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Atoms and charge in type C2

Leonardo Patimo & Jacinta Torres

Abstract We construct atomic decompositions for crystals of type C2 and use them to define a
charge statistic, thus providing positive combinatorial formulas for the corresponding Kostka–
Foulkes polynomials. Our methods include Kashiwara–Nakashima tableaux combinatorics as
well as the combinatorics of string polytopes and twisted Bruhat graphs.

1. Introduction
Let g be the symplectic Lie algebra sp4(C), i.e. the simple Lie algebra of type C2.
The irreducible g-modules are the highest weight modules V (λ), with λ a dominant
weight. Given an arbitrary weight µ, we denote by dλ,µ the weight multiplicity, i.e.
the dimension of the weight space V (λ)µ.

The weight multiplicity dλ,µ admits a q-analogue, known as the Kostka–Foulkes
polynomial Kλ,µ(q), so that Kλ,µ(1) = dλ,µ. The Kostka–Foulkes polynomials have
a natural representation-theoretic interpretation since their coefficients record the
dimensions of the graded pieces of the Brylinski–Kostant filtration on weight spaces
[4]. They also arise as structure coefficients in the theory of non-symmetric Macdonald
polynomials and affine Demazure characters [7, 27]. Additionally, these polynomials
are (up to renormalization) special cases of affine Kazhdan–Lusztig polynomials and
have positive coefficients [10, 21, 24].

The goal of this paper is to give a positive combinatorial formula for the Kostka–
Foulkes polynomials Kλ,µ(q) in type C2. For our purposes this amounts to finding:

(1) a set B(λ)µ of cardinality dλ,µ parametrizing a basis of the µ-weight space
V (λ)µ, and

(2) a combinatorial statistic c : B(λ)µ → Z>0, called the charge, such that the
Kostka–Foulkes polynomialKλ,µ is a generating function of charge c on B(λ)µ,

Kλ,µ(q) =
∑

T ∈B(λ)µ

qc(T).

Manuscript received 9th September 2023, revised 17th September 2024, accepted 6th December 2024.
Keywords. crystals, charge.
Acknowledgements. J.T. was supported by the grant UMO-2021/43/D/ST1/02290 and partially
supported by the grant UMO-2019/34/A/ST1/00263.

ISSN: 2589-5486 http://algebraic-combinatorics.org/

https://doi.org/10.5802/alco.411
http://algebraic-combinatorics.org/


Leonardo Patimo & Jacinta Torres

The set B(λ)µ has many known realizations, some of which are geometric, such as
Littelmann paths [20], others algebro-geometric, such as Mirković–Vilonen cycles [3]
and polytopes [8], and some purely combinatorial, such as Kashiwara–Nakashima
tableaux [9]. An important feature that all of these models have in common is that
they are endowed with a crystal structure, that is, for each of these models the set
B(λ) =

⋃
B(λ)µ has cardinality dim(V (λ)) and is the vertex set of a colored directed

graph known as a normal g-crystal (see Definition 3.1 and [3, 5]).
The analogous problem in type An was solved in 1978 by Lascoux and Schützen-

berger, who constructed the charge statistic using a combinatorial procedure on
tableaux called cyclage [12]. There is also the fermionic formula In [13], Lascoux,
Leclerc and Thibon provided another formulation of the Lascoux–Schützenberger
charge statistic in terms of the crystal structure on tableaux. In [14], Lecouvey for-
mulated a conjectural positive formula in type Cn by defining a (co)cyclage proce-
dure on Kashiwara–Nakashima tableaux. This conjecture has been proven for one-row
tableaux in [6]. In [15], Lecouvey–Lenart defined a charge statistic on King tableaux
of weight zero to provide a combinatorial formula in type Cn for the Kostka–Foulkes
polynomials Kλ,0(q). Note that there is another charge statistic defined in [17] on ten-
sor products of Kashiwara–Nakashima single column crystals providing a formula for
the one-dimensional configuration sums, which coincide with Kostka–Foulkes polyno-
mials only in type An.

In recent work by the first named author [25, 26], an alternative description of the
charge statistic in type An was obtained through a more geometric approach, which
transports the problem of finding the charge to the affine Grassmannian. In this
setting, a charge statistic can be deduced after finding swapping functions combina-
torially mimicking wall-crossing for hyperbolic localization. This geometric approach
provides a type-independent framework which we believe can be used to find charge
statistics beyond type An in a more uniform way. In the present paper we develop
a similar strategy to construct a charge statistic in type C2. We believe that this
strategy can be extended to cover groups of higher ranks.

1.1. Charges via the affine Grassmannian. We now briefly recall the results
in [25], at the heart of which lies the geometric Satake correspondence. Let Gbe a
complex reductive group with Langlands dual group denoted G∨(in our setting we
take G = Sp4(C) for which G∨ = SO5(C), but we may as well state here the results
in general). Let B∨ ⊂ G∨ be a Borel subgroup and T∨ ⊂ B∨ be a maximal torus.
The affine Grassmannian Gr := GrG∨ associated to G∨ is endowed with an action of
the extended torus T∨

ext := T∨ × C∗. (1)

Let Xbe the weight lattice, i.e. the set of cocharacters of T∨. We denote by
X+ ⊂ X the subset of dominant weights.

For λ ∈ X+, let Grλ denote the corresponding spherical Schubert variety in the
affine Grassmannian of G∨ (cf. [25, §2.1.2.]).

Let X̂ ∼= X ⊕Z be the cocharacter lattice of T∨
ext. We say that η ∈ X̂ is singular if

there exists an affine root α∨ of G∨ such that ⟨η, α∨⟩ = 0 (cf. [25, Definition 2.13]).
We say that η is regular otherwise.

For any regular η ∈ X̂ and any µ ⩽ λ hyperbolic localization induces a functor
HLη

µ : Db
T ∨

ext
(Grλ) → Db(pt) ∼= VectZ,

where Db
T ∨

ext
(Grλ) is the derived category of T∨

ext-equivariant constructible sheaves
on the spherical Schubert variety Grλ with Q-coefficients, and Db(pt) is the derived

(1)As a guide for the reader, representation theoretic objects (e.g. B(λ)) are associated with the
group G, while geometric objects (e.g. Gr) always based to the Langlands dual group G∨.
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category of sheaves on a point, which is equivalent to the category of graded Q-vector
spaces (cf. [25, §2.4]).

If η ∈ X+, then the hyperbolic localization functors are weight functors, sending
an intersection cohomology sheaf ICλ to the weight space V (λ)µ of the irreducible
highest weight module V (λ). In this case, as in [25, Definition 2.18], we say that
η is in the MV region, where MV is short for Mirković–Vilonen [23]. If η ∈ X̂ is
affine dominant, that is, the pairing between η and any positive affine root is positive,
then the hyperbolic localization functors return graded vector spaces whose graded
dimensions are renormalized Kostka–Foulkes polynomials. In this case, we say that η
is in the KL region, where KL is short for Kazhdan–Lusztig.

Let h̃ := grdim(HLη
µ(ICλ)). The polynomials h̃η

µ,λ(v) are called renormalized η-
Kazhdan–Lusztig polynomials. We say that a function rη : B(λ) → Z is a recharge for
η if we have

h̃η
µ,λ(q 1

2 ) =
∑

T∈B(λ)µ

qrη(T) ∈ Z[q 1
2 , q− 1

2 ].

For ηMV in the MV region, it is easy to construct a recharge for ηMV which is
constant on B(λ)µ (cf. [25, Eq. (21)]). If ηKL is in the KL region and µ ∈ X+, then

Kµ,λ(q) = h̃ηKL

µ,λ (q 1
2 )q 1

2 ℓ(µ)

is a Kostka–Foulkes polynomial by [25, Proposition 2.14], where ℓ is the Bruhat length
(cf. [25, Eq.(7)]). So if rKL is a recharge for ηKL in the KL region, we obtain a charge
statistic c : B(λ) → Z by setting c(T) := rKL(T)+ 1

2ℓ(wt(T)). Notice that if wt(T) ∈ X+
this is equal to c(T) = rKL(T) + ⟨wt(T), ρ∨⟩.

Hyperbolic localization depends on the cocharacter η. More precisely, it can have
different values in η1 and η2 only if they are separated by a hyperplane of the form

Hα∨ =
{
η ∈ X̂ | ⟨η, α∨⟩ = 0

}
,

where α∨ is a positive real root for the group G∨. There is a simple rule to compute
the hyperbolic localization functor after crossing such a wall. Assume that Hα∨ is
the only wall separating η1 and η2, with η2 lying on its positive side. Then by [25,
Proposition 2.35] we have, for ν = sα∨(µ) such that µ < ν ⩽ λ:

h̃η2
ν,λ(v) = v−2h̃η1

ν,λ(v) and

h̃η2
µ,λ(v) = h̃η1

µ,λ(v) + (1 − v−2)h̃η1
ν,λ(v).

To track these changes combinatorially, one must construct a swapping function
ψ : B(λ)µ → B(λ)sα∨ (µ), which satisfies the condition rη1(T) − 1 = rη1(ψ(T)). Having
such a swapping function ψ, we can derive rη2 from rη1 by swapping its values as
indicated by ψ. Swapping functions are an essential ingredient to perform wall-crossing
combinatorially and to modify the trivial recharge in the MV region into the desired
recharge in the KL region.

In type An, swapping functions are given by the modified root operators eα, fα,
which are defined for any positive root α ∈ Φ. This is a consequence of the atomic
decomposition of the crystals B(λ) in type An given by Lecouvey–Lenart [16]. From
this, it follows that the charge statistic giving the Kostka–Foulkes polynomials in type
An is ∑

α∈Φ+

ϵα(T), where ϵα(T) = max{k | ek
α(T) ̸= 0}.
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1.2. Results. Our main results consist of the atomic decomposition of the type C2
crystals B(λ), as well as the construction of swapping functions. As a byproduct, for
any µ ∈ X+, we obtain the following formula for the charge statistic in type C2

c : B(λ)µ → N
T 7→ ϵ1(T) + ϵ2(T) + ϵ12(T) + ϵ̂21(T)

where ϵ̂21 is not attached to a modified crystal operator, but rather depends on the
atom in which T sits. This yields a positive combinatorial formula for the Kostka–
Foulkes polynomials. We outline our methodology below.

1.3. Atomic decompositions and charge statistics. In [26], the first named
author has shown that the LL atoms [16], where LL is short for Lecouvey–Lenart,
coincide with the connected components of a graph with same vertices as B(λ), given
by the fn-closure of the W -orbits, where W denotes the Weyl group. This is one
of the first obstacles which appear when considering type C2 crystals: here the f2-
closures of theW -orbits are not atoms (cf. Definition 4.15). This calls for an alternative
approach. As in [26], the language of adapted strings will be an important tool for us.
Let ϖ1, ϖ2 ∈ X be the fundamental weights. We first define an embedding of crystals
(cf. Proposition 4.1)

Φ : B(λ) → B(λ+ 2ϖ1).
We call the complement of Φ in B(λ + 2ϖ1) the principal preatom P(λ + 2ϖ1).

If λ = λ1ϖ1 + λ2ϖ2 is such that λ1 ⩽ 1, we define P(λ) := B(λ). The map Φ has
an easy definition using the combinatorics of Kashiwara–Nakashima tableaux which
allows to prove its properties directly. However, its reformulation in terms of adapted
strings allows us to give equations describing the principal preatoms P(λ), which we
use throughout this work. A preatomic decomposition of our crystal can be defined
recursively. We show that the preatoms are stable under the W and f2 action, hence
naturally generalize the LL atoms. (Although we do not show it here, the preatom
P(λ) is a union of one or two ⟨W, f2⟩-connected components, depending on the parity
of λ.) Once the preatomic decomposition of our crystal has been defined, we are ready
to define its atomic decomposition. In Proposition 4.16 we show that there exists a
weight-preserving injection

Ψ : P(λ) → P(λ+ϖ2)

such that the set A(λ + ϖ2) ⊂ P(λ + ϖ2) defined as the complement of Im(Ψ) if
λ1 ̸= 0, respectively A(λ+ 2ϖ2) ⊂ P(λ+ 2ϖ2) defined as the complement of Im(Ψ2)
if λ1 = 0, are atoms. The map Ψ is defined explicitly in terms of adapted strings.
An explicit description in terms of Kashiwara–Nakashima tableaux is provided in
the slightly more lengthy arXiv version of this manuscript. However, we do not need
tableaux combinatorics in this paper. To show that the sets A(λ) are atoms, we resort
to algebraic computations directly in the Hecke algebra. In particular, we make use
of pre-canonical bases, introduced by Libedinsky–Patimo–Plaza in [18]. In analogy
to the Satake isomorphism, in Proposition 4.12 we show that the ungraded character
of a preatom P(λ) corresponds to the specialization at v = 1 of a modification Ñ3 of
the precanonical basis N3 from [18, Definition 1.1]

In fact, the atomic and preatomic decompositions alone are already enough to
define our charge statistic in type C2. Let T ∈ B(λ). We define in Definitions 4.10
and 4.25 the atomic number at(T)and the preatomic number pat(T)to be the positive
integers such that
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T ∈ A(λ− at(T)ϖ2 − 2 pat(T)ϖ1) ⊂ P(λ− 2 pat(T)ϖ1) ⊂ B(λ).
A consequence of our main result reads as follows (cf. Corollary 6.4).

Theorem. The function c : B(λ)+ → Z defined as

c(T) = ⟨λ− wt(T), ρ∨⟩ − at(T) − pat(T)

is a charge statistic.

1.4. Twisted Bruhat graphs and non-swappable staircases. To obtain our
main result, Theorem 6.3, we first need to construct a recharge statistic rηi

for each
ηi in a family of cocharacters defined in Equation (42) each of which lies in a region
determined by two hyperplanes, starting at the MV region and ending at the KL
region. We achieve this via a careful study of the geometry of atoms in type C2.

We consider twisted Bruhat graphs associated to a fixed infinite reduced expression
y∞ in the affine Weyl group. For any m ∈ Z>0, let ym be the product of the first
m elements of y∞ and let N(ym) be its set of inversions. The idea is to start off by
considering the Bruhat graph Γλ of a given dominant integral weight λ, that is, the
moment graph of the spherical Schubert variety Grλ. The vertices of the graph Γλ

are all the weights smaller or equal than λ in the dominance order. We have an edge
µ1 → µ2 in Γλ if and only if µ2 − µ1 is a multiple of a root and µ1 ⩽ µ2. From Γλ

we obtain our twisted Bruhat graph Γm
λ by inverting the orientation of all the arrows

in Γλ with label in the inversion set of ym. For µ ⩽ λ, let Arrm(µ, λ) be the set
of arrows pointing to µ in Γλ

m and let ℓm(µ, λ) := | Arrm(µ, λ)| be the number of
such arrows (cf. Definition 5.1). Let tm+1 be the only element in N(ym+1) ∖N(ym).
If µ < tm+1µ then, for the twisted Bruhat graphs in type A ([26, Prop. 2.17]) the
following holds: ℓm(µ, λ) = ℓm(tm+1µ, λ) − 1 if µ < tm+1µ ⩽ λ. This implies that
ℓm+1(µ, λ) = ℓm(tm+1µ, λ). However, as we show in Example 5.3, this property does
not hold in type C2. In Definition 5.2 we define an edge µ → tm+1µ in Γλ to be
swappable if

ℓm(µ, λ) = ℓm(tm+1µ, λ) − 1.
Section 4 is dedicated to the classification of such edges. We pay particular attention

to non-swappable edges and in Definition 5.28 we count the number of non-swappable
edges in the following sense:

Nm(µ, λ) := |{k ⩽ m | µ < tkµ ⩽ λ and µ → tkµ is not swappable}|.

An important property of non-swappable edges is that they will always “be swap-
pable” in an atom isomorphic to A(λ − kϖ2) for large enough k. This leads to the
notion of non-swappable staircases (cf. Definition 5.35). Essentially, a non-swappable
staircase over (µ, λ) consists of a sequence of edges of the form ei := (µ → µ−(n+i)α)
such that ei is non-swappable in A(λ + iϖ2). We define D̂m(µ, λ)to be the length
of the longest non-swappable staircase over (µ, λ) where the label of every edge ei

is a root with label in N(ym). Moreover, in Definition 5.41 we define the following
statistic, which considers only non-swappable staircases lying in a single preatom:

Dm(µ, λ, k) := min(k, D̂m(µ, λ− kϖ2)).

We are now ready to define the recharge statistics rηm
(cf. Definition 6.2). For

T ∈ P(λ) ⊂ B(λ′) with µ := wt(T) and a = at(T), we define

rm(T) := −ℓm(µ, λ− aϖ2) + Nm(µ, λ− aϖ2) − Dm(µ, λ, a) − a− 2 pat(T) + ⟨λ′, ρ∨⟩.

Our main result, from which descends our explicit formula for the charge statistic in
type C2, is the following (cf. Theorem 6.3).
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Theorem. The function rm : B(λ) → Z is a recharge statistic for ηm for any m ∈
N ∪ {∞}.

1.5. Swapping functions. To prove our main theorem, we need to construct swap-
ping functions.

The existence of non-swappable edges in type C2 means that we cannot define
swapping functions within a single atom as in type An. In Section 6 the swapping
functions we construct involve two elements from two different atoms within the same
preatom. In order to determine which are the two atoms involved we need to introduce
a new quantity, which we call the elevation Ω(e) of an edge e that measures the height
of the maximal staircases of non-swappable edges lying underneath it. For any µ ∈ X
and any reflection t ∈ W such that µ < tµ ⩽ λ we define the swapping functions

ψtµ : B(λ)tµ → B(λ)µ

as follows. Let T ∈ B(λ)tµ and assume that T ∈ A(λ − aϖ2) ⊂ P(λ). Let e :=
(µ → tµ) ∈ E(λ−aϖ2). Then ψtµ(T) = T′, where T′ is the only element of weight µ in
A(λ−(a+Ω(e))ϖ2) ⊂ P(λ). To prove Theorem 6.3 we show in Proposition 7.2, based
on the results on non-swappable staircases and non-swappable edges from Section 5,
that

rm+1(T) = rm+1(ψtµ(T)) + 1.

1.6. Alternative formula. In Section 6, we obtain an alternative formula for the
charge statistic by focusing on a single element and counting how many times its
recharge gets changed by a swapping function. The formula we obtain is in terms of
the modified crystal operators, which we define in Definition 3.7.

Let T be an element of an atom A(ζ) of highest weight ζ ∈ X+ and let wt(T) = µ.
Let ϵ̂21(T) be the maximum integer such that µ+ kαi ⩽ ζ. In Section 6 we show that

c(T) = ϵ1(T) + ϵ2(T) + ϵ12(T) + ϵ̂21(T)

is a charge statistic on B(λ)µ, for any µ ∈ X+. Finally, we conjecture a formula for a
charge statistic in type C3, which is a natural generalization of our formula. We also
provide an example where our statistic does not coincide with the statistic conjectured
by Lecouvey [14].

2. The root system and Hecke algebra of type C2

2.1. The root system and the affine Weyl group. Let (X,Φ, X∨,Φ∨) be the
root datum of the reductive group Sp4(C). The lattices X and X∨ are isomorphic to
Z2, with bases {ϖ1, ϖ2} and {ϖ∨

1 , ϖ
∨
2 }. Let X+ and X∨

+ be the subsets of dominant
weights and dominant coweights. Sometimes we use the notation (λ1, λ2) to denote
the weight λ = λ1ϖ1 + λ2ϖ2.

The root system Φ ⊂ X is a root system of type C2, with positive roots

{α1, α2, α12 := 2α1 + α2, α21 := α1 + α2}

with α2 and α12 being the long roots. We have α1 = 2ϖ1 −ϖ2 and α2 = −2ϖ1 +2ϖ2.
The coroot system Φ∨ ⊂ X∨ has positive coroots

{α∨
1 , α

∨
2 , α

∨
12 := α∨

1 + α∨
2 , α

∨
21 := α∨

1 + 2α∨
2 }.

For any i ∈ {1, 2, 12, 21}, α∨
i is the coroot corresponding to αi.

Let ρ ∈ X be the half-sum of the positive roots and ρ∨ ∈ X∨ be the half-sum of
the positive coroots. We have ρ = 2α1 + 3

2α2 and ρ∨ = 3
2α

∨
1 + 2α∨

2 .
We have X/ZΦ ∼= Z/2Z and the two classes are generated by 0 and ϖ1.
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α21

α2

α12

α1
α∨

21

α∨
2

α∨
12α∨

1

Figure 1. The root system Φ and the coroot system Φ∨.

We denote by W the Weyl group of type C2. Let Ŵ := W ⋉ ZΦ be the affine
Weyl group of type C̃2. The group Ŵ has three simple reflections s0, s1, s2 and has
the following description as a Coxeter group:

Ŵ ∼= ⟨s0, s1, s2 | s2
0 = s2

1 = s2
2 = (s0s2)4 = (s1s2)4 = (s0s1)2 = e⟩.

Notice that Ŵ contains W as the subgroup generated by s1 and s2. We also consider
the extended affine Weyl group Ŵext := W ⋉X.

Let X̂∨ := X∨⊕Zδ and let Φ̂∨ = {α∨+mδ | α∨ ∈ Φ∨,m ∈ Z} be the corresponding
affine root system. The positive roots in Φ̂∨ are

Φ̂∨
+ = {α∨ +mδ | α∨ ∈ Φ∨,m > 0} ∪ Φ∨

+

and the simple roots are

∆̂∨ = {α∨
1 , α

∨
2 , α

∨
0 := δ − α∨

21}

There is a bijection between reflections in Ŵ and positive roots Φ̂∨
+, with simple

reflections corresponding to simple roots. For a reflection t ∈ Ŵ we denote by α∨
t the

corresponding positive root in Φ̂∨
+.

2.2. The Hecke algebra and its pre-canonical bases. Recall from [11] and
[21] the definition of the spherical Hecke algebra (see also [18, §2.2]). We denote
by H the spherical Hecke algebra associated to the root system Φ. The spherical
Hecke algebra is the free module over Z[v, v−1] with standard basis {Hλ}λ∈X+ and a
canonical basis, the Kazhdan-Lusztig basis, which we denote by {Hλ}λ∈X+ .

The spherical Hecke algebra can be thought of as a deformation of the monoid alge-
bra Z[X+], which is an abelian group is free with basis {eλ}λ∈X+ . In fact, specializing
at v = 1, we obtain a ring homomorphism

(−)v=1 : H → Z[X+]
Hλ 7→ eλ.

If λ = λ1ϖ1 + λ2ϖ2 we write H(λ1,λ2) for Hλ and similarly for H.
For w ∈ W and λ ∈ X we denote by w · λ = w(λ + ρ) − ρ the dot action of w on

λ. We say that a weight λ is singular if there exists w ∈ W with w(λ) = λ. Clearly, a
weight λ is singular if and only if λ+ ρ is singular with respect to the dot action.

We extend the definition of Hλ to the whole X by setting Hλ = 0 if (λ + ρ) is
singular and Hλ = (−1)ℓ(w)Hw·λ if w ∈ W is such that w ·λ ∈ X+. Notice that in our
setting λ+ρ for λ = (λ1, λ2) is singular if and only if λ1 = −1, λ2 = −1, λ1 +λ2 = −2
or λ1 + 2λ2 = −3.
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Recall the definition of the pre-canonical bases. We have

Ni
λ =

∑
I⊂Φ⩾i

(−v2)|I|Hλ−
∑

α∈I
α

where Φ⩾i is the subset of roots of height at least i. Notice that we have Φ⩾3 = α12 =
2ϖ1 and Φ⩾2 = {α12, α21} = {2ϖ1, ϖ2}. Recall by [18, Theorem 1.2] that N1 is the
standard basis, while N2 is the atomic basis N, that is we have

N2
λ = Nλ :=

∑
µ⩽λ

v2⟨ρ∨,λ−µ⟩Hµ.

It follows immediately from the definition that Hλ = N4
λ.

Example 2.1. Unfortunately, and contrary to the type A situation, the coefficients
of the H-basis in the N3-basis are in general not positive. For example, we have
N3

(0,λ2) = H(0,λ2) + v2H(0,λ2−1). In particular, we get H(0,1) = N3
(0,1) − v2N3

(0,0).

To recover positivity, we need to introduce a modification of the N3 basis. We
define

Ñ3
λ =

{
N3

λ if λ1 ̸= 0
Hλ if λ1 = 0

(1)

Lemma 2.2. We have
H(λ1,λ2) =

∑
i⩽⌊ λ1

2 ⌋
v2iÑ3

(λ1−2i,λ2)

Proof. We prove it by induction on λ1. The claim is clear if λ1 = 0.
If λ1 > 0, we have Ñ3

λ = Hλ − v2Hλ−2ϖ1
. If λ1 = 1 we have Ñ3

λ = Hλ since
λ− 2ϖ1 + ρ is singular. If λ1 ⩾ 2, we get Hλ = N3

λ + v2Hλ−2ϖ1
and the claim easily

follows by induction. □

Lemma 2.3. We have

Ñ3
(λ1,λ2) =

{∑
i⩽λ2

v2iN2
(λ1,λ2−i) if λ1 > 0∑

i⩽⌊ λ2
2 ⌋ v

4iN2
(λ1,λ2−2i) if λ1 = 0.

Proof. We have N2
λ = N3

λ − v2N3
λ−ϖ2

. If λ1 > 0 we get Ñ3
λ = N3

λ = N2
λ + v2Ñ3

λ−ϖ2
and the claim easily follows by induction on λ2.

If λ1 = 0 we have Ñ3
λ = Ñ3

(0,λ2) = H3
(0,λ2) and

N2
(0,λ2) = H(0,λ2) − v2H(−2,λ2) − v2H(0,λ2−1) + v4H(−2,λ2−1)

= H(0,λ2) + v2H(0,λ2−1) − v2H(0,λ2−1) − v4H(0,λ2−2)

= H(0,λ2) − v4H(0,λ2−2) = Ñ3
(0,λ2) − v4Ñ3

(0,λ2−2).

If λ2 ⩽ 1 we get N2
(0,λ2) = Ñ3

(0,λ2). For λ2 ⩾ 2 we have Ñ3
(0,λ2) = N2

(0,λ2) +
v3Ñ3

(0,λ2−2) and the claim follows by induction. □

Remark 2.4. The decomposition of the H-basis in terms of the N basis was com-
puted in [1, Theorem 1.1] using different methods. We prefer to reprove it using the
precanonical bases since the Ñ3 basis has a natural combinatorial interpretation in
terms of the crystal (cf. Proposition 4.12).
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3. Crystals and Weyl group actions
Definition 3.1. A (seminormal) crystal for a complex finite dimensional Lie algebra
g consists of a non-empty set B together with maps

wt :B −→ X

ei, fi :B −→ B ⊔ {0} , i ∈ [1, rank(g)]

such that for all b, b′ ∈ B:
• b′ = ei(b) if and only if b = fi(b′),
• if fi(b) ̸= 0 then wt(fi(b)) = wt(b) − αi;
• if ei(b) ̸= 0, then wt(ei(b)) = wt(b) + αi, and
• ϕi(b) − ϵi(b) = ⟨wt(b), α∨

i ⟩,
where

ϵi(b) = max{a ∈ Z⩾0 : ea
i (b) ̸= 0} and

ϕi(b) = max{a ∈ Z⩾0 : fa
i (b) ̸= 0}.

To each such crystal B is associated a crystal graph, a coloured directed graph with
vertex set B and edges coloured by elements i ∈ [1, rank(g)], where if fi(b) = b′ there is
an arrow b

i→ b′. A crystal is irreducible if its corresponding crystal graph is connected
and finite. A seminormal crystal is called normal if it is isomorphic to the crystal of a
representation of g. Irreducible normal crystals are thus indexed by dominant integral
weights of g. We refer the reader to [5] for more background on crystals.

For a dominant weight λ we denote by B(λ) the corresponding normal crystal
associated to the irreducible representation of g of highest weight λ.

3.1. Crystals of Kashiwara–Nakashima tableaux. In type C we can realize
crystals using Kashiwara–Nakashima tableaux.

Definition 3.2. Let n be a positive integer. A Kashiwara–Nakashima tableau (KN
tableau for short) is a semi-standard Young tableau whose shape is a partition with at
most n parts, in the alphabet

Pn :=
{

1 < · · · < n < n < · · · < 1
}

which satisfies the following conditions:
• Each column is admissible (cf. Definition 3.3).
• Its splitting is a semi-standard Young tableau (cf. Definition 3.4).

Definition 3.3. Let C be a semi-standard column in the alphabet Pn of length at
most n. Let Z = {z1 > . . . > zm} be the set of non-barred letters z in Pn such that
both z and z both appear in C. We say that the column C is admissible if there exists
a set T = {t1 > . . . > tm} of non-barred letters that satisfy:

• t1 < z1 and is maximal with the property t1, t1 /∈ C;
• ti < min(ti−1, zi), ti, ti /∈ C and is maximal with these properties.

Definition 3.4. The split of a column is the two-column tableau lCrC where lC is
the column obtained from C by replacing zi by ti and possibly re-ordering, and rC is
obtained from C by replacing zi by ti and possibly re-ordering.

The splitting of a semi-standard Young tableau consisting of admissible columns is
the concatenation of the splits of its columns.
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Example 3.5. Let n = 2. The column 2

2
is admissible (we have Z = {2} and T =

{1}), however, 1

1
is not. Notice that although each one of its columns is admissible,

the tableau 2 2

2 2
is not KN, because its split, 1 2 1 2

2 1 2 1
is not semi-standard.

Definition 3.6. Let T be a KN tableau. For i ∈ {1, 2} let ni(T) denote the number of
i’s appearing in T and let ni(T) denote the number of i’s. Let ti(T) = ni(T) − ni(T).
Let λ1(T) = t1(T) − t2(T) and λ2(T) = t2(T). The weight of T is defined to be wt(T) =
(λ1(T), λ2(T)) = λ1(T)ϖ1 + λ2(T)ϖ2.

3.2. Words, signatures and crystal operators. The word of a KN tableau T is
the reading of its entries, column by column, starting from the right most column and
reading each column from top to bottom. We will denote the word of T by word(T).
For example, if

T = 1 2

2 1
(2)

we have word(T) = 2112. For each 1 ⩽ i ⩽ n, to a word w ∈ Pn we assign a labelling
of the letters of w by +,− or no label. For i ⩽ n − 1, label the letters i, i+ 1 by
+ and the letters i + 1, i by −. If i = n, label n by + and n by −. The remaining
letters remain without label. Finally, cancel out pairs of labels of the form +−, that
is, cancel out every label + with the first − to its right, starting from the left-most
one. For example, if the sequence of labels is − + □ − −□ + +□ (blank box means
no label), after the cancelling out process we obtain −□□□ − □ + +□. Like this, we
obtain a sequence of labels which looks like this (after ignoring blank boxes):

(−)r(+)s

for some r, s ∈ Z⩾0. This is the i-signature of w (but we also keep a record of the
position of the remaining labels). We will denote it by σi(w). For example, the 1-
signature of word(T) as in (2) is − − ++. Its 2-signature is empty. To apply the root
operator fi to T, we replace in T the letter a which is tagged by the left-most + in the
i-signature of word(T), by the letter a, where a = a. If s = 0, then fi(T) = 0. To apply
ei, we replace in T the letter a which is tagged by the right-most − in the i-signature
of word(T), by the letter a, where a = a. If r = 0, then ei(T) = 0.

3.3. Plactic relations for words. Note that the definition of the crystal oper-
ators and therefore of the simple reflections makes sense on arbitrary words in the
alphabet Pn. In [14] the following plactic relations (R1-3) on words are introduced.

R1 yzx ∼ yxz for x ⩽ y < z with z ̸= x and xzy ∼ zxy for x < y ⩽ z with
z ̸= x;

R2 yx− 1(x− 1) ∼ yxx and xxy ∼= x− 1(x− 1)y for 1 < x ⩽ n and x ⩽ y ⩽ x;
R3 w ∼ w∖{z, z}, where w ∈ P∗

n and z ∈ [n] are such that w is a non-admissible
column, z is the lowest non-barred letter in w such that N(z) = z + 1 and
any proper factor of w is an admissible column.

These relations define an equivalence relation ∼= on the word monoid P∗
n. Each word

w ∈ P∗
n is equivalent via plactic relations to the word of a unique KN tableau T(w).

Moreover, there is the following characterization. Let u, v ∈ P∗
n and let U, V the

connected components (both normal Uq(sp(2n,C))-crystals) in which they lie. Then
u ∼= v if and only if there exists a crystal isomorphism η : U → V such that η(u) = v.
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3.4. Weyl group actions and modified crystal operators. Let
σi(word(T)) = (−)r(+)s

be the i-signature of word(T) as defined in the previous paragraph. To apply the
simple reflection si to T do the following:

• If r = s, then si(T) = T.
• If r > s, si(T) = er−s

i (T).
• If s > r, si(T) = fs−r

i (T).
Let x = si1 · · · sir ∈ W . The action of x on a KN tableau T is defined by

x(T) := si1(· · · (sir
(T))).

More generally, given a crystal B there is an action of the Weyl group W on B
where si acts by reversing the fi-string, i.e. for T ∈ B with r = ϵi(T) and s = ϕi(T),
we define si(T) as er−s

i (T) if r ⩾ s and fs−r
i (T) if s ⩾ r.

For a proof that this defines an action of W see [5, Proposition 2.36]. For any
x ∈ W we have x(wt(T)) = wt(x(T)).

We now introduce the modified crystal operators. These were originally introduced
in [9] and later studied in detail in [16].
Definition 3.7. We define the modified crystal operators e12 := s1e2s1 and f12 :=
s1f2s1.
Remark 3.8. Unfortunately, we cannot just define e21 as s2e1s2 to be the modified
crystal operator attached to the root α21. In fact, in our inductive procedure we need
the crystal operator to be constructed by conjugating the root of higher index, but it
is not possible here since α21 and α2 lie in different orbits under the Weyl group (α2 is
long while α21 is short, as shown in Figure 1). One of the main hurdles of generalizing
the charge statistic from type A to type C is in fact to find an appropriate replacement
for this crystal operator in the charge formula.
3.5. Adapted strings. There are two reduced expressions for the longest el-
ement w0 of type C2: s1s2s1s2 and s2s1s2s1. After fixing a reduced expression
σ = si1si2si3si4 of w0, an element T ∈ B(λ) is uniquely determined by a quadruple
of non-negative integers strσ(T) = (a, b, c, d), called the adapted string, such that
T = fa

i1
f b

i2
f c

i3
fd

i4
(vλ), where vλ ∈ B(λ) is the highest weight vertex. We abbreviate

strs1s2s1s2 as str1 and strs2s1s2s1 as str2. The adapted strings for each of the different
reduced expressions form a cone, denoted by C1 and C2. The precise relation between
these two cones has been given by Littelmann.
Theorem 3.9 ([19, Prop. 2.4]). There exists piecewise linear mutually inverse bijec-
tions θ12 : C1 → C2 and θ21 : C2 → C1, such that θ12 ◦str1 = str2 and θ21 ◦str2 = str1,
given by θ12(a, b, c, d) = (a′, b′, c′, d′), where

a′ = max {d, c− b, b− a}
b′ = max {c, a− 2b+ 2c, a+ 2d}
c′ = min {b, 2b− c+ d, a+ d}
d′ = min {a, 2b− c, c− 2d} ,

and θ21(a, b, c, d) = (a′, b′, c′, d′), where
a′ = max {d, 2c− b, b− 2a}
b′ = max {c, a+ d, a+ 2c− b}
c′ = min {b, 2b− 2c+ d, d+ 2a}
d′ = min {a, c− d, b− c} .

Algebraic Combinatorics, Vol. 8 #2 (2025) 531



Leonardo Patimo & Jacinta Torres

Moreover, Littelmann precisely characterizes the adapted strings which occur in a
given crystal B(λ).

Theorem 3.10 ([19, Corollary 2, Prop. 1.5]). Let λ = λ1ϖ1+λ2ϖ2. Given (a, b, c, d) ∈
Z4
⩾0, there exists x ∈ B(λ) with str2(x) = (a, b, c, d) if and only if the following

inequalities hold:
• b ⩾ c ⩾ d
• d ⩽ λ1
• c ⩽ λ2 + d
• b ⩽ λ1 − 2d+ 2c
• a ⩽ λ2 + d− 2c+ b

4. The atomic and preatomic decompositions
In this section we introduce some important decompositions of the crystal B(λ).

4.1. Preatoms. We start by defining the preatomic decomposition. As we note in
Remark 4.5, the preatoms turn out to be a direct generalization of the LL atoms in
type A, although they can contain several elements with the same weight.

Proposition 4.1. There is an embedding of crystals Φ : B(λ) → B(λ+ 2ϖ1).

Proof. We define the map Φ on Kashiwara-Nakashima tableaux as follows. Note that
since n = 2, all tableaux will have at most two rows. Let T be a Kashiwara-Nakashima
tableaux of shape a partition [a, b]. Then we replace the first row of T, say r1 =
r1

1 ... r1
k , by 1 r1

1 ... r1
k

1 . The resulting tableau will be denoted by Φ′(T).

If Φ′(T) contains the column 1

1
, we replace it with the column 2

2
. The new tableau

will be denoted by Φ(T). Note that by semi-standardness, since T does not contain a

column 1

1
, Φ′(T) can contain at most one such column.

The map Φ is well defined: the tableau Φ′(T) is clearly semi-standard. Assume that

Φ′(T) ̸= Φ(T). The 1 in the column 1

1
of Φ′(T) is necessarily the right-most one, so

all entries to its right in Φ′(T) must be strictly larger than 1. In the second row of
Φ′(T), the 1 which is replaced by 2 to obtain Φ(T) has to be the left-most one, since

otherwise Φ′(T) would contain another column 1

1
which is impossible. The last thing

missing to check in order to establish that Φ(T) is indeed a KN tableau is that it does

not contain as a sub tableau 2 2

2 2
. But this is impossible, because then Φ′(T) would

necessarily have to contain 1 2

1 2
as a sub-tableau, which is not semi-standard. Note

that, by construction, Φ is weight-preserving. The case Φ′(T) = Φ(T) is left to the
reader, as the arguments are very similar to the ones above.

It remains to show that Φ is injective and that it commutes with the crystal
operators. We start with a lemma.

Lemma 4.2. Let T be a Kashiwara-Nakashima tableau, and let w = word(T) be its
word. Then the word 1w1 is plactic equivalent to word(Φ(T)).

Proof. Let r, s be positive integers such that the second row of T has length s and the
first row s+r. Let a1 ⩽ · · · ⩽ ar+s be the entries in the first row and let b1 ⩽ · · · ⩽ bs

be the entries in the second row of T.
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Adding a 1 at the end of the first row of a tableau just adds a 1 at the beginning
of its word. For a tableau T let Φ−1(T) be the tableau obtained by removing the
rightmost 1 from Φ(T). Let Ts be tableau consisting of the first s columns of T. Then
we have

word(Φ(T)) = 1 word(Φ−1(T)) = 1ar+s . . . as+1 word(Φ−1(Ts)).

It is then enough to show that word(Φ−1(Ts)) ∼= word(Ts)1. We show this by induction
on s.

The claim is clear if s = 0. For s > 0, let U = Ts−1. Notice that we have
word(Φ−1(U)) = as−1 word(Φ(U)s−1) and that Φ(U)s−1 = Φ(T)s−1. We have
word(Ts) = asbs word(U) and by induction we have

word(Ts)1 ∼= asbs word(Φ−1(U)) = asbsas−1 word(Φ(T)s−1)

Assume that bs ̸= as−1. Since as−1 ⩽ as < bs by Relation R1 in §3.3 we have

asbsas−1 ∼= asas−1bs.

We conclude because asas−1bs word(Φ(T)s−1) = word(Φ−1(Ts)).
Assume now that bs = as−1. Note that bs = 2 is impossible since semi-standardness

alone then implies that as−1 = as = 2 and bs−1 = bs = 2 but the tableau 2 2

2 2
is not

KN. Therefore the only option is bs = 1 and as−1 = 1. In this case we have as ∈ {2, 2}
and Relation R2 tells us that

as11 ∼= as22.

Notice that the case bs = 1 precisely occurs when the s-th column of Φ′(T) is 1

1
and

is replaced by 2

2
in Φ(T). Hence, we have as22 word(Φ(T)s−1) = word(Φ−1(Ts)) and

we conclude. □

We now go back to the proof of Proposition 4.1. From Lemma 4.2 we see im-
mediately that Φ is injective. Let T be a KN tableau and w = word(T). We have
σ1(1w1) = −σ1(w)+. This implies that, if f1 is defined on w then it is also defined
on 1w1 and

f1(1w1) = 1f1(w)1(3)

Similarly, if e1(w) is defined, then e1(1w1) = 1e1(w)1. We know by Lemma 4.2 that
1w1 ∼= word(Φ(T)) therefore

f1(word(Φ(T))) ∼= f1(1w1) = 1f1(w)1 ∼= word(Φ(f1(T))).(4)

This implies that, since f1(Φ(T)), e1(Φ(T)),Φ(e1(T)) and Φ(f1(T)) are KN tableaux,
we have

f1(Φ(T)) = Φ(f1(T)) e1(Φ(T)) = Φ(e1(T))(5)

as desired. Now, σ2(1w1) = σ2(w) by definition, so e2 and f2 are defined on Φ(T)
if and only if are defined on T. Hence f2(word(Φ(T)) = word(Φ(f2(T))) and (5) hold
after replacing f1 by f2 and e1 by e2. □

Corollary 4.3. Given a KN tableau T, the new tableau Φ(T) is defined by first column
inserting the letter 1 into T using symplectic insertion and subsequently adding a 1 at
the end of the first row.

Proof. The proof follows immediately from Lemma 4.2. □
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Corollary 4.4. The complement of Im(Φ) is closed under the action of W , under
e2 and under outwards e1, i.e. if T ̸∈ Im(Φ) and ⟨wt(T), α∨

1 ⟩ ⩾ 0 and e1(T) ̸= 0, then
e1(T) ̸∈ Im(Φ).

Proof. Since Φ commutes with W , the complement of its image is union of W -orbits.
Let T ̸∈ Im(Φ). We know that Φ(ei(T)) = ei(Φ(T)) if ei(T) ̸= 0.

Assume e2(T) ̸= 0. If e2(T) = Φ(T′), then it follows from σ2(Φ(T′)) = σ2(T′), that
f2(T′) ̸= 0 and therefore T = f2(Φ(T′)) = Φ(f2(T′)), which is impossible.

Assume e1(T) ̸= 0 and ⟨wt(T), α∨
1 ⟩ ⩾ 0. Assume e1(T) = Φ(T′). Since ⟨wt(T′), α∨

1 ⟩ =
⟨wt(T), α∨

1 ⟩ + 2 > 0, we have f1(T′) ̸= 0, hence T = f1(Φ(T′)) = Φ(f1(T′)), which is
impossible. □

Remark 4.5. In analogy with [26, Definition 2.17] we can consider the connected
components obtained as f2-closures of the W -orbits in the crystal graph. From Corol-
lary 4.4 we see that preatoms are unions of the f2-closure, and moreover, it turns out
that for most λ (i.e. for λ1 > 0) each preatom consists of exactly one or two connected
components, depending on the parity of λ1. In this sense, we can think of preatoms
in type C2 as a direct generalization of LL atoms in type A.

Definition 4.6. For λ such that λ1 ⩾ 2, we define the principal preatom P(λ) to be
the complement of Im(Φ) in B(λ). If λ1 ⩽ 1, we define P(λ) := B(λ).

We define the preatomic decomposition by induction on λ1. If λ1 ⩾ 2, let B(λ −
2ϖ1) =

⊔
P(µi) be the preatomic decomposition. Then, the preatomic decomposition

of B(λ) is

B(λ) = P(λ) ⊔
⊔

Φ(P(µi)).

Notice that all the preatoms in B(λ) are images of a principal preatom P(λ−2kϖ1)
under the map Φk for some k. In particular, for any λ ∈ X every preatom of highest
weight λ is isomorphic via some power of Φ to the principal preatom P(λ) ⊂ B(λ)
and every preatom has a unique element of maximal weight. We now give a different
characterization of preatoms using adapted strings.

Proposition 4.7. Let T ∈ B(λ) and consider Φ : B(λ) → B(λ+ 2ϖ1).
(1) If str1(T) = (a, b, c, d), we have str1(Φ(T)) = (a+ 1, b+ 1, c+ 1, d).
(2) If str2(T) = (a, b, c, d) we have str2(Φ(T)) = (a, b+ 1, c+ 1, d+ 1).

Proof. If vλ is the highest weight vector, then it follows from Lemma 4.2 that

Φ(T) = f1f2f1(vλ+2ϖ1).(6)

In this case str1(vλ) = (0, 0, 0, 0) so the claim follows since (1, 1, 1, 0) is an adapted
string for Φ(T). For arbitrary T ∈ B(λ) it follows from Proposition 4.1 that

Φ(T) = fa
1 f

b
2f

c
1f

d
2 f1f2f1(vλ+2ϖ1).(7)

We introduce the following notation:

(a′, b′, c′, d′) := str1(fd
2 f1f2f1(vλ+2ϖ1)) = θ21(d, 1, 1, 1)

(a′′, b′′, c′′, d′′) := str1(fa′+c
1 f b′

2 f
c′

1 f
d′

2 (vλ+2ϖ1))

(a′′′, b′′′, c′′′, d′′′) := str2(fa′′+b
2 f b′′

1 f c′′

2 fd′′

1 (vλ+2ϖ1)).

By Theorem 3.9, we have (a′, b′, c′, d′) = θ12(d, 1, 1, 1) = (1, d + 1, 1, 0). More-
over, it follows from [19, Cor. 2, ii.] that (a′′, b′′, c′′, d′′) = (0, c + 1, d + 1, 1) and
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(a′′′, b′′′, c′′′, d′′′) = (1, b+ 1, c+ 1, d). Putting all of this together we get that

Φ(T) = fa
1 f

b
2f

c
1f

d
2 f1f2f1(vλ+2ϖ1)

= fa
1 f

b
2f

a′+c
1 f b′

2 f
c′

1 f
d′

2 (vλ+2ϖ1)

= fa
1 f

b+a′′

2 f b′′

1 f c′′

2 fd′′

1 (vλ+2ϖ1)

= fa+a′′′

1 f b′′′

2 f c′′′

1 fd′′′

2 (vλ+2ϖ1).
Therefore

(a+ a′′′, b′′, c′′′, d′′′) = (a+ 1, b+ 1, c+ 1, d) = str1(Φ(T)),
showing the first statement. The proof of the second statement is similar. It follows
from Lemma 4.2 that
(8) Φ(vλ) = f1f2f1(vλ+2ϖ1),
so that str2(Φ(vλ)) = (0, 1, 1, 1). Using [19, Prop. 2.4] we get that

Φ(T) = fa
2 f

b
1f

c
2f

d
1 (f1f2f1(vλ+2ϖ1))

= fa
2 f

b
1f

c
2f

d+1
1 f2f1(vλ+2ϖ1)

= fa
2 f

b
1f1f

c+1
2 fd+1

1 (vλ+2ϖ1)

= fa
2 f

b+1
1 f c+1

2 fd+1
1 (vλ+2ϖ1).

This concludes the proof. □

Remark 4.8. Notice that one can avoid the recourse to tableaux combinatorics and
use the equation in Proposition 4.7 as the definition of Φ. Then one can use the
explicit description of the adapted strings in Theorem 3.9 to the check that Φ is well
defined and that has the desired properties.

The description of the embedding Φ in terms of adapted strings allows us to give
a convenient description of the elements in the principal preatom P(λ) ⊂ B(λ).

Corollary 4.9. There exists T ∈ P(λ) with str2(T) = (a, b, c, d) if and only if all
the inequalities in Theorem 3.10 hold and at least one of the following equations hold.

• d = 0
• d = λ1
• b = λ1 − 2d+ 2c

Proof. Let T ∈ B(λ) with str2(a, b, c, d), so all the inequalities in Theorem 3.10 hold.
There exists U ∈ B(λ − 2ϖ1) with str2(U) = (a, b − 1, c − 1, d − 1) so that Φ(U) = T
if and only if all the inequalities in Theorem 3.10 hold for (a, b− 1, c− 1, d− 1) and
λ−2ϖ1, which written explicitly means that d ⩾ 1, d ⩽ λ1 −1 and b ⩽ λ1 −2d+2c−1
(the others remain unchanged). The claim now easily follows for λ1 ⩾ 2. □

Definition 4.10. Let T ∈ B(λ). Let pat(T) ∈ Z⩾0 be such that T ∈ P(λ −
2 pat(T)ϖ1) ⊂ B(λ). We call pat(T) the preatomic number of T.

In other words, pat(T) is the maximum integer with T ∈ Im(Φpat(T)).

We now compute the size of the preatoms using the precanonical bases from Sub-
section 2.2.

Definition 4.11. Let B+(λ) be the subset of B(λ) consisting of elements whose weight
is dominant. For a subset of C ⊂ B+(λ) we define the ungraded character of C as

[C]v=1 :=
∑
c∈C

ewt(c) ∈ Z[X+]
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More generally, for a subset C ⊂ B(λ) stable under the W -action we define

[C]v=1 := [C ∩ B+(λ)]v=1

Proposition 4.12. We have [B(λ)]v=1 = (Hλ)v=1 and [P(λ)]v=1 = (Ñ3
λ)v=1.

Proof. The statement about B(λ) follows by the Satake isomorphism (see for example
[11]). The second statement follows easily from the definition of Ñ3

λ. In fact, if λ1 ⩽ 1
we have B(λ) = P(λ). If λ1 ⩾ 2 we have P(λ) = B(λ) ∖ Φ(B(λ − 2ϖ1)). Since Φ is
weight preserving and injective, we have

[P(λ)]v=1 = [B(λ)]v=1 − [B(λ− 2ϖ1)]v=1 = (Hλ − Hλ−2ϖ1
)v=1 = (Ñ3

λ)v=1. □

4.1.1. The preatomic Z function. In analogy with [25, Definition 1.17] we define a
function Z in type C.

Definition 4.13. For T ∈ B(λ), let Z(T) := ϕ1(T) + ϕ2(T) + ϕ21(T).

The function Z is not constant along preatoms but nevertheless can be used to
give an explicit formula for the preatomic number pat.

Proposition 4.14. Assume T ∈ B(λ) and let µ := wt(T). Then we have

(9) Z(T) = λ1 + λ2 + µ1 + µ2 + max
(

0, |µ1| − λ1

2

)
+ pat(T).

Proof. We show the claim by induction on pat(T). We first assume pat(T) = 0, or
equivalently that T ∈ P(λ) ⊂ B(λ). Let (a, b, c, d) = str2(T).

Let T = (Q∪{+∞},⊕,⊙) be the tropical semiring (cf. [22]), where x⊕y = min(x, y)
denotes the tropical addition and x⊙ y = x+ y is the tropical multiplication. We also
write fractions in T for the tropical division, i.e. x

y = x− y. A tropical polynomial is
the function expressing the minimum of several linear functions. A tropical rational
function is the difference of two tropical polynomials.

Our first goal is to reinterpret both sides of (9) as tropical rational functions in
a, b, c, d, λ1 and λ2. For example, µ1 can be expressed as a tropical rational function:
since we have µ1 = λ1 + 2a+ 2c− 2b− 2d, we can write µ1 = λ1⊙a⊙2⊙c⊙2

b⊙2⊙d⊙2 . In the rest
of this proof we make the notation lighter by simply writing xy for x⊙ y and xn for
x⊙n. Since pat(T) = 0 we can rewrite the RHS in (9) as

RHS(T) := λ2
1λ

2
2

bd(1 ⊕ λ1ac
bd ⊕ bd

ac )
= acλ2

1λ
2
2

a2c2λ1 ⊕ abcd⊕ b2d2 .

Expressing the LHS of (9) is unfortunately a much longer computation. We have
Z(T) = ϕ2(T) ⊙ ϕ1(T) ⊙ ϕ12(T) and

• ϕ2(T) = bdλ2
ac2

• ϕ1(T) = ϕ′
1 ◦ θ21(a, b, c, d), where ϕ′

1(a, b, c, d) = b2d2λ1
ac2 and θ21 is as in Theo-

rem 3.9.
• ϕ12(T) = ϕ2 ◦ θ12 ◦σ1 ◦ θ21(a, b, c, d) where σ1(a, b, c, d) = ( λ1b2d2

ac2 , b, c, d) is the
transformation expressing the action of the simple reflection s1 on str1.

From this, we can obtain an explicit expression of Z(T) as a tropical rational function.
However, this is a rather unfeasible task to do by hand, so we resort to the help of
the computer algebra software [28]. In Sage we can simply compute Z(T) by formally
treating its three factors as ordinary rational functions in Q(a, b, c, d, λ1, λ2).

Then, to check the claim, we need to show that Z(T) = RHS(T) when d = 0,
d = λ1 or b = λ1 + 2d − 2c. In other words, we need to show that, as tropical
rational functions on the set of elements of the crystal, we get Z(T)/RHS(T) = 1 if
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we specialize d = 1,(2) d = λ1 or b = λ1d
2/c2. Again, this can be checked with the

help of SageMath. In Appendix A we attach the code that proves our claim.
Assume now pat(T) > 0, so T = Φ(T′) for some T′ ∈ B(λ − 2ϖ1). Since pat(T) =

pat(T′)+1, by induction it suffices to show that Z(T) = Z(T′)+1. From Proposition 4.7
it follows that ϕ1(T) = ϕ1(T′) + 1 and ϕ2(T) = ϕ2(T′). Moreover, we have

ϕ12(T) = ϕ2(s1(T)) = ϕ2(s1(Φ(T′))) = ϕ2(Φ(s1(T′))) = ϕ2(s1(T′)) = ϕ12(T′)

since Φ commutes with s1, and the claim follows. □

4.2. Atoms. The goal of this section is to describe a finer decomposition of B(λ) into
atoms.

Definition 4.15. We call a subset A ⊂ B(λ) an atom if [A]v=1 = (Nµ)v=1 for some
µ ∈ X+. This means that there exists µ ∈ X+ such that every weight smaller or equal
than µ in X occurs exactly once as the weight of an element in A.

An atomic decomposition is a decomposition of B(λ) into atoms.

Proposition 4.16. There is an injective weight-preserving map Ψ : P(λ) ↪→ P(λ +
ϖ2). If λ1 ̸= 0 then the set A(λ+ϖ2) := P(λ+ϖ2)∖Ψ(P(λ)) is an atom. If λ1 = 0
then the set A(λ+ 2ϖ2) := P(λ+ 2ϖ2) ∖ Ψ2(P(λ)) is an atom.

We divide the proof into several steps. We begin by defining a map Ψ directly in
terms of the adapted strings. The map Ψ is then obtaining by making Ψ symmetric
along s1. Then we prove injectivity in Lemma 4.20 and that the complement is an
atom in Proposition 4.21.

Lemma 4.17. Let T ∈ P(λ) with str2(T) = (a, b, c, d). Then we have the following:
(1) If d ∈ {0, λ1}, there exists U ∈ P(λ+ϖ2) with str2(U) = (a, b+ 1, c+ 1, d);
(2) If d ̸∈ {0, λ1}, there exists U ∈ P(λ+ϖ2) with str2(U) = (a, b, c+ 1, d+ 1).

Proof. Assume first d = 0 and d = λ1. The Littelmann inequalities for (a, b+1, c+1, d)
and λ+ϖ2 are implied by the original ones for (a, b, c, d) and λ, so there exists such
U ∈ B(λ+ϖ2). Since d = 0 or d = λ1 we also see that U ∈ P(λ+ϖ2).

Assume now d ̸= 0 and d ̸= λ1. Since T ∈ P(λ) we have b = λ1 − 2d + 2c. The
Littelmann inequalities for (a, b, c+ 1, d+ 1) and λ+ϖ2 are:

• b ⩾ c+ 1 ⩾ d+ 1,
• d+ 1 ⩽ λ1,
• c+ 1 ⩽ λ2 + 1 + d+ 1,
• b ⩽ λ1 − 2d+ 2c, and
• a ⩽ λ2 + d− 2c+ b.

All these inequalites are implied by the original ones (and by d ̸= λ1) except b ⩾ c+1.
However, if b < c+1 then b = c and c = λ1−2d+2c or, equivalently, d = 1

2 (c+λ1). Since
d ⩽ c and d < λ1 this is impossible. It follows that there exists U ∈ B(λ + ϖ2) with
str2(U) = (a, b, c+1, d+1). Moreover, b = λ1 −2(d+1)+2(c+1), so U ∈ P(λ+ϖ2) □

Lemma 4.17 ensures that the following function is well defined.

Definition 4.18. We define Ψ : P(λ) → P(λ + ϖ2) as follows. Let T ∈ P(λ) with
str2(T) = (a, b, c, d). Then Ψ(T) = U with

str2(U) =
{

(a, b+ 1, c+ 1, d) if d = 0 or d = λ1

(a, b, c+ 1, d+ 1) otherwise.

(2)Recall that 0 ∈ Q is the multiplicative unity in T
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We also define Ψ : P(λ) → P(λ+ϖ2) as follows.

Ψ(T) =
{

Ψ(T) if wt(T)1 ⩽ 0
s1(Ψ(s1(T))) if wt(T)1 ⩾ 0

Lemma 4.19. For T ∈ P(λ) we have:
(1) wt(Ψ(T)) = wt(Ψ(T)) = wt(T)
(2) ϕ2(Ψ(T)) = ϕ2(T).
(3) If f2(T) ̸= 0 also f2(Ψ(T)) = Ψ(f2(T)).
(4) If e2(T) ̸= 0 also e2(Ψ(T)) = Ψ(e2(T)).
(5) s1(Ψ(T)) = Ψ(s1(T)).

Proof. This is clear by the definition of str2. □

Lemma 4.20. The maps Ψ,Ψ : P(λ) → P(λ+ϖ2) are injective.

Proof. It is enough to prove the statement for Ψ. Assume Ψ(T) = Ψ(U) with T ̸= U.
Let str2(T) = (a, b, c, d) and str2(T) = (a′, b′, c′, d′). We can assume that d ̸∈ {0, λ1},
d′ ∈ {0, λ1} and that

str2(Ψ(T)) = (a, b, c+ 1, d+ 1) = (a′, b′ + 1, c′ + 1, d′).
It follows that d′ = d+ 1, c′ = c and b′ = b− 1. Since

b− 1 = b′ ⩽ λ1 − 2d′ + 2c′ = λ1 − 2(d+ 1) + 2c
it follows that b ⩽ λ1−2d+2c−1. But this contradicts the fact that b = λ1−2d+2c. □

Recall the atomic basis N = N2 of the spherical Hecke algebra from Subsection 2.2.

Proposition 4.21. We have [A(λ)]v=1 = (Nλ)v=1. In particular the set A(λ) is an
atom.

Proof. If λ2 = 0 we have A(λ) = P(λ), so [A(λ)]v=1 = (Ñλ)v=1 = (Nλ)v=1.
If λ2 = 1 and λ1 = 0 then we can easily check that B(λ) consists of a single atom.

If λ2 > 1 and λ1 = 0 then we have A(λ) = P(λ)∖Ψ2(P(λ−ϖ2)). Since Ψ is injective
and weight-preserving, we have by Lemma 2.3 that

[A(λ)]v=1 = [P(λ)]v=1 − [P(λ− 2ϖ2)]v=1 = (Ñ3
λ − Ñ3

λ−2ϖ2
)v=1 = (Nλ)v=1.

Finally, assume λ2 > 0 and λ1 > 0. Then, we have A(λ) = P(λ) ∖ Ψ(P(λ − ϖ2)).
Since Ψ is injective and weight-preserving, we have

[A(λ)]v=1 = [P(λ)]v=1 − [P(λ−ϖ2)]v=1 = (Ñ3
λ − Ñ3

λ−ϖ2
)v=1 = (Nλ)v=1. □

From this we can obtain an atomic decomposition of B(λ). Because we already
know how to decompose B(λ) into preatoms, it is enough to decompose each preatom
P(λ) into atoms. If λ2 = 0 or if λ = (0, 1) we have P(λ) = A(λ). If λ2 > 0 and
λ ̸= (0, 1) then we have

P(λ) =
{

A(λ) ⊔ Ψ(P(λ−ϖ2)) if λ1 > 0
A(λ) ⊔ Ψ2(P(λ− 2ϖ2)) if λ1 = 0

so, applying Ψ, we obtain an atomic decomposition by induction.

Remark 4.22. It is worth noting that an atomic decomposition can also be obtained
by taking the complement of Ψ rather than Ψ. The advantage of using Ψ is to ensure
that atoms are stable under s1. This stability is crucial, as our approach inherently
relies on s1-symmetry, as discussed for example in Proposition 5.24. It is therefore
essential to ensure that the structures we define are compatible with this symmetry.
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Lemma 4.23. Let T ∈ P(λ) with str2(T) = (a, b, c, d). Then

ϕ1(Ψ(T)) =
{
ϕ1(T) if d = 0 and 2a > b > 2c or d ̸= 0, λ1 and b > 2a+ d

ϕ1(T) + 1 otherwise.

Moreover, if ϕ1(Ψ(T)) = ϕ1(T) and µ1 ⩽ 0, then ϕ1(T) = 0

Proof. Let π1 : Z4 → Z be the projection onto the first component. Then, we have

(10) ϕ1(T) = π1(θ21(str2(T)))+(wt(T))1 = λ1+2a−2b+2c−2d+max(d, 2c−b, b−2a).

From here we see that, if d = 0 or d = λ1, we have

ϕ1(Ψ(T)) − ϕ1(T) = max(d, 2c− b+ 1, b− 2a+ 1) − max(d, 2c− b, b− 2a).

If d = 0, then ϕ1(Ψ(T)) = ϕ1(T)) if and only if 2a > b > 2c. If d = λ1, we have
2c− b ⩾ 2d− λ1 = λ1, so ϕ1(Ψ(T)) − ϕ1(T) = 1.

If 0 < d < λ1 and b = λ1 − 2d+ 2c, then

ϕ1(Ψ(T)) − ϕ1(T) = max(d+ 1, 2c− b+ 2, b− 2a) − max(d, 2c− b, b− 2a),

but 2c− b = 2d− λ1 < d, so ϕ1(Ψ(T)) − ϕ1(T) = max(d+ 1, b− 2a) − max(d, b− 2a)
and the claim easily follows. □

Corollary 4.24. Let T ∈ P(λ) with str2(T) = (a, b, c, d). Then

ϕ12(Ψ(T)) =
{
ϕ12(T) + 1 if d = 0 and 2a > b > 2c or d ̸= 0, λ1 and b > 2a+ d

ϕ12(T) otherwise.

Proof. It follows from Proposition 4.14 that

ϕ12(Ψ(T)) − ϕ12(T) = 1 − (ϕ1(Ψ(T)) − ϕ1(T)),

so we conclude by Lemma 4.23. □

Definition 4.25. Let T ∈ B(λ).
Let at(T) ∈ Z⩾0 be the maximum integer such that T is in the image of Ψat(T) :

P(λ− at(T)ϖ2) → P(λ). We call at(T) the atomic number of T.

Proposition 4.26. Let T ∈ P(λ) ⊂ B(λ) with str2(T) = (a, b, c, d) and wt(T)1 ⩽ 0.
We have

at(T) =
{

min(c, λ1 + 2c− b) if d = 0
λ1 + 2c− 2d− b+ min(λ2 + d− c, d− 1) if d > 0.

Proof. Notice that since wt(T)1 ⩽ 0 we have Ψ = Ψ.
First recall that by Theorem 3.10, we have 0 ⩽ d ⩽ λ1. If d = 0, at(T) is the

maximal amount we can subtract simultaneously from b and c, decreasing at the
same time the value of λ2 by the same amount, so that the inequalities and equalities
mentioned in Corollary 4.9 still hold. Since b ⩾ c, we can focus only on c and the
inequality λ1 + 2c − b ⩾ 0, which is the only other inequality describing P(λ) which
is affected after reducing b, c and λ2 in equal amounts. Now if we decrease b and c
simultaneously by the same amount, the quantity λ1 + 2c− b decreases by the same
amount. Therefore, in this case at(T) = min (c, λ1 + 2c− b) as desired.

Assume now d = λ1. Recall that we need to find the maximal at(T) such that the
map Ψat(T)(U) = T for an element U ∈ P(λ − at(T)ϖ2). Recall that the definition of
the map Ψ depends on the value of d. Let ψ1 and ψ2 be the two possible actions on
adapted strings defined by Ψ, corresponding to the cases 0 < d < λ1 and d = 0, λ1
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respectively (i.e. we have ψ1, ψ2 : Z4 → Z4 with ψ1(a, b, c, d) = (a, b, c+ 1, d+ 1) and
ψ2(a, b, c, d) = (a, b+ 1, c+ 1, d)). The definitions imply that we must have

str2(T) = ψ
at2(T)
2 ψ

at1(T)
1 (str2(U))

for some at1(T), at2(T) ∈ N with at1(T) + at2(T) = at(T).
Now, to calculate at1(T) we first need to subtract the largest possible amount

from b, c and λ2 such that our inequalities and equalities stated in Corollary 4.9
will still hold. Analogously to the case d = 0 we can conclude that this number is
at1(T) = min(c, λ1 + 2c − b − 2d). In this case the inequality 0 ⩽ λ1 + 2c − 2d − b
becomes 0 ⩽ 2c − λ1 − b ⩽ c since c ⩽ b. Therefore at1(T) = λ1 + 2c − b − 2d. To
compute at2(T) in this case, after already reducing b, c and λ2 by at1(T) we need to
further reduce c′ = c − at1(T) as well as d and λ′

2 = λ2 − at1(T) by the maximal
possible amount strictly smaller than d such that the preatom inequalities/equalities
will still hold. This amount is

at2(T) = min (λ′
2 + d− c′, d− 1) = min (λ2 + d− c, d− 1)

since the inequality λ2+d−c′ ⩾ 0 is the only preatom inequality affected by decreasing
c, d and λ2 simultaneously by the same amount. Moreover, it decreases precisely by
this amount.

Finally, assume 0 < d < λ1. As in the discussion above we have

str2(T) = ψ
at2(T)
2 (str2(U)),

and thus at(T) = at2(T). Moreover, if 0 < d < λ1 we have b = λ1−2c+2d so we can also
write at(T) = λ1+2c−2d−b+at2(T) = λ1+2c−2d−b+at2(T)+min(λ2+d−c, d−1). □

Corollary 4.27. Let U ∈ P(λ) ⊂ B(λ) with str2(U) = (a, b, c, d). Then U ̸∈ Ψ(P(λ−
ϖ2)) if and only if one of the following two conditions holds:

• b = λ1 − 2d+ 2c and (d ⩽ 1 or c = λ2 + d) ;
• b < λ1 − 2d+ 2c and c = d = 0.

Proof. We know that U /∈ Ψ(P(λ − ϖ2)) ⇐⇒ at(U) = 0. First assume at(U) = 0. If
b = λ1 − 2d+ 2c then from Proposition 4.26 we see that either d ⩽ 1 or if d > 1, we
must have min(λ2 + d− c, d− 1) = 0. Since d > 1 this implies that λ2 + d− c = 0. If
b < λ1 − 2d + 2c then by Proposition 4.26 d > 0 is impossible, so d = 0 necessarily.
Moreover, since at(U) = 0 we must have min(c, λ1 + 2c − b), but since the second
term is strictly larger than zero by assumption, we conclude c = 0. Conversely, if
b = λ1 − 2d+ 2c and d ⩽ 1, it follows directly from Proposition 4.26 that at(U) = 0. If
c = λ2 +d and d > 1 then at(U) = 0 also by Proposition 4.26. Now, if b < λ1 −2d+2c
and c = d = 0 then at(U) = 0 applying the first formula in Proposition 4.26. □

4.3. Example: The atomic decomposition of B(kϖ2). Let Bk := B(kϖ2). By
definition Bk consists of a single preatom. We describe now the atomic decomposition
of Bk. Since λ1 = 0 we have str2(T) = (a, b, c, 0) for any T ∈ Bk. By Lemma 4.23, we
see that ϕ1(Ψ(T)) = ϕ1(T) for any T ∈ Bk, hence Ψ commutes with s1 and we have
Ψ = Ψ. Then by Lemma 4.19.3, we see that Ψ also commutes with f2.

Here we refer to the connected components under W, f2 simply as connected com-
ponents (cf. Remark 4.5). Notice that Ψ preserves these connected components. We
claim that the crystal Bk has precisely k + 1 connected components

Bk =
k⊔

i=0
Bk[i].

and that Ψ(Bk−1[i]) = Bk[i]. In particular, it follows that A(kϖ2) = Bk∖Ψ2(Bk−1) =
Bk[k] ⊔Bk[k − 1].
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Figure 2. The weight multiplicities of the crystal B3.

The crystal B0 consists of a single element, the empty tableau, so the claim is
trivial. In B1 there are two connected components. In fact, it is easy to see that

B1[0] =
{

2

2

}
is fixed under the action of f2 and s1, and that its complement in B1 is a connected
component of cardinality 4.

The weights of the elements in A(kϖ2) form two square grid of side k and k+ 1 as
shown in Figure 2, so |A(kϖ2)| = (k+1)2+k2. From this, it follows that |Bk|−|Bk−1| =
(k + 1)2.

By induction, to show our claim it is enough to show that the complement of
Ψ(Bk−1) in Bk is a single connected component of cardinality (k + 1)2.

The complement of Ψ always contains the highest weight vector Tk ∈ Bk. Then,
for 0 ⩽ r ⩽ k, the tableaux

fr
2 (Tk) = 1 · · · 1 1 · · · 1

2 · · · 2 2 · · · 2
,

in which there are r column of the form 1

2
, are also in the same connected component

as Tk. We obtain s1(fr
2 (T)) from fr

2 (T) by replacing the columns of the form 1

2
by

columns of the form 2

1
. The tableaux s1(fr

2 (T)) are the highest element in their f2-

string, and there are k+1 elements in their f2-orbit, given by barring some of the 2’s.
So we have seen that there are at least (k+1)2 elements in the connected components
of Tk. Since Ψ is an embedding and |Bk| − |Bk−1| = (k + 1)2, these are precisely all
the elements in the complement of Ψ.

5. Swappable edges and their classification
5.1. Twisted Bruhat graphs. The Bruhat order on the weight lattice X is the
order generated by the following relations

(11) s∨
α(λ) < λ ⇐⇒

{
⟨λ, β∨⟩ > M if M ⩾ 0,
⟨λ, β∨⟩ < M if M < 0.

where α∨ = Mδ + β∨, with β∨ ∈ Φ∨
+ and λ ∈ X. The set of elements smaller that λ

in the Bruhat order, which we denote by {⩽ λ}, can be characterized as

(12) {⩽ λ} = Conv(W · λ) ∩ (λ+ ZΦ)

Algebraic Combinatorics, Vol. 8 #2 (2025) 541



Leonardo Patimo & Jacinta Torres

(see for example [2, Chap. VIII, §7, exerc. 1]).
Let λ ∈ X+. Let Γλ denote the moment graph of the spherical Schubert variety

Grλ. This is a directed labeled graph, also called the Bruhat graph of λ. We recall
from [25, §2.3] the explicit description of Γλ. The vertices of the graph Γλ are all the
weights in {⩽ λ}. We have an edge µ1 → µ2 in Γλ if and only if µ2 − µ1 is a multiple
of a root β ∈ Φ and µ1 ⩽ µ2. In this case, the label of the edge µ1 → µ2 is mδ − β∨,
where

m = −⟨β∨, µ1 + µ2⟩
2

(cf. [25, Lemma 2.7]). Notice that smδ−β∨(µ1) = µ2. We denote by E(λ)the set of
edges in Γλ.

Let ΓX denote the union of all the graphs Γλ, for λ ∈ X+ (where Γλ is regarded
as a subgraph of Γλ′ if λ ⩽ λ′) and call it the Bruhat graph of X.

For w ∈ Ŵ we denote by

N(w) := {α ∈ Φ̂∨
+ | w−1(α) ∈ Φ̂∨

−}

the set of inversions. If w = si1 . . . sik
is a reduced expression for w then

N(w) = {α∨
i1
, si1(α∨

i2
), . . . , si1si2 . . . sik−1(α∨

ik
)}.

We say that w = s1s2 . . . sk . . . is a reduced infinite expression if for any j the
starting expression wj := s1s2 . . . sj is reduced. If w is a reduced infinite expression,
let N(w) =

⋃∞
j=1 N(wj).

Consider c = s0s2s1s2. Then y∞ := ccc . . . is an infinite reduced expression. Let
ym be the element given by the first m simple reflections in y∞. We order the roots
in N(y∞) as follows:

(13) δ − α∨
21 < δ − α∨

12 < 2δ − α∨
21 < δ − α∨

2 < 3δ − α∨
21 < 2δ − α∨

12 <

. . . < Mδ − α∨
12 < 2Mδ − α∨

21 < Mδ − α∨
2 < (2M + 1)δ − α∨

21 < . . .

so that the first m roots in (13) are precisely the elements of N(ym).
We define the m-twisted Bruhat order ⩽mof Ŵext by setting

v ⩽m w if and only if y−1
m v ⩽ y−1

m w,

and the m-twisted length by ℓm(v) := ℓ(y−1
m v). Recall that X ∼= Ŵext/W . Hence, the

twisted Bruhat order on Ŵext also induces a twisted Bruhat order on X. Concretely,
this means that we regard λ ∈ X as a right coset in Ŵext and denote by λm ∈ Ŵext the
element of minimal ym-twisted length in the coset λ. Then we set ℓm(λ) := ℓm(λm)
and µ ⩽m λ if λm ⩽m µm.

For every m ∈ Z⩾0 we define Γm
λ , the ym-twisted Bruhat graph of λ, to be the

directed labeled graph with the same vertices of Γλ and where there is an edge µ → λ

if there exists α∨ ∈ Φ̂∨ such that sα∨(µ) = λ and µ <m λ. Concretely, we can obtain
Γm

λ from Γλ by inverting the orientation of all the arrows in Γλ with label in N(ym).
Since each graph Γλ has only a finite number of edges, the twisted graphs Γm

λ

stabilize for m big enough, so we can define Γ∞
λ := Γm

λ for m ≫ 0.
For m ∈ Z⩾0 ∪ {∞}, we define Γm

X as the union of all the graphs Γm
λ , for λ ∈ X+.

The graph Γm
X can be obtained from ΓX by inverting the orientation of all the arrows

with label in N(ym).

Definition 5.1. For µ ⩽ λ, we denote by Arrm(µ, λ) the set of arrows pointing to µ
in Γλ

m and by ℓm(µ, λ) := | Arrm(µ, λ)| the number of those arrows.
For i ∈ {1, 2, 21, 12} let Arri

m(µ, λ) be arrows pointing to µ in Γλ
m of the form

µ− kαi → µ for k ∈ Z. Let ℓi
m(µ, λ) = | Arri

m(µ, λ)|.
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Let Arrµ(µ) be the set of arrows pointing to µ in Γm
X . For i ∈ {1, 2, 21, 12}, the set

Arri
m(µ) is defined accordingly.

Recall from [26, Lemma 2.10] that | Arrm(µ)| = ℓm(µ). We have

(14) Arrm(µ, λ) =
⋃

i∈{1,2,12,21}
Arri

m(µ, λ) and ℓm(µ, λ) =
∑

i∈{1,2,12,21}

ℓi
m(µ, λ)

for any µ ⩽ λ. Notice that, since there are no arrows of the form Mδ−α∨
1 in N(y∞),

the set Arr1
m(µ, λ) does not depend on m, and does not depend on λ as long as µ ⩽ λ.

If µ ⩽ λ, for all m by (11) we have

Arr1
m(µ, λ) = {µ− kα1 → µ | µ− kα1 ⩽ µ}

=
{

{µ− kα1 → µ | 0 < k ⩽ µ1} if µ1 ⩾ 0
{µ− kα1 → µ | 0 > k > µ1} if µ1 < 0.

Hence, we have

(15) ℓ1
m(µ, λ) =

{
µ1 if µ1 ⩾ 0
−µ1 − 1 if µ1 < 0.

5.2. Swappable edges. To pass from Γm
λ to Γm+1

λ (and from Γm
X to Γm+1

X ) we need
to invert the arrows with label α∨

tm+1
, where tm+1 is the reflection

(16) tm+1 := ym+1y
−1
m = yms

′
m+1y

−1
m .

Here s′
m+1 denotes the (m + 1)-th simple reflection in y∞. Notice that {α∨

tm+1
} =

N(ym+1) ∖N(ym).
If µ < tm+1µ, then Arrm+1(tm+1µ) ∖ Arrm(tm+1µ) = {µ → tm+1µ} and Arrm(µ)

is in bijection with Arrm(tm+1µ) ∖ {µ → tm+1µ} by [26, Lemma 2.11]. In particular,
we have

(17) ℓm(µ) = ℓm(tm+1µ) − 1.

A property of the twisted Bruhat graphs in type A ([26, Prop. 2.17]) is that the same
is true if we restrict to Γλ, i.e. ℓm(µ, λ) = ℓm(tm+1µ, λ) − 1 if µ < tm+1µ ⩽ λ. This
implies that ℓm+1(µ, λ) = ℓm(tm+1µ, λ) and ℓm(µ, λ) = ℓm+1(tm+1µ, λ). However, as
we will see in Example 5.3, this property does not hold in type C2. The goal of this
section is to classify the set of edges for which it holds.

Definition 5.2. We say that an edge µ → tm+1µ in Γλ is swappable if

(18) ℓm(µ, λ) = ℓm(tm+1µ, λ) − 1.

We also say that an edge is NS if it is not swappable. We denote by ES(λ) and EN (λ)
the sets of swappable and non-swappable edges in Γλ, respectively.

As it turns out, to determine if an edge is swappable or not, we have to solve an
elementary geometric problem, which the next example illustrates.

Example 5.3. In the Figures 3 and 4 the starting points of the arrows in ℓm(µ, λ)
are denoted by red circles while the starting points of the arrows in ℓm(tm+1µ, λ) are
denoted by blue squares.

Assume that λ = (2, 2), µ = (2,−1) and that m + 1 = 8, i.e. that t := tm+1 is
the reflection corresponding to the root 2δ − α∨

2 . In Figure 3, the yellow octagon is
the convex hull of W · λ while the green octagon is (the border of) the convex hull
of ymWy−1

m · µ. As we will observe in Subsection 5.4, the arrows in Arrm(µ, λ) and
Arrm(tµ, λ) can be characterized as the weights in the diagonal of the green octagon

Algebraic Combinatorics, Vol. 8 #2 (2025) 543



Leonardo Patimo & Jacinta Torres

λ

µtµ

Figure 3. A swappable
edge

λ

µtµ

Figure 4. A non-
swappable edge

which lie inside the yellow octagon. In this case we see that there are are 7 red dots
and 8 blue squares, meaning that the edge µ → tµ is swappable.

Now assume that λ = (2, 2), µ = (4,−2) and m + 1 = 12, i.e. that t := tm+1 =
s3δ−α∨

2
. As illustrated in Figure 4, we have 9 red dots and 9 blue squares, so in this

case the edge µ → tµ is not swappable.
5.3. Geometry of atoms. We fix λ ∈ X+. Recall that {⩽ λ} = (λ+ZΦ)∩Conv(W ·
λ).

In our situation, the convex hull Conv(W · µ) is an octagon with vertices as in
Figure 5. We can make the actual conditions more explicit.

λ = (λ1, λ2)

s2s1λ = (λ1 + 2λ2, −λ1 − λ2)

s2s1s2λ = (λ1, −λ1 − λ2)

w0λ = (−λ1, −λ2) s1s2s1λ = (−λ1 − 2λ2, λ2)

s1s2λ = (−λ1 − 2λ2, λ1 + λ2)

s1λ = (−λ1, λ1 + λ2)

s2λ = (λ1 + 2λ2, −λ2)

Figure 5. The W -orbit and the convex hull of λ

Lemma 5.4. We have µ ⩽ λ if and only if µ1 ≡ λ1 (mod 2) and the following inequal-
ities hold:

− λ1 − 2λ2 ⩽ µ1 = ⟨µ, α∨
1 ⟩ ⩽ λ1 + 2λ2

− λ1 − λ2 ⩽ µ1 + µ2 = ⟨µ, α∨
12⟩ ⩽ λ1 + λ2

− λ1 − λ2 ⩽ µ2 = ⟨µ, α∨
2 ⟩ ⩽ λ1 + λ2

− λ1 − 2λ2 ⩽ µ1 + 2µ2 = ⟨µ, α∨
21⟩ ⩽ λ1 + 2λ2.
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Proof. It is easy to see that µ ≡ λ (mod ZΦ) if and only if µ1 = λ1. The inequalities
can be easily deduced from Figure 5 □

We introduce now some helpful quantities which evaluate the distance of a weight
µ from the walls of Conv(W · λ).

Definition 5.5. For i ∈ {1, 2, 21, 12}, let ϕ̂i(µ, λ) be the maximum integer k such that
µ− kαi ⩽ λ.
Lemma 5.6. Let µ ⩽ λ. We have

(1) ϕ̂21(µ, λ) = λ2 + µ2 + min
(
λ1,

λ1+µ1
2 , λ1 + µ1

)
(2) ϕ̂12(µ, λ) = λ1+µ1

2 + min
(
λ2 + µ2,

⌊
λ2+µ2

2

⌋
, λ2

)
(3) ϕ̂2(µ, λ) := λ1−µ1

2 + min
(
λ2 + µ1 + µ2,

⌊
λ2+µ1+µ2

2

⌋
, λ2

)
.

Proof. We prove only the first statement, since the other two are analogous. Consider
the maximal x ∈ R⩾0 such that ν := µ−xα21 ∈ Conv(W ·λ). Then µ−xα21 belongs
to the boundary of Conv(W · λ) and ϕ̂21(µ, λ) = ⌊x⌋.

We have (ν1, ν2) = (µ1, µ2 − x), hence by Lemma 5.4 the following inequalities
three inequalities hold

−λ1 − λ2 ⩽ µ1 + µ2 − x

−λ1 − λ2 ⩽ µ2 − x

−λ1 − 2λ2 ⩽ µ1 + 2µ2 − 2x
and since we are on the boundary at least one of them must be an equality. It follows
that

x = min(µ1 + µ2 + λ1 + λ2, λ1 + λ2 + µ2,
λ1 + µ1

2 + λ2 + µ2)

= λ2 + µ2 + min(λ1,
λ1 + µ1

2 , λ1 + µ1). □

5.4. Twisted Reflection Groups. For k ⩾ 0 consider the reflection subgroup
W k := ykWy−1

k ⊂ Ŵ .

Note that for any k we have W k+1 = tk+1W
ktk+1.

Lemma 5.7. For any M > 0 we have W 4M−3 = W 4M−2 = W 4M−1 = W 4M . More-
over, the reflections in W 4M correspond to the roots

{α∨
1 ,Mδ − α∨

2 ,Mδ − α∨
12, 2Mδ − α∨

21}.
Proof. We check this by induction. Recall that for any M > 0, t4M−3, t4M−2, t4M−1,
and t4M are the reflections corresponding to the roots (2M − 1)δ − α∨

21, Mδ − α∨
12,

2Mδ − α∨
21, and Mδ − α∨

2 , respectively.
Recall that for any M ∈ N we have

W 4M−3 = t4M−3W
4M−4t4M−3.

By induction, the reflections in W 4M−4 correspond to the roots α∨
1 , (M − 1)δ −

α∨
2 , (M − 1)δ − α∨

12, and 2(M − 1)δ − α∨
21.

The claim follows since
s(2M−1)δ−α∨

21
(α∨

1 ) = α∨
1

s(2M−1)δ−α∨
21

((M − 1)δ − α∨
2 ) = −M + α∨

12

s(2M−1)δ−α∨
21

((M − 1)δ − α∨
12) = −M + α∨

2

s(2M−1)δ−α∨
21

(2(M − 1)δ − α∨
21) = −2Mδ + α∨

21,
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µvMµ

qMµ

rMµ

λ

s1λ

s2λ

Figure 6. The green octagon is the border of the convex hull of
W 4M · µ.

therefore t4M−i ∈ W 4M−3 for 0 ⩽ i ⩽ 3, which implies that

W 4M = W 4M−1 = W 4M−2 = W 4M−3. □

There are four reflections in W 4M . The reflection corresponding to the root α∨
1

is s1.

Definition 5.8. We denote the other three reflections in W 4M as follows.
vM := reflection corresponding to Mδ − α∨

2

qM := reflection corresponding to Mδ − α∨
12

rM := reflection corresponding to 2Mδ − α∨
21.

These reflection are also depicted in Figure 6. More explicitly, we have
vMµ = µ− (µ2 +M)α2 = (µ1 + 2µ2 + 2M,−µ2 − 2M)(19)
qMµ = µ− (µ1 + µ2 +M)α12 = (−µ1 − 2µ2 − 2M,µ2)(20)
rMµ = µ− (µ1 + 2µ2 + 2M)α21 = (µ1,−µ1 − µ2 − 2M)(21)

We also have qM = s1vMs1 and rM = vMs1vM .
We can use the twisted reflection subgroups Wm to describe the set of smaller

elements with respect to twisted Bruhat order.

Lemma 5.9. Let µ ∈ X.
(1) For any m ⩾ 0 we have {⩽m µ} ⊂ Conv(Wm · µ).
(2) If µ1 ⩾ 0 and µ ⩽ vMµ, we have

{⩽4M µ} = Conv(W 4M · µ) ∩ (µ+ ZΦ) = {⩽4M−1 vMµ}

Proof. Let ν ⩽m µ. Then y−1
m ν ⩽ y−1

m µ, so y−1
m ν ∈ Conv(W · y−1

m µ). This shows the
first part. For the second part, because of (12), it is enough to show that y−1

4Mµ =
y−1

4M−1vMµ is dominant, since then

{⩽4M µ} = {⩽4M−1 vMµ} = {⩽ y−1
4Mµ} = Conv(W · y−1

4Mµ) ∩ (µ+ ZΦ).
Recall that a weight τ ∈ X is dominant if and only if τ ⩾ s1τ and τ ⩾ s2τ . We have
s1µ ⩽ µ, and this is equivalent to s1µ ⩽4M µ. Moreover, s1 commutes with y4 and
therefore also with y4M . It follows that s1y

−1
4Mµ = y−1

4Ms1µ ⩽ y−1
4Mµ.

We have µ ⩽ vµ, and this is equivalent to vµ ⩽4M µ, so
y−1

4Mµ ⩾ y−1
4Mvµ = y−1

4M−1µ = s2y
−1
4Mµ. □
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Recall from Definition 5.5 the definition of ϕ̂i(µ, λ).

Lemma 5.10. Assume that µ ⩽ vMµ. Then we have
(22) vMµ ̸⩽ λ ⇐⇒ M > ϕ̂2(µ, λ) − µ2 ⇐⇒ ℓ2

4M−1(µ, λ) = ϕ̂2(µ, λ),

Proof. By (19) and the definition of ϕ̂2 we have vMµ ⩽ λ if and only if µ2 + M ⩽
ϕ̂2(µ, λ). It follows from Lemma 5.9.2) that Arr2

4M (µ) consists precisely of the arrows
(µ − kα2 → µ), with µ − kα2 lying on the segment between µ and vMµ. In other
words, we have

Arr2
4M (µ) = {(µ− kα2 → µ) | 1 ⩽ k ⩽ µ2 +M}

If vMµ ⩽ λ, then Arr2
4M (µ) = Arr2

4M (µ, λ), so

ℓ2
4M−1(µ, λ) = ℓ2

4M (µ, λ) − 1 = µ2 +M − 1 < ϕ̂2(µ, λ).
If vM ̸⩽ λ we have

Arr2
4M (µ, λ) = {{(µ− kα2) → µ | 1 ⩽ k ⩽ ϕ̂2(µ, λ)}

and so ℓ2
4M−1(µ, λ) = ℓ2

4M (µ, λ) = ϕ̂2(µ, λ). □

Similarly, we have
• Arr12

4M−2(µ) = {(µ− kα12) → µ | 1 ⩽ k ⩽ µ1 + µ2 +M}. and if µ ⩽ qMµ we
have

(23) qMµ ̸⩽ λ ⇐⇒ M > ϕ̂12(µ, λ) − µ1 − µ2 ⇐⇒ ℓ12
4M−3(µ, λ) = ϕ̂12(µ, λ)

• Arr21
4M−1(µ) = {(µ − kα21) → µ | 1 ⩽ k ⩽ µ1 + 2µ2 + 2M} and if µ ⩽ rMµ

we have
(24) rMµ ̸⩽ λ ⇐⇒ 2M > ϕ̂21(µ, λ) − µ1 − 2µ2 ⇐⇒ ℓ21

4M−2(µ, λ) = ϕ̂21(µ, λ).
In the following Lemma we describe the Bruhat order on a W 4M -orbit.

Lemma 5.11. Let µ ∈ X and vM , rM , qM as before. If µ < vMµ and µ1 ⩾ 0 or if
µ < qMµ and µ1 ⩽ 0, then vMµ ⩽ rMvMµ < rMµ and qMµ < rMµ.

Proof. Assume first µ1 ⩾ 0 and µ < vMµ, so µ2 > −M . We have ⟨vMµ, α∨
21⟩ =

(vMµ)1 + 2(vMµ2) = µ1 − 2M ⩾ −2M , so rMvMµ ⩾ vMµ by (11). We have qMrM =
rMvM and ⟨rMµ, α∨

12⟩ = −µ1 − µ2 − 2M < −M so rMvMµ < rMµ. Similarly, we
have µ < qMµ ⩽ vMqMµ ⩽ s1vMqMµ = rMµ. The case µ1 ⩽ 0 and µ < qMµ is
similar. □

Lemma 5.12. Let m > 0 and assume (tmµ)1 ⩾ 0 and µ ⩽ tmµ ⩽ λ. Then tktmµ ⩽ tmµ
for all k ⩽ m corresponding to roots of the form Kδ − α∨

2 .
Assume instead µ1 ⩾ 0 and µ ⩽ tmµ ⩽ λ. Then tkµ ⩽ λ for all k ⩽ m correspond-

ing to roots of the form Kδ − α∨
2 .

Proof. First we prove the first part of the lemma. By assumption we have k = 4K,
since tk corresponds to a root of the form Kδ − α∨

2 . First assume that m = 4M , so
tm = sMδ−α∨

2
. Since k ⩽ m we have K ⩽ M . By (11) we have that for k = 4K ⩽

m = 4M ,
tktmµ ⩽ tmµ ⇐⇒ ⟨tmµ,−α∨

2 ⟩ = µ2 + 2M > K.

We conclude the proof in this case since by assumption µ = tmtmµ ⩽ tmµ and
K ⩽M .

Now we assume m = 4M − 2, so that tm = sMδ−α∨
12

. In this case 4K ⩽ 4M − 2, so
in particular K < M . We have

tktmµ ⩽ tmµ ⇐⇒ ⟨tmµ,−α∨
2 ⟩ = −µ2 > K.
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Our assumption µ ⩽ tmµ implies that ⟨tmµ,−α∨
12⟩ = µ1 + µ2 + 2M > M and

(tmµ)1 ⩾ 0 implies µ1 + 2µ2 + 2M > 0. Putting them together we obtain:

K < M ⩽ µ1 + µ2 + 2M ⩽ µ1 + 2µ2 + 2M − µ2 ⩽ −µ2.

which finishes the proof in this case.
Now we assume m = 4M − 1, so that tm = s2Mδ−α∨

21
. In this case, we have

tktmµ ⩽ tmµ ⇐⇒ ⟨tmµ,−α∨
2 ⟩ = µ1 + µ2 + 2M > K.

Our assumption µ ⩽ tmµ implies that ⟨tmµ,−α∨
21⟩ = µ1 + 2µ2 + 4M ⩾ 2M and

µ1 = (tmµ)1 ⩾ 0. Putting them together we obtain:

2K < 2M ⩽ µ1 + 2µ2 + 4M ⩽ 2µ1 + 2µ2 + 4M.

Finally, assume that m = 4M − 3, so that tm = s(2M−1)δ−α∨
21

. This case follows by
the same argument of the case m = 4M − 1 since we have 2K < 2M − 1.

Now we proceed to prove the second part of the lemma, namely that, assuming
µ1 ⩾ 0 and µ ⩽ tmµ ⩽ λ, then tkµ ⩽ λ for k = 4K ⩽ m. We can assume µ < tkµ,
otherwise the statement is obvious.

The case m = 4M is clear since tkµ lies on the segment between tmµ and µ. Assume
now m = 4M − 1 or m = 4M − 3. In both cases, we have rKµ = tk−1µ ⩽ λ since it
lies on the segment between µ and tmµ. We conclude by Lemma 5.11, since we get
vKµ ⩽ rKvKµ ⩽ rKµ. The last case to consider is m = 4M − 2. Similarly, we have
qKµ ⩽ λ and also s1qKµ = rKvKµ ⩽ λ. We conclude again by Lemma 5.11 since
vKµ ⩽ rKvKµ. □

5.5. Analysis of α2-edges. In this section we fix m + 1 = 4M so that v := vM =
tm+1 is the reflection corresponding to the affine root Mδ−α∨

2 , i.e. the reflection over
the vertical axis {x | ⟨x, α∨

2 ⟩ = −M}. Let r := rM and q := qM .

5.5.1. Sufficient conditions for swappableness. In this section, we assume that µ <
vµ ⩽ λ The goal of this section is to provide a first important constraint on an α2-edge
to be swappable (see Figure 7)

Proposition 5.13. Assume that qµ ⩽ λ. Then µ → vµ is swappable.

We begin with a preliminary computation.

Lemma 5.14. If qµ ⩽ λ and rµ ̸⩽ λ, then −λ1 ⩽ µ1 ⩽ λ1 and (vµ)2 = −µ2 − 2M ⩽
−λ2.

Proof. Observe that, since λ ∈ X+, for any ν ∈ X we have ν ⩽ λ if and only if
s1ν ⩽ λ. So we also have s1rµ = vqµ ̸⩽ λ, s1qµ = qrµ ⩽ λ and s1vµ = vrµ ⩽ λ.

If µ1 > λ1 the line {µ− xα21}x∈R>0 intersects the boundary of Conv(W · λ) in the
segment

[s2s1λ, s2s1s2λ] ⊂ H := {ν ∈ XR | ⟨ν, α∨
2 ⟩ = ⟨s2s1λ, α

∨
2 ⟩ = −λ1 − λ2},

and since rµ /∈ Conv(W · λ) we have

⟨rµ, α∨
2 ⟩ < −λ1 − λ2,

However, qrµ = s1qµ lies on the same side of H as rµ, since ⟨s1qµ, α
∨
2 ⟩ = ⟨rµ, α∨

2 ⟩.
Therefore, s1qµ ̸∈ Conv(W ·λ), contradicting our assumption. Similarly, if µ1 < −λ1,
then we must have

⟨rµ, α∨
12⟩ < −λ1 − λ2,

which implies vrµ = s1vµ ̸∈ Conv(W · λ). We conclude that −λ1 ⩽ µ1 ⩽ λ1.
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λ

µvµ

qµ

Figure 7. In this example qµ ⩽ λ and the edge µ → vµ is indeed
swappable.

For the second part, assume that (vµ)2 > −λ2, then the line {vµ − xα12}x∈R>0

intersects the segment

[s2s1s2λ,w0λ] ⊂ H ′ := {ν ∈ XR | ⟨ν, α∨
21⟩ = ⟨w0λ, α

∨
21⟩ = −λ1 − λ2}

forcing ⟨qvµ, α∨
21⟩ < −λ1 −λ2. But since ⟨qµ, α∨

21⟩ = ⟨qvµ, α∨
21⟩, this would contradict

qµ ⩽ λ. □

Proof of Proposition 5.13. Recall that ℓm(µ) = ℓm(vµ) − 1 by (17). To conclude it is
enough to show that

(25) ℓm(µ) − ℓm(µ, λ) = ℓm(vµ) − ℓm(vµ, λ)

The proof is divided in two cases. Assume first that rµ ⩽ λ. In this case, since
additionally qµ ⩽ λ, the convex hull Conv(Wm+1 · µ) is contained in Conv(W · λ)
entirely, so ℓm(µ, λ) = ℓm(µ) and ℓm(vµ) = ℓm(vµ, λ).

We can assume now that rµ ̸⩽ λ. By Lemma 5.14, we have −λ1 ⩽ µ1 ⩽ λ1,
which implies that λ1 + µ1 ⩾ 0 and min(λ1,

λ1+µ1
2 , λ1 + µ1) = λ1+µ1

2 . It follows from
Lemma 5.6 that

ϕ̂21(µ, λ) = µ2 + λ2 + µ1 + λ1

2 .

Since qµ ⩽ λ, we have Arr12
m (µ) = Arr12

m (µ, λ) and

Arr21
m (µ) ∖ Arr21

m (µ, λ) = {(µ− kα21) → µ | ϕ̂21(µ, λ) < k ⩽ µ1 + 2µ2 + 2M},

so we get

ℓm(µ) − ℓm(µ, λ) = ℓ21
m (µ) − ℓ21

m (µ, λ) =2M + µ1 + 2µ2 − ϕ̂21(µ, λ)

=2M + µ2 − λ2 + µ1 − λ1

2 .(26)

By Lemma 5.6, since (vµ)2 ⩽ −λ2 we have

ϕ̂12(vµ, λ) = µ1 + λ1

2 + λ2 −M.

Algebraic Combinatorics, Vol. 8 #2 (2025) 549



Leonardo Patimo & Jacinta Torres

λ1 = 0

µ2 = λ2

µ1 + µ2 = −λ2

Figure 8. By Lemma 5.15 the starting point of a non-swappable
edge in the α2-direction must lie in the red or in the orange region.
We further show in Proposition 5.18 that actually a starting point of
a non-swappable edge can only be in the red region.

Similarly, since rvµ = s1qµ ⩽ λ we have Arr21
m (vµ) = Arr21

m (vµ, λ) and

Arr12
m (vµ) ∖ Arr12

m (vµ, λ) = {vµ− kα12 → vµ | ϕ̂12(vµ, λ) < k ⩽ (vµ)1 + (vµ)2 +M}
We get

ℓm(vµ) − ℓm(vµ, λ) = ℓ12
m (vµ) − ℓ12

m (vµ, λ)

= (vµ)1 + (vµ)2 +M − ϕ̂12(vµ, λ)

= µ1 + µ2 +M − λ2 +M − µ1 + λ1

2 .(27)

The claimed identity (25) now follows by comparing (26) and (27). □

As a consequence, an edge µ → vµ can only be not swappable if qµ ̸⩽ λ. This gives
some constraint on the possible location of such weights µ (see Figure 8).
Lemma 5.15. If qµ ̸⩽ λ, then µ1 > 0, µ2 < λ2 and rµ ̸⩽ λ.

Proof. Assume that qµ ̸⩽ λ. Then by (22) and (23) we have

ϕ̂2(µ, λ) ⩾ µ2 +M > ϕ̂12(µ, λ) − µ1.

This is equivalent to

(28) min(λ2 + µ1 + µ2,

⌊
λ2 + µ1 + µ2

2

⌋
, λ2) > min(λ2 + µ2,

⌊
λ2 + µ2

2

⌋
, λ2).

This forces µ1 > 0. Moreover, we have µ2 < λ2 otherwise both sides of (28) would be
equal to λ2.

Notice that if qµ ̸⩽ λ, also s1qµ ̸⩽ λ. Moreover, r = qs1q and ⟨rµ, α∨
12⟩ = −µ2 −

2M < −M . By (11), we conclude that qµ < rµ ̸⩽ λ. □

5.5.2. Classification of swappable edges.
Lemma 5.16. Assume µ1 ⩾ 0. An edge µ → vµ is swