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h-vector inequalities under weak maps

Gaku Liu & Alexander Mason

Abstract We study the behavior of h-vectors associated to matroid complexes under weak
maps, or inclusions of matroid polytopes. Specifically, we show that the h-vector of the order
complex of the lattice of flats of a matroid is component-wise non-increasing under a weak
map. This result extends to the flag h-vector. We note that the analogous result also holds for
independence complexes and rank-preserving weak maps.

1. Introduction
The study of matroids and their invariants has undergone remarkable developments in
recent years. In particular, many long-standing conjectures such as the Heron–Rota–
Welsh conjecture [1] and the Dowling–Wilson top-heavy conjecture [5] have been
resolved through the development of powerful techniques. These conjectures concern
inequalities that are satisfied between certain invariants, such as the number of flats
of a given rank, associated to a given matroid.

In this paper we take a different perspective and consider inequalities between in-
variants of different matroids. The set of all matroids admits a natural partial order
whose relations are weak maps. Intuitively, if A and B are matroids and A → B is a
weak map, then A is obtained from B by perturbing B to a more general position.
(In terms of matroid polytopes, weak maps correspond to reverse inclusions of inde-
pendence polytopes, and reverse inclusions of base polytopes if the matroids have the
same rank.) Weak maps can be very complicated, even for realizable matroids: For
example, weak maps of realizable matroids cannot always be realized as continuous
deformations of vector configurations or as cells in a matroid subdivision. See for
example [15].

In [9], Lucas gives many inequalities of matroid invariants under weak maps. It is
obvious that some invariants, such as the number of independent sets of given rank
and the number of flats of given rank, are non-increasing under a weak map. Less
obvious is what happens to the h-numbers corresponding to these invariants. Given
a vector of numbers called an f -vector, the h-vector is the image of the f -vector
under a certain linear transformation. If the f -vector is the face vector of a simplicial
complex, then the h-vector gives the numerator of the Hilbert-Poincaré series of the
Stanley-Reisner ring of the complex.

Here, we focus on two complexes in particular: the order complex of the lattice of
flats, also known as the Bergman complex of a matroid and the independence complex
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of a matroid. The lattice of flats of a matroid A is the poset whose elements are the
flats of the matroid partially ordered by containment. A lattice isomorphic to the
lattice of flats of some matroid is also called a geometric lattice. The order complex of
this poset is the simplicial complex whose simplices are the chains of the poset. We
denote this complex by ∆(A). This complex is isomorphic to that of the cones of the
Bergman fan of the matroid, therefore we call it the matroid’s Bergman complex. The
independence complex of a matroid is the simplicial complex whose simplices are the
independent sets of the matroid. We denote this complex by ∆I(A). It is well-known
that ∆(A) and ∆I(A) are both shellable, and therefore Cohen-Macaulay.

Our main result is the following.

Theorem 1.1. Let A and B be matroids and A → B a weak map. The following are
true.

(1) The h-vector of ∆(A) is component-wise at least the h-vector of ∆(B).
(2) If A and B have the same rank, then the h-vector of ∆I(A) is component-wise

at least the h-vector of ∆I(B).

We note that (2) is an immediate consequence of Stanley’s [13] monotonicity the-
orem on injections of simplicial complexes. Therefore the paper is mainly devoted
to proving (1). We observe that a weak map of matroids induces a surjection of the
corresponding geometric lattices, but this surjectivity alone is not enough to imply
the result for general lattices (or even geometric lattices), so (1) is a special property
of geometric lattices and weak maps.

Our result for (1) is actually finer, and holds for flag h-vectors. The flag h-vector
of a graded poset with maximum chain cardinality r is a certain vector (hS : S ⊆
{1, . . . , r}) with the property that

∑
|S|=k hS is equal to hk of the order complex of

the poset. We prove the following:

Theorem 1.2. Let A and B be matroids and let A → B a weak map. Then
hS(∆(A)) ⩾ hS(∆(B)) for all S where hS(B) is defined.

These results can be interpreted in terms of valuative invariants of matroids. The
(flag) f - and h-vectors associated to the Bergman complex and independence complex
of a matroid are known to be valuative invariants of the matroid (the fact that the flag
f -vector of the lattice of flats is valuative was recently proven in [8]). Our results can
be interpreted as saying that these invariants are monotonic with respect to inclusion
of matroid polytopes. For the flag f -vector of the lattice of flats, this monotonicity was
conjectured in [7]. The monotonicity of the flag f -vector was also proven independently
by Elias et al. in as part of their forthcoming work on categorical valuative invariants
of matroids [6]. (Our main result, the monotonicity of h-vectors, is stronger than
monotonicity of f -vectors. However, a standalone proof for f -vectors can be found in
Proposition 4.6.) In [7], it was also conjectured that the coefficients of the Kazhdan-
Lusztig polynomials are monotonic.

Our work is inspired by previous work of Nyman and Swartz [10], where they find
the component-wise maximizers and minimizers of the flag h-vector of ∆(A) over all
matroids of fixed rank and size. In particular, the flag h-vector is maximized by the
uniform matroid and minimized by the near-pencil matroid. All matroids have a weak
map from a uniform matroid of the same size and rank, so our result recovers their
maximizer. On the other hand, not all matroids have a weak map to the near-pencil
matroid of the same size and rank, and in general the set of minimal matroids of given
size and rank with respect to the weak map order is not well-understood.

The proof idea is as follows. Given a weak map of matroids A → B, we construct
a degree-preserving map from the Stanley–Reisner ring of B to a certain quotient of
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the Stanley–Reisner ring of A. This map is readily seen to be injective, but it is much
harder to show that the map remains injective after quotienting by a linear system
of parameters. We do this in an indirect way, by showing that the dual map between
the corresponding dual vector spaces is surjective.

2. Matroid preliminaries
In this section we establish terminology and notation. We will assume the reader is
already familiar with the basic properties of matroids and refer to [11] for further
background.

Definition 2.1. A matroid A is a (finite) ground set E together with a collection
I(A) of subsets called independent sets. They have the following properties:

(1) A subset of an independent set is independent.
(2) Given two independent sets with |I| < |J |, there is some x ∈ J ∖ I such that

x ∪ I is also independent.
(3) ∅ is independent.

In this paper we assume all matroids have the same ground set [n] = {1, . . . , n}.
We next define flats of a matroid:

Definition 2.2. A flat of a matroid A is F ⊆ E such that if I is an independent
subset of F and x ∈ E ∖ F , then I ∪ {x} is independent.

Write F(A) for the set of flats of A. Note that I(A) and F(A) are both posets
ordered by inclusion. F(A) is a lattice called “the lattice of flats of A".

Proposition 2.3. Flats have the following properties:
(1) An intersection of two flats is a flat.
(2) Given a flat F and x ∈ E ∖ F , there is a unique flat G containing x that

covers F in the poset F(A).
(3) E is a flat.

These properties may in fact be used to define a matroid:

Proposition 2.4. Let F be a collection of subsets of E.
(1) F is the set of flats of some matroid A if and only if it satisfies the above

three properties.
(2) In that case, I ⊆ E is in I(A) if and only if for any J ⊊ I, there exists F ∈ F

such that J ⊆ F but I ⊈ F .

Definition 2.5. The rank of a set G ⊆ E with respect to a matroid A is the size
of the largest independent set it contains, or, equivalently, that of the smallest flat
containing it. We denote the rank of G by rkA(G), or rk(G) if A is understood. The
rank of the matroid A is defined to be rkA(E). An independent set of size rkA(E) is
called a basis of A.

Note that flats can be characterized as sets that are maximal (with respect to
containment) within their rank, while independent sets are minimal within their rank.
A maximal independent subset of a flat F is a basis for F .

Definition 2.6. The closure map clA : P(E) → F(A) (where P(E) is the power set
of E) is defined so that clA(G) is the smallest flat of A containing G.

The subscript of clA may be omitted when A is understood. If clA(G) = F , then
we say that F is the closure (or “A-closure") of G, or that G spans F .

The map cl preserves containment: If G ⊆ G′, then cl(G) ⊆ cl(G′).
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Example 2.7. In this and all future “Example" sections of this paper, let A and B
denote two specific matroids with rank 3 and ground set E = [5]. A will be U3,5,
the uniform matroid, where I(A) consists of all sets with |I| ⩽ 3, and B has bases
{1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {2, 3, 5}. (Since a set is independent if
and only if it is a subset of a basis, this determines all independent sets.) The flats of
B are ∅, {1}, {2}, {3}, {4, 5}, {1, 2, 3}, {1, 4, 5}, {2, 4, 5}, {3, 4, 5}, and E.

Definition 2.8. The order complex of a poset is the simplicial complex whose faces
are the chains of the poset.

Let 0A denote the minimal flat of a matroid A. (In other words, 0A is the set of
all loops of A, and is ∅ if A is loopless.) We will write ∆(A) for the order complex of
F(A)∖ {0A, E}, henceforth known as the matroid’s Bergman complex.

3. The f- and h-vectors
The usual f - and h-vectors for a simplicial complex are defined as follows:

Definition 3.1. Let ∆ be a simplicial complex of dimension r − 1.
(1) The f -vector of ∆ is the sequence (fi(∆))r

i=0, where fi(∆) is the number of
faces with cardinality i.(1)

(2) The h-vector is the sequence (hi(∆))r
i=0 satisfying

r∑
i=0

hix
r−i =

r∑
i=0

fi(x− 1)r−i.

We now give a refinement of the f - and h-vectors for posets. Let P be a (finite)
graded poset with rank function rk. We define the rank of P to be the maximum
cardinality of a chain.(2) Given a chain C in P , the flag of C, written fl(C), is the
set of ranks of flats in that chain. That is, fl(C) = {rk(F )}F ∈C . This is a subset of
[r], where r is the rank of the poset. For our purposes, the empty set will also be
considered a chain, with flag ∅.

Definition 3.2. Let P be a graded poset of rank r.
(1) The flag f -vector of P is the tuple (fS(P )) taken over all S ∈ P([r]), where

fS(P ) is the number of chains C such that flC = S.
(2) The flag h-vector is the tuple (hS(P )) taken over all S ⊆ P([r]), where

hS =
∑
T ⊆S

(−1)|S|−|T |fT .

While the flag vectors are defined for posets, we will abuse notation and say that
(fS(P )) is the flag f -vector of the order complex ∆(P ).

We write fS(A) for fS(∆(A)), fk(A) for fk(∆(A)), and do similarly for the h-
vectors.

Proposition 3.3. The following are true for a graded poset of rank r.
(1) fk =

∑
|S|=k fS.

(2) hk =
∑

|S|=k hS.
(3) fS =

∑
T ⊆S hT .

(4) fr =
∑

S⊆[r] hS.

(1)For convenience, we index the f -vector by cardinality instead of dimension. We will then modify
the definition of the h-vector so that it agrees with the usual indexing of the h-vector.

(2)This differs from the usual definition of rank, which is the maximum length of a chain.
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To avoid confusion with other notions of minimality and maximality, chains of
maximal length (i.e. chains of flag [r]) will be called full in this paper.

