4.3). It meets the edge
emanating from wd at a tag, computing the wedge of the tensors just mentioned with
the last factor vE∪(πd+n) in (4.5). Call the resulting tagged tensor diagram W1.

Second, we obtain a perfect orientation of Wπ,r as follows. Identify the sets S
and E with their corresponding boundary vertices. We orient edges S → ui for i =
1, . . . , d− 1; ui → bi for i = 1, . . . , d− 1; bi → wi and bi → wd for i = 1, . . . , d− 1. We
orient edges E ∖ {n} → wi and wi → n for i = 1, . . . , d. Applying the construction
from Section 4.3, we obtain a tagged diagram W2.

To complete the proof, note that W1 and W2 differ only by applying tag migration
moves [1, Equation 2.7], migrating the tagged edge between boundary vertex n and
wi to the edges between the bi’s and wi’s. Tag migration moves only change sign,
completing the proof. □

We now conclude the main result of this section. That is, up to sign and application
of the translation map Φ∗, r-jellyfish invariants associated to ordered set partitions
are tensor diagram invariants in the classical sense.

Theorem 4.14. For any ordered set partition π ∈ OP(n, d, r), the corresponding r-
jellyfish invariant is a tensor invariant; precisely, we have

[π]r = ± Φ∗([Wπ,r]).

Proof. Combining Propositions 4.9 and 4.13, we obtain the desired result. □

4.6. Jellyfish invariants lie in flamingo Specht modules. We now use the
commutativity of the ∩ operation to establish an important property of r-jellyfish
invariants. The r = 2 case is [21, Lemma 3.14].
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Theorem 4.15. For each ordered set partition π ∈ OP(n, d, r), the invariant [π]r lies
in the flamingo Specht module S(dr,1n−rd).

Proof. Recall that ∩ is a commutative operation up to sign. Multiplicative factors
of −1 do not affect our assertion. Therefore, up to global sign, we can compute the
function [π]′r on v1, . . . , vn by switching the two terms on each ∩ in the formula (4.5)
to obtain:

(4.9) v1, . . . , v2n 7→
(

d−1∧
i=1

vE∪(πi+n) ∩ vS

)
∧ vE∪(πd+n).

Performing the computation in this way, we must move all of the vectors indexed
by elements of E into the determinant with vr+1, . . . , vν in order to get a nonzero
evaluation when we later compute the wedge product with the final term vE∪(πd+n).

For i ∈ [d−1], let Yi be the other vectors that are moved into the determinant and
are indexed by elements in πi + n. Let

Yi = {vk : k ∈ πi + n, vk /∈ Yi}

and let

Yd = {vk : k ∈ πd + n} ∪
d−1⋃
i=1

Yi.

Then the right side of the above formula (4.9) expands as a linear combination

(4.10)
∑

Y1,...,Yd−1

±∆E∪Yd

d−1∏
i=1

∆S∪E∪Yi
,

where the sum is over all possible sets Yi of the appropriate size.
By (4.2), applying the translation map Φ∗ to (4.10) yields a polynomial in matrix

minors

(4.11)
∑

Y1,...,Yd−1

±MYd

[ν]

d−1∏
i=1

MYi

[r] .

Each monomial in this linear combination is manifestly an element of the flamingo
Specht module S(dr,1n−rd), since it is a product of top-justified minors of the appro-
priate sizes (cf. Section 2.3). □

We give an alternate proof of Theorem 4.15 in Section 5.3 by a recurrence that we
establish in Theorem 5.5.

5. Diagrammatics of jellyfish invariants
In this section, we develop a diagrammatic calculus of jellyfish invariants. We also use
this perspective to give an alternate proof of Theorem 4.15. Subsection 5.4 focuses on
the special “hook” case r = 1.

5.1. Inversion counting lemmas. We now prove some useful lemmas on compar-
ing the number of inversions in related tableaux. These will be used to understand
signs in the proof of Theorem 5.5 in the next subsection.

