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Tropical Fock—Goncharov coordinates for

SL3-webs on surfaces 1I: naturality

Daniel C. Douglas & Zhe Sun

ABSTRACT In a companion article, we constructed nonnegative integer coordinates <I>7-(W3 g) C

Z]>V0 for the collection VV3 5 of reduced SL3-webs on a finite-type punctured surface :S'\, depending

)

on an ideal triangulation 7 of 5. We show that these coordinates are natural with respect to
the choice of triangulation, in the sense that if a different triangulation 7" is chosen, then the
coordinate change map relating <I>T(W3 §) to & (1/\/3 §) is a tropical A-coordinate cluster

transformation. We can therefore view the webs W3 gasa concrete topological model for the

Fock-Goncharov-Shen positive integer tropical points A (ZY).
PGL3,S

FiGURE 1. Positive tropical integer A-coordinates for a reduced
SL3-web on the once punctured torus, with respect to an ideal trian-
gulation T .
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D. C. DouGLASs & Z. SUN

For a finitely generated group I' and a suitable Lie group G, a primary object of study
in higher Teichmiiller theory [50] is the G-character variety

RG,F = {p:F — G}//G

consisting of group homomorphisms from the group I" to the Lie group G, considered
up to conjugation. Here, the double bar indicates that the quotient is being taken in
the algebraic geometric sense of geometric invariant theory [38].

We are interested in studying the character variety Rgr, r,(s), which we simply
denote by Rsr,,s, in the case where the group I' = 71 (.5) is the fundamental group
of a finite-type punctured surface S with negative Euler characteristic, and where the
Lie group G = SLg is the special linear group.

Sikora [44] associated to any SLs-web W in the surface S (Figure 1) a trace reg-
ular function Try € O(RsL,,s) on the SLz-character variety. A theorem of Sikora—
Westbury [46] implies that the preferred subset Ws g of reduced SLs-webs indexes, by
taking trace functions, a linear basis for the algebra O(Rgr,,s) of regular functions
on the SLs-character variety.

In a companion paper [9], we constructed explicit nonnegative integer coordinates
for this SLs-web basis W3 g. In particular, we identified W3 ¢ with the set of solu-
tions in Zgo of finitely many Knutson—Tao inequalities [29] and modulo 3 congruence
conditions. These coordinates depend on a choice of an ideal triangulation 7 of the
punctured surface S.

In the present article, we prove that these web coordinates satisfy a surprising
naturality property with respect to this choice of ideal triangulation 7. Specifically,
if another ideal triangulation 7" is chosen, then the induced coordinate change map
takes the form of a tropicalized A-coordinate cluster transformation [10, 15].

GLOBAL ASPECTS. More precisely, let S be a marked surface, namely a compact
oriented surface together with a finite subset M C a8 of preferred points, called
marked points, lying on some of the boundary components of S. By a puncture we
mean a boundary component of S containing no marked points, which is thought of
as shrunk down to a point. We say the surface S = S is non-marked if M = @. We
always assume that S admits an ideal triangulation 7, namely a triangulation whose
vertex set is equal to the set of punctures and marked points. See Section 1.1.

Fock-Goncharov duality. Fock-Goncharov [10] introduced a pair of mutually dual

moduli spaces XPGL”E and ‘ASL“,E‘\ (as well as for more general Lie groups). In the

case S = S of non-marked surfaces, the spaces Xpgr,,,s and Agy, g are variations
of the PGL,,- and SL,-character varieties; for n = 2, they generalize the enhanced
Teichmiiller space [11] and the decorated Teichmiiller space [39], respectively. Fock—
Goncharov duality is a canonical mapping

I: Agp, s(Z") — O(XpcL,,s)

from the discrete set Asp,, s(Z') of tropical integer points of the moduli space As,, s
to the algebra O(XpqL,,s) of regular functions on the moduli space Xpgr, s, sat-
isfying enjoyable properties; for instance, the image of I should form a linear basis
for the algebra of functions O(Xpqr,,s). In the case n = 2, Fock-Goncharov gave a
concrete topological construction of duality by identifying the tropical integer points
with laminations on the surface.

There are various ways to formulate Fock—Goncharov duality. A closely related

version is
I: Apcr,,s(Z') = O(XsL, ,s)

Algebraic Combinatorics, Vol. 8 #1 (2025) 102



Tropical coordinates for SL3-webs: naturality

(compare [10, Theorem 12.3 and the following Remark] for n = 2). There are also for-

mulations of duality in the setting of marked surfaces S , where the moduli spaces

XPGLn,§ and XSng are replaced [19, 21] by slightly more general constructions

Poar, g and Py 5

Investigating Fock—Goncharov duality has led to many exciting developments. By
employing powerful conceptual methods (scattering diagrams, broken lines, theta
functions, Donaldson-Thomas transformations), works such as [20, 21, 22] have es-
tablished general formulations of duality. On the other hand, explicit higher rank con-
structions, in the spirit of Fock—Goncharov’s topological approach in the case n = 2,
are not as well understood.

Following [19] (see also [10, Proposition 12.2]), we focus on the positive points

AT (7 c A 2(Z%), defined with respect to the tropicalized Goncharov—

PGL,,,S PGL,,S
Shen potential P! : A (7Y — Z by AT (Z') = (PY)"Y(Z>0). These pos-

PGL,,S PGL,,S
itive tropical integer points play an important role in a variation of the previously

mentioned duality,

(a) I:A" (2" = O(R

PGL,,S SanS)

(see [19, Conjecture 10.11 and Theorem 10.12, as well as Theorems 10.14, 10.15 for

G = PGLy]). Here, the space R, ¢, introduced in [19, Section 10.2] (they denote it

by Locg, 3), is a generalized (twisted) version of the SL,-character variety Rsr, s
valid for marked surfaces S.
As PGL,, is not simply connected, the moduli space A = does not have the

PGL,,S
standard Fock—Goncharov cluster structure, but it does have a positive structure.

So the tropical spaces APGng(Zt) and A;G (Z') are defined; moreover, they are

contained in the real tropical space A

L,.S
o, g(R"), which has a tropical cluster structure.
Our goal is to construct, in the case n = 3, a concrete topological model for the space

A;GL §(Zt) of positive tropical integer points, which also exhibits this tropical cluster
35

structure.
See Appendix A for a brief overview of the underlying Fock—Goncharov—Shen the-
ory.

Topological indexing of linear bases. One of our guiding principles is that tropical
integer points should correspond to topological objects generalizing laminations [48]
on surfaces in the case n = 2. Such so-called higher laminations can be studied from
many points of view, blending ideas from geometry, topology, and physics; see, for
instance, [2, 16, 19, 32, 35, 52]. In the present article, we focus attention on one of
the topological approaches to studying higher laminations, via webs [5, 31, 44]; see
also [18]. Webs are certain n-valent graphs-with-boundary embedded in the marked
surface S (considered up to equivalence in S—M ). Webs also appear naturally in the
context of quantizations of character varieties via skein modules and algebras [26, 37,
40, 45, 49, 51].

We begin by reviewing the case n = 2. For a marked surface §, define the set

L, 5 of (positive bounded) 2-laminations on S so that £ € L, 5 is a finite collection

of mutually-non-intersecting simple loops and arcs on S such that: first, there are no
contractible loops; and, second, arcs end only on boundary components of S containing
marked points, and there are no arcs contracting to a boundary interval without
marked points.
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In the case where the surface S = S is non-marked, a 2-lamination £ € Lo g
corresponds to a trace function Tr, € O(RgL,,s), namely the regular function on
the character variety Rgr, s defined by sending p : m(S) — SLg to the product
[T, Tr(p(v)) of the traces along the components y of £. It is well-known [4, 41] that
the trace functions Tr,, varying over the 2-laminations ¢ € Ly g, form a linear basis
for the algebra O(Rsgt,,s) of regular functions on the SLa-character variety.

On the opposite topological extreme, consider the case where the surface S=D
is a disk with k£ marked points m; on its boundary, cyclically ordered. For each i,
assign a positive integer n; to the i-th boundary interval located between the marked
points m; and m;y;. This determines a subset Ezﬁ(nl, coong) C 5275 consisting
of the 2-laminations ¢ having geometric intersection number equal to n; on the i-th
boundary interval. It follows from the Clebsch-Gordan theorem (see, for instance, [31,
Section 2.2, 2.3]) that the subset ﬁg,ﬁ(nh ...,ng) of 2-laminations indexes a linear

Lz where V,,, is the

basis for the space of SLs-invariant tensors (V,,, ® --- ® Vy, )
unique n;-dimensional irreducible representation of SLs.

For a general marked surface S, Goncharov-Shen’s moduli space RSL 5 simul-
2

taneously generalizes both (a twisted version of) the character variety Rsr,.s
for non-marked surfaces S = S, as well as the spaces of invariant tensors
(Viy @ Vyy @ - @V, )52 for marked disks S = D. By [19, Theorem 10.14],
the set of 2-laminations £27§ canonically indexes a linear basis for the algebra of

functions (’)(RSL2 5) on the generalized character variety for the marked surface s,

closely related to the linear bases in the specialized cases S=Sand S=D.

We now turn to the case n = 3. In the setting of the disk S = D with k
marked points on its boundary, the integers n; are replaced with highest weights A;
of irreducible SLgs-representations V,,, and the object of interest is the space
(Va, @ Vi, @ -+ @ V3, )58 of SLz-invariant tensors. Kuperberg [31] proved that the

~

set W3 5()\1, ..., Ar) of non-convex non-elliptic 3-webs W on D, matching certain
fixed tépological boundary conditions corresponding to the weights A;, indexes a
linear basis for the invariant space (Vy, ® Vi, ® --- ® V,)5™ (so can be thought of
as the SLz-analogue of the subset EQ,ﬁ(nl, cooyng) C cz,ﬁ)'

On the other hand, for non-marked surfaces S=85 , Sikora [44] constructed, for any
3-web W on S, a trace function Try on the character variety Rsr,,s, generalizing
the trace functions Tr, for 2-laminations ¢ € L5 g (Sikora also constructed Try €
O(RsL, . s) for any n-web W). A theorem of Sikora—Westbury [46] implies that the
subset W3 g of non-elliptic 3-webs W indexes, by taking trace functions Tryy, a linear
basis for the algebra of regular functions O(Rgr,,s) on the SLs-character variety.

For a general marked surface S, Frohman-Sikora’s work [17] suggests that a good
definition for the (positive bounded) 3-laminations is the set Wy s of reduced 3-webs

W on S , which in particular are allowed to have boundary; see Section 1. Indeed,
by [17, Proposition 4], this set W, s forms a linear basis for the reduced SLs-skein
algebra. As for non-marked surfaces S , where skein algebras quantize character vari-
eties, we suspect that Frohman—Sikora’s reduced SLs-skein algebra is a quantization of
Goncharov—Shen’s generalized SL3-character variety RSL37§. In particular, we suspect
that the set W3 g indexes a canonical linear basis for the algebra of regular functions

O(R , genérahzing the case n = 2 [19, Theorem 10.14]; see [17, Conjecture 23].

SL3,§)

Tropical coordinates for higher laminations. Let a positive integer cone mean a subset
of Z’;O closed under addition and containing zero.
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As in [10, 11], in the case n = 2, given a choice of ideal triangulation 7, with
Ny edges, of the marked surface S , one assigns N, nonnegative integer coordinates
to a given 2-lamination ¢ € £27§ by taking the geometric intersection numbers of ¢
with the edges of the ideal triangulation 7. This assignment determines an injective
coordinate mapping

P L,5— 253

on the set of 2-laminations £, . Moreover, the image of fbg%)

in Zgﬁ, which is characterized as the set of solutions of finitely many inequalities and
parity conditions of the form

is a positive integer cone

a+b—c>0anda+b—c€2Z (a,b,c € Zxp).

Moreover, these integer coordinates are natural with respect to the choice of T,
in the sense that if a different ideal triangulation 7" is chosen, then the induced
coordinate transformation is the SLo tropical A-coordinate cluster transformation [11,

Figure 8]. These natural coordinates provide an identification £, 5 = .A;GL §(Z’f)
’ 2

as in [19, Theorem 10.15]. Taken together, [19, Theorems 10.14, 10.15] constitute a
compelling topological version of the duality (a) in the case n = 2; see [19, the two
paragraphs after Theorem 10.15].

Our main result generalizes these natural coordinates to the setting n = 3.

More precisely, given an ideal triangulation 7 of a marked surface S , put N3 to
be twice the number of edges (including boundary edges) of 7 plus the number of
triangles of 7. Recall the set W, & of (equivalence classes of) reduced 3-webs on s,
discussed above. 7

THEOREM 0.1. Given an ideal triangulation T of the marked surface §, there is an
injection
N-
(I)T : W37§ — Z>8
satisfying the property that the image of @ is a positive integer cone in Zgg, which is
characterized as the set of solutions of finitely many Knutson—Tao rhombus inequali-
ties [29] and modulo 3 congruence conditions of the form

a+b—c—d>0anda+b—c—de3Z (a,b,c,d € Zxy).

Moreover, these coordinates are natural with respect to the action of the mapping
class group of the marked surface S. More precisely, if a different ideal triangulation
T’ is chosen, then the coordinate change map relating ® and @7+ is given by the SLs
tropical A-coordinate cluster transformation [10, 15], expressed locally as in (b)-(f);
see Figure 2.

See Theorems 1.14, 2.4 and Corollary 2.13. The construction of ®7 (Theorem 1.14)
was done in [9].

This construction was motivated by earlier work of Xie [52] and Goncharov—
Shen [19].

In particular, Goncharov—Shen used the Knutson—-Tao rhombus inequalities asso-
ciated to an ideal triangulation T of S to index the set of positive A tropical integer
points, which they showed parametrizes a linear basis for the algebra of regular func-

tions (’)(RSL3 5); see [19, Section 3.1 and Theorem 10.12 (stated for more general

Lie groups)]. Their parametrization is not mapping class group equivariant; see the
remark in [19, page 614] immediately after the aforementioned theorem. In [21] they
construct equivariant bases using the abstract machinery of [22]. Theorem 0.1 provides
a concrete model indexing the set A;LGL?, g(Zt) of positive tropical integer points, also
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based on the Knutson—Tao inequalities, which in addition is equivariant with respect

to the action of the mapping class group. This natural indexing W, 5 = A;GL §(Z’f)
? 3

provided by Theorem 0.1 generalizes the n = 2 case [19, Theorem 10.15].
We think of the web coordinates of Theorem 0.1 as positive tropical integer A-
coordinates. We call the positive integer cone <I)7-(VV3 §) C Zgg the SL3; Knutson-

Tao-Goncharov-Shen (KTGS) cone with respect to the ideal triangulation 7 of S.

These tropical web coordinates were constructed for some simple examples, such
as the triangle webs shown in Figure 9, in [52]. They also appeared implicitly in [47,
Theorem 8.22], in the geometric context of eruption flows on the PGL, (R)-Hitchin
component (n = 3). Xie [52] checked the mapping class group equivariance, in the
above sense, of these coordinates on a handful of examples.

Frohman—Sikora [17] independently constructed nonnegative integer coordinates
for the set W3.§ of reduced 3-webs. Their coordinates are related to, but different
than, the coordinates of Theorem 0.1.

As an application, Kim [27] constructed an explicit SLs-version of Fock—-Goncharov
duality using the tropical web coordinates of Theorem 0.1. We expect that Kim’s
approach, together with the SLz-quantum trace map [6, 7, 27], will lead to an explicit
SLs-version of quantum Fock—Goncharov duality [13]; see [3] for the n = 2 case.

As another application, Ishibashi-Kano [25] generalized the coordinates of The-
orem 0.1 to an SLs-version of shearing coordinates for (unbounded) 3-laminations
(with pinnings).

To end this section, we briefly recall from [9] the construction of the coordinate
map P from Theorem 0.1; see Section 1. Given the ideal triangulation 7, form the
split ideal triangulation T by replacing each edge E of 7 with two parallel edges
E’ and E”; in other words, fatten each edge F into a bigon. One then puts a given
reduced 3-web W € W3’§ into good position with respect to the split ideal triangula-

tion 7. The result is that most of the complexity of the 3-web W is pushed into the
bigons (Figure 6), whereas over each triangle there is only a single (possibly empty)
honeycomb together with finitely many arcs lying on the corners (Figure 7). Once the
3-web W is in good position, its coordinates & (W) € Zgg are readily computed. For
an example in the once punctured torus, see Figure 1.

As has already been partly discussed, in principle the model presented in this paper
should be translatable into the language of [2, 21, 33, 34]. In particular, compare
Theorem 2.4 to the main result of [2].

LocAL AsPECTS. The first new contribution of the present work is a proof of the
naturality statement appearing in Theorem 0.1; see Section 2. This is a completely
local statement, since any two ideal triangulations 7 and 7" are related by a sequence
of diagonal flips inside ideal squares. It therefore suffices to check the desired tropical
coordinate change formulas for a single square:

(b) ri=1; (i=1,2,...,8),

(c) max{ws +y3,y1 + T3} — Y2 = 22,
(d) max{y1 + Te, T7 + Y3} — Ys = 24,
(e) max{z] + 24,5 + 22} — y1 = 21,
(f) max{zy + Tk, 24 + T4} — Y3 = 23.

See Figure 2 for the notation.

Algebraic Combinatorics, Vol. 8 #1 (2025) 106



Tropical coordinates for SL3-webs: naturality

FIGURE 2. Local SL3 tropical A-coordinate cluster transformation,
corresponding to a diagonal flip 7 — 7 in the square. See (b)-(f).

Given a 3-web W € W, 5 in good position with respect to T, the restriction W|g

of W to a triangulated ideal square (O, 7T|g) C (S,7) falls into one of 42 families
W%D CWspfork=1,2,...,42; see Section 4.1. Depending on which family W%D
the restricted web W|g belongs to, there is an explicit topological description of how
W g rearranges itself into good position after the flip; see Appendix C. These local
42 families of 3-webs in the square have a geometric interpretation, leading to our
second main result.