We now focus on the case when ∆ = ∆(A) where A is a matroid. There is a useful
partition of the set of full chains of ∆(A) into sets of sizes hS , as follows: Given a
full chain of flats 0A ⊊ F1 ⊊ · · · ⊊ Fr ⊊ E, let bi = minFi ∖ Fi−1, where elements
of the ground set [n] are ordered in the usual way. (Here, F0 = 0A and Fr+1 = E.)
The resulting string b1 . . . br+1 is called the chain’s Jordan-Hölder sequence [2]. By
property (2) of Prop 2.4, any element of Fi ∖ Fi−1 determines Fi given Fi−1. Thus
there is an injection from full chains of flats to ordered sets of size r + 1 in [n].

Remark 3.4. The elements bi = minFi∖Fi−1 over all Fi and Fi−1 form an EL-labeling
of the poset F(A). Ordering the full chains lexicographically by their Jordan-Hölder
sequence gives a shelling order of F(A). See [2].

Note that not all such ordered sets b1 . . . br+1 are Jordan-Hölder sequences of full
chains of flats. First, each bi must not be in the flat spanned by b1, . . . , bi−1, or,
equivalently, {b1, . . . , br+1} must be a basis for E. However, each bi must also be the
minimal element in the uniquely determined Fi∖Fi−1. Call an ordered basis that has
this latter property, and thus corresponds to a chain of flats, “valid".

Now given a string b1 . . . br+1, we say the string (or its corresponding full chain, if
it has one) has a descent across position i (or alternatively, across the corresponding
Fi) if bi > bi+1, and that it has an ascent otherwise. The set of all indices across
which a string (full chain) has a descent is that string’s descent set.

Theorem 3.5 ( [14] ). Let A be a matroid of rank r + 1.
(1) The set of valid strings with descent sets contained in S ⊆ [r] has cardinality

fS(M).
(2) The set of valid strings with descent sets equal to S ⊆ [r] has cardinality

hS(M).

Because we will use some of the constructions from the proof later, we provide a
proof of this theorem.

Proof. (1) Fix S ⊆ [r]. We will demonstrate a bijection between chains of flag S and
full chains with descent set contained in S. First, note that any non-full chain of flats
0A = F0 ⊊ F1 ⊊ · · · ⊊ Fk = E has a unique minimal completion to a full chain
as follows: for each interval [Fi, Fi+1] where rk(Fi+1) > rk(Fi) + 1, let Fi,1 be the
flat covering Fi containing ai,1 := min(Fi+1 ∖ Fi). Then, inductively, let Fi,j+1 be
the flat covering Fi,j containing ai,j+1 := min(Fi+1 ∖ Fi,j) for 1 ⩽ j ⩽ ki, where
ki = rk(Fi) − rk(Fi+1) − 1.

Now consider the full chain
0A ⊊ F0,1 ⊊ · · · ⊊ F0,k0 ⊊ F1 ⊊ F1,1 ⊊ · · · ⊊ Fk = E.

By construction, bi+1 = ai,1 < ai,2 < · · · < ai,ki < min(Fi+1∖Fi,ki), so each new flat
Fi,j has an ascent across it. That is, the descent set of this chain is contained in S.

Denote by µ(C) the minimal completion of a chain C of flag S. Let ν be the
map that restricts a full chain with descent set contained in S to the flats with
ranks in S. We claim that ν is the inverse of µ. Clearly ν(µ(C)) = C. To show
µ(ν(C)) = C, it suffices to check that the minimal completion is unique, in that
µ(C) is the unique full chain containing C with no descents outside S. Suppose that
D is some other full chain containing C, and let Gi be its flat of rank i. Let Gj

be the first flat in which D differs from µ(C), and Fi, Fi+1 the flats of C such that
rk(Fi) < j < rk(Fi+1). ThenGj−1 was constructed by the above interpolation process,
while Gj was not. That is, min(Fi+1 ∖ Gj−1) /∈ Gj . Let a = min(Fi+1 ∖ Gj−1),
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and let Gk be the first flat in D which contains a. We must have k > j. Then
min(Gk−1 ∖ Gk−2) > a = min(Gk ∖ Gk−1), so Gk−1 is a flat of D with a descent
across it, whose rank is not in S since Gk−1 ∈ [Fi, Fi+1] but is neither Fi nor Fi+1.
This proves the uniqueness of µ(C).

Therefore fS(A), which counts the number of chains of flag S, also counts the
number of valid strings with descent set ⊆ S.

(2) immediately follows from the identity fS =
∑

T ⊆S hT . □

Example 3.6. Consider the matroid B defined in the previous example. Its nine full
chains have the following associated strings, grouped by descent set:
∅ : 124
{1} : 214, 412, 314
{2} : 142, 241, 341
{1, 2} : 421, 431
From this we can directly read off the flag h-vectors, and obtain the rest of the f -

and h-vectors by adding them. For instance, h1(B) = h{1}(B) + h{2}(B) = 6.

A flat F is minimal in a (poset) interval [G,H] if F is one of the flats generated
by the interpolation process described in the above proof. That is, if rk(F ) = rk(G)+
j, then F contains the successively minimal elements ai,1, ai,2, . . . , ai,j found in the
inductive process described above for Fi = G, Fi+1 = H. For any interval, there is
exactly one minimal flat of each rank.

A chain of flats 0A = F0 ⊊ F1 ⊊ · · · ⊊ Fk = E is nonessential if it contains at
least one flat that is minimal with respect to its neighbors, that is, some Fi that is
minimal in [Fi−1, Fi+1]. Otherwise, the chain is essential. Thus we can rephrase the
above result as follows:

Proposition 3.7. hS(A) counts the number of essential chains of flag S.