Definition 5.1. Let J r(T ) be the set of tableaux obtainable from T ∈ Jr(π) by per-
muting entries within columns. Let J r(π) =

⋃
T ∈Jr(π)

J r(T ). We call the elements of

J r(π) column-permuted jellyfish tableaux.
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Definition 5.2. Let T ∈ J r(π). Define the inversion number inv(T ) as the number
of inversions in the row reading word (left to right, top to bottom), except we do not
count inversions within columns. Define sgn(T ) = (−1)inv(T ).

Note that Jr(π) ⊊ J r(π) and Definition 3.2 agrees with the restriction of Defini-
tion 5.2, since there are no inversions within columns of a tableau in Jr(π).

Lemma 5.3. Suppose U ∈ Jr(π) and T ∈ J r(U). Then sgn(U) = sgn(T ).

Proof. This argument is the same as for the analogous statement in [21, Lemma 3.9],
and we will reproduce it here. Suppose T ∈ J (U) and suppose T ′ is obtained from
T by permuting the labels within columns. We show sgn(T ) = sgn(T ′) (and hence,
by repeated application, sgn(T ) = sgn(U)). Note inv(T ) may not equal inv(T ′), but
they have the same parity.

It is enough to prove the result in the case that T ′ is obtained from T by inter-
changing two entries i and j in a single column. Recall that inv(T ) is the number of
inversions in the row reading word of T , except ignoring inversions within columns.
For each pair of entries k, ℓ of T , define

ι(k, ℓ) =
{

−1, if k and ℓ are inverted in the reading word of T ;
1, otherwise.

Consider any entry k outside of the column containing i and j. Interchanging the
elements i and j in T swaps their positions in the reading word. Therefore, the sum
ι(i, k) + ι(j, k) = 0. Hence, this swap does not affect the parity of the number of
inversions involving (i, k) and (j, k). It does change whether (i, j) is an inversion in
the reading word; however, since they are in the same column, this does not affect
the inversion number of the jellyfish tableau. Hence, sgn(T ) = sgn(T ′). □

Corollary 5.4. Suppose that π, π′ ∈ OP(n, d, r) are ordered set partitions with the
same underlying unordered set partition, so that there exists σ ∈ Sd with σ(π) = π′.
Then,

[π]r = sgn(σ)r[π′]r.

Proof. This is immediate from combining Lemmas 3.3 and 5.3. □

5.2. A (2r + 1)-term recurrence. In this subsection, we state and prove a useful
recurrence, Theorem 5.5, which we apply in the next subsection to give an alter-
nate proof of Theorem 4.15, that the r-jellyfish invariants [π]r are contained in the
appropriate Specht modules. The r = 2 case of this recurrence appeared as [21, Theo-
rem 3.11] with a direct proof by Laplace expansion of determinants. Here, we identify
the recurrence as an avatar of the classical Plücker relation. The description of signs
appearing in Theorem 5.5 is very different from the classical Plücker sign calculation,
so this perspective may be generally useful as a new way to think about the signs
appearing in Plücker relations.

Theorem 5.5. Partition {1, . . . n} into three nonempty sets: A, B, C, where |C| = r.
Then

(5.1)
[
(A ∪B | C)

]
r

=
∑
S⊆C

(−1)|S|[(A ∪ S | B ∪ (C ∖ S))
]

r
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To illustrate Theorem 5.5, let r = 3 and suppose C = {c1, c2, c3}. Figure 6 gives a
diagrammatic representation of the 9-term recurrence:[

(A ∪ B | C)
]

3
=[

(A | B ∪ C)
]

3
−
[
(A ∪ {c1} | B ∪ {c2, c3})

]
3

−
[
(A ∪ {c2} | B ∪ {c1, c3})

]
3

−
[
(A ∪ {c3} | B ∪ {c1, c2})

]
3

+
[
(A ∪ {c1, c2} | B ∪ {c3})

]
3

+
[
(A ∪ {c1, c3} | B ∪ {c2})

]
3

+
[
(A ∪ {c2, c3} | B ∪ {c1})

]
3

−
[
(A ∪ C | B)

]
3

c1
c2

c3

A B

c1
c2

c3

BA

c1
c2

c3

BA

c1
c2

c3

BA

c1
c2

c3

BA= − − −

c1
c2

c3

BA

c1
c2

c3

BA

c1
c2

c3

BA

c1
c2

c3

BA
+ + + −

Figure 6. An illustration of the recurrence of Theorem 5.5 in the
case r = 3.

Proof of Theorem 5.5. We prove Theorem 5.5 using Plücker coordinates and rela-
tions. As a shorthand, for W any set of positive integers, we write W ′ = {w+n : w ∈
W}.

First, we rewrite the left side of (5.1) in terms of Plücker variables, using Equation
(4.2). By definition, there is only one jellyfish tableau for the ordered set partition
(A ∪B|C), since |C| = r. Call this tableau T̂ . We have

[
(A∪B | C)

]
r

=
∑

T ∈Jr(A∪B|C)

sgn(T ) J(T )

= sgn(T̂ ) MA∪B

RA∪B(T̂ )
·MC

RC (T̂ )

= sgn(T̂ ) (−1)|A∪B|∆([n]∖RA∪B(T̂ ))A′B′(Φ(M)) · (−1)|C|∆([n]∖RC (T̂ ))C′(Φ(M))

= (−1)nsgn(T̂ ) ∆[n−r+1,n]A′B′(Φ(M)) · ∆[r+1,n]C′(Φ(M))

(5.2)

Here, the first and second equalities are by definition, while the third is using (4.2)
and the fourth line collects the sign.

We will apply the classical Plücker relation in a form that we borrow from [8,
Eqn. 9.1]:

(5.3) ∆i1,i2,...,id
· ∆j1,j2,...,jd

=
∑

∆i′
1,i′

2,...,i′
d

· ∆j′
1,j′

2,...,j′
d
,

where the sum is over all pairs obtained by interchanging a fixed set of k of the
subscripts j1, j2, . . . , jd with k of the subscripts in i1, i2, . . . , id, maintaining the or-
der in each. Note that whenever the resulting subscripts are rearranged, signs are
introduced. In our setting, we will have k = |B|.
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Before applying the Plücker relation, we rearrange the last line of (5.2) in order to
better match (5.3), obtaining:

[
(A ∪B | C)

]
r

= (−1)nsgn(T̂ ) ∆[r+1,n]C′(Φ(M)) · ∆[n−r+1,n]A′B′(Φ(M))

= (−1)nsgn(T̂ ) ∆[n−r+1,n]C′[r+1,n−r](Φ(M)) · ∆[n−r+1,n]A′B′(Φ(M)).

(5.4)

In the second equality above, we also moved the interval [r + 1, n − r] to the end of
its Plücker coordinate to simplify things later. This move does not affect the global
sign because each element in [r+ 1, n− r] moves past the r elements of [n− r+ 1, n]
and the r elements of C ′, for an even total number of swaps.

The particular Plücker relation we apply is the one in which B′ is the fixed set
of k subscripts that gets interchanged. What happens is that the first ℓ indices in
B′ interchange with a subset Z of [r + 1, n] and the rest interchange with a subset
S′ of C ′. We can match each term from the right side of (5.3) with the column-
permuted jellyfish tableau that is obtained from T̂ by moving the elements of B from
column 1 to column 2, moving the elements of S from column 2 to column 1, and
so that the elements of Z are the row indices of the empty boxes in column 1. By
the definition of jellyfish tableaux, this also determines the row indices of the empty
boxes in column 2. See Figure 7 for an example of this construction (the unexplained
notations in that figure will be introduced later for a sign calculation). By Lemma 5.3,
the ordering of the labels within each column is immaterial; however, the ordering we
impose here will be useful later. Thus, each choice of subsets S and Z, corresponds
to a unique jellyfish tableau contributing to the right hand side of (5.1) by sorting
the columns in increasing order. Conversely, one can check that each of the jellyfish
tableaux corresponds to a term of the Plücker relation.