Let S = O be a disk with four marked points, namely an ideal square, and let T
be a choice of diagonal of [J. Theorem 0.1 says that the set W5 o of reduced 3-webs
in J embeds via ®+ as a positive integer cone inside Zlﬁo. This cone possesses a finite

subset of irreducible elements spanning it over Zxg, called its Hilbert basis [23, 42];
see Section 3.

THEOREM 0.2. The Knutson-Tao-Goncharov-Shen cone ®1(Ws ) C Zlﬁo associated

to the triangulated ideal square (O, T) has a Hilbert basis consisting of 22 elements,

corresponding via ®7 to 22 reduced 3-webs W71— € Wsn fori=1,2,...,22.
Moreover, this positive integer cone

42
drWsn) = kU ck cz%,
=1

can be decomposed into 42 sectors C# such that:
(I) each sector is generated over Zso by 12 of the 22 Hilbert basis elements;
(IT) adjacent sectors are separated by a codimension 1 wall, and these 42 sectors
C§— are in one-to-one correspondence with the 42 families W?— C Wsn of
3-webs in the square, discussed just above.

Lastly, each family W# C Wsn contains 12 distinguished 3-webs W;-(k’j) €
{W%}i:1,27___722 for j = 1,2,...,12, corresponding via ®1 to the 12 Hilbert basis
elements generating the sector Cé’“—, We refer to the set {W;-(kd-)}j:l’g’“le of these
12 distinguished 3-webs as the topological type of the sector C%“—. Then, two sectors

Cé“— and Cé“—' are adjacent if and only if their topological types differ by exactly one
distinguished 3-web; see Figure 3.

See Theorems 3.3 and 4.8 (as well as Remark 4.11).
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FIGURE 3. Sectors and walls in the Knutson—-Tao—Goncharov—Shen
(KTGS) cone ®7(Wsn) C Z for a triangulated ideal square
(O, 7). More precisely, displayed is a corresponding sector decom-
position {D;};—12.. 42 of (a projection to R* of a real version of)
an isomorphic cone in Zi x Z*, obtained from the KTGS cone via
a transformation defined using the 4 tropical integer X'-coordinates.
The sectors D; are grouped depending on which orthant of R* they
belong to. These sectors are the vertices of a 4-valent graph, where
two sectors are connected by an edge if and only if they share a wall;
equivalently, their topological types differ by a single web. See The-
orem 0.2.

For a related appearance of Hilbert bases, in the n = 2 setting, see [1].

The proof of Theorem 0.2 is geometric in nature and might be of independent
interest. Recall [10] there are two dual sets of coordinates for the two dual moduli
spaces of interest, respectively, the A-coordinates and the X-coordinates, as well as
their tropical counterparts. For a triangulated ideal square (O, 7), via the mapping
®7 each 3-web W € Wi is assigned 12 positive tropical integer .A-coordinates
o (W) € ZI;O. We show that there are also assigned to W four internal tropical
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integer X-coordinates valued in Z, two associated to the unique internal edge of T
and one for each triangle of T; see Figure 16. We find that the decomposition of the A-
cone &7 (W5 ) C Zlﬁo into 42 sectors is mirrored by a corresponding decomposition
of the X-lattice Z* into 42 sectors; see Figure 3. We think of this as a manifestation
of Fock—Goncharov’s tropicalized canonical map:

canonical

W = Or(Wsn) = Al (27 C Asp, o(RY)7r =" Xpar, n(RY) 7

~

The image of the map p' is Xpgr,n(Z')7 = Z* and p' maps sectors of the
positive integer cone ®7(Wsn) = A;GLg o(Z*)7 to sectors of the integer lattice
Xpar, 0(Zh) 7 = Z*. See Section 4.

1. TROPICAL POINTS AND WEBS

We introduce the main object of study, the Knutson-Tao—Goncharov—Shen cone Cy+ C
Zf associated to an ideal triangulation T of a marked surface S, and we summarize
the work of [9] relating tropical points to topological objects called webs.

1.1. MARKED SURFACES, IDEAL TRIANGULATIONS, AND RHOMBI.

DEFINITION 1.1. A marked surface Sisa pair (S, my) where S is a compact oriented
finite-type surface with at least one boundary component, and m, C 95 is a finite set
of marked points on 9S. Let m, C {components of 9S} be the set of punctures,
defined as the subset of boundary components without marked points; as is common
in the literature, for the remainder of the article we identify such unmarked bound-
ary components in m, with the (actual) punctures obtained by removing them and
shrinking the resulting hole down to a point.

We assume the Euler characteristic condition x(S) < d/2, where d is the number
of components of S — m; limiting to a marked point. (For example, d = 3 for a
once punctured disk with three marked points on its boundary.) This topological
condition is equivalent to the existence of an ideal triangulation T of S , namely a
triangulation of the compactified surface whose set of vertices is equal to my U my;
the vertices of T are called ideal vertices.

For simplicity, we always assume that 7 does not contain any self-folded tri-
angles. That is, we assume each triangle of 7 has three distinct sides. (Our results
should generalize, essentially without change, to allow for self-folded triangles.)

Given an ideal triangulation T of S , we define the ideal 3-triangulation T3 of T
to be the triangulation of S obtained by subdividing each ideal triangle A of 7 into 9
triangles; see Figure 17. The 3-triangulation 73 has as many ideal vertices as T, and
has N non-ideal vertices, where N is defined in Notation 1.2.

A pointed ideal triangle is a triangle A in an ideal triangulation 7 together with
a preferred ideal vertex; A is called a pointed ideal 3-triangle when subdivided as
part of the associated 3-triangulation 7s.

Given a pointed ideal 3-triangle, we may talk about the three associated rhombi;
see Figure 18. In the figure, the red rhombus is called the corner rhombus, and
the yellow and green rhombi are called the interior rhombi. Each rhombus has
two acute vertices and two obtuse vertices. Note that exactly one of these eight
vertices, the corner vertex, is an ideal vertex of Ts; specifically, the top (acute)
vertex of the corner rhombus. (We will see that the other vertices correspond to
Fock-Goncharov A-coordinates.)
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NOTATION 1.2.

(I) The natural number N is defined as twice the total number of edges (including
boundary edges) of 7 plus the number of triangles of 7. (Note that N is what
we called N3 in the introduction.)

(IT) It will be convenient to denote the nonnegative real numbers by Ry = Rxg
and the nonnegative integers by Z, = Zy(. Similarly, put R_ = R¢y and
Z_ =Zgp.

1.2. THE KNUTSON-TAO-GONCHAROV—SHEN CONE AND REDUCED WEBS. Let S
be a marked surface. (In this subsection, we will use some of the terminology of
Appendix B.)

1.2.1. KTGS cone.

DEFINITION 1.3. Given a pointed ideal triangle A in an ideal triangulation 7 of S (Sec-
tion 1.1), assume integers (see also Remark A.4((I))) a,b, ¢, d € Z (resp. a,b,c € Z) are
assigned to some interior (resp. corner) rhombus, where the numbers a, b are assigned
to the two obtuse vertices, and the numbers ¢, d are assigned to the two acute vertices.
To such an assigned rhombus, we associate a Knutson-Tao rhombus inequality
a+b—c—d>0and a modulo 3 congruence condition (a +b—c—d)/3 € Z.
Here, we set d = 0 if the rhombus is a corner rhombus, where then d corresponds to
the corner vertex.

Recall the definition (Notation 1.2) of the natural number N. This is the same as
the number of non-ideal points of the 3-triangulation 73. We order these N non-ideal
points arbitrarily in the following definition, so that to each such non-ideal point of 73
we associate a coordinate of ZY. In this way, a point of Z" assigns to each rhombus
in a pointed ideal triangle A four numbers a, b, ¢, d € Z as above.

DEFINITION 1.4. Given an ideal triangulation 7T of §, let the Knutson—Tao-
Goncharov-Shen cone C;+ C ZV, or just the KTGS cone for short, be the
submonoid (Definition B.2) defined by the property that its points satisfy all of the
Knutson-Tao rhombus inequalities and modulo 3 congruence conditions, varying over
all rhombi of all pointed ideal triangles A of T.

ProprosiTION 1.5. The KTGS cone C C Zf C ZN is a positive integer cone (Defi-
nition B.4).

Proof. This is by [9, Corollary 6.7 and Definition 6.10]; see also Remark A.4((I)). O

CONCEPTUAL REMARK 1.6 (throughout the paper, conceptual remarks make refer-
ence to the theory reviewed in Appendix A). We think of the KTGS cone C1 C Z¥,
defined above, as the isomorphic coordinate chart

Cr=-—3A° (Z')r

PGL3,S
where A, S(Z)7 C ((1/3)Z)N = Ay 5((1/3)Z')7 and A;GLS (2 <
A ~(ZH7 N (—=(1/3)Z4)N as in Remark A.4((I)).

PGL3,S
1.2.2. Reduced webs.

DEFINITION 1.7. A web (possibly with boundary) W in S [9, Section 9.1] is an
oriented trivalent graph embedded in S such that:
(I) the boundary W = W N (85 — my) of the web lies on the boundary of the
surface (minus the marked points) and may be nonempty, in which case its
boundary points are required to be monovalent vertices;
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FIGURE 4. Boundary parallel move in the ideal square.

(IT) the three edges of W at an internal vertex are either all oriented in or all

oriented out;

(IIT) we allow W to have components homeomorphic to the circle, called loops,
which do not contain any vertices;

(IV) we allow W to have components homeomorphic to the closed interval, called
arcs, which have exactly two vertices on o8 —my, and do not have any internal
vertices.

Webs are considered up to parallel equivalence, meaning related either by an am-
bient isotopy of S — myp or a homotopy in S — my exchanging two ‘parallel’ loop
(resp. arc) components of W bounding an embedded annulus (resp. rectangle, two of
whose sides are contained in 85 — my, as in Figure 4).

A face of a web W [9, Section 9.1] is a contractible component of the com-
plement W¢ C S. Internal (resp. external) faces are those not intersecting
(resp. intersecting) the boundary 95 — my. A face with n sides (counted with mul-
tiplicity, and including sides on the boundary a8 — my) is called a n-face. Internal
faces always have an even number of sides. An external H-4-face is an external
4-face limiting to a single component of W (there is only one type of external 2-
or 3-face).

A web W is reduced if each internal face has at least six sides, and there are
no external 2-; 3-; or H-4-faces. (Reduced webs were called ‘rung-less essential webs’
in [9, Section 9.2]; see also [17].) Denote by Wg the set of reduced webs up to parallel
equivalence. (Note that Wy is what we called W37§ in the introduction.)

REMARK 1.8. As a caution, throughout we tend to be sloppy about distinguishing
between web equivalence classes and their representatives, for example writing W €
W; to indicate a representative web W', as this distinction will generally be immaterial
for our purposes.

1.3. WEB TROPICAL COORDINATE MAP. In [9, Section 9.2], for any marked surface S
and for each ideal triangulation 7 of S, we defined a bijection of sets

O W§ S Cr
from the set W of parallel equivalence classes of reduced webs to the KTGS cone

Cr C Zi\f , called the ‘web tropical coordinate map’. We now recall the definition of
this map.

1.3.1. Split ideal triangulations, good positions, and web schematics.

DEFINITION 1.9. The split ideal triangulation associated to 7, which by abuse of
notation we also denote by T, is defined by splitting each ideal edge of 7 (including
boundary edges) into two disjoint ideal edges. In particular, the surface S is cut into
ideal triangles and bigons, as shown in Figure 5. Note that although bigons do not
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admit ideal triangulations (in particular, they do not satisfy the hypothesis x < d/2
of Section 1.1 since d = 2), we can still consider them as marked surfaces, where all
the definitions for webs make sense.

As proved in [17] and [9, Section 9.2], by isotopy we can put any reduced web
W e Wg; into good position with respect to the split ideal triangulation 7, meaning
(see just below for more details):

(I) the restriction of the web W to any bigon of 7 is a ladder web (see the left
hand side of Figure 6);

(IT) the restriction of the web W to any triangle of 7 is a honeycomb web,
namely an oriented honeycomb together with oriented corner arcs (see the
left hand side of Figure 7).

More precisely, the triangle condition (called ‘rung-less essential’ in [9, Section 4.4])
is equivalent to saying that the restriction of W to the triangle is reduced. The bigon
condition (called ‘essential’ in [9, Section 4.4]) is equivalent to asking that (1) all
internal faces have at least six sides; and (2) for each edge E of the bigon, and for
every compact embedded arc « in the bigon such that do = a N E and such that «
intersects W generically, we have that the number of intersection points W N E does
not exceed the number of intersection points W Na; here, E C E is the segment in E
between the two endpoints of . Note this is a weaker condition than Wpigon being
reduced, since, although it does not allow for external 2- or 3-faces, it does allow for
external H-4-faces (also called ‘rungs’ of the ladder web).

In particular, W has minimal geometric intersection with the split ideal triangula-
tion 7T .

Note that for a web W in good position: there are two types of honeycombs in
triangles, ‘out-’ and ‘in-honeycombs’ (see Figure 7); there may or may not be a hon-
eycomb in a given triangle; and, no conditions on the orientations of the corner arcs
in a triangle are assumed.

REMARK 1.10. For an earlier appearance of these honeycomb webs in ideal triangles,
see [31, pp. 140-141].

In the right hand side of Figure 6 we show the ‘bigon schematic diagram’ for a
ladder web in a bigon, where each ‘H’ is replaced by a crossing.

In the right hand side of Figure 7 we show the ‘triangle schematic diagram’ for
a honeycomb web in a triangle. Here, the honeycomb component is completely de-
termined by two pieces of information: its orientation (either all in or all out) and a
nonnegative integer x € Z. . Note that the schematic for corner arcs is not a ‘faithful’
diagrammatic representation, in general, because it forgets the ordering of the ori-
ented arcs on each corner; see Remark 1.11. However, as we will see, this schematic
is sufficient to recover the web tropical coordinates.

REMARK 1.11. Note that the schematic is indeed faithful at the level of parallel equiv-
alence classes of reduced webs in the ideal triangle. This is because permuting corner
arcs preserves the equivalence class of the web; see Section 1.2. (Recall also Figure 4,
showing a boundary parallel move in the ideal square.)

DEFINITION 1.12. Given the split ideal triangulation as in Figure 8, suppose we are
given two oriented arcs intersecting in the bigon along the ideal edge between the two
triangles. The intersection is called a:
(I) non-admissible crossing if the arcs go toward a common ideal triangle
(left hand side of Figure 8);
(IT) admissible crossing if the arcs go toward different ideal triangles (right
hand side of Figure 8).
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FI1GURE 5. Split ideal triangulation.

Gb S

FiGURE 6. Ladder web in a bigon.

FIGURE 7. Honeycomb web in a triangle: x =3,y =2, and z =t =
u=v = w = 1. Here the honeycomb is oriented outward (there may
also be inward oriented honeycombs).

VY

FI1GURE 8. Left: Non-admissible crossing. Right: Admissible crossing.

The following fact is essentially by definition.

OBSERVATION 1.13. For any reduced web W in good position with respect to the split
ideal triangulation T, the schematic diagram (right hand side of Figure 6) of any
ladder web obtained by restricting W to a bigon has only admissible crossings. d

1.3.2. Definition of the web tropical coordinates. Another way to think of an ideal
triangle A is as an ideal polygon with three marked points (a,b,c) on its boundary,
labeled counterclockwise say. (An ideal square is an ideal polygon with four marked
points on its boundary, and so on.)
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Let a reduced web W be in good position with respect to a split ideal triangulation
T of S. We start by defining the web tropical coordinates ®(W|a) € Ca ‘locally’ for
each restriction W|a of W to an ideal triangle A of T, as in the left hand side of
Figure 7.

First, the images in Ca C ZZF under ® of the eight ‘irreducible’ (see Section 3) local
reduced webs Ry, La, Ry, Ly, Re, Le, Tin, Toyr displayed in Figure 9 are defined as in
that figure. One checks directly that these images satisfy the Knutson-Tao rhombus
inequalities and the modulo 3 congruence conditions (Section 1.2).

Then, the image under ® of the restriction W|a is defined as follows. Let T €
{Tin, Tout } be the oriented honeycomb appearing in W|a. Let the nonnegative integers
(z,w,v,u,t,y,z) € ZT be defined by the schematic for W |a, as in the right hand side
of Figure 7. Put

(W |a) == x®(T) + v®(La) + wP(Ry) 4 tP(Lp) + ud(Ry) + 2®(L.) + y®(R.) € Ca C 7.

Lastly, the web tropical coordinates &7 (W) € Cr C Zf for W are defined by
‘gluing together’ the local coordinates ®(W|a) for the triangles A across the edges
of 7. Note that the pair of coordinates of ®(W|a) along an edge E at the bigon
interface between two triangles A and A’ matches the corresponding pair of coordi-
nates of ®(W|a/) along the other bigon edge E’, since these coordinates depend only
on the number of oriented in- and out-strands crossing the bigon at either boundary
edge E or E’. Thus, this gluing procedure is well-defined. In particular, in this way
coordinates are assigned to the un-split ideal triangulation 7; this is why, in practice,
one can go back and forth between the split and un-split triangulation.

See Figure 10 for an example where S is the once punctured torus. As another
example, the face coordinate (namely, the coordinate that is 3 for T;, and Ty,:) for
the honeycomb web W shown in the left hand side of Figure 7 is 3x34+4x143x2 = 19.
There are plenty of examples of computing web coordinates throughout the paper;
for instance, see Appendix C.

In [9, Section 9.2] we showed ®7(W) € Cr is independent of the choice of good
position of W with respect to the split ideal triangulation 7. Moreover, we proved
the result mentioned at the beginning of this subsection:

THEOREM 1.14 ([9, Theorem 9.1]). For each ideal triangulation T of the marked sur-
face S, the web tropical coordinate map

Q7 Ws S Cr
from the set Wg of parallel equivalence classes of reduced webs in S to the Knutson—
Tao—-Goncharov—-Shen cone Cr C Zf s a bijection of sets.

We will need the following fact, which is immediate from the definitions.

OBSERVATION 1.15. For any disjoint reduced webs W, W' € Wz, we have W U W' €
W and
o (WU W/) =0 (W) + (I)T(W/) eCr.

2. NATURALITY OF THE WEB TROPICAL COORDINATES
In Section 1, we recalled the construction [9] of the web tropical coordinate map
Q7 Ws = Cr C Zf , depending on a choice of ideal triangulation 7 of the marked

surface S. By Theorem 1.14, & is a bijection.
In this section, we show that these coordinates are ‘natural’ with respect to
changing the triangulation 7 — 7T’. That is, the induced coordinate change map
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FIGURE 9. Tropical web coordinates for the eight ‘irreducible’ re-
duced webs in the triangle. (The coordinates for the other four arcs
Ry, Ly, R, L. are obtained by triangular symmetry.)

FI1GURE 10. Gluing construction for the tropical coordinates for a
reduced web in the once punctured torus.

Cr — Cy is a tropical A-coordinate cluster transformation, in the language of
Fock-Goncharov [10].

REMARK 2.1. See [43] for a more conceptual proof of the main result of this section,
and paper, Theorem 2.4. Moreover, in [43] the tropical web coordinates are further
realized in a new and more topological way, via an algebraic intersection number
between the webs and the dual web laminations. The work of [43] more satisfactorily
explains the generalization to the rank 2 setting of Fock—Goncharov’s theory of rank 1
laminations.

The first version of the arXiv version [8] of this article proved Theorem 2.4 via a
case-by-case analysis consisting of 42 cases, 9 of which were demonstrated and the
remaining 33 of which were variants of these 9 cases and so were omitted; compare
Section 4.1. In the subsequent arXiv versions and present version of this article, we
have replaced this case-by-case analysis with a more uniform and complete proof. (In
Appendix C, as a concrete demonstration we still provide 3 of the cases from our
original proof of Theorem 2.4.)
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2.1. NATURALITY FOR THE SQUARE.

DEFINITION 2.2. Recall that an ideal square [J is a disk with four marked points on
its boundary. An ideal triangulation of O is a choice of diagonal of the square; there
are two such triangulations, related by a diagonal flip.

DEFINITION 2.3. Let 7 and 7’ be the two ideal triangulations of the square O, as
in Figure 2 (7 on the left, 77 on the right). The tropical A-coordinate cluster
transformation for the square is the piecewise-linear function

12 12
%% i 7= =7
defined by
_ / / / / !/ ! / /
#T’,T(l’h$2»$37$47$5a$6:$77$8:y1’y2793:y4) - (.’1317£E2,.’E3,IE4,III5,136,I7,$87Z1,22723,Z4),

where the right hand side of the equation is given by (b), (c), (d), (e), (f) from the
introduction. See also Figure 2. (Here, we think of the domain of p7 7 as associated
to T, and the codomain to T".)

Note that (e), (f) use (b), (c), (d).
The main result of this paper is:

THEOREM 2.4. Let T and T’ be the two ideal triangulations of the square O, and let
Oy Wo — Cr C Zf and &7 : Wg — Cr C Zf be the associated web tropical
coordinate maps. Then,

pr7(e) = B0 0 7 (c) € Crv (c € Cr).

REMARK 2.5. Note it is not even clear, a priori, from the definitions that p7/ 7(c) > 0
for c € Cr.

2.2. PROOF OF THEOREM 2.4. By definition of the tropical coordinates, and of good
position of a reduced web W in W with respect to the triangulations 7 and 7, we
immediately get:

OBSERVATION 2.6. For all W € Wg, the images ¢ = (W) € Cr and @ o(IJ}l(c) €
Cr satisfy (b). O

DEFINITION 2.7. Let the punctures of the square [J be labeled a, b, ¢, d as in Figure 13.
Also as in the figure, define the 8 oriented corner arcs Ly, Ry, Ly, Ry, L¢, Re, Lq, Rg
in Wq. Their 12 coordinates are provided in the figure as well.

One checks by direct computation that:

OBSERVATION 2.8. The images ¢ = &7(W) € Cy, for W = L,, R,, Ly, Ry, Lc, Re,
Lg, Rq any of the 8 corner arcs, satisfy Theorem 2.4. 0

DEFINITION 2.9. A given reduced web W in W is the disjoint union of, first, all
its corner arc components, together called the corner part and denoted W,.; and,
second, their complement W, = W — W,., which we call the cornerless part of the
web W.

A reduced web W is cornerless if W = W,. That is, W has no corner arcs.

Let R C Wg be the set of corner webs, that is, webs whose cornerless parts are
empty: W = W,.. That is, an element of R is a disjoint union of corner arcs.

LEMMA 2.10. For any disjoint reduced webs W € R and W' € W, we have WUW' €
Wo and

pr (D (W)) + e 7 (D7 (W) = o 7 (Br(W UW)) € Z'2.
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Proof. By Observation 1.15, we get
‘I’T(W) + @T(W/) = (I’T(W U W’) eCr.

For any corner arc (Figure 13) thus for any W € R (again by Observation 1.15), the
left hand sides of (c), (d), (e), (f) are always of the form max{u,u} — v. Since

(max{u,u} —v) + (max{z,y} — z) =max{u+z,u+y} — (v+2) €Z
we obtain the desired equality. (]

Proof of Theorem 2.4. Recall by Theorem 1.14 that any ¢ € Cy is of the form ¢ =
O (W) for some W € Wg. For any reduced web W € W, suppose that its coordi-
nates via @5 are labeled as in the left hand side of Figure 2, and via &7 as in the
right hand side of Figure 2. By Observation 2.6, (b) is satisfied for any web W in
Wg. In addition, by Observation 2.8, the (c), (d), (e), (f) are satisfied for any web
W in R, that is, W consisting only of corner arcs. By Lemma 2.10 together with
another application of Observation 1.15 to 7', we have thus reduced the problem to
establishing (c), (d), (e), (f) for any cornerless web W = W..

The main difficulty is that, for a given cornerless web W = W, in good position
with respect to the ideal triangulation 7, after flipping the diagonal 7 — T it is not
obvious how W ‘rearranges itself’ back into good position with respect to the new
triangulation 7”. (See, however, Appendix C for examples of this rearrangement into
good position after the flip.)

We circumvent this difficulty by solving the problem ‘uniformly’, that is, without
knowing how the new good position looks after the flip. The hypothesis that the web
W = W, does not have any corner arcs will be important here.

To start, observe that it suffices to establish just (c). Indeed, (d), (e), (f) then im-
mediately follow by 90 degree rotational symmetry. (Solve for y; and ys, respectively,
in the last two equations.)

With this goal in mind, we argue

(g) Zo = Th + o4 = T9 + 3 = max(xe + Y3, T3 + Y1) — Y2 € L.
Throughout, consider Figure 11, recalling the notion of a web schematic; see Sec-
tion 1.3.1 and Remark 1.11.
The second equation of (g) has already been justified, by Observation 2.6.
Let us justify the first equation of (g). There are two cases, namely when m’
represents an out- or an in-honeycomb.
When m/ is ‘out’, we compute:
oh=b+22"+m, 2y = +2y +2m/, 2o =b+ +2¢y + 22" +3m.
When m/ is ‘in’, we compute:
oh=b+22"+2m, 2y = +2y +m/, 2 =b+ +2¢y + 22" +3m.
In both cases, the desired formula z; = x4 + x5 holds.

The justification of the third equation of (g) is more involved. We begin with a
topological consequence.

CLAIM 2.11. Let W = W, be a cornerless reduced web in the square. Up to 180 degree
rotational symmetry of the square, there are three cases.

(I) When the n and m honeycombs are both ‘out’: Then,
a+n+x=b+yandw+d=z+m+c.

Moreover, if y = n+ x, then b= 0; and, if y < n+ x, then a = 0.
(Note this is the case displayed in the left hand side of Figure 11.)
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(II) When the n honeycomb is ‘out’, and the m honeycomb is ‘in’: Then,
a+n+x=b+y+mandw+d=z2+c.

Moreover, if y + m > n+ x, then b=0; and, if y + m < n+ x, then a = 0.
(III) When the n and m honeycombs are both ‘in’: Then,

at+rx=b+y+mandw+d+n=z+c.
Moreover, if y+m > x, then b =0; and, if y + m < x, then a = 0.

The key topological property used to prove all three statements of the claim is the
following: The number of ‘out’ strands (resp. ‘in’ strands) along one boundary edge
of the bigon, as displayed on the left hand side of Figure 11, is equal to the number
of ‘in’ strands (resp. ‘out’ strands) along the other boundary edge of the bigon.

We prove the first statement, (I), of the claim; the proofs of the second and third
statements are similar. So assume the n and m honeycombs are both ‘out’.

By the above topological property, we have the desired two identities of the state-
ment.

For the second part of the statement: When y > n + z, if b were nonzero, then a
would have to be nonzero, since b+ y = a + n 4+ x. Then b would be attaching to a;
see the schematic shown in the left hand side of Figure 12 (see also the caption of
Figure 11). But this contradicts the hypothesis that W has no corner arcs. Similarly,
a = 0 when y < n+ x; see the right hand side of Figure 12. This establishes the claim.

CLAIM 2.12. Let W = W, be a cornerless reduced web in the square. Up to 180 degree
rotational symmetry of the square, there are three cases.

(I) When the n and m honeycombs are both ‘out’: Then, xo + ysVas + y1 if and
only if yVn +x, for V € {>,=,<}.
(Note this is the case displayed in the left hand side of Figure 11.)
(IT) When the n honeycomb is ‘out’, and the m honeycomb is ‘in’: Then, xo +
ysVas +y1 if and only if y + mVn + z, for V € {>,=,<}.
(III) When the n and m honeycombs are both ‘in’: Then, o + ysVxs + y1 if and
only if y + mVz, for V e {>,=,<}.

We prove the first statement; the proofs of the second and third statements are
similar. So assume the n and m honeycombs are both ‘out’. By Figure 11, we compute:
To=w+2a+n, ys=b+c+2y+2z+ 3m,

T3 =2z+2b+4+2m, y1 =a+d+ 2x + 2w + 3n.
Thus,
(xo+uys) —(xz3+y1)=—w+a—-2n—b+c+2y+2z+m—d—2xV0
Sa+c+2y+z+mVw+2n+b+d + 2zx.

By applying the two identities of the first part of Claim 2.11, the above inequality
is equivalent to 3yV3n + 3x as desired. This establishes the claim.

We are now prepared to justify the third equation of (g), which we recall is
(h) T2 + 23 = max(Ts + Y3, T3 + Y1) — Ya.

First, let us assume the n and m honeycombs are both ‘out’, as in the left hand
side of Figure 11. The values of xs,ys3, z3,y1 were computed above, and we gather

To+x3=w+2a+n+z+2b+2m,
Tot+ys=w+2a+n+b+c+2y+2z+3m,
T3 +y1 =2+2b+2m+a+d+ 2z + 2w + 3n.
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By Figure 11, there are two ways to express yo:
Yyo=w+d+2a+2n+2x =2+m+c+ 2b+ 2y.

There are two cases to establish (h). In the case x5 + y3 > x3 + y1, we compute,
using the second form of ys above:

max (22 + y3, 23 +y1) —y2 = (T2 +y3) — ¥2
=w+2a+n—b+z+2m;xg—i—xg(:)béo.

For this case, by the first part of Claim 2.12, we have y > n + x. Thus, b = 0 by the
first part of Claim 2.11, as desired.
In the case z2 + y3 < 3 + y1, we compute, using the first form of yo above:

max (T2 + Y3, 73 + Y1) — Y2 = (3 + Y1) — Y2
:z+2b+2mfa+w+n;a:2+x3@a20.

For this case, by the first part of Claim 2.12, we have y < n 4+ x. Thus, a = 0 by the
first part of Claim 2.11, as desired.

This establishes (h) when both the honeycombs are ‘out’. When the n honeycomb is
‘out’, and the m honeycomb is ‘in’; or, when the n and m honeycombs are both ‘in’: By
essentially the same calculation, one computes again that, in the case zo+y3 > z3+y1,
then (h) is equivalent to b = 0, and in the case x5 +y3 < x3+y1, then (h) is equivalent
to a = 0. These are justified by parts (II) and (III), respectively, of Claims 2.12
and 2.11.

This completes the proof of the main result. O

2.3. NATURALITY FOR A MARKED SURFACE. We briefly summarize the natural gen-
eralization of Theorem 2.4 to any marked surface S , according to the standard cluster
theory [10, 15]. See the arXiv version [8] of this article for more details.

Let 7 be an ideal triangulation of S ,and let IV denote the number of global tropical
coordinates; see Section 1.1. In Section 1, we introduced the web tropical coordinate
map P : Wg — C7, where we implicitly chose an inclusion Cy+ C Zﬂ\_f of the KTGS
cone of T (permutations of the coordinates of Z" determine different inclusions).
This choice played essentially no role there, since we were only considering a single
triangulation. As we are now changing the triangulation, it becomes necessary to keep
track of this choice.

COROLLARY 2.13. Let T and T be ideal triangulations of §, and let prr 7: ZN — ZN
be the corresponding tropical A-coordinate cluster transformation [10, 15], which is
only defined up to permutation of the coordinates of the codomain Z~ . For the associ-
ated web tropical coordinate maps P : Wg —Cr C Zf and O : Wg = Cr C Zf,
we have

/JJT/,T(C) =& 0 (1)7_—1 (c)eCyr (ceCy). O

CONCEPTUAL REMARK 2.14. Another way to express Corollary 2.13 is to say that
the web tropical coordinates, determined by the maps {®7}7, are equivariant with
respect to the action of the mapping class group of the marked surface S. Said an-
other way, they form natural coordinates for the positive tropical integer PGL3-points

A" (Z!), where a point in AT (Z!) is thought of concretely as a reduced web
PGL3,S PGL3,S
W in Ws.

APPLICATION 2.15. Generalizing Fock-Goncharov’s (bounded) SLg-laminations [10,
Section 12], Kim [27] considers the space Wz of ‘(bounded) SLz-laminations’ (he
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FIGURE 11. Schematic for the cornerless web W = W, in the square,
before and after the flip. The variables a,b,c,d, x,y, z,w,n, m are
known, and can be read off from the good position of W with re-
spect to 7. The primed variables a’,b’,...,m’ are not assumed to
be known. Because W has no corner arcs, there are no arcs at the
top and bottom vertices before the flip, nor at the left and right
vertices after the flip; it follows by Observation 1.13 that we cannot
have a and b (or ¢ and d) simultaneously nonzero. To be concrete,
we have shown the case where the honeycombs labeled n and m are
out-honeycombs; we will justify the other cases as well. Note that
the orientations of the n’ and m’ honeycombs are not assumed to
be known (and do not follow from the orientations of the n and m
honeycombs).

a % A
SISV

Y Yy

F1GURE 12. Proof of Claim 2.11. The web is assumed not to have
any corner arcs. Shown is the case when the n and m honeycombs
are both ‘out’. Left: y > n + z. Right: y < n 4+ =x.

denotes this space by .AL(§ ,Z)), which extends the space Wg of reduced webs by
allowing for negative integer weights around the peripheral loops and arcs. He also
extends the web tropical coordinate map @7 : Wg — Cr C Zf of Theorem 1.14 to

an injective map CT>7- : Wg — ZN, and characterizes the image as an integer lattice
defined by certain ‘balancedness’ conditions; it turns out that these conditions are
equivalent to the modulo 3 congruence conditions of Definition 1.4. That is, whereas
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the reduced webs Wg correspond to solutions of both the modulo 3 congruence con-

ditions and the Knutson-Tao inequalities, the SL3-laminations VA\}g O Wg correspond
to solutions of only the modulo 3 congruence conditions. By [27, Proposition 3.35],
which generalizes Corollary 2.13, the lamination tropical coordinates {‘57}7— are also
natural, thereby constituting an explicit model for the tropical integer PGL3-points
APGLg,:S’\(Zt); compare Remark 2.14 and see also Remark A.4((II)).

Kim’s proof of [27, Proposition 3.35] uses Corollary 2.13. One way to think about
upgrading the naturality statement from webs to laminations is in terms of the proof
strategy of Theorem 2.4; see Section 2.2. Indeed, since Lemma 2.10 works as well for
corner arcs with integer coefficients, the proof of Theorem 2.4 works more generally
for the laminations Wy. (See also [28].)

3. KTGS CONE FOR THE SQUARE: HILBERT BASIS

In the remaining two sections, we study the structure of the Knutson-Tao—Goncharov—
Shen cone Cy C Zf associated to an ideal triangulation 7 of a marked surface S
(Definition 1.4 and Proposition 1.5) when S = O is an ideal square. In this case, an
ideal triangulation 7 is simply a choice of a diagonal of [J. (In this section, we will
use some of the terminology and results of Appendix B.)

3.1. HILBERT BASIS OF THE KTGS CONE FOR THE TRIANGLE AND THE SQUARE.

3.1.1. Hilbert basis for the triangle. We begin by recalling from [9, Section 6] the case
of a single ideal triangle S =T =A.Let Ca C Z% be the corresponding KTGS
positive integer cone.

Recall the eight ‘irreducible’ webs Ly, Ry, Ly, Ry, Le, Re, Tin, Tour in Wa defined in
Section 1.3.2. For each such web W# | its 7 tropical coordinates ®A(WH) € Ca C Z7,
are provided in Figure 9.

PROPOSITION 3.1. The 8-element subset
Ha = {@a(WH);WH = Lo, R, Ly, Ry, Le, Re, Tin, Tout} © Ca
is the Hilbert basis (Definition B.7) of the KTGS cone Ca C Z. for the triangle.

Proof. This is a consequence of [9, Proposition 6.6] and its proof. A detailed proof is
provided in the arXiv version [8] of this article. O

REMARK 3.2. As a caution, it is not implied that an element of Co has a unique
decomposition as a sum of Hilbert basis elements. Indeed, in Ca, we have the relation
(I)A(Tzn) + (I)A(Tout) = (I)A(La) + q)A(Lb) + (I)A(Lc). See also Section 3.2.

It is also not true that if ®o(W') < ®A(W) € Ca C Z7, in the sense that the
inequality holds for each coordinate, then W' is topologically ‘contained in’ W. Indeed,
in the above example, we have ®a(T;y,) or Pa(Tout) < Pa(La) + Pa(Ly) + Pa(L.)
in Ca. An even simpler example is Pa(Ly) < Pa(Rp) + Pa(Re).

3.1.2. Hilbert basis for the square. We turn to the square [0, which for the rest of this
section is equipped with an ideal triangulation 7, namely a choice of diagonal of [J.

Recall the 8 oriented corner arcs in the square [J (Definition 2.7); these are the
‘irreducible’ webs (1)-(8) in Wg depicted in Figure 13. The triangulation 7 determines
14 more ‘irreducible’ webs in O, namely the webs (9)-(22) in W depicted in Figure 14.
The bracket notation used in Figure 14 is explained in the caption of the figure. In
sum, let us denote these 22 ‘irreducible’ webs by WH € W for i = 1,2,...,22.

Let &7 : W — Cy be the associated web tropical coordinate map. For each web
W, its 12 tropical coordinates & (W) € Cr C Z!? are also provided in Figure 14.
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THEOREM 3.3. For the webs {W},_1 2 20 in Wg displayed in Figures 13 and 14,
the subset

Hor = {@rW/)i=1,2,...,22} cCr
is the Hilbert basis of the KTGS cone Cr C Zf for the triangulated square (O, T).

REMARK 3.4. Note that if the other triangulation 7’ of 0 had been chosen, then only
the webs W ... Wl and Wi, ... W would appear among the 22 ‘irreducible’
webs W/H corresponding to 7. In other words, the set of webs corresponding to the
Hilbert basis #(g,7) of C1 depends on which triangulation 7 of the square is chosen.

We will need a little bit of preparation before proving the theorem.

Let A and A’ be the two triangles appearing in the split triangulation 7 of [J
(Section 1.3.1). Say, A is the top triangle on the left hand side of Figure 2, and A’ is the
bottom triangle. In particular, neither A nor A’ include the intermediate bigon. If W
is a reduced web in O in good position with respect to the split ideal triangulation 7,
then the restrictions W|a and W|a/ are in good position in their respective triangles
(by definition of good position of W with respect to 7). At the level of coordinates, this
induces two projections ma: C7 — Ca and was: C+ — Cas defined by 7a (P (W)) =
DPA(W|a) and wa/ (P (W)) = A (W]ar). Compare Figure 10.

LEMMA 3.5. For a reduced web W in W, suppose its image ®+(W) is an irreducible
element of Cy. Then, the projections wa(P7(W)) and wa (D7 (W)) are, respectively,
in the Hilbert bases Ha and Ha: of the cones Ca and Ca.

Consequently, the set of irreducible elements of Cy is finite (thus forming a Hilbert
basis) and is a subset of Hi Ty, as defined in Theorem 3.3. (This is because H o, 7
is formed by taking all possible gluings across the bigon of irreducible elements in the
two triangles.)

Proof. Assuming the first statement, the second statement immediately follows
by Definition B.7, Proposition 3.1, and the construction of the 22 element set
H(EI,T) C Cr.

To establish the first statement, assume W is in good position with respect to 7. It
suffices to show that if 7A (D7 (W)) = Ao(W|a) € Ca is reducible, then &+(W) € Cr
is reducible. So assume that there are nonempty reduced webs A; and As in W such
that @A (W]a) = Pa(A1) + Pa(Asz) in Ca. (At this point, one should be mindful of
Remark 3.2.) We explicitly construct nonempty reduced webs W; and Ws in W such
that

(i) Sr(W) = o7 (Wy) + &7 (W2) € CT.

Let E (resp. E') denote the bigon edge intersecting A (resp. A’). Let n and m
(resp. n; and m; for ¢ = 1,2) be, respectively, the number of out- and in-strand-ends
of W|a (resp. 4;) on E; similarly, let n’ and m' be, respectively, the number of out-
and in-strand-ends of W|as on E’. Note n’ = m and m’ = n.

By [9, Definition 5.1, property 2], which says that the two edge coordinates on
E uniquely determine the number of out- and in-strand-ends on E (this is a simple
linear algebra calculation), we must have n = ny + ng and m = m; + my. We gather
n' =mq +me and m' = ny + ne.

Now, recall from Section 1.3.1 that a reduced web in a triangle consists of a hon-
eycomb (possibly empty) together with corner arcs (possibly none). For each i = 1,2,
arbitrarily choose m; out-strand-ends and n; in-strand-ends of W|a/ on E’, which
we call ‘i-strand-ends’ of W|a/. Let us say that a component C’ of W|as is ‘A;-
connecting’ if at least one of its strand-ends on E’ is an i-strand-end; note that (1)
a corner arc C' is A;-connecting for at most one i (possibly none, when C” is on the
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corner opposite E'), and (2) a honeycomb C’ is A;-connecting for at least one i, and
may be both A;- and As-connecting.

Let i’ € Z, be the size of the honeycomb H’ of W|a/, and let h/(?) be the number
of i-strand-ends of H'; note that h' = h'() + K'(?). For each i = 1,2, define A4’ to
be the reduced web in Wa, consisting of the A;-connecting corner arc components
C" of W|ar together with a honeycomb of size h'(Y) oriented as H' (and we can
include the non-A;-connecting components C’ into A}, say); note in particular that
@A’(W|A’) = @A/(All) + (I)A/(AIQ) € Car.

Lastly, for each i = 1,2, define W; in W to be the unique nonempty reduced web
in the square obtained from the triangle webs A; € Wa and A, € Wa, by gluing
across the bigon in the usual way (as in Figure 6). (Technically, it is the class of
W; in Wg that is unique, and W; is determined up to corner arc permutations). By
construction, (i) holds. O

Proof of Theorem 3.3. By the last paragraph of Lemma 3.5, it remains to show that
each element of H g 7) is irreducible in C7. This property can be checked by hand.
(The irreducibility becomes clearer in light of the linear map 67 : R'? — RI8 of
Section 3.1.3, where the image 07 (H o, 1)) C 72 is written explicitly). O

REMARK 3.6. It follows by Proposition B.5 that the Hilbert basis of the KTGS cone
Cr C Z1? for the triangulated square (OJ,7) appearing in Theorem 3.3 spans Cr
over Z, . Actually, we will prove this finite generation of Cy directly in Section 4 as a
consequence of Theorem 1.14; see the proof of Theorem 4.8 in Section 4.3.3. Strictly
speaking then, Theorem 3.3 is not required at the technical level in what follows; the
computations throughout this section will be used, however.

Note, in particular, that for these reasons the positivity of the KTGS cone
Cr C Zf, while possibly conceptually interesting, plays a complementary role; see
also Remark B.6.

3.1.3. Two linear isomorphisms: first isomorphism 01 by rhombus numbers. Recall
(Definition 1.4) that the KTGS cone Cr for any triangulated marked surface (5, 7)
is defined as the points in Z"V satisfying two conditions per rhombus, where there
are three rhombi per pointed ideal triangle A of T (Section 1.1). Both conditions
involve the quantity 38 = a + b — ¢ — d associated to the rhombus; the first being that
38=a+b—c—d=>0,and the second that 8 = (a +b—c—d)/3 € Z is an integer.
(Recall d = 0 if the rhombus is a corner rhombus; Section 1.1.) Let {3;}; denote these
‘rhombus numbers’, varying over all the rhombi of 7.

It will be convenient in the remainder of the paper to talk about real vector spaces
R which we think of as containing Z", in particular the KTGS cone Cr, as a subset.

In this sub-subsection, for the triangulated ideal square (O, 7) we define a linear
isomorphism 6+ of real 12-dimensional vector spaces, which is mentioned in the proof
of Theorem 3.3 and used in Section 4. Here, 12 is the number of tropical coordinates
for the square. Note that the triangulated square has 18 rhombi {8;}i=12,.. 1s, as
displayed in Figure 16 in Section 4.

DEFINITION 3.7. Let (O, 7)) be the triangulated square, whose coordinates are labeled
as in the left hand side of Figure 2. Define a linear map

o7 : R — R'®
by the formula

HT(xlaan"-axSayla"'ayﬁl)

= (/Bla ﬂ27ﬁ37 /847B5a ﬁﬁvﬁ77/88aﬂ97/81076117BleﬁlBaﬁl4a/815a 5165 /8173 618)
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(See also Figure 14.) The first 8 elements of the 22

element Hilbert basis for the KTGS cone Cy of the triangulated

FiGURE 13.

square (O, T), pictured via the corresponding ‘irreducible’ reduced

webs {WH};

,22-

1,2,...

1,2,...18 are the 18 rhombus numbers defined above.

where the {8;};

For example, the images under 67 of the 22-element Hilbert basis H (g 7y C C1 of

Theorem 3.3 are calculated from Figures 13, 14, and 16 to be:
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When there is no confusion, we also let 3; denote the general i-th coordinate of R'8.
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(9) [Touta Rb}

2

(10) [Toutv L(‘] (11) [Tlm Lb] (12) [T%m RC]

1

FIGURE 14. (See also Figure 13.) The last 14 elements of the 22
element Hilbert basis for the KTGS cone Cy of the triangulated
square (J,7T), pictured via the corresponding ‘irreducible’ reduced

webs {WH ti=1,2,...22. The square bracket is a purely notational de-

vice for webs (9)-(22); the first entry of [-,] corresponds to the top
triangle, and the second entry to the bottom triangle.

Consider the subspace V3 C R!® defined by
)
Vi ={(Bi)i € Rig; X1 = 3 — B2 = s — 5 = o — s, X2 = P4 — P13 = P17 — Do,
X3 = P12 — Bi1 = Pis — Pra = Pig — Pir, X = Bis — Br = PBs — P15}
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See Section 4.3.1 for a discussion of the geometric meaning of the subspace V5 and
the quantities X;.

PROPOSITION 3.8. The linear map 01 : R'2 — R'8 is an isomorphism of R'? onto V.
That is, 01 is injective, and the image of 01 is equal to V. In particular, Vy is 12-
dimensional.

Proof. That 67 (R'?) C Vi follows from the definition of the rhombus numbers
{Bi}i=1,2,...18; compare Figure 16. The remainder of the proof is elementary. O

CONCEPTUAL REMARK 3.9. Recall from Remark 1.6 that we view the positive in-
teger cone Cr = —3A;§GL3 o(ZY)1 as a T-chart for the positive tropical integer

points A;GL o(Z') € Apar, o(R") = Agsp, o(R"), with one tropical A-coordinate
—3(A"FYE per dot of T

a,b,c

We think of R' = Agp, 0(R")7 as the coordinate chart of Agy,, o(R?) associated
to the ideal triangulation 7T .

We view the rhombus numbers 3; for i = 1,2, ..., 18 as the tropicalizations («
e
can also think of the thombus numbers (3;); € V3 C R® as providing an alternative
coordinate chart for Apgr,, o(RY) via the isomorphism 67, that is,

i2J5 K
abe)'

of the rhombus functions « on the moduli space Apgr, 0. By Proposition 3.8, we

0T
Apcr, 0(R") 7 = Vy = R & Ag . o(RY) 7.

3.2. TROPICAL SKEIN RELATIONS IN THE KTGS CONE FOR THE SQUARE. We end
this section with a noteworthy observation, which will not be needed later.

We saw in Remark 3.2 that there are interesting relations in the KTGS cone
Ca C ZZF for the triangle. In fact, there is essentially only one relation (in the sense
analogous to Proposition 3.10). The intuitive reason there is only 1 relation for the
triangle is because the Hilbert basis for Cao has 8 elements, whereas there are only 7
Fock—-Goncharov coordinates.

We now describe all of the relations in the KTGS cone C7 C Z!? for the square.
Intuitively, there are 10 relations because the Hilbert basis for C+ has 22 elements,
whereas there are only 12 Fock—Goncharov coordinates.

PrOPOSITION 3.10. The following 10 linear relations are independent and complete
among the 22 elements of the Hilbert basis H 7y C C1 for the KTGS cone for the

(1) ©7([Tin, Le]) + @7 ([Tout, Le]) = @7([La]) + @7([Ls]) + P7([Le]);
(2) @ ([Tou t C]) + (I)T([ ins RC]) = CI)T([L ]) + (I)T([LC]) + (I)T([va RC]);'
(3) @7([Le, Tin]) + @7 ([Lo, Tout]) = 7([Ls]) + 7 ([Le]) + P7([La);
(4) ©7([Lo, Tout]) + @7([Ro, Tin]) + @7([Tout, B]) = @7([Ls]) + @7 ([R)])
([LdD + (I’T([Touth ;

(5) ®7([Re; Towt]) + 7 ([Lo, Re]) = @7([Ly, Towt]) + P7([Re])s
(6) D7 ([Tout, Tin]) + P7([Lv, Tout]) = @7([Le]) + P7([La]) + P7([Tout, Le]);
(7) ([vaT out ]) + (I)T([Toutv LC]) = (I)T([La]) + (I)T([LCD + q’T([Lb’Tout])z'
(8) 7 ([Tout, Re]) + ©7([Ry, Le]) = D7([Re]) + 7 ([Tout, Le]);
(9) ®7([Ls, Re]) + @7([Re, Lo]) = D7 ([Ly]) + D7([Rc]);

(10) @7 ([Tout, Le) + @7([Le, Ro)) = @7 ([Tout, Ro]) + P7([Le)).-

Proof. More precisely, what is meant by the statement of the proposltlon is the follow-
ing. Let f : R??2 — R!2 be the linear map f(A1, A2, ..., Ao2) = ZZ i@ r(WHY e RY2
where the webs WZH are as in Theorem 3.3. Each of the 10 relations above determines
an element r; of R?2. Let V C R?? be the kernel of f. The claim is that the elements
{r;}j=1,2....10 form a basis of V. The remainder of the proof is elementary. O
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REMARK 3.11. The relations of Proposition 3.10 can be viewed as ‘tropical SLg skein
relations’. Indeed, they can be ‘predicted’ as the result of resolving the overlapping
webs in the square (corresponding to a side of a given relation in the cone) by the
Kuperberg SL3 skein relation [31, Section 4, ¢ = 1] (one resolution per crossing in the
picture). See also [52].

4. KTGS CONE FOR THE SQUARE: SECTOR DECOMPOSITION

In Section 3, we saw that the Knutson—Tao—Goncharov—Shen cone Cy C Zlﬁ for
the triangulated square (0J,7) has a Hilbert basis Ho ) C C7 consisting of 22
elements (Figures 13 and 14). There are many linear dependence relations in R!2
among these Hilbert basis elements; see Proposition 3.10. In this last section, we study
certain linearly independent subsets of the Hilbert basis H (g, 7) that have topological
interpretations in terms of webs.

More specifically, we show that each of the 42 web families W; C W (Section 4.1
and Figure 15) corresponds to a 12-dimensional subcone Ci C Cr (called a sector)
generated by 12 Hilbert basis elements. Moreover, every point in the KTGS cone
Ct lies in such a sector C%—. These sectors have a geometric description in terms of
tropical integer X-coordinates (Figure 16) for reduced webs W € Wpg, which are
functions of the corresponding positive tropical integer A-coordinates (Figure 10); we
already encountered some of these ideas in Section 3.1.3.

In summary, this analysis gives us a deeper understanding of the combinatorial,
geometric, and topological properties of the KTGS cone Cr C Z}? for the square;
see Figure 3. (In this section, we will use some of the terminology and results of
Appendix B.)

4.1. WEB FAMILIES IN THE SQUARE. Recall the notion of a web schematic; see Sec-
tion 1.3.1 and Remark 1.11. Recall also Definitions 2.7 and 2.9, for the notions of
corner webs W = W,. € R and cornerless webs W = W.,.

PROPOSITION 4.1. We can write the reduced webs in the triangulated square as a union
Wao = U2 W,

of 42 families W; C Wq of reduced webs, where by definition W € W; if its cornerless
part W, can be represented by the ‘i-th cornerless schematic’, 9 of which are shown
in Figure 15; in fact, up to rotation, reflection, and orientation-reversing symmetry
(see the caption of Figure 15), every family W; falls into one of these 9 cases.

Proof. This is a direct combinatorial count, done by hand. We note that the number of
possibilities is restricted by the topology of web good positions; see Observation 1.13.
O

NoOTATION 4.2. Completely arbitrarily, the index ¢; for the family W;, whose cornerless
schematic is labeled (j) in Figure 15 (5 =1,2,...,9) is

11 =29, ip =30, i3 =42, i, =17, i5 =05, ig =06, i7 =2, 1g =1, 19 = 33.
See also Remark 4.3 just below.

As we will see later in this section, the family W; corresponds to the i-th sector
shown in Figure 3.

REMARK 4.3. If we define an equivalence relation on the 42 families W; by rotation, re-
flection, and orientation-reversing symmetry, then (using Notation 4.2) the symmetry
class of:

(1) W, has four members, W;, = Whag, Wa1, Way, Waa;

(2) W,, has four members, W;, = Wsp, Wag, Wao, Wiy;
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(3) Wi, has eight members, W;, = Wiz, Wag, War, Wag, Wsg, Wag, War, Was;
(4) Wi, has eight members, W;, = Wiz, Wi, Wig, Wag, Was, Wag, War, Whas;
(5) Wi, has four members, W;, = Ws, Ws, W3, Wie;

(6) Wig has four members, W,’G = W@, W7,W14, W15;

(7) Wi, has four members, W;, = W, W3, Wi, Wh1;

(8) Wi, has four members, W;, = Wi, Wy, Wy, Wio;

(9) Wi, has two members, W;, = Ws3, Wiy.

We emphasize that each schematic in Figure 15 represents a subset W; C Wg of
reduced webs in the square. Note these subsets are not disjoint. Indeed, each inter-
section W; N W; is at least ‘8-dimensional’, in an appropriate sense (see later in this
section), since the set of corner webs R is contained in each family W;. This inter-
section can contain more than just the corner webs. For instance, the intersection
Wag N Wi, corresponding to schematics (1) and (2) in Figure 15, is ‘11-dimensional’
(thus, in Figure 3, sectors 29 and 30 are separated by a wall); the last, 12-th, dimen-
sion comes from the source or sink labeled with the weight « € Z in schematics (1)
and (2). As another example, Wag N Ws3, corresponding to schematics (1) and (9) in
Figure 15, is ‘10-dimensional’ (thus, in Figure 3, sectors 29 and 33 are not separated
by a wall). In fact, each family W, is ‘12-dimensional’ (intuitively, this is because
the square has 12 Fock—Goncharov coordinates): 8 dimensions come from the corner
part W,., and 4 dimensions come from the cornerless part W,. Correspondingly, each
cornerless schematic in Figure 15 has four weights x,y, z,t € Z, .

We remind (Remark 1.11) that, in schematics (1) and (2) in Figure 15, we could
have reversed the orientations of the two arc components, without changing the class
of the web in Wg. On the other hand, the orientation of the weight x component
distinguishes schematic (1) from (2); note the caption of Figure 15. Also, the ¢t and z
strands in schematic (3), for example, do not cross in the upper triangle, for otherwise
the web would have an external H-4-face (Section 1.3.1) on the boundary, violating
the reduced property.

Lastly, we remark that the web families W; depend on the choice of triangulation
T of the square [; compare Example (family (7)) in Appendix C, in particular the
difference between the cases z > t and z < t, the former case which is demonstrated
in Figures 22-25.

4.2. SECTOR DECOMPOSITION OF THE KTGS CONE FOR THE TRIANGLE AND THE
SQUARE. Recall the notion of a sector decomposition {C;}; of a full cone C C R,
and of a wall between two full cones; see Definitions B.9 and B.10.

DEFINITION 4.4.Let S be a marked surface, either the ideal triangle or the ideal
square, and let 7 be an ideal triangulation of S. The completed Knutson—Tao—
Goncharov—Shen (KTGS) cone Cr is the completion C7 = C7 C RY of the
KTGS cone Cr C Zf; see Definitions 1.4, B.15, Propositions 1.5, 3.1, and Theorem 3.3
(note however Remark 3.6).

4.2.1. Sector decomposition for the triangle. Let S = A be the ideal triangle. We will
use the notation of Section 3.1.1.

PROPOSITION 4.5. The completed KTGS cone Ca C RZ_ is T-dimensional. Putting
Cgut = SpanZJr ({Q)A(WH)a WH = La7 Rav Lba va Lm RC) Tout}) C CA - Ziv
CZI = Spaanr({q)A(WH); WH = La7 RCL7 Lba Rb7 LC7Rcaﬂn}) C CA C Z7 )

—out

Cqut =CX", Ci =Ca € Cp CRT,
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FIGURE 15. Families (1)-(9). Schematics for cornerless webs W =
W,.. There are 9 reduced web families up to rotation, reflection,
and orientation-reversing symmetry. (Note that orientation-reversing
symmetry means simultaneously reversing the orientations of all com-
ponents of the web.)

yields a sector decomposition {C’Z“t,CiA"} of Ca. Moreover, C3"* N C’KL is a 6-
dimensional wall, generated by the cone points ®x(WH) corresponding to the 6

corner arcs in VWa.
Moreover, the rank (Definition B.9) of the completed KTGS cone Ca C Ri is 8.

Proof. This is a consequence of [9, Proposition 6.6] and its proof. A detailed proof is
provided in the arXiv version [8] of this article. O

4.2.2. Sector decomposition for the square. Let S = [J be the ideal square, equipped
with an ideal triangulation 7", namely a choice of diagonal. We will use the notation

Algebraic Combinatorics, Vol. 8 #1 (2025) 129



D. C. DouGLASs & Z. SUN

of Section 3.1.2. In particular, recall the 22 Hilbert basis webs WjH in Wgo (5 =
1,2,...,22) associated to T; see Figures 13 and 14.

We define 42 subcones C% C Cr (i = 1,2,...,42) of the completed KTGS cone
Cr C RI? as follows. First, define 42 web subsets Q; € Wn (i = 1,2,...,42), each
consisting of four Hilbert basis webs W by:

Ql = {[Tzna Lb]a [Rm Tout]u [Rca Lb]a [Rb, Lc]};
Q? = {[Tout; Lc]a [Rca Tout]a [Rca Lb]a [Rb7 Lc]}a
Q3 = {[Tlnv Lb] [va ] [Rb7 ] [Rc’ Lb]};

—
N =
—

Q4 = {[Tout ] [Rln ] [Rb; zn] [RcaLb]}

Q5 - [Tzn Tout] [EnaLb} [RcaTout] [Rb7 }}7
QG - [Lbu Tout]u [Tzru Tout]7 [T‘zna R ] [Rb7 }}7
Q? - {[Tzna Lb]a [Lc; Rb]a [Tzny Tout] [RC7 Tout%{y

Q8 = {[Tln7 Tout]7 [Lca Rb]) [Lb7 Tout] [Tlna R
QQ = {[Touta Rb [ch Rb]v [LCa,Tin] [Lb’ ]}7

)

QlO {[T’ma R ] [Lca Rb] [ch Tzn] [Lba ]}a
Qll {[Touta Rb] [Lca Rb] [va out] [va R ]}7
Q12 {[T’VruR ] [Lc;Rb]a[LbyTout]v[LmR ]}a
Q13 j%Touh ] [Touta Rb] [Lca Tin]v [Lb7 3
Ql4 - ’

el}i
outv ] [Rba zn] [Touta Tin] [Lb7 ]}
Q15 - {[Touta ] [Toub Rb} [Lca Tm} [Rca Lb]},
QlG - {[Touta ] [Rb; zn] [Touthin} [Rca Lb]}a
Q17 — {[Touh Rb] [Tout7 L ] }
Q18 = {[Tin, Lo, [Rp, Tinl, [
Q19 = {[Tin, Lo, [Le, Ro), [Le, Tinl, [Tin, Rel};
QQO - {[Touty Rb] [Lc; Rb]y [Lb out] [Rca Tout]};
QQI - {[Toutv Rb] [Lc; Rb], [Rca Tout] [Rca Lb]}a
Q22 — {[Touta Rb] [Lca Rb]7 [L¢27 Tzn]7 [Rcy Lb]};
Q?S - {[T’zna Lb] [La Rb] [Rw Tout]» [Rca Lb]}a
Q24 - {[T’lnv Lb] [Lw Rb] [Lcy En]a [R07 Lb]}
Q25 - {[ out> ] [ToutaRb] [Lb out ] [LbaR }}a

[RC7 Lb]7 [RCJ Tout] 9
LC7 Tzn] [Rca Lb]}

Q26 - {[T’zny ] [Rba 7.n] [ cyLin ] [Lba ]}7
Qa7 = {[Tin, Lo, [Ro, Lel, [Rp, Tinl, [Tin, Rel};
QQS - {[Toutz ] [Rb; L ] [Lb7 out], [Rm Tout]};
Q29 - {[Lb out] [Rb, ] [Lb; R ] [Touh L ]}7
Q30 = {[R } [va ] [va ]7[ Tout, Le ]}7
QSl = { T’z ] [Rba ] [Lb7 out] [Lln ]}7
Q32 == { T;, ] [Rb; ] [va zn] [LbaR ]}a
Q33 { Tout7 ] [Tout7 L ] [Lb, Tout] [RC7 Tout}}?
Q34 { Ena L ] Rb7 Tzn]7 [La Tin]; [Tzna Rc]}7
Q35 { len: Tout [Tina Lb] [TZ7L7 R ] [Rln ]}a
Q36 - { Tm Tout ) [Rln ] [Lb7 ouf] [Rm out]}

, R
QSS { CZ—‘ZTL? out 7[L07 Rb] [L b out] [RcaTout]}
QBQ - { Touh c] [ToutaRb]y[ out; ] [Lba ]}7
Q40 {Tout7 n [Rb7 zn]; [Lw ] [Lb; ]}7
Q41 - { outs ] [Touta Rb]7 [Touta ] [Rme]}
Q42 - { Rba zn} [Toutaz—‘in] [Lcaﬂn] [Rca Lb]}

The i-th web subset Q; C W; C W is moreover a subset of the i-th web family
W; (Section 4.1). More precisely, each of the four Hilbert basis webs WH € Q; is
determined by the schematic picture for the web family W, (as in Figure 15) by
putting all but one of the variables z,y, z,t to 0 and the remaining variable to 1.

R W W W W W W WWWNNNDNDNDNDNDNNDN =~ o~ o~~~ —~—
—H O © 0O UL WN R O OO Uk WNRFE O OWOoO Utk W~ OWWOoJO ULk Ww
\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/
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( [ |

E Q37 - {%T’ln Lb ][LcaRb] [,I;nyTout} [,-rin ]}
( [ :

( [ I,

( T

(42 [
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Recall that the 9 specific web families denoted (j) in Figure 15 are the families W,
as explained in Notation 4.2.

DEFINITION 4.6. For i = 1,2,...,42, let @, C W; C W be the set of four webs
defined just above, and recall that W]H for j =1,2,...,8 are the 8 corner arcs in the
square.

Define the i-th completed KTGS subcone C’%— cCrC Rf as the completion

Ci-=C
of the i-th KTGS submonoid C%— CcCrcC Zf, defined by
C = spang, ({7 (W), @7 (W37), ..., o7 (W)} u{®r(W); WH € Q1)

where ®7(WH) € Cr C Z¥? is the point in the KTGS positive integer cone Cr
assigned to W by the web tropical coordinate map ®7 : W — Cr.

The set Q; of four webs is called the topological type of the completed KTGS
subcone C’%—.

By construction of the web tropical coordinate map ®+, we can immediately say:
OBSERVATION 4.7. For i =1,2,...,42, we have the image ®7(W;) =C Cc 2}?. O
The main result of the second half of the paper is:

THEOREM 4.8. Consider the completed KTGS cone Cy C Rf for the triangulated
square (O, T); see Definition 4.4. Then the following properties hold.

(I) Cy is 12-dimensional. Namely, Cr is a full cone; see Definition B.9.
(IT) The completed KTGS subcones C’%- C Cg are full sectors forming a sector
decomposition {C’%—}izl,gw,m of Ct; see Definition B.10.

(III) The intersection C%—ﬂCg— is a wall if and only if Q; N Qy has 3 elements; that
18, if and only if the topological types of C%— and Cg— differ by a single web. In
this case,

(k)
Cr N Cr=spang,({B7 (W), o7 (W5"),. .., &7 (W) }u{@r (W) WH € Qi Qr}) CRE.

Moreover, for each web WH € Q;, there exists a unique index i* (i, WH) €
{1,2,...,42} such that

QiNQ=iwry = Qi — Wiy
that is, such that there is a web W*(i, W) € Q. (; wny distinct from WH

x v H

satisfying the property that the topological type Q;«(; wry of CZT(“W ) is ob-

tained from the topological type Q; of C%— by swapping WH with W* (i, WH).
In particular, each sector C’%— has 4 walls. See Figure 3.

EXAMPLE 4.9. As an example of the second paragraph of the third item of

Theorem 4.8, consider ¢ = i; = 29, corresponding to family (1) in Figure 15.
If WH = [Ly,T,.s] € Qa9, then i*(29,WH) = iy = 30 corresponding to
family (2) in Figure 15, and W*(29, W) = [Ry,T;n] € Qs0. One similarly
checks that i*(29,[Ly,R.]) = 28 and W*(29,[Ly,R.]) = [Re,Tout] € Qos;

that (29, [Rp, Le]) = 25 and W*(29,[Rp, Lc]) = [Tout, Rp] € Qas; and, that
i*(29, [Tout, Le]) = 31 and W*(29, [T,ut, Le]) = [Tin, Re] € Qs1.

Note that Figure 3 provides some, but not all, of this topological information; the
full information is contained in the definition of the subsets Q; above.
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QUESTION 4.10. By Theorem 3.3, the Hilbert basis # (g, 7 of the positive integer cone
Cr C Z2? has 22 elements. It follows by Observation B.16 that rank(C7) < 22. By
Theorem 4.8, rank(C7) > 12. What is the rank of C'y? (Compare the last paragraph
of Proposition 4.5.)

REMARK 4.11. The authors enjoy imagining Theorem 4.8 as expressing a kind of
‘topological wall-crossing phenomenon’, where we interpret the swapping of topolog-
ical types upon crossing a wall as a kind of ‘web mutation’. Investigating how this
phenomenon relates to other wall-crossing phenomena appearing in cluster geome-
try [30] could be of potential interest. In particular, there should be a relationship
with the so-called Dy cluster complex (see, for example, [14]). This is also related to
Remark 3.4 and the last paragraph of Section 4.1.

4.3. PROOF OF THEOREM 4.8. We make some preparations before proving the the-
orem.

4.3.1. Two linear isomorphisms: second isomorphism ¢ by tropical X -coordinates.
In Section 3.1.3, to each ideal triangulation T of the square (0 we constructed a linear
isomorphism 67 : R'?2 — V3 C R'®. This map sends 12 real numbers Ay, Ao, ..., Aja,
called the ‘(real) tropical A-coordinates’, to their 18 rhombus numbers 51, Ba, . . ., Sis.
There are 6 relations (see (j) in Section 3.1.3) defining the 12-dimensional subspace
Vr C R which determine four real numbers X1, Xo, X3, X4, called the ‘(real) trop-
ical X-coordinates’: they are four numbers assigned to any 18-tuple in V7 of rhombus
numbers. See Figure 16. See also [52].

REMARK 4.12. The tropical X-coordinates originate in Fock—Goncharov theory as
tropicalized double and triple ratios [10, 12], and can be thought of in the following
geometric way. For X7, say, consider the hexagon in the top triangle in the top left
square of Figure 16. There are six tropical A-coordinates assigned to the vertices of
this hexagon. Then X; is the signed sum of these coordinates, as indicated in the
figure. Similarly for Xs, X3, Xy.

DEFINITION 4.13. Let V- C R!8 be the 12-dimensional subspace just discussed. Define
a linear map

b7 Ve — R8 x R4
by

d1 (B, B2, B35 - - - P18) = (B1, B2, Ba, Bs, Br, Bs, Bro, P11: X1, Xo, X3, X4).

See Figure 16, where the eight rhombi appearing in the first eight coordinates of
the image of ¢ are colored green.

For example, the images under ¢ of 7 applied to the 22 Hilbert basis elements,
OT(QT(WJH )) € V7, can be computed from Figures 13 and 14, or from the computa-
tions in Section 3.1.3, to be:

(1) ¢T(0T((I)T([Ra]))) = (170’05070707()’0;0707070);

(2) ¢T(07—((I)T([La]))) = (0’ 17070a0a0a070;0a070,0)§

(3) ¢T(97—((I)T([Rb]))) = (0707 17070,0,070;0,0,0,0);

(4) ¢T(97(¢T([Lb])>) = (070507 170a07070;070a070);

(5) ¢T(9T((I>7—([Rc]))) = (07070’07 1707070;0707070);

(6) ¢T(07_((I)T([LCD)) = (0’07070v03 17070;0a03070);

(7) o7 (07 (27 ([Ra]))) = (0,0,0,0,0,0,1,0;0,0,0,0);

(8) ¢T(97—((I)T([Ld]))) (0707010»070707 150707070);

(9) o7 (07 (D7 ([Tout, Re)))) = (0,0,0,0,0,0,0,0;1,—1,0,0);
(10) &7 (07 (27 ([Tout, Le]))) = (0,0,0,0,0,0,0,0;1,0,0 0)7
(11) QST(GT((I)T([TMMLIJD)) = (O’ 1,0,1,0,1,0,0; -1,0,0, 0)7
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(12) QST(HT((I)T([TZna RC]))) = (07 1,0,1,0,1,0,0;-1,0,0, 1);
(13) ¢T(97(¢T([LbaTout]))) = ( ,0,0,1,0,0,0,0;0,0,1, );
(14) ¢7—(97—((I>7—([Lca Tm]))) = (07 0,0,0,0,1,0,1;0,0, -1, 0);
(15) QST(GT((I)T([RZN Tm]))) = (07 0,1,0,0,0,0,1;0,1, -1, 0)7
(16) ¢T(0T((I)T([RC7Tout]))) = ( ,0,0,0,1,0,0,0;0,0,1, 71);
(17) o7 (07 (P71 ([Tout, Tin]))) = (0,0,0,0,0,0,0,1;1,0,—1,0);
(18) ¢T(97'(<I>T([Tin7 Tout]))) = (07 1,0,1,0,1,0,0;-1,0,1, O);
(19) ¢T(9T((I)T([Lba RC]))) = (O’ 0,0,1,0,0,0,0;0,0,0, 1)7
(20) QST(GT((I)T([R% LC]))) = (0’ O’ 1, 07 07 Ov Oa 07 07 17 Oa O)a
(21) ¢7—(9T((DT([RP, Lb]))) = (Oa 0,0,0,1,0,0,0;0,0,0, 71);
(22) o7 (07 (P27 ([Le, Rp)))) = (0,0,0,0,0,1,0,0;0,—1,0,0).

PROPOSITION 4.14. The linear map ¢ : V — R® x R* is an isomorphism. Conse-
quently, letting 07 : R'2 — Vi be the isomorphism from Section 3.1.3, we have that
the composition

drobr :R1ZSRE xRY
8 a linear isomorphism.

Proof. Since Vr is 12-dimensional (Proposition 3.8), it suffices to show that
the image of ¢ spans R® x R*. Indeed, one checks that the above 22 images
{o7(07(@7 (W)} j=12,..220 C RE x R* span R® x R*. O

DEFINITION 4.15. The linear isomorphism ¢7060+ : R2 — R® x R* of Proposition 4.14
maps the completed KTGS cone Cr C RY? to the isomorphic cone

C = (;37’(97’(07’)) C ]Ri x R%.

Note that C' indeed lies in ]Ri x R* because Cy C Rf is the completion of the
KTGS cone Cr C Z?, which by definition has all nonnegative (integer) rhombus
numbers {5;}i=1.2.... 18-

Observe, in particular, that the 8 corner arcs Wi, Wi ... W of Figure 13 cor-
respond via ¢ o 7 o 1 to the first 8 standard basis elements e; of R® x R%.

4.3.2. Sector decomposition of R* via the isomorphism ¢ o 0. Let C C Ri x R*
be the cone defined in Definition 4.15, which is isomorphic, via the isomorphism
d7007 : R12 - RE xR, to the completed KTGS cone C C Rf for the triangulated
square (O, T).

NOTATION 4.16. Put & = 8, n
Section B.2.2).

=4, m =14 (= 22 — 8), and p = 42 (compare

For j =1,2,...,m, define cone points z; € C by
z; = o7 (07 (2T (W) € C

where <I>7—(Wf,l ) is the j’-th Hilbert basis element for the triangulated square; see
Figures 13 and 14. Note that the points {z;};=12 .. m C C are displayed explicitly in
Section 4.3.1.

Fori=1,2,...,p, define index sets J; C {1,2,...,m} of constant size n as follows.
Given i, consider the topological type Q; C W; C Wg of the completed KTGS
subcone C%— R12 (Definition 4.6). By definition of the topological type Q;, there

are four Hilbert basis webs Wk+ (G ),Wlfi Y Wli s kai .y, where the indices jT(-i) S

{1,2,...,m}, such that Q; = {W s o r=1,2,3.4- We then deﬁne the index set J; by

J _{jl a.]2 7.73 7.]4 }C{1727'--7 }
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FiGURE 16.

P
o

Xy = P16 — Br = B5 — Bis

Shown are the 18 rhombus numbers {f;}i=12, 18

for the square, and the associated 4 tropical integer X-coordinates
{Xi}i=1,2,34. The latter can be computed either as differences of
rhombus numbers, or as alternating sums of the 12 positive tropical
integer A-coordinates {A;};=1,2.. 12 around the polygons displayed
on the left. The rhombi colored green are those involved in the first
8 coordinates of the isomorphism ¢ : Vi — R12,

DEFINITION 4.17. Recalling Notation 4.16: for each i = 1,2,...,42, define subcones
D; C R* by (compare Section B.2.2)

D; = spang, ({ma(z;);j € Ji}) C R%.

Here, 74 : R® x R* — R?* is the natural projection.
Just as for the subcones C’%- C C7, we call Q; the topological type of the subcone

D; C R4.
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REMARK 4.18. Note, by the calculations of Section 4.3.1, that the 14 vectors
{m4(z;)}j=1,2,..,14 C R* are nonzero and distinct.

PROPOSITION 4.19. The subcones D; C R* are full sectors forming a sector decompo-
sition {D;}i=1.2...42 of R* (Definition B.10).

Proof. Let us begin by giving some examples of how to describe the subcones D;.
Specifically, we will describe those 9 subcones D;; C R* corresponding to the topo-
logical types Q;; C W;, C Wg, which in particular are subsets of the (j) web families
W, displayed in Figure 15; see Notation 4.2 and Remark 4.3.

REMARK 4.20. In each of the 9 examples just below, note that the ordering of the
rows of the matrix, chosen to match Figure 15, does not affect the description of the
subcone D; C R4,

EXAMPLE (i1 = 29). For Qag, let us write the four vectors my(¢70070®7(Qa9)) C R?
0010
0100
0001
1000

in rows to form a 4 x 4 matrix Moy = . Then for real numbers x,y, z,t > 0,

we get

(xyzt)Mggz (tyxz)
Thus Doy = {(Xl,XQ,Xg,X4) € RJr X R+ X R+ X R+}
EXAMPLE (i = 30). Similarly, for Qs, writing the four vectors m4(¢p70070P7(Qs0p))
01-10
01 00
00 0 1
10 00

(ZL'th)MgO: (teryfxz).
Thus Dgo = {(Xl,XQ,Xg,X4) € RJr X R+ x R_ x R+;X2 -|-X3 > 0}
EXAMPLE (i3 = 42). For Qy2, writing the four vectors m4(¢7 007 0 ®7(Q42)) in rows,

in rows, we get a 4 X 4 matrix M3y = . Then for x,y, z,t > 0, we get

01-10
. 10-1 0

we get a 4 X 4 matrix My, = 00-1 0 . Then for z,y, z,t > 0, we get
00 0 -1

(acyzt)M42: (y:cfxfyfzft).
Thus Dys = {(Xl,Xg,Xg,X4) eRy xRy xR xR_; X7 4+ X9+ X3 < 0}

EXAMPLE (iy = 17). For Q17, writing the four vectors m4(¢7 0 07 0 d7(Q17)) in rows,
1-10 0
1000
000-1
001-1

(xyzt)M17: (x—i—y—xt—z—t).
Thus D17 = {(X17X27X37X4) S R+ xR_ XR+ XR,;Xl—f—XQ > 0 and X3—|—X4 < O}

EXAMPLE (i5 = 5). For Qs, writing the four vectors my(¢7 0 1 o &7(Qs)) in rows,
-101 0
—-100 0
001-1
0100

(:cyzt)M5:(—x—yt;v+z—z).

we get a 4 X 4 matrix M7 = . Then for x,y, z,t > 0, we get

we get a 4 X 4 matrix M5 = . Then for x,y, z,t > 0, we get
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Thus D5:{(X1,X2,X3,X4) eER_ XR+ XR+ XR,;—Xl X3+X4 0}

EXAMPLE (ig = 6). For Qg, writing the four vectors my(¢7 0 61 o D7(Qg)) in rows,
0010
-1010
—-1001
0100

(myzt)Mﬁz (—y—ztm—i—yz)
Thus D6 = {(Xl,Xg,Xg,X4) eR_ x R+ X R+ X R+,—X3 Xl +X4 0}

we get a 4 X 4 matrix Mg = . Then for z,y, z,t > 0, we get

EXAMPLE (i7 = 2). For Qo, writing the four vectors m4(¢7 0 07 o P7(Qz2)) in rows,
100 0
001 -1
000-1
010 0

(myzt)MQ: (xty—y—z).
Thus Dy = {(Xl,XQ,Xg,X4) S R+ X RJ’_ X R+ X R_;X3—|—X4 < 0}

we get a 4 x 4 matrix My = . Then for x,y, z,t > 0, we get

EXAMPLE (ig = 1). For Q;, writing the four vectors m4(¢7 0 07 o &1(Q1)) in rows,
—-100 0
001-1
000-1
0100

(a:yzt)Mlz (—xty—y—z).
Thus D = {(Xl,XQ,Xg,X4) eR_ X R+ X ]R+ xR_; X3+ X4 < 0}

we get a 4 X 4 matrix M; = . Then for x,y, z,t > 0, we get

EXAMPLE (ig9 = 33). For Qss, writing the four vectors m4(¢7 0 61 0 ®7(Qs3)) in rows,
1-100
1000
0010
001-1

(:cyzt)Mgg = (x+yf:nz+t7t).
Thus D33 = {(X17X2,X37X4) eER xR xRy xR_; X7+ X5 >0 and X5+Xy > 0}

we get a 4 X 4 matrix M3z = . Then for x,y, z,t > 0, we get

In the same way as the 9 examples just demonstrated, we compute directly by
hand the subcones D; C R* for i = 1,2,...,42 as follows:
(1) D, = {(Xl,X27X3,X4) cR_ x ]R+ X RJr xR_; X3+ X4 < O},
JeERL xRy xRy x R_; X5+ Xy <0}
)eR_ xRy xR_ xR_; Xy + X3 > 0}
JERL xRy xR xR_; Xo + X5 > 0};
X)) eR_ xR, xRy xR_;—X; > X3+ X4 >0}
Xl,X27X3,X4) eR_ x ]R+ X RJr X R+; —X3< X1+ X, < 0},
JER_XR_ xRy xR_;—X; > X35+ X4 >0}
)ER, x R_ XR+ XR+;—X3<X1—|—X4<O};
JERy xR_ xR_ xRy; Xy + Xo <0}
ER_xR_xR_ xRy ; X7+ X4 >0}
X1, X2, X3, Xq) € Ry xR xRy X Ry; Xy + Xo < 0}
X1, X0, X3, X4) e RO XROXRy xRy Xy + Xy >0}

)
11 = ( )
( )
(Xl,XQ,X37X4) S R+ xR_ xR_ x R+; X352 X1+ X9 2> 0}7
= {( )
={( )

12 =
13 =
X1, X0, X3, Xy €R+ X R+ xR_ x R+;—X1 < Xo+ X3 < 0},
X17X27X37X4 €R+ X R_ xR_ x R—;_X:i 2 Xl +X2 2 O})

—= =
[S1EN
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(16) D16 = {(Xl,XQ,X37X4) S R+ X RJr x R_ xR_; —X1 S X2 + X3 N 0}

(17) D17:{()(1,)(2,)(37 4) €R+XR XR+XR X1+X2 >0 X3+X4 O}
(18) Dlgz{(Xl,Xg,Xg, 4)€R_ XR+XR_ XR_7X2+X3\O}

(19) Dlgz{(Xl,Xg,X:g, 4) eR_xR_ xR_ XR+;X1+X4 QO},

(20) DQOZ{(Xl,XQ,Xg, 4) €R+XR_XR+XR_;X1+X2 gO,X3+X4>O},
(21) Do :{()(1,)(2,)(37 4) €R+XR7XR+XR7;X1+X2 <0,X3+X4<0},
(22) DQQZ{(X17X2,X37 4) eR xR_xR_ xR_; X; + X5 <0},

(23) 1)23:{()(1,)(2,)(37 4) eR_xR_ XR+ X R_; X3+ X4 SO}7

(24) Doy = {(Xl,Xg,Xg,, 4) eR_xR_ xR_ x R_},

(25) D25:{(X1,X2,X3, 4) €R+ x R_ XR+ XR+;X1 + X9 20}7

(26) D26:{()(1,)(2,)(37 4) cR_ XR+XR,XR+;X1+X4 >O,X2+X3<O},
(27) D27:{()(1,)(2,)(37 4)€R,XR+XR xR4; X7+ X4 <0, X2+X3>0};
(28) Dog = {(Xl,XQ,Xg, 4) S R+ X RJr X RJr XR_; Xg+ X4 > 0}

(29) Dog = {(Xl,Xg,X:),, 4) S R+ X R+ X R+ X R+}

(30) Dgoz{(Xl,XQ,Xg,, 4) €R+ XR+ x R_ XR+;X2+X3 20},

(31) D3 :{(.le,)(g,)(g7 4) cR_ XRJr XR+ XR+;X1 +X4>0}7

(32) 1332:{(,le,.XQ,‘XVg7 4) eER_ xRy xR xRy Xy + Xy 20,X2+X3>0};
(33) Dgg:{()(1,)(2,)(37 4) €R+XR,XR+XR,;X1+X2 >O,X3+X4>O},
(34) 1)34:{()(1,)(2,)(37 4)ER_XR+XR_XR+;X1+X4<O,X2+X3<O};
(35) D35 :{(Xl,XQ,X37 4) XR+ XR+ XRJ,_;Xl +X3+X4 QO},

(36) D36:{(X1,X2,X3, 4) GR_ XR+ XR+ XR_;Xl +X3+X4 20},

(37) Dar = {(X1, X2, X3, X4) € R, ¥ R_ x Ry x Rys X1 + X3 + X4 < 0}

(38) D38:{(X17X2;X37 4) X ROXRy xR X 4+ X3+ Xy 20},

(39) Dggz{(Xl,XQ,Xg, 4) €R+ xR_ xR_ XR+;X1 + Xo + X3 20},

(40) D40 = {(Xl,XQ,X37X4) S R+ X ]R+ x R_ x R+;X1 + X2 + X3 < 0},

(41) Dy = {(X1, X2, X3, X4) €ERy x R xR X R_; X1 + Xo + X3 >0}

(42) Dyz = {(X1, X2, X3, X4) € Ry xRy x R_ X R_; Xy + Xo + X3 <0}

In particular, each subcone D; C R* has dimension 4, since its explicit description
via inequalities shows that it has nonempty interior in R*. Equivalently, one can check
directly by hand that the corresponding 4 x 4 matrix, such as in the 9 examples above,

has rank 4.

Since, by Definition 4.17, the subcones D; C R* are generated by 4 elements, we
gather that each D; is a full subsector of R*.
by hand that the 16 orthants Ry x Ry x Ry x Ry C R*

One checks directly
decompose as:

xR_ xR_
XR+
XR+
x R_
XR+
_XR+
x R_
XR+
x R_
x R_
XR+
x R_
XR+
X R_
XR+
x R_

Lo
X X
?%

+ xR_
+ xRy
+XR_
XR+
XR+
x R_
+ xR_
+XR_
XR+

+

AR AERARRAARRAARR

x R_ = Day;

X Ry = Da;

X R_ = Dy U Dag;

X R_ =D3UD18;

X Ry = Dg U D31 U Dgs;

X R_ = D7 U Dy3 U Dagg;
x Ry = D1p U Dig;

X Ry = D11 U Das;

X Ry = D14 U D3p U Dyp;
X R_ = D15 U Daz U Dyy;
X R_ = Dy UDs5U Dsg;
X R_ = Dy U D16 U Dys;

X RJr = DgUD12UD37;
X Ry = Dg U D13 U D3g;
x R_

= D17 U Dyg U Doy U D3g3;

X R+ = D26 U D27 U D32 U D34.
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It follows that R* = UfﬁlDi. It remains to show that D; N D, has empty interior
for all pairwise-distinct 4, . Since this is true if D; and D, lie in different orthants,
we only need to check those pairs D;, Dy lying in the same orthant.

This is done directly by hand; however, the cases fall into only four types. First, for
orthants 1,2: There is nothing to check. Second, for orthants 3, 4, 7, 8: In 3, say, the
inequalities X3+ X4 < 0 and X3+ X4 > 0 have codimension 1 intersection even when
defined on all of R, so they do as well when restricted to the orthant. The other cases
go the same. Third, for orthants 15, 16: This is similar to the second type. Lastly,
for orthants 5, 6, 9, 10, 11, 12, 13, 14: In 5, say, the sectors Dg and Ds3; similarly
have codimension 1 intersection, as do the sectors Dg and Ds5. This is also true for
D31(X1 + X4 > 0) and D35(X1 + X3+ X4 < 0) so long as D3y N D35 implies X3 = 0,
which it does, since it implies X3 < —X; — X4 < 0 whereas we are restricted to the
orthant R_ x Ry x Ry x R;. The other cases go the same. g

We now analyze the walls (Definition B.10) in the sector decomposition
{D;}iz12,..42 of RY Recall (Definition 4.17) that Q; is called the topological
type of the sector D;.

PROPOSITION 4.21. The third item of Theorem 4.8 holds word-for-word, except with
C% replaced by D;, and replacing (k) by (1).

In particular, D; N Dy is a wall if and only if the intersection J; N Jy of their
corresponding index sets has 3 elements (see the beginning of this sub-subsection,
Section 4.3.2). In this case,

(1) D;,ND, :spanﬂh({?u(arj);j € JlﬂJg}) CR4.

Proof. Any wall D; N D, must, by definition, be 3 dimensional. This restricts which
indices {i,¢} can yield walls. Through a direct by hand check, using the explicit de-
scription by inequalities of the sector decomposition {D;}; as in the proof of Propo-
sition 4.19, one verifies that a necessary condition for D; N Dy to be a wall is for D;
and Dy to be connected by an edge in the graph G depicted in Figure 3. We show this
is also a sufficient condition.

More precisely, the goal is to show, for any two sectors D; and D, connected by an
edge in G, that J; N Jy has 3 elements and (1) holds. In particular, D; N Dy is a cone
of dimension 3. Note the inclusion D in (1) holds automatically; see Definition 4.17.

We checked this directly by hand. There are two types of calculations, depending
on whether the sectors are in different orthants or the same orthant.

As an example where the sectors are in different orthants: We demonstrate this for
Dsg and D3, which were computed in detail in the proof of Proposition 4.19. There,
one sees that three rows of the corresponding 4 x 4 matrix Msg appear as rows in
the matrix Msg (recall also Remark 4.20). This means that J; N Jp has 3 elements;
see Remark 4.18. Note that the row in Msg that is not in Mjzg corresponds to the
variable x, and the row in M3zg that is not in Mag corresponds to the variable z’. The
inclusion C in (1) is true since

(ty,x,2) = (t', 2" +y,—a',2') e R (z,y,2,t,2",y/, 2/, t' > 0)

implies x = 2’ = 0. The other different-orthant cases are similar.

As an example where the sectors are in the same orthant: We demonstrate this
for D5 and D1, which were also computed in detail in the proof of Proposition 4.19.
There, one sees that three rows of the corresponding 4 x 4 matrix M appear as rows
in the matrix M; (recall also Remark 4.20). This means that J; N J, has 3 elements;
see Remark 4.18. The row in Mj not in M; corresponds to the variable z, and the
row in Mj not in My corresponds to the variable z’. The inclusion C in (1) is true
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since
(—.2? - y,t,x + 2, _Z) = (_$/7t/ay/a _yl - Z/) S R4 ($,y,2,t,$l,y/,zl,tl 2 O)

implies, by adding the third and fourth entries, that x = —z’ hence z = 2’ = 0. The
other same-orthant cases are similar.

We gather D; N Dy is a wall if and only if D; and D, are connected by an edge of
the graph G, in which case J; N Jy has 3 elements. In particular, since G is 4-valent,
the last paragraph of the third item of Theorem 4.8 holds (again, with D; in place of
cy).

7—To finish justifying the second paragraph of Proposition 4.21 (equivalently, the first
paragraph of the third item of Theorem 4.8, appropriately substituted), we need to
show that if J;NJ, has 3 elements (equivalently, Q; N Q, has 3 elements), then D;N D,
is a wall.

So far, we have exhibited, for each i, 4 topological types Qy such that Q; N Q, has 3
elements, all corresponding to walls D; N Dy. We thus need to show there are no more
indices ¢ such that Q; N Q, has 3 elements. For this, it suffices to establish the second
paragraph of the third item of Theorem 4.8, which is a purely topological statement
about webs in good position on the triangulated square; compare Observation 1.13
and Proposition 4.1. We checked this directly by hand; compare Example 4.9. O

4.3.3. Finishing. We are now prepared to prove the theorem.

Proof of Theorem 4.8. Let C C R% x R* be the cone isomorphic to the completed
KTGS cone Cr C Rf via the linear isomorphism ¢ o 87 : R'?2 — R8 x R*; see
Definition 4.15.

Recall also Notation 4.16 from the discussion at the beginning of Section 4.3.2,
which should help with comparing the general lemmas of Section B.2.2 to the current
application.

By the explicit calculation of the Hilbert basis elements ¢7 o 67 o &+ (WH) € C
for i = 1,2,...,22 in Section 4.3.1, together with Proposition 4.19, we see that C' C
R x R* satisfies the hypotheses of Lemma B.12. Indeed, D; C m4(C)) by definition,
for each i. Therefore, C' is 12 dimensional, so the isomorphic completed KTGS cone
C'1 is 12 dimensional as well. This establishes the first item of Theorem 4.8.

Let us prove that C7 = U2, C% C R!?; see Definition 4.6. This follows by Theo-
rem 1.14, Proposition 4.1, and Lemma B.17. Indeed, by Theorem 1.14, every point in
the KTGS positive integer cone C+ C Zf is equal to @5 (W) for some reduced web
W € W in the square. By Proposition 4.1, the web W is an element of one of the
42 web families: W € W; C Wr. By Observation 4.7, we have that ®,(W) € Ck.
We gather that Cr = Uj2,Ci- C Z12. Also, the submonoids C% C Cr are finitely
generated by Definition 4.6. We conclude by Lemma B.17 that we have the equality
Cr = Uf2,C% C RY? of completions, as desired.

We return to the isomorphic cone C C R x R* Let {z;}j=12, 14 and
{Ji}i=1,2,... 42 be defined as in the beginning of Section 4.3.2. For i =1,2,...,42, let
the subcones C; C C be defined as in the statement of Lemma B.13. Equivalently, the
subcone C; = ¢7 0 07 (Ch) C Rf_ x R* is the isomorphic counterpart to the subcone
Ci- c Cr C R¥2. It follows by the previous paragraph that C' = U2,C; C R} x R* in
the isomorphic cone C. By this, together with another application of Proposition 4.19,
we see that the hypotheses of Lemma B.13 are satisfied. Therefore, by Lemma B.13,
we obtain the second item of Theorem 4.8, except with C'+ and C%— replaced by C'
and C;, respectively. Since this property is preserved by linear isomorphisms, we
conclude the second item of Theorem 4.8 as stated.
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Lastly, by Proposition 4.21, in particular (1), the hypothesis of Lemma B.14 is
satisfied. Therefore, by Lemma B.14, the set {walls of {C;}; in C'} is in one-to-one
correspondence with the set {walls of {D;}; in R*} in the obvious way by the projec-
tion 74. Moreover, a given wall C; N Cy can be computed by (m) in Lemma B.14. We
conclude by the remainder of Proposition 4.21 that the first and third paragraphs of
the third item of Theorem 4.8 are valid, except with Cr, CiT, and (k) replaced by C,
C;, and (m), respectively. Since the inverse of the linear isomorphism ¢ o 61 pre-
serves these properties, and maps (m) to (k) (see the beginning of Section 4.3.2), we
conclude the first and third paragraphs of the second item of Theorem 4.8 as stated.
The second paragraph is a purely topological statement about webs in the square,
and was already established during the proof of Proposition 4.21. O

The following consequence is immediate from the proof of Theorem 4.8.
COROLLARY 4.22. The function
10 ¢y ol : Cr — R
is a surjection from the completed KTGS cone Cy C Rf (in fact, from a ‘4 dimen-

sional’ proper subset of Ct) onto R*. g

Recall the notion of a cornerless web W = W, in the square; see Definition 2.9.
Let Wg C Wg denote the set of cornerless webs up to equivalence. Note for each
1=1,2,...,42 that Q; C WlﬂWé

Consider also the function 74 0 ¢ 0 07 0 @7 : W — Z* C R* defined on Wg. See
for example the nine computations at the beginning of the proof of Proposition 4.19.

Another consequence of the proof of Theorem 4.8 is:

COROLLARY 4.23. The restricted function
740 ¢ 070Dy WG — Z*
restricted to the cornerless webs W& C Wp is a surjection onto the integer lattice
Z* C R*.
In particular, the function a0y ol from Corollary 4.22 maps (a ‘4 dimensional’

proper subset of) the KTGS cone Cr C Zf surjectively onto Z*.

Proof. We know that R* = U2, D; and D; = 74 o ¢ o 07(C%) where C& > Ch
(Definition 4.6). We also know that the cone points CIJT(WJH) inCy forj =1,2,...,8,
corresponding to the 8 corner arcs in the square, are sent by ¢ o 61 to the first 8
standard basis elements e; of R% x R*. We gather m4 o ¢ o 67 is still a surjection
onto D; when restricted to the subset

Ol = spanR+({<I>7—(WH); Wt e Q;}) c Ch c RIA
Note also that (similar to Observation 4.7)
(W, NWG) = spanZ+({<I>T(WH); wH e 9}) cCl

It thus suffices to show: for any ¢ € C%, if m4 0 ¢ 0 67(c) € Z* N D;, then ¢ €
S (Wi nWg).

Once again, we work in the isomorphic cone C; = ¢ 0 07(C%) C RE x R*, which
projects to D; by m4. Put (see the beginning of Section 4.3.2)

Cl = ¢r007(CH) = spang, ({z;;j € Ji}) C C; C R® x R?
and note also that

o7 0 07 0 Dr(W; NWE) = spang, ({z;;5 € Ji}) C .
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The above property is then equivalent to showing: for any ¢ € C} such that m4(c) €
Z* N D;, we have ¢ € ¢7 o 07 o D (W; NWG); that is, if such a ¢ € C/ is written
€ = XTX1() +YTo) + 2T50) +tx g0 for x,y, z,t > 0 (see the beginning of Section 4.3.2),
we want to show z,y, z,t € Z.

This is accomplished through a direct by hand check, taking advantage of the ex-
plicit description of the sectors D; provided in Section 4.3.2. As before, although there
are 42 cases, these fall into only five types, each represented among the 9 examples
demonstrated in the proof of Proposition 4.19: Type 1 corresponds to i1; Type 2
corresponds to ig,17,is; Type 3 corresponds to i3; Type 4 corresponds to iy4,%9; and
Type 5 corresponds to i5,i6. We will only demonstrate the most nontrivial case,
Type 5 (for i5, say); the other cases are similar.

So consider i5 = 5, and assume my(c) = zm4(T15)) + Yma(To) + 2ma(2365)) +
tra(z45) € D; is, in addition, in Z* for some x,y, z,t > 0. Note the vector ma(zj0)) is
the j-th row of the matrix displayed in the i5 example in the proof of Proposition 4.19.
From this example, we gather that m4(c) = (—x — y,t,2 + 2,—2) € Z*. So t,z € Z;
implying by z + z € Z that x € Z; implying by —x —y € Z that y € Z, as desired. [

REMARK 4.24. We expect that the restricted function from Corollary 4.23 is also
an injection. We suspect that there may be a proof of this result via a conjectural
generalization of (k) to higher codimension intersections.

CONCEPTUAL REMARK 4.25. Recall Remark 3.9.

We view the real cone C' C Rf as the isomorphic T -chart C'y = —A'S*L&D(]Rt)fr.

On the other hand, via the isomorphism 7 : R'? — Vi C R'® we may view the
real cone 07 (C7) C Vr as the isomorphic T-chart 87(Cy) = _A;GL&D(Rt)T

Recall, in addition to the 12 dimensional A-moduli spaces Agr,, o and Apgr,, 0,
Fock-Goncharov [10] and Goncharov—Shen [19, 21] defined the X- and P-moduli
spaces Xpgr,,0 and Ppgr,, 0, which are 4- and 12-dimensional, respectively. In addi-
tion, there are canonical maps p : Asr, 0 — Xpcr,,0 and b : Agr, 0 — Ppar,,0 (the
notation p may be nonstandard). The tropical points Xpgr, 0(R") and Ppar, o(R") of
these spaces are also defined, inducing tropicalizations p* : Agp, o(R*) = Xpar, o(R?)
and p' : Agr, 0(R?) = Ppar, 0(RY) of the canonical maps.

In terms of T-charts, we view Xpar, 0(R")7 = R* and Ppar, o(RY)7 = R® x R
We think of the projection 740 (¢70607) : R2 — R8 x R* — R* as the canonical map
p! written in coordinates. We think of the isomorphism ¢ o 07 : R? — R® x R?* as
a coordinate version of the canonical map p.

We interpret Corollary 4.22 as saying that, when expressed in coordinates,
the canonical map p'(~ w4 o ¢7 o 1) also projects the subset —A§L37D(Rt)7’ C
Asp, 0(RY)7(~ Cr C R'?) of positive points onto Xpgr,, o(RY)7(~ R?).

In addition, since the positive integer cone Cr C Z!? is in bijection with the
set of reduced webs W via the web tropical coordinate map ®, and since Cy =
—3A;§GL37D(Zt)7— by Remark 1.6, we can interpret Corollary 4.23 as saying that,
in coordinates, the canonical map p’(~ w4 o ¢7 o 07) projects a proper subset of
_SA;GL37D(Zt)T C ASL&D(Zt)T(% CT - Z12) onto XPGLg,D(Zt)T(z Z4).

APPENDIX A. BACKGROUND ON FOCK—GONCHAROV—SHEN THEORY

We briefly summarize some of the related concepts from Fock—Goncharov—Shen the-
ory [10, 19]. Details can be found in the other references, for example, [24, Section 4].
(This appendix assumes the terminology of Section 1.1.)
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REMARK A.1l. Although not strictly required for the main theorems of the arti-
cle, the material of this appendix is intended to emphasize the important concep-
tual concepts guiding the rest of the paper. See, in particular, the Conceptual Re-
marks 1.6, 2.14, 3.9, 4.25.

A.l. SL3-DECORATED LOCAL SYSTEMS. Let E be a 3-dimensional vector space
equipped with a volume form €. Let A denote the collection of decorated (complete)
flags in E.

Let S be a marked surface. Fix a base point xg in S , henceforth suppressed in the
notation. For each puncture p; € m, let o; be an oriented peripheral closed curve
around the puncture. An SLs-decorated local system on S determines a pair (p, &)
consisting of:

(I) a surface group representation p € Hom(m(S),SL3) with unipotent mon-
odromy along each peripheral curve a;;

(II) a flag map & : mp Um, — A such that each peripheral monodromy p(a;)
fixes the decorated flag £(p;) € A. (More precisely, the flag map £ should be
defined equivariantly at the level of the universal cover S )

A point of the Fock—Goncharov moduli space ASL37§ determines an SLs-decorated
local system up to suitable equivalence.

Let V5 (resp. Vi) be the set of vertices of an ideal triangulation 7 (resp. ideal
3-triangulation 73) of S. Note that Vr=myUm, C Vr,. Put

Is :={V € Vi — V5; V lies on an edge of 7} and J3 ==V, — (VU I3).

We denote a vertex V' € I3 U J3 on a triangle (a,b,c) oriented counterclockwise by
0,5k
ahe e o el
of edges of T3 from V' to bc, from V' to @c, and from V' to ab, respectively, where be,
ac, ab denote the unoriented edges of T (see Figure 17).

Consider a vertex V' € I3UJ3 contained in a counterclockwise oriented ideal triangle

A = (a,b,c). For an SLs-decorated local system (p,§) in A

v where the three nonnegative integers ¢, j, k summing to 3 are the least number

SL3,§ let
(a1,as,a3), (b1, b2, b3), (c1,c2,c3) € E

be bases adapted to the decorated flags £(a), £(b), £(c) € A with respect to the volume
form Q. The Fock—Goncharov A-coordinate at V = v;’fb”’z € I3U Jzis
Ay (p, &) = Ay = A;kac = Q(a' AV A )

where a® = ay, a® = aj A as, etc. This is independent of the choice of bases. (Also put

3,0,0 o 0,3,0 0,0,3
A = Q(a®) = Qa1 Aag A ag) = 1 and, similarly, Ape =Ape=1)
Given the quiver defined with respect to the orientation of the surface as in Fig-

ure 17, let
eyw = |{arrows from V to W}| — |{arrows from W to V'}|.

Forany Ve IsUJs, V ¢ 6?, the Fock—Goncharov X-coordinate at V is

Xv(p,&)=Xv:= [ 4w
WelsUJs

REMARK A.2. By [10], the moduli space ASL3 5 has a cluster algebraic structure [15]
described by quivers on the surface, such as that in Figure 17. In particular, each
A-coordinate transition map between different triangulations 7 and 7T’ is positive

rational.
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Let D ={(2,1,0),(1,2,0),(1,1,1)}. Suppose the, now pointed, ideal triangle A =
(a; b, ¢) is counterclockwise oriented, as in Figure 18. For (i, j, k) € D, the monomials

i,5,k . Az 1]k+1Az+1j lk/A'LJk i,j—1,k+1

aa;b,c T “ta,b,e a,b,c a,b,c*ta,b,c

correspond to the three rhombi in Figure 18. Define

P(A) = P(a;b,c) = Q210 4 (1,20 | (L1

a b,c a;b,c a;b,c

Let O be the collection of counterclockwise oriented pointed ideal triangles of 7. The
Goncharov—Shen potential is
P=> P(A)

A€O
Note for a given ideal triangulation 7, the Goncharov—Shen potential is a positive

Laurent polynomial in the A-coordinates for .ASL3 5

REMARK A.3. The Goncharov—Shen potential is mapping class group equivariant
and defines a rational positive function on the moduli space ASL3,§' In [19], the
Goncharov-Shen potentials are related to the mirror Landau-Ginzburg potentials.
In [24, Section 4], the Goncharov—Shen potentials are related to generalized horocycle
lengths.

The points ASL S( ) are defined over any semifield P. The tropical semifield R =
(R,®, @) is defined by z®y = x+y and x @y = max{x, y}. The isomorphism x — —x
sends (R?, 4+, max) to (RY, +, min). In this appendix, we use (R’, +, min). The tropical
semifields Z' and (1/3)Z" are similarly defined. To each ideal triangulation 7 there is
associated a T-chart Ag S( ). We have A, S( 7 = RY and A, S( Hr=zN

and ASL S((I/B)Zt)T = ((1/3) )N where N is the number of A-coordinates.
A posmve Laurent polynomial f has tropicalization

Frwryeee o) = lim log (e, e97)/C.

The tropical A-coordinates are denoted AY, for V € I3 U J3. (Note (Ai 2 S) = 0 since
A3 — 1)) So

abc

(O{Lj’k)t — (Ai—l,j,k-i-l)t 4 (Ai-i-l,j—l,k) (A’Lj k) (Ai,j—l,k+l)t

asb,e a.b,c asb,c asbse asb,e
and the tropicalized Goncharov—Shen potential is
P' = min{(ag3%) Yoy bak of P
where the minimum is taken over all rhombi in all pointed ideal triangles of 7.
The condition P* > 0 on A, R t) determines the space A+ A(Rt) of posi-
tive real tropical points as well as its 7T -chart A+ ’g(Rt) The bpaces .A+ S(Zt)
and .AJr ((1/3)Zt) as well as their 7-charts .AJr (Zt)T and .A;r 3 ((1/3)Zt)7— are

snmlarly deﬁned
A.2. PGL3-DECORATED LOCAL SYSTEMS. The moduli space APGL3 5 is defined
Although the A-coordinates A;’jbk; are no longer defined for

0,5,k
a;b,c?

analogously to ASL 5

APGL g (as they depend on the choices of scale), the rhombus numbers «

so the Goncharov—Shen potential P, are defined (the choices of scale cancel out in

the ratio defining aa’Jb’ *). So, the tropical points APGLBE(P) and their positive parts

.A;FGL §(P) with respect to the tropicalized Goncharov—Shen potential Pt are defined
35

and
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d

FIGURE 17. 3-triangulation with quiver.

a

b c

FIGURE 18. Red rhombus for ai’;})”g, yellow rhombus for a7

asb,c’ and

11,1 . . . .
green rhombus for o}, in a pointed ideal triangle.

as well. We refer to the space A Z') as the space of lamination-tropical points,

PGL3,§(
and we refer to the space .A;FGL §(Zt) as the space of web-tropical points.
35

The T—§hart APGL37§(Zt)T is determined by imposing the condition (« ;kac) €EZ

for all (@’7¥)? of Pt on AgL, S((1/3)Zt) >~ ((1/3)Z)N, and the T-chart AT (Z') 1
” . PGLs,S

is determined by imposing the condition (afl’;],;kc)t € Zy for all (a;’fb”kc)t on
Agp, 5((A/3)Z8) 7 = ((1/3)Z)".

In summary, we have the following relations among 7T -charts:

ZN = Ay (27 C Apy, (27 © Ay 5((1/3)2%) 7 = ((1/3)2)Y
AL g@0r AL S(Z0r CAG (/32

SL3,S
NRN At s(R Nr=AL (Rt)’r

A )T 'ASL S( ) PGLg, SL3,S

PGLg,S(

REMARK A.4.

(I) By [9, Remark 6.5], we equally well could have imposed the conditions defin-

ing A ~(Z) 7 and AT (Zt)T on A )7 = RY rather than on

PGL3,S PGLs3, SL3 S(

Algebraic Combinatorics, Vol. 8 #1 (2025) 144



Tropical coordinates for SL3-webs: naturality

ASstg((l/i%)Zt)T =~ ((1/3)Z)N. That is, all real solutions are, in fact, one

third integer solutions. Moreover, in the case of AliGL §(Zt)7—, these one
35

third integer solutions are nonpositive (this is because the tropicalized rhom-

bus numbers (Ozfljbkc)75 are defined with the opposite sign compared to those
appearing in [9]). (Note that less confusing conventions should be possible
without significant effort.)

(IT) The space APGL37§(Z’5) of lamination-tropical points is called the space of
‘balanced points’ in [27].

(III) By [19], when S is a disk with three marked points on its boundary, the
positive integer tropical points are identified with the Knutson-Tao hive [29].

APPENDIX B. CONES

The proofs of the results of this appendix are elementary, and are omitted. (They are,
however, provided in the arXiv version [8] of this article.)

REMARK B.1. Some of our terminology might be non-standard, adapted for the pur-
poses of this paper. For example, using the terminology of [36], a ‘polyhedral cone’
is what we call a cone; a ‘simplicial polyhedral cone’ is what we call a sector; and,
a ‘k-dimensional pure simplicial polyhedral fan’ determines what we call a sector
decomposition of a cone.

B.1. POSITIVE INTEGER CONES AND HILBERT BASES. Recall that Z denotes the
set of nonnegative integers.

DEFINITION B.2. A subset M C Z* (or C R¥) is a submonoid if M is closed under
addition and contains 0.

DEFINITION B.3.Let M C Z* (or C R¥) be a submonoid. An element z € M is
irreducible if x is nonzero, and x cannot be written as the sum of two nonzero
elements of M.
We denote by H C M the set of irreducible elements of M.
A subset D C M is:
(I) Z,-spanning if every © € M is of the form x = A\jz1 + Aoz + -+ + A
for some z; € D and \; € Z, in which case we write z € spang, (D);
(IT) a minimum Z.-spanning set if, in addition, for every Z-spanning set D’ C
M we have D C D'.

Note that a minimum Z,-spanning set is unique if it exists.
DEFINITION B.4. A positive integer cone C is a submonoid of Z’i.

PRrOPOSITION B.5. The subset H C C C Zi of irreducible elements of a positive
integer cone C C Z’fr is the unique minimum Z, -spanning subset of C. O

REMARK B.6. Note that the Z-spanning property of H in Proposition B.5 is not
true if we had only assumed that C = M is a submonoid of Z*. For example, the
monoid M = Z* has no irreducible elements. However, it is also not essential that
the submonoid be contained in a single orthant; note Remark B.8 as well.

DEeFINITION B.7.Let H C C C Z’jr be as in Proposition B.5. If H is a finite set, then
it is called the Hilbert basis of the positive integer cone C C Z’j_.

REMARK B.8. Hilbert bases [23, 42] appear in linear algebra and linear programming,
and are defined in more generality than what we have defined here.
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B.2. CONES OVER THE REAL NUMBERS. Recall that Ry (resp. R_) denotes the set
of nonnegative (nonpositive) real numbers.

B.2.1. Cones and sector decompositions.

DEFINITION B.9.

(I) A (real) cone C C R” is a subset of R¥ such that C = {3°7", Aici; A € Ry}
for some finite set {c;}i=1,2,...m C RF, called a generating set of C. We also

write C' = SpanR+(cl, €2y e ey Cm)-
(IT) The minimum number of elements of a generating set is called the rank of
the cone C.

(IIT) The subspace C C R¥ defined by C' = O Xici; A € R} is independent of the
choice of generating set {c¢;};, and its dimension is called the dimension of
the cone C. Note dim(C) < rank(C) < oo.

(IV) A cone C is a sector if dim(C) = rank(C).

(V) A cone C C RF is full if dim(C) = k.

DEeFINITION B.10.

(I) A sector decomposition of a full cone C C R* is a finite collection
{C;}i=1,2,...p of subcones C; C C satisfying:
(i) each C; is a full sector;
(ii) C =C1UCyU---UC, is the union of the sectors Cj;
(iii) for each distinct 4,7 € {1,2,...,m}, the intersection C; N C; C R* has
empty interior, that is, does not contain an open subset of R¥.
(IT) If C and C’ are two full cones in R¥, then the intersection C' N C’ is a wall if
C' N’ is a cone of dimension k — 1.

OBSERVATION B.11. If {C; }i=1,2,... p is a sector decomposition of a full cone C C R*,
and if W = C; N Cy is a wall, then there is no other pair of sectors giving this wall:
W = Cy N Cy if and only if {i, £} = {¢,¢'}. O

B.2.2. Some technical statements about cones of the form C C ]Ri x R™.

LEMMA B.12. Let C' C R’j_ x R™ be a cone satisfying the following properties:
(1) e; € C fori = 1,2,...,k, where e; is the i-th standard basis element of

RF x R™;
(IT) 7,(C) = R™, where 7, : R¥ x R — R" is the natural projection.
Then, dim(C) = k + n. Namely, C is full. O

LEMMA B.13. Consider a full cone C C Rﬁ XR™ as in Lemma B.12. Let {z;};=1,2,...m

be a finite subset of C' with m > n, and let {J;}i=1,2,... p for some p be a collection of

index sets J; = {jy),jéi)7 . ,j,(f)} c {1,2,...,m} of constant size n (|J;| = n).

Assume in addition:
(I) C =UY_,C; is the union of the subcones
C; = spang, ({e1,ez,...,ex} U{zj55 € Ji}) CC C RE xR™ (i =1,2,...,p);
(IT) the subcones
D; = spang, ({mn(z;);j € Ji}) CR" (i=1,2,...,p)
are full sectors forming a sector decomposition {D;};=1,2.... p, of R (Definition

B.10).
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Then, the subcones C; C C are full sectors forming a sector decomposition
{Ci}tiz=1,2,..p of C.

Moreover, 7,(C; N Cy) = D; N Dy for all i,f. In particular, the sector C; projects
via m, to the sector D;. O

LEMMA B.14. Let the full cone C C Rﬁ x R™, the sector decomposition {D;}i=12, .,
of R", and the sector decomposition {C;}i=1,2....p of C be as in Lemma B.13.
Assume in addition:
(I) for each i, such that D;NDy is a wall in R™ (Definition B.10), we have more
specifically that the intersection J;NJ, C {1,2,...,m} of index sets hasn—1
elements, and

D; N Dy = spang, ({my(x5);5 € J; N Je}) CR™

Then, for any i,¢, we have that C; N Cp C R’j_ X R™ is a wall in C if and only if
D; N Dy CR"™ is a wall in R™. In particular, if this is the case for a given i,{, then

(m) C; N Cp = spang, ({e1,e2,...,ex} U{z;;j € JiNJe}) C RE x R™

This yields a 1-to-1 correspondence {walls of {D;}; in R"} < {walls of {C;}; in C}.
0

B.2.3. Cone completions.

DEFINITION B.15. Let M C R¥ be a submonoid (Definition B.2) having a finite Z -
spanning set {c¢; }i=1,2,..m (we say M is finitely generated). Then, its completion
M C RF is the corresponding real cone with the same generating set {c;}; (this is
independent of the choice of generating set).

By Proposition B.5, we immediately have:

OBSERVATION B.16. Let C C Z’jr be a positive integer cone (Definition B.4) admitting
a Hilbert basis H C C (Definition B.7). Then, the rank of its completion C C R’i is
less than or equal to the number of elements of the Hilbert basis H. O

LEMMA B.17. Let M C RF be a monoid. Assume there are finitely generated sub-
monoids My, Ma, ..., M, C M such that M = UY_ M, (in particular, M is finitely
generated). Then, M = U?_| M. O

APPENDIX C. FLIP EXAMPLES IN THE SQUARE

In Section 2, we proved the naturality of the web tropical coordinates without having
to see what the new good position of a web in the square looks like after flipping
the diagonal, which is topologically subtle. In this section, we give some examples of
seeing the good position after the flip. This gives us another way to check the formulas
of Theorem 2.4; see also Remark 2.1 at the beginning of Section 2.

The 9 symmetry classes of web families (see Figure 15 and Remark 4.3) fall into
roughly three types. Let us study the flip a bit more intensively for one example of
each type.

Let W = W, € W be a cornerless web in the square and belonging to the family
W, C Wg, where the value of i; depends on which of the 9 cases we are considering
(j=1,2,...,9); see Notation 4.2.

Recall that T (resp. T7) is the triangulation shown in the left hand side (resp. right
hand side) of Figure 2. Consider the web tropical coordinate maps &7 : Wg — Cr
and ®7 : W — C (see Section 1). Denote ¢ = ®7(W) € Cy C Z}? by

c= (Cj)j=1,2,..4,12 = (21, %2, 3, T4, Ts, Te, T7, T8, Y1, Y2, Y3, Y4)
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and ¢ = &7 o <I>7i1(c) € Cr CZ¥? by
/
J
(compare Definition 2.3 and Figure 2). We know right away that z; = z for i =
1,2,...,8.

Our goal is to check that (c), (d), (e), (f) are satisfied, by presenting the explicit
good position of the family W, after the flip, allowing us to calculate the coordinates
directly. We do this in the three example cases j = 1,3, 7.

Recall in particular z,y, 2,t € Z4 in Figure 15.

/ / / / / / / ! /
c = (C )j:1,2,...,12 — ($1,$2,.’E3,1'4,ZL’5,$6,.’E7,.’E8721,22,23,Z4)

EXAMPLE (family (1)). The simplest cases are given by schematics (1) and (2) of
Figure 15. We verify case (1) here. The other case is similar. We compute the ¢;’s and
c;’s via Figure 9; see also Section 1.3.2.
Notice in this case it is obvious that the web on the right hand side of Figure 19 is
in good position with respect to the flipped triangulation.
Left hand side of Figure 19, coordinates c;(for j =1,2,...,12):
(1) 2z +y+2z+2t;

) &+ 2y + 2+t
) 2
)
) 2z + 2y + 2 + 2t;
) T4y + 22+
) 2t;
) &
) 2z +y+ 22+ 3t
) T+ 2y + 2+ 2t
) 3T+ 2y + 2 + 2t;

(12) 2z +y+ 2z +t.

Right hand side of Figure 19, coordinates c(for j =9,...,12):
(9) z+y+2242t
(10") 3z +2y + z + ¢;
(11) 2z + 2y + z + t;
(12") z +y+ 22+ 3t.

The following computations verify (c), (d), (e), (f) in this case.

(o)max{(z+2y+z+t)+ Bz +2y+2z+2t), 2z +y+ 22+ 3t) + 2z} — (x + 2y + z + 2t)
=max{4x +4y+2z+3t,dx+y+22+ 3t} — (r+2y+2+2t) =3z + 2y + z + ¢

(d)max{(2z+y+2:+3) + (x+y+22+1),2t+ (3w + 2y + 2+ 20)} — 2z + y + 22 + 1)
=max{3zx + 2y + 4z + 4,3z + 2y + z + 4t} — 2z +y+2z+t) =+ y + 2z + 3t

(e)max{(2z+y+2z+2t)+ (x+y+22+3t),t+ Bz +2y+2z+1t)} — 2z +y+ 2z + 3t)
=max{3x + 2y + 4z + 5,3z + 2y + z + 2t} — Lz +y+ 22+ 3t) =z +y + 2z + 2t.

(O):max{Bz+2y+z+t)+ 2z +2y+2+2t),(x+y+22+3t) +z} — 3z + 2y + z + 2t)
=max{br+4dy+2z+3t,2x +y+2z+3t} — Bz +2y+2+2t) =20 +2y + 2z +t.

EXAMPLE (family (3)). The next simplest cases are given by schematics (3), (4), (5),
(6), and (9) of Figure 15. We verify case (3) here. The other four cases are similar.
We compute the c;’s and c;’s via Figure 9; see also Section 1.3.2.

Unlike in the previous example, it is less obvious that the schematic appearing on
the right hand side of Figure 20 faithfully displays how the good position looks after
the flip. That this is indeed the case is a bit subtle topologically, however can be
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verified by an explicit procedure that draws the desired flipped bigon on top of the
starting web as represented by the left hand side of Figure 20. We demonstrate this
bigon drawing procedure in Figure 24.

The schematic diagram of the web in good position restricted to the flipped bigon
in the right hand side of Figure 20 is shown in the left hand side of Figure 21. It is
an enjoyable exercise to check that this bigon schematic agrees with the web example
schematically shown in Figure 24.

Another guiding example showing the web in good position after the flip (without
using schematics), is provided in the right hand side of Figure 21.

Left hand side of Figure 20, coordinates ¢;(for j =1,2,...,12):

ﬂ)w+2%
2
3
4

)

) sty + 24t
) 2z + 2y + 22 + 2t;

) T4y + 2

) 2z + 2y + 2z;

) 2y + 2+ 2t

) y+2z+t;

) x+3y+2z+t;

(10) 2z 42y + 2z + ¢;

(11) 3z + 3y + 3z + 2t;

(12) = +y+ 2z +2t.

Right hand side of Figure 20, coordinates c/(for j =9,...,12):

(9) 2z24+3y+z2+1t;
(10") 3z +2y + 2+ t;
(11") = + 3y + 2z + 2t;
(12") 2z + 4y + 3z + 2t.

The following computations verify (c), (d), (e), (f) in this case.
(¢)max{(2z +y)+ Bz +3y+3z+2t),(zx+3y+2z+t)+(x+y+2z+1)}
—(2z+2y+22+1%)
=max{bx +4y+ 32+ 2t,2x +4dy+ 32+ 2t} — 2z +2y+2z+t) =3z +2y+ 2+ t.

(
(
(
(5
(6
(7
(8
9
10
11

(d):max{(x + 3y +2z+1t) + (2 + 2y + 22), 2y + 2 + 2¢) + (3z + 3y + 32 + 2t) }
—(z4+y+z+2t)
=max{3x + 5y +4z+t,3x+5y +4z+ 4t} — (v +y+ 2+ 2t) = 2z + 4y + 3z + 2¢.

(e):max{(z +2y)+ 2z +4y+32+2t),(y+2z+t) + Bz +2y+2z+1)}
—(z 43y +2z2+1)
=max{3z + 6y +3z+ 2,3z + 3y + 3z + 2t} — (z+3y+2z+1t) =20+ 3y + 2z + t.

(H):max{(Bz+2y+z+t)+ (z+y+2), 2e+4y + 32+ 2t) + 2z + 2y + 22+ 2t)}
—(3z + 3y + 32+ 2t)
=max{4z + 3y + 2z + t,dx + 6y + 5z + 4t} — 3z + 3y + 32+ 2t) =z + 3y + 2z + 2¢.

EXAMPLE (family (7)). The last group of cases are given by schematics (7) and (8)
of Figure 15. We verify case (7) here. The other case is similar. We compute the ¢;’s
and c}’s via Figure 9; see also Section 1.3.2.

Note that, unlike for the previous two examples, in this case there are two possi-
bilities: z > t and z < t. In Figure 22, we display the case when z > ¢ (the z < ¢ case
is similar).
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As for the previous example, it is not immediately obvious that the schematic
appearing on the right hand side of Figure 22 displays the correct good position. We
again verify this by explicitly drawing the flipped bigon, as shown in Figure 25.

The schematic diagram of the web in good position restricted to the flipped bigon
in the right hand side of Figure 22 is shown in the left hand side of Figure 23. It is
an enjoyable exercise to check that this bigon schematic agrees with the web example
schematically shown in Figure 25.

Another guiding example showing the web in good position after the flip (without
using schematics), is provided in the right hand side of Figure 23.

We demonstrate the calculation when z > ¢ (the case z < t is similar).

Left hand side of Figure 22, coordinates c;(for j =1,2,...,12):

(1) 2z +¢;
) x+ 2t;
) 2y + 2
) Y+ 2z
) 2+ 2y + 2t;
) cH+y+t;
) 2x + 2y + 2z;
) THY+ 2
)3z 4yttt
) 2z +y+z+2
) 2z + 3y + 2z + 2t;
(12) = + 2y + 2z + t.
Right hand side of Figure 22, coordinates c(for j =9,...,12):

9) 2242y +2+1t;
(10") =+ 2y + z + 2t;
(11) s 4+y+22z—-t;
(12') 3z + 3y + 2z + £.
The following computations verify (c¢), (d), (e), (f) in this case. Note that the last
equation uses the assumption z > t.

(¢o)max{(z+2t)+ (2x+3y+22+2t),Bzx+y+z+t)+ 2y +2)} — 2z +y+2z+2t)
=max{3x+3y+22+4t,3z+3y+2z+t} — 2r+y+2z+2t) =z +2y+ 2+ 2t

—~
o~~~ —

—~

(d):max{(Bz+y+z+t)+(x+y+1t),2x+2y+22)+ 2z + 3y +2z+2t)}
—(z+2y+22+1t)
=max{4x + 2y + z + 2t,dx + Sy + 4z + 2t} — (z + 2y + 22+ t) = 3z + 3y + 2z + t.

(e)max{(2z+t)+ Bz +3y+2z+t),(x+y+2)+(x+2y+2z+2)}— Bz +y+2z+1t)
=max{bx + 3y +2z+ 2,22 + 3y +2z+2t} — Bz +y+z+t)=2c+2y+z+t.

(f):max{(z +2y+ 2z +2t) + 2z + 2y +2t),(Bx + 3y + 2z + t) + (y + 22)}
—(2z + 3y + 22 + 2t)
= max{3x + 4y + z + 4¢, 3z + dy + 4z + t} — (22 + 3y + 2z + 2t)
=Bzr+4dy+4z+t)—2r+3y+22+2t) =x+y+2z—t.
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FIGURE 19. Family (1).

FIGURE 20. Family (3).
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FIGURE 21. Family (3). Left: Bigon schematic after the flip. Right:
An example of the web in good position after the flip: z =y =z =

!

FIGURE 22. Family (7), shown when z > t.

A

FIGURE 23. Family (7), z > t. Left: Bigon schematic after the flip.
Right: An example of the web in good position after the flip: z =
y=t=1and z =2.
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FIGURE 24. Family (3). Bigon drawing procedure in the example
x =3,y =4,z =1,t = 5. The web represented by the schematic is
in good position with respect to the red bigon. The green asterisks
separate the honeycombs from the corner arcs in the flipped triangu-
lation. Compare Figures 20 and 21.
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FIGURE 25. Family (7). Bigon drawing procedure in the example
x =06,y =4,z ="T7,t = 4. The web represented by the schematic is
in good position with respect to the red bigon. The green asterisks
separate the honeycombs from the corner arcs in the flipped triangu-
lation. Compare Figures 22 and 23.
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