Proof. From the proof of Thm. 3.5, a chain of flag S is essential if and only if the
descent set of its unique minimal completion is S. □

Finally, note that since hS counts the number of valid strings with descent set S,
hk counts the number of valid strings with exactly k descents.

4. Weak maps
We now define weak maps of matroids. We refer to [16, Chapter 8] for more informa-
tion.

Definition 4.1. Let A, B be two matroids on the same ground set. We say there is
a weak map from A to B if I(B) ⊆ I(A). We refer to this “map” as A → B.

The ranks of A and B are not assumed to be equal, although we clearly have
rk(A) ⩾ rk(B), since a basis for B is independent in A. It will often be useful to
restrict to the case of rank-preserving weak maps, i.e. those where rk(A) = rk(B).

When there is a weak map A → B, we will often consider the map clB : F(A) →
F(B) which is the restriction of the closure map clB : P(B) → F(B) from Defini-
tion 2.6. There is a natural extension of this map to chains.

Definition 4.2. If A → B is a weak map, denote by clB : ∆(A) → ∆(B) the map
defined as follows. Given C = (0A ⊊ F1 ⊊ · · · ⊊ Fk ⊊ E) a chain in A, take
(0B ⊆ clB(F1) ⊆ · · · ⊆ clB(Fk) ⊆ E), then delete any duplicate flats to obtain
clB(C).

Algebraic Combinatorics, Vol. 8 #2 (2025) 484



h-vector inequalities under weak maps

We now consider weak maps and flag vectors. We start with a special type of weak
map, truncations. Given a matroid A of rank at least r + 1, the truncation of A to
rank r + 1 is the rank r + 1 matroid Ar+1 with I(Ar+1) = {I ∈ I(A) : |I| ⩽ r + 1}.
Equivalently, we have F(Ar+1) = {F ∈ F(A) : rkA(F ) < r + 1} ∪ {E}.

Proposition 4.3. Let A → Ar+1 be a truncation. The following are true.
(1) hS(A) = hS(Ar+1) for all S ⊆ [r].
(2) hk(A) ⩾ hk(Ar+1) for all k.

Proof. (1) follows directly from the characterization of F(Ar+1) and Definition 3.2.
(2) follows from (1) since hk(A) is a nonnegative sum of hS(A) with S ⊆ [rk(A) − 1]
and |S| = k. □

We next observe that for general weak maps, it suffices to consider only rank-
preserving weak maps. This follows from the previous proposition and the next easy
proposition.

Proposition 4.4. Every weak map of matroids can be decomposed into a truncation
followed by a rank-preserving weak map.

We will prove one more combinatorial result. We first prove the following lemma:

Lemma 4.5. Let A → B be a weak map.
(1) If G ⊆ E, then rkA(G) ⩾ rkB(G).
(2) clB : F(A) → F(B) does not increase a flat’s rank.

Proof. (1) Let I be a B-basis for G. I is also independent in A, so the largest A-
independent set contained in G is at least size |I|.

(2) Note that for all G ⊆ E, rkB(G) = rkB(clB(G)). Substituting this into the
inequality from (1) gives the result. □

We now show the following:

Proposition 4.6. Let A → B be a rank-preserving weak map. Then,
(1) clB : F(A) → F(B) is surjective.
(2) clB : F(A) → F(B) is surjective by rank: Given F ∈ F(B), there exists

G ∈ F(A) with clB(G) = F and rk(G) = rk(F ).
(3) clB : ∆(A) → ∆(B) is surjective by flag: Given C ∈ ∆(B), there exists

D ∈ ∆(A) with clB(D) = C and fl(D) = fl(C).

Proof. It suffices to prove (3). Let C ∈ ∆(B) be of flag S, and let b1 . . . br+1 be the or-
dered basis for its minimal completion. That is, if k ∈ S, then Fk := clB({b1, . . . , bk})
is the rank-k flat in C. Now let D be the chain of flag S whose rank-k flat is
Gk := clA({b1, . . . , bk}). We know clB(Gk) is a B-flat which contains {b1, . . . , bk},
and therefore clB(Gk) ⊇ Fk. However, by the lemma, rkB(clB(Gk)) ⩽ rkA(Gk) = k.
Thus clB(Gk) = Fk. □

(3) immediately implies the following:

Corollary 4.7. (1) If A → B is a rank-preserving weak map with both matroids
of rank r + 1, then fS(A) ⩾ fS(B) for all S ⊆ [r].

(2) If A → B is a weak map, then fk(A) ⩾ fk(B) for all k.

We will strengthen this result in Thm. 8.8.
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5. The independence complex
Before proceeding further on lattices of flats, we consider the independence complex.

Definition 5.1. The independence complex ∆I(A) of a matroid A is the simplicial
complex whose faces are given by I(A).

Denote the f - and h-vectors of ∆I(M) by hI(A) and f I(A) respectively.
One immediate consequence of the definitions is that if A → B is a weak map,

then the identity map provides an injection of I(B) into I(A), which in turn implies
that f I

k (A) ⩾ f I
k (B) for all k. However, we also have the following stronger result.

Proposition 5.2. If A → B is a rank-preserving weak map, then hI
k(A) ⩾ hI

k(B) for
all k.

For the proof of this, we use the following monotonicity theorem by Stanley:

Theorem 5.3 ([13]). Let ∆′ be a subcomplex of the simplicial complex ∆, where both
are Cohen-Macaulay. Suppose that e− 1 = dim ∆′ ⩽ dim ∆ = d− 1, and that no set
of e+ 1 vertices of ∆′ form a face of ∆. Then hk(∆′) ⩽ hk(∆) for all k.

See Section 6 for the definition of Cohen-Macaulay.

Proof of Proposition 5.2. By definition of a rank-preserving weak map, ∆I(B) is a
subcomplex of ∆I(A) and they have the same dimension. In addition, independence
complexes of matroids are shellable and thus Cohen-Macaulay [4]. Hence, the result
follows from Theorem 5.3. □

The statement is not true for weak maps that change rank. For example, let A be
the rank 2 uniform matroid on 2 elements and B the rank 1 uniform matroid on 2
elements. Then we have a weak map A → B but hI

1(A) = 0, hI
1(B) = 1. (This is also

a strong map, for readers familiar with the term.)
Matt Larson notes that Proposition 5.2 can also be proved inductively, using a

similar argument to [9].

6. The Stanley-Reisner ring
Fix an infinite field k. A simplicial complex ∆ has an associated ring k[∆], called
the Stanley-Reisner ring of the complex: k[∆] = k[xv1 , . . . , xvm ]/I∆, where {vj} is
the set of vertices of the complex, and I∆ is the ideal generated by monomials of the
form xvj1

· · ·xvjk
, where {vj1 , . . . , vjk

} is not a face of the complex. Note that k[∆] is
graded by degree, which we call the “coarse” grading.

Let P be a graded poset of rank r and ∆ its order complex. Then k[∆] has an
Nr-grading defined as follows: Let v1 < · · · < vr be a full chain in P and d1, . . . , dr

nonnegative integers. Then the degree of (the image of) the monomial xd1
v1

· · ·xdr
vr

in
k[∆] is defined to be (d1, . . . , dr). We call this the “fine” grading of k[∆]. The fine
graded component of k[∆] corresponding to a tuple α will be denoted k[∆]α. If di = 0
or 1 for all 1 ⩽ i ⩽ r, then we say xd1

v1
· · ·xdr

vr
has degree S, where S = {i | di = 1},

and analogously define k[∆]S .
In the case we are interested in, where ∆ = ∆(A) for a matroid A, the polynomial

ring is generated by variables indexed by the flats (aside from the empty flat and E),
and I∆ is generated by products of any two variables corresponding to incomparable
flats. In particular, I∆ includes all monomials except those that are the product of
variables from a chain. We will write k[A] for k[∆(A)]. Given a chain of flats C, write

xC =
∏

F ∈C

xF .
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An arbitrary element p ∈ k[A]S can be expressed as
∑

fl(C)=S aCxC with aC ∈ k.
Let A be a finitely generated graded k-algebra. A system of parameters for A

is a sequence θ1, . . . , θr ∈ A of minimal length such that A/⟨θ1, . . . , θr⟩ is finite-
dimensional over k. A system of parameters is homogeneous if all of its elements are
homogeneous (with respect to the coarse or fine grading, depending on context), and
linear if all of its elements have coarse degree 1. Assuming k is infinite, there always
exists a homogeneous linear system of parameters.

A regular sequence in A is a sequence θ1, . . . , θr ∈ R such that θi is not a zero-
divisor in A/⟨θ1, . . . , θi−1⟩ for all 1 ⩽ i ⩽ r. We say that A is Cohen-Macaulay if every
system of parameters of A is a regular sequence. The significance of this definition in
combinatorics is the following observation:

Theorem 6.1. Let ∆ be a simplicial complex and assume k[∆] is Cohen-Macaulay.
Let θ1, . . . , θr be a linear system of parameters and let R = k[∆]/⟨θ1, . . . , θr⟩, which
inherits the coarse grading from k[∆]. Then for all i, the dimension of the degree-i
component of R is hi(∆).

Now assume ∆ is the order complex of a graded poset P of rank r. In this case,
there is a particularly nice linear system of parameters for k[∆], given by

θi =
∑

v∈P, rk v=i

xv

for i = 1, . . . , r. Note that this system of parameters is homogeneous with respect to
the fine grading.

Theorem 6.2 ([12]). Let ∆ be the order complex of a graded poset P and assume
k[∆] is Cohen-Macaulay. Let (θi) be as above, and let R = k[∆]/⟨θ1, . . . , θr⟩, which
inherits the fine grading from k[∆]. The following are true.

(1) The dimension of the degree-S component of R is hS(P ).
(2) If α = (d1, . . . , dr) and di > 1 for any i, then (RM )α = 0.

We now focus on the case where ∆ = ∆(M) for a matroid M of rank r + 1.
Set θi =

∑
F ∈F, rk F =i xF as above, and let ΘA to be the ideal generated by the θi

over i ∈ [r]. (We may drop the subscript A if it is clear.) Define RA = k[A]/ΘA.
By the above theorem, dim(RA)S = hS(A). In fact, the images of the monomials
corresponding to essential chains of flag S form a basis for (RA)S .

Example 6.3. Let B again be the matroid with r = 2, n = 5 that appears in the
previous examples. Then k[B] has four rank-{1} generators x{1}, x{2}, x{3}, x{4,5}, and
four rank-{2} generators x{1,2,3}, x{1,4,5}, x{2,4,5}, x{3,4,5}, with relations given by all
incomparable pairs of flats, such as x{1}x{2} and x{1}x{2,4,5}. To get RB , we quotient
out by the ideal (x{1} + x{2} + x{3} + x{4,5}, x{1,2,3} + x{1,4,5} + x{2,4,5} + x{3,4,5}),
resulting in a finite-dimensional algebra whose graded components have dimensions
1, 3, 3, and 2 respectively. For example, the degree-{1, 2} component is spanned by
the image of {x{4,5}x{2,4,5}, x{4,5}x{3,4,5}}.

We make one more definition before moving on.

Definition 6.4. Let A be a matroid.
(1) The lexicographic order on rank k flats in F(A) is defined as follows: given

two flats F ̸= G, let j be the first element of the ground set [n] contained in
one of F , G but not the other; if j ∈ F but j /∈ G, we say that F < G.

(2) The lexicographic order on flag S chains in ∆(A) is defined as follows: given
two chains C = {Fi}, C ′ = {Gi}, let k be the lowest rank such that Fk ̸= Gk;
if Fk < Gk, we say that C < C ′.
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Note that this order is consistent with the notion of minimality in Section 3: if
two flats of the same rank G, G′ are both contained in the interval [F,H], and G is
minimal with respect to that interval, then G ⩽ G′.

7. Matroid maps and ring maps
Let ∆, ∆′ be simplicial complexes, and let cl : ∆ → ∆′ be a map of complexes (that is,
f(σ) ⩽ f(τ) for all σ, τ ∈ ∆ such that σ ⩽ τ). Then we have a map ψ : k[∆′] → k[∆]
defined by

(1) ψ(xσ) =
∑

τ∈cl−1(σ)

xτ

for all σ ∈ ∆. (Here, xσ =
∏

v∈σ xv.) It is straightforward to check that this gives a
well-defined homomorphism k[∆′] → k[∆]. Moreover, we have the following.

Proposition 7.1. cl is surjective if and only if ψ is injective.

Proof. It is clear from the definition that ψ is injective if and only if ψ(p) ̸= 0 for all
monomials p ∈ k[∆′]. This is easily seen to be equivalent to cl being surjective. □

Given a rank-preserving weak map of matroids A → B, Prop. 4.6 says we have a
surjective map clB : ∆(A) → ∆(B), and thus we have an injective map ψB : k[B] →
k[A]. However, this map does not preserve the fine grading of k[A] and k[B], as clB
may decrease the rank of some flats. To rectify this, we introduce a new ring k[A′].

Given two matroids A, B on the same ground set E = [n], we define the auxiliary
pseudo-matroid A′ to be the ground set E, together with the set F(A′) of all flats
F ∈ F(A) such that rkB(clB(F )) = rkA(F ). Equivalently, a flat of A is in F(A′) if
and only if it has a basis which is independent in B. We call F(A′) the flats of A′,
although A′ is not necessarily a matroid.

Proposition 7.2. If A → B is a rank-preserving weak map, then F(A′) is graded by
rkA .

Proof. What we need to show is if F , F ′ ∈ F(A′) such that F ⊆ F ′ and rkA(F ′) >
rkA(F ) + 1, then there exists G ∈ F(A′) with F ⊊ G ⊊ F ′. Now clB(F ) ⊊ clB(F ′)
since both flats maintain their ranks under clB , and this in turn implies F ′ ⊈ clB(F ).
Let x ∈ F ′∖ clB(F ), and G = clA(F ∪ {x}). Then rkA(G) = rkA(F ) + 1, so F ⊊ G ⊊
F ′. By Lemma 4.5, rkB(clB(G)) is either rkB(clB(F )) or rkB(clB(F )) + 1. It cannot
be the former, since then we would have clB(G) = clB(F ), but clB(G) ∋ x /∈ clB(F ).
Thus G ∈ F(A′). □

We define ∆(A′) to be the order complex of F(A′) ∖ {0A, E} and let k[A′] be
the Stanley-Reisner ring of ∆(A′). Since A′ is graded, k[A′] is fine-graded in the
sense of Section 6. Note that k[A′] is not necessarily Cohen-Macaulay. Since the
restriction of the closure map clB : F(A′) → F(B) preserves containment, the induced
map on chains ∆(A′) → ∆(B) also preserves flag. Thus we have a homomorphism
ψA

B : k[B] → k[A′] as in (1). (This map will usually just be written ψ.) This map
preserves the fine grading of k[A′] and k[B], and by Prop. 4.6(3) it is injective.

Analogously to matroids, define θi ∈ k[A′] as
∑
xF taken over all F ∈ F(A′) with

rk(F ) = i, and let ΘA′ be the ideal generated by the θi. Define RA′ = k[A′]/ΘA′ ,
which inherits the fine grading of k[A′]. Since ψA

B(ΘB) ⊆ ΘA′ , ψ induces a well defined
map ψ̄ from RB to RA′ .

Example 7.3. Let A and B be the matroids used in previous examples. Note that
A → B is a rank-preserving weak map. F(A′) consists of all flats of A except {4, 5}.
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Then ψA
B : k[B] → k[A′] is given by ψ(x{4,5}) = x{4} + x{5}, ψ(x{1,2,3}) = x{1,2} +

x{1,3} + x{2,3}, ψ(x{1,4,5}) = x{1,4} + x{1,5}, etc.

The following result shows why we can work with A′ instead of A.

Proposition 7.4. If A → B is a rank-preserving weak map and A′ its auxiliary
pseudo-matroid, then dim(RA)S ⩾ dim(RA′)S for all S. In particular, RA′ is finite-
dimensional over k.

Proof. k[A′] is equal to k[A]/J , where J is the ideal generated by all xF such that
rk(clB(F )) ̸= rk(F ). The induced map RA → RA′ is fine degree-preserving and
surjective, since the composition k[A] → k[A′] → RA′ is surjective. □

Corollary 7.5. Let A → B be a rank-preserving weak map such that ψ̄ : RB → RA′

is injective. Then hS(A) ⩾ hS(B) for all S.

Proof. The hypothesis is equivalent to the statement that the restriction of ψ̄ to
degree S is injective for all S. Then by Thm. 6.2 and Prop. 7.4,

hS(A) = dimk((RA)S) ⩾ dimk((RA′)S) ⩾ dimk((RB)S) = hS(B). □

Thus, we have reduced the statement that hS(A) ⩾ hS(B) for a rank-preserving
weak map A → B to the following claim: Let A → B be a rank-preserving weak map
of matroids. Then the map ψ̄ : RB → RA′ is injective.

8. Proof of the main theorem
In this section we prove our main result, Thm. 1.2. As stated earlier, we prove that
if A → B is a rank-preserving weak map, then ψ̄ is injective. We do this by showing
the induced map of the dual vector spaces is surjective, by finding preimages for each
element of a basis.

Let A be a matroid of rank r+1. Let k[A]∗ denote the dual vector space to k[A], and
let ΦA ⊆ k[A]∗ be the annihilator of ΘA ⊆ k[A]. We have ΦA =

⊕
S⊆[r](ΦA)S , where

(ΦA)S can be identified as the space of linear functionals on k[A]S which annihilate
ΘS .

Given a chain C ∈ ∆(A), let ϵC ∈ k[A]∗ be the functional satisfying ϵC(xC) = 1
and ϵC(xD) = 0 for all D ̸= C. Thus an arbitrary element of k[A]∗S can be written as∑

fl(C)=S bCϵC where bC ∈ k for all C.

Proposition 8.1. A functional f =
∑

fl(C)=S bCϵC lies in (ΦA)S if and only if for all
i ∈ S and all chains C with fl(C) = S ∖ i, we have

∑
D⊇C bD = 0.

Proof. The latter condition is satisfied if and only if f annihilates all elements of the
form θixC with fl(C) = S∖i. Since these elements generate ΘS , the result follows. □

Now let A → B be a rank-preserving weak map, where rk(A) = rk(B) = r+ 1. Let
π : k[A′]∗ → k[B]∗ be the map dual to ψ (i.e. it is defined by pre-composition with
ψ). For each S ⊆ [r], we can also view π as a map k[A′]∗S → k[B]∗S .

Theorem 8.2. If A → B is a rank-preserving weak map of matroids, and π : k[A′]∗ →
k[B]∗, as well as the vector subspaces ΦA′ and ΦB, are as defined above, then π maps
ΦA′ surjectively onto ΦB.

Proof. We begin with the following observation.

Lemma 8.3. The dimension of the degree-S component of ΦA is hS(A).

Proof. Recall that Φ is the subspace of k[A]∗ which annihilates Θ. Therefore, its
dimension in degree S is dimS k[A]/Θ = dimS RA = hS(A). □
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We now proceed to the main proof. To show surjectivity, it suffices to find preimages
under π for the hS(B) members of a basis of ΦB . We start with the case S = [r].
Let C be an essential full chain in ∆(B) with corresponding string b1b2 . . . br+1. (By
definition of essentiality, this string is completely descending.) Define

fC =
∑

σ∈Sr+1

sgn(σ)ϵCσ ,

where Sk is the symmetric group on k elements and Cσ is the full B-chain

0B ⊊ clB({bσ(1)}) ⊊ clB({bσ(1), bσ(2)}) ⊊ · · · ⊊ clB({bσ(1), bσ(2), . . . , bσ(r)}) ⊊ E.

(This is a full chain because b1, . . . , br+1 is a basis.) Similarly, define

gC =
∑

σ∈Sr+1

sgn(σ)ϵDσ
,

where Dσ is the A-chain

0A ⊆ clA({bσ(1)}) ⊆ clA({bσ(1), bσ(2)}) ⊆ · · · ⊆ clA({bσ(1), bσ(2), . . . , bσ(r)}) ⊆ E.

Note that {b1, . . . , br+1} remains a basis in A, so Dσ is a full chain with one flat of each
rank. We also see that clB(Dσ) = Cσ, since for an independent set I, cl(I) is the set of
elements that form a dependent set when added to I, and therefore clA(I) ⊆ clB(I).
This also shows that each flat of Dσ is in F(A′). Thus Dσ is a full A′-chain, and
π(ϵDσ ) = ϵCσ and π(gC) = fC .

Next we show that the fC , taken over all essential C, lie in ΦB , and that the gC lie
in ΦA′ . Fix an essential full chain C with associated string b1 . . . br+1. Given σ ∈ Sr+1,
and 1 ⩽ i ⩽ r, there is at least one σ′ such that Cσ′ differs from Cσ in rank i only,
namely σ ◦ (i i + 1). Now suppose that for some σ′ ∈ Sr+1, Cσ′ differs from Cσ in
rank i only. Then if if the rank i − 1 and i + 1 flats of Cσ are Fi−1 = clB(H) and
Fi+1 = clB(H ∪ {b, b′}) respectively, where H, {b, b′} ⊆ {b1, . . . , br+1}, then there are
exactly two possibilities for Fi, namely clB(H ∪{b}) and clB(H ∪{b′}). If Cσ contains
one of these two, then Cσ′ must contain the other one. That is, there is only one σ′

satisfying the description. Then σ and σ′ differ by a transposition, so ϵCσ
and ϵCσ′

will have opposite signs in the expression for fC . As a result, the condition that, for
all i ∈ S and all chains C with fl(C) = S ∖ i, we have

∑
D⊇C bD = 0, is satisfied, and

by Prop. 8.1, fC ∈ ΦB . By the exact same argument, gC ∈ ΦA′ .
Next we show that the fC are linearly independent. To do this, we first observe

that Cσ ⩽ C in the lexicographic order for all σ, with equality if and only if σ = 1.
Indeed, let σ ̸= 1 and let j be the smallest integer for which σ(j) ̸= j. Since b1 > b2 >
· · · > br+1, it follows that Cσ’s flat of rank j contains an element less than bj , and
thus comes lexicographically before C’s flat of rank j. Since C and Cσ have the same
flats of rank less than j, it follows that Cσ < C lexicographically, as claimed. This
means that the matrix whose rows and columns are indexed by full chains of ∆(B) in
lexicographic order, with the entry in row C, column C ′ being the coefficient of ϵC′

in fC , is lower triangular, and all nonzero rows (i.e. those corresponding to essential
C) have a 1 on the diagonal. Therefore these nonzero rows, hence the fC themselves,
are linearly independent.

Finally, we note that the number of essential full chains has already been shown
to be h[r](B), which is also the dimension of ΦB in degree [r]. Therefore, the fC form
a basis for ΦB in this degree. This completes the proof of the surjectivity of π in
degree [r].

Now let S be an arbitrary subset of [r]. Choose C from among the full chains of
∆(B) that have descent set S, i.e. minimal completions of essential chains of flag S.

Algebraic Combinatorics, Vol. 8 #2 (2025) 490



h-vector inequalities under weak maps

Let b1 . . . br+1 be the corresponding string. Define Cσ and Dσ as before, and let ν
restrict a chain to the ranks in S. Set

fC =
∑
σ∈H

sgn(σ)ϵν(Cσ),

where H is the subgroup of Sr+1 generated by the transpositions {(i i+ 1) | i ∈ S}.
Analogously, set

gC =
∑
σ∈H

sgn(σ)ϵν(Dσ).

As before, we have gC ∈ k[A′]∗ and π(gC) = fC . Now if i ∈ S, then σ ∈ H if and only
if σ ◦ (i i+ 1) ∈ H, so a term corresponding to

0B ⊊ clB({bσ(1)}) ⊊ · · · ⊊ clB({bσ(1), . . . , bσ(i−1), bσ(i)}) ⊊ · · · ⊊ E

appears in fC if and only if one corresponding to

0B ⊊ clB({bσ(1)}) ⊊ · · · ⊊ clB({bσ(1), . . . , bσ(i−1), bσ(i+1)}) ⊊ · · · ⊊ E

(that is, a chain differing from Cσ only in rank i) appears with opposite sign. That
is, once again the Prop. 8.1 condition is satisfied for fC to be in ΦB and gC to be
in ΦA′ .

To show that the fC are linearly independent, it suffices to check that ν(Cσ) ⩽ ν(C)
in lexicographic order for all σ ∈ H, with equality if and only if σ = 1. Let σ ∈ H∖{1},
and let j be the smallest integer for which σ(j) ̸= j. By definition of H, we have j ∈ S.
Let k be the smallest element of [r+1]∖S such that k > j. Then σ takes {j, j+1, . . . , k}
to itself. Since the descent set of C is S, we have bj > · · · > bk. Hence, the rank j
flat in Cσ (as well as in ν(Cσ)) contains an element less than bj . Thus the j-th flat
of ν(Cσ) is less than the j-th flat of ν(C) in lexicographic order, so ν(Cσ) < ν(C), as
desired.

We have thus demonstrated hS(B) linearly independent elements of (ΦB)S , a vector
space of dimension hS(B); they are therefore a basis. For each one, we have found a
gC ∈ (ΦA′)S with π(gC) = fC . Therefore, π is surjective in all degrees. □

Remark 8.4. The top-degree component of ΦB can be identified with the non-
vanishing homology group of ∆(B) over k. The basis for (ΦB)[r] we constructed in
the proof is the same basis that Björner constructs for this homology group in [3].

Example 8.5. Let A and B be the matroids appearing in previous examples. The
two essential full chains of B are C1 = (∅ ⊊ {4, 5} ⊊ {2, 4, 5} ⊊ E) and C2 = (∅ ⊊
{4, 5} ⊊ {3, 4, 5} ⊊ E), with associated strings 421 and 431. From C1, for example,
we generate

fC1 = ϵ{4,5}⊊{2,4,5} + ϵ{2}⊊{1,2,3} + ϵ{1}⊊{1,4,5}

− ϵ{4,5}⊊{1,4,5} − ϵ{2}⊊{2,4,5} − ϵ{1}⊊{1,2,3}

gC1 = ϵ{4}⊊{2,4} + ϵ{2}⊊{1,2} + ϵ{1}⊊{1,4}

− ϵ{4}⊊{1,4} − ϵ{2}⊊{2,4} − ϵ{1}⊊{1,2}.

fC1 and fC2 span Φ{1,2} and lie in the image of π, so π is surjective in degree {1, 2}.

Corollary 8.6. If A → B is a rank-preserving weak map of matroids, with the rings
RA′ and RB, as well as the map ψ̄ : RB → RA′ , defined as before, then ψ̄ is injective.

Proof. This follows formally from the fact that the dual map π : ΘA′ → ΘB is
surjective. □

Corollary 7.5 thus implies the desired result:
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Corollary 8.7. If A → B is a rank-preserving weak map of matroids, then hS(A) ⩾
hS(B) for all S.

By combining this result with Prop. 3.3, Prop. 4.4, and Prop. 4.3, we summarize
our conclusions as follows:
Theorem 8.8. Let A → B be a weak map of matroids, with rk(B) = r + 1. Then

(1) hS(A) ⩾ hS(B) for all S ⊆ [r].
(2) hk(A) ⩾ hk(B) for all k.
(3) fS(A) ⩾ fS(B) for all S ⊆ [r].
(4) fk(A) ⩾ fk(B) for all k.

We end the paper with the following problems:
Question 8.9. For a weak map A → B, characterize for what k we have hI

k(A) >
hI

k(B) and for what S we have hS(A) > hS(B).
Question 8.10. Is there a combinatorial interpretation of the inequalities in Theo-
rem 8.8(a) and (b)? Is there a combinatorial interpretation of hI

k(A)−hI
k(B), hk(A)−

hk(B), or hS(A) − hS(B)?
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