A1 Y

B1 S

a

a

b

a

b

b

a

b

A1 Y

S B1

a

a

b

a

b

b

a

b

∆[n−r+1,n]Y ′S′[r+1,n−r]∆[n−r+1,n]A′
1B′

1(A′
2�B′

2)

∆[n−r+1,n]Y ′B′
1(ZC

�B′
2)∆[n−r+1,n]A′

1S′(A′
2�Z)

Figure 7. An illustration of the proof of Theorem 5.5.

Theorem 5.5 is then proved, except for comparing the signs from the jellyfish
tableaux with the signs arising from sorting indices in (5.3).
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As a warm up, we first consider the case |A ∪ B| = r. Note that in this case,
n = 2r, so [r + 1, n − r] = ∅. We can assume our Plücker monomial from (5.4)
looks like ∆[n−r+1,n]Y ′S′∆[n−r+1,n]A′B′ , where Y = C ∖ S. Since the elements of the
subscripts on these Plücker variables are out of order, there is an associated sign: −1
to the number of inversions. We want to see how this sign changes when we rearrange
indices to obtain ∆[n−r+1,n]Y ′B′∆[n−r+1,n]A′S′ . Note that for each choice of S, we are
choosing a different ordering in the initial Plücker monomial from (5.4), but that this is
acceptable, since we only need to understand the relation between the signs of the two
monomials of interest. In comparing the signs of these monomials, it is straightforward
to see that the signs differ by −1 to the number of pairs (t1, t2) ∈ (B ∪ S) × (Y ∪A)
with t1 < t2.

We now perform the corresponding sign calculation for the corresponding jelly-
fish tableaux. By Lemma 5.3, we can instead compare the column-permuted jellyfish

tableaux A Y

B S
and A Y

S B
, where the elements of each set are arranged vertically in

a column in some fixed order. Since inversions in a column do not contribute to the sign
of a jellyfish tableau, here there is a sign change for each pair (t1, t2) ∈ (B∪S)×(Y ∪A)
with t1 < t2, matching the sign changes from shuffling indices in the Plücker mono-
mials, as described in the previous paragraph; in addition, there is a sign change for
each of the bottom |B| = |S| rows, as desired to match the sign appearing on the
right-hand side of (5.1). This completes the proof in the special case |A ∪B| = r.

Now we consider the general case of this sign calculation. Let B1 be the first |S|
elements of B and let B2 = B ∖B1. Similarly, let A1 be the first r − |S| elements of
A and let A2 = A∖A1.

We study the column-permuted version of T̂ for which the left column has A1 (in
increasing order) above B1 (in increasing order) occupying the body of the jellyfish,
and then A2 and B2 in the following rows, shuffled together so that B2 occupies the
rows indexed by Z. Write A2�B2 for this ordering of A2 ∪B2. We also write ZC for
[r + 1, n − r] ∖ Z. The right column of our column-permuted T̂ has Y = C ∖ S (in
increasing order) above S (in increasing order). See the left tableau of Figure 7 for an
illustration.

We can assume our corresponding Plücker monomial from (5.4) is written in a
similar way, as

∆[n−r+1,n]Y ′S′[r+1,n−r]∆[n−r+1,n]A′
1B′

1(A′
2�B′

2),

where Y = C ∖ S. Then we want to compare the sign of this with the sign for
∆[n−r+1,n]Y ′B′

1(ZC
�B′

2))∆[n−r+1,n]A′
1S′(A′

2�Z)).

Again, note that for each choice of S, we are choosing a different ordering in the
corresponding Plücker monomial. In comparing the signs of these monomials, it is
again straightforward to see that swapping B′

1 with S′ results in a sign difference of
−1 to the number of pairs (t1, t2) ∈ (B1 ∪ S) × (Y ∪ A1) with t1 < t2 together with
−1 to the number of pairs (t1, t2) ∈ (B1 ∪ S) × A2 with t1 > t2. Furthermore, the
sign difference in swapping B′

2 and Z comes from the fact that all the elements of
B′

2 are larger than the elements of ZC and all the elements of Z are smaller than the
elements of A′

2. So after the swap, all the elements of B′
2 have inversions with the

elements of [r + 1, n − r] to their right, while all the elements of Z have inversions
with the elements of A′

2 to their left. Since the positions occupied by B′
2 and Z are

corresponding, this results in a total of n− 2r inversions. Since 2r is even, this results
in a contribution of (−1)n.

We now compute the corresponding sign difference between the corresponding
column-permuted jellyfish tableaux. See Figure 7 for a visual comparison of these
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tableaux. It is again straightforward to see that swapping B1 with S results in a
sign difference of −1 to the number of pairs (t1, t2) ∈ (B1 ∪ S) × (Y ∪ A1) with
t1 < t2 together with −1 to the number of pairs (t1, t2) ∈ (B1 ∪S) ×A2 with t1 > t2.
Furthermore, there is a sign change for each of the bottom |B1| = |S| rows.

So, continuing the calculation from (5.4), we have that

[(A ∪B | C)]r =(−1)nsgn(T̂ )
∑
S⊆C

sgn(T̂ )(−1)n(−1)|S|[(A ∪ S | B ∪ (C ∖ S))
]

r

=
∑
S⊆C

(−1)|S|[(A ∪ S | B ∪ (C ∖ S))
]

r

as desired. □

We now note that we can use this rule in set partitions with more than two blocks
by fixing all blocks except those involving A, B, and C.

Corollary 5.6. Partition {1, . . . n} into d+ 1 nonempty sets: π1, π2, . . . , πd−2, A,B,
and C, where |C| = r. Then
(5.5)[
(π1 | . . . | πd−2 | A ∪B | C)

]
r

=
∑
S⊆C

(−1)|S|[(π1 | . . . | πd−2 | A ∪ S | B ∪ (C ∖ S))
]

r
.

Proof. The arguments in the proof of Theorem 5.5 apply, since the Plücker coordinates
corresponding to π1, π2, . . . , πd−2 factor out. □

5.3. r-Jellyfish invariants for flamingo Specht modules. In this subsection,
we give an alternate proof of Theorem 4.15 using the recurrence of Theorem 5.5.
We also describe the action of the symmetric group Sn. Finally, we show linear
independence of r-jellyfish invariants for r > 1.

Alternate proof of Theorem 4.15. Recall from Section 2.3 that S(dr,1n−rd) is generated
by fillings of partition shape (dr, 1n−rd) where each of {1, . . . , n} is used exactly once,
and the invariant is given by multiplying the Plücker variables corresponding to the
columns of the filling. Note that if π ∈ OP(n, d, r) has d− 1 blocks of size r, then [π]r
is a single term where the corresponding jellyfish tableau is a filling of partition shape
(dr, 1n−rd) with each of {1, . . . , n} used exactly once. Thus clearly [π]r ∈ S(dr,1n−rd)

by the explicit description of Specht modules from Section 2.3. We use this fact
repeatedly in our argument below.

We first consider the case where d = 2. That is, we show that the invariant [π]r
of any ordered set partition π of n with 2 blocks and parts of size at least r is in
S(2r,1n−2r). We show this by induction on the number of elements in the smaller
block.

The first non-trivial case is when the smaller block has r + 1 elements. Suppose
that π = (A | T ) with T = {t1, t2, . . . , tr+1} and |A| ⩾ r+1. We apply Equation (5.1)
with A as given, B = {t1}, and C = T ∖ {t1}. Then Equation (5.1) yields[

(A ∪ {t1} | {t2, . . . , tr+1})
]

r
=

∑
S⊆T∖{t1}

(−1)|S|[(A ∪ S | {t1} ∪ (T ∖ {t1}) ∖ S)
]

r

=
[
(A | T )

]
r

−
∑

i∈{2,...,r+1}

[
(A ∪ {ti} | T ∖ {ti})

]
r

+
∑

S⊆T∖{t1}
|S|>1

(−1)|S|[(A ∪ S | T ∖ S)
]

r
.
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Then the term on the left side of the equality and all terms in
∑

i∈{2,...,r+1}
[
(A∪{ti} |

T ∖ {ti})
]

r
are invariants for ordered set partitions comprised of one block of size r

and one block of size n− r, so these are already in S(2r,n−2r). The terms of the sum∑
S⊆T∖{t1}

|S|>1

(−1)|S|[(A ∪ S | T ∖ S)
]

r

are all 0 since |T∖S| < r for |S| > 1. Thus, we have an expression for [π]r = [(A | T )]r
in terms of elements of the Specht module.

Fix some positive integer m < ⌊ n
2 ⌋. Suppose now that the invariant [π]r of any

two-block ordered set partition with the smaller block of size k and the larger block
of size n−k is in S(2r,1n−2r) for k ⩽ m, and we will show the result holds for two-block
ordered set partitions with the smaller block of size m+ 1 and the larger block of size
n−m−1. Let π = (A | T ) be such an ordered set partition, with T = {t1, t2, . . . , tm+1}.
Apply Equation (5.1) with A as given, B = {t1}, and C = T ∖ {t1}.[

(A ∪ {t1} | {t2, . . . , tm+1})
]

r
=

∑
S⊆T∖{t1}

(−1)|S|[(A ∪ S | {t1} ∪ (T ∖ {t1}) ∖ S)
]

r

=
∑

S⊆T∖{t1}

(−1)|S|[(A ∪ S | T ∖ S)
]

r

Then the term on the left side of the equality has a block of size m, so its invariant
is in S(2r,1n−2r) by induction. On the right side of the equality, when S = ∅, (A∪ S |
T ∖ S) = π, the ordered set partition whose invariant [π]r we wish to show is in
S(2r,1n−2r). When |S| > m−r+1, T∖S is of cardinality less thanm+1−(m−r+1) = r,
so
[
(A ∪ S | T ∖ S)

]
r

= 0. When 1 ⩽ |S| ⩽ m− r + 1 ⩽ m, the cardinality of T ∖ S

is at most m, so
[
(A ∪ S, T ∖ S)

]
r

is in S(2r,1n−2r) by induction. Thus, we have an
expression for [π]r = [(A | T )]r in terms of elements of the Specht module.

This completes the proof that [π]r is in the Specht module S(2r,1n−2r) for all π ∈
OP(n, 2, r). The theorem then follows from Corollary 5.6. □

For any permutation w ∈ Sn and any B ⊆ {1, . . . , n}, define w·B = {w(b) : b ∈ B}.
For any ordered set partition π = (π1 | · · · | πd) ∈ OP(n, d, r), let w ·π be the ordered
set partition with blocks (w ·π1 | w ·π2 | · · · | w ·πd). Note that here we are permuting
the elements of the partition, while in Lemma 3.3, we were permuting the blocks of
the partition.
Proposition 5.7. For any ordered set partition π ∈ OP(n, d, r) and any permutation
w ∈ Sn, we have

w · [π]r = sgn(w)[w · π]r,
where sgn(w) denotes the sign of the permutation w.
Proof. Let π = (π1 | · · · | πd) ∈ OP(n, d, r) and w ∈ Sn. By induction, it is enough
to show the result for w a simple transposition si.

Consider si acting on π. There are two cases: Either i and i + 1 are in the same
block of π or else they are not.

First, suppose they are not in the same block. The π and si ·π differ by exchanging
that pair of elements between blocks. For T ∈ Jr(π), let T̃ denote the tableau obtained
from T by applying the permutation si, swapping the labels i and i+ 1. Observe that
{T̃ : T ∈ Jr(π)} = Jr(si · π). Note further that sgn(T ) = −sgn(T̃ ) for all T ∈ Jr(π).
Recall from Definition 3.7 that

[π]r =
∑

T ∈Jr(π)

sgn(T ) J(T ).
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Therefore,

si · [π]r = si ·
∑

T ∈Jr(π)

sgn(T ) J(T ) =
∑

T ∈Jr(π)

sgn(T ) J(T̃ )

=
∑

T̃ ∈Jr(si·π)

−sgn(T̃ ) J(T̃ ) = −[si · π]r,

which yields the desired result in this case.
Now suppose i and i+1 are in the same block of π. Then π = si ·π, so [π]r = [si ·π]r.

On the other hand, si · [π]r differs from [π]r by swapping two adjacent columns of
exactly one determinant in each summand. Hence, si · [π]r = −[π]r = −[si · π]r. □

Corollary 5.8. Up to signs, the long cycle cn = n12 . . . (n− 1) acts by rotation and
the long element w0 acts by reflection.

Precisely, for any ordered set partition π ∈ OP(n, d, r), we have

cn · [π]r = (−1)n−1[rot(π)]r and w0 · [π]r = (−1)(
n
2)[refl(π)]r,

where rot denotes counterclockwise rotation by (360/n)◦ and refl denotes reflection
across the diameter with endpoint halfway between vertices n and 1.

Proof. This follows from Proposition 5.7 by noting sgn(cn) = (−1)n−1 and sgn(w0) =
(−1)(

n
2). □

Recall from Section 2.1 that N C(n, d, r) denotes the set of noncrossing set partitions
of [n] into d blocks all of size at least r.

Theorem 5.9. Let r > 1. For each noncrossing set partition γ ∈ N C(n, d, r), order
the blocks in any way to create a corresponding ordered set partition πγ . Then the set
{[πγ ]r : γ ∈ N C(n, d, r)} is linearly independent.

Proof. Let k = n − rd + r, and let γ ∈ N C(n, d, r). Order the monomials in [πγ ]r
under the lexicographic order with

x1,1 > x1,2 > · · · > x1,n

>x2,n > x2,n−1 > · · · > x2,1

>x3,1 > x3,2 > · · · > x3,n

...
>xk,1 > xk,2 > · · · > xk,n.

(Note that the second row here is ordered differently from the others.)
Consider the leading monomial of [πγ ]r under this term order. The factors of the

form x1,i in the leading monomial come from the smallest element of each block,
and the factors of the form x2,i come from the largest element of each block. This
information uniquely determines the noncrossing set partition γ. Thus, each element
of the set {[πγ ]r : γ ∈ N C(n, d, r)} is a polynomial where each term has a different
leading monomial.

Suppose {γ1, . . . , γm} ⊆ N C(n, d, r) and

0 = a1[π1
γ ]r + · · · + am[πm

γ ]r.

One of these [πi
γ ]r has the largest leading monomial under the lexicographic ordering,

and none of the other invariants contain this monomial. It follows inductively that
a1 = · · · = am = 0. □
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5.4. Hook Specht modules. In this subsection, we give a method to construct a
diagrammatic basis for the hook Specht module S(d,1n−d). The following lemma will
be useful.

Lemma 5.10. For each P ⊆ {2, . . . , n} with |P | = d − 1, there exists a noncrossing
ordered set partition π = (π1| . . . |πd) ∈ N COP(n, d, 1) such that the smallest element
in each block πi lies in the set {1} ∪ P .

Proof. We can construct such a π as follows. Let {1} ∪P = {1 = p1 < p2 < · · · < pd}
and let pd+1 = n + 1. For 1 ⩽ i ⩽ d, let πi = {pi, pi + 1, . . . , pi+1 − 1}. Thus, π is a
noncrossing ordered set partition with d blocks by construction. □

For each subset P ⊆ {2, . . . , n} of size d − 1, choose a noncrossing ordered set
partition πP = (π1| . . . |πd) ∈ N COP(n, d, 1) such that the smallest element in each
block πi lies in the set {1} ∪ P . Such a partition exists by Lemma 5.10, although
it may not be unique. For each P , we may make an arbitrary choice of πP . Let
H = {πP : P ⊆ {2, . . . , n} and |P | = d− 1}, a set of

(
n−1
d−1
)

noncrossing partitions.

Theorem 5.11. Construct a subset H of N COP(n, d, 1) as described above. Then the
set {[π]1 : π ∈ H} of jellyfish invariants forms a basis for the hook Specht module
S(d,1n−d).

Proof. By Theorem 4.15, each [π]1 is in the hook Specht module S(d,1n−d). Using
the lexicographic ordering of monomials given in the proof of Theorem 5.9, each
jellyfish invariant {[π]1 : π ∈ H} has a different leading term. It follows that this set
of polynomials is linearly independent. The result then follows from the observation
that the dimension of S(d,1n−d) is the number of standard Young tableaux of shape
(d, 1n−d), which is easily seen to be

(
n−1
d−1
)

= |H|. □

We note that Theorem 5.5 specializes to a three-term recurrence in the case r = 1.

Corollary 5.12. Partition {1, . . . n} into three nonempty sets: A, B, and C where
|C| = 1. Then

(5.6)
[
(A ∪B | C)

]
1 +

[
(A ∪ C | B)

]
1 +

[
(B ∪ C | A)

]
1 = 0.

Proof. Theorem 5.5 with r = 1 gives
[
(A∪B | C)

]
1 =

[
(A | B∪C)

]
1 −
[
(A∪C | B)

]
1.

Now, using Lemma 5.3, switching the order of the two blocks yields a negative sign.
So [

(A | B ∪ C)
]

1 = −
[
(B ∪ C | A)

]
1.

Bringing all terms to one side completes the proof. □

Using this recurrence, we obtain relations that look similar to the skein relations
of the r = 2 case. Since there are more noncrossing partitions than basis elements,
one can resolve crossings in multiple ways. We can also use the recurrence to see
diagrammatically (cf. Figure 8) the linearly dependence of noncrossing set partitions.

5.5. Final remarks on relations among jellyfish invariants. We can use
the recurrence of Theorem 5.5 to obtain further relations between jellyfish invariants
of ordered set partitions, such as the following, where the first block is purple and the
second block is white.
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Figure 8. The top image shows how to resolve a crossing in two
different ways when r = 1. The second image shows a linear depen-
dence among noncrossing partitions when r = 1. In both images, the
block colored purple is the first block of the ordered set partition.
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Towards constructing web bases for general flamingo Specht modules, we conjecture
the following extension of Theorem 5.9. For r = 3, the set in question is the set of
noncrossing partitions, and hence follows from Theorem 5.9. We have verified the
conjecture for some higher r by computer calculation.

Conjecture 5.13. Let r ⩾ 3 and let S ⊂ Π(n, d, r) denote the collection of set
partitions that can be made noncrossing by the application of at most r − 3 adjacent
transpositions. For each set partition γ ∈ S , order the blocks in any way to create
a corresponding ordered set partition πγ . Then the set {[πγ ]r : γ ∈ S } is linearly
independent.

We suspect that the recurrence of Theorem 5.5 will be useful in approaching Con-
jecture 5.13, as it allows one to rewrite the polynomial for an ordered set partition
by a linear combination of polynomials for ordered set partitions that are closer to
noncrossing.(1)

It would be convenient if for r > 1 and π ∈ OP(n, d, r), the set of r-jellyfish
polynomials of rotations of π were linearly independent. However, this is not true.
For example, consider π = (1 2 3 5 | 4 6) and r = 2. Then the rotation orbit of π
consists of 6 distinct set partitions. However, one may check that the corresponding
2-jellyfish invariants span only a 5-dimensional space.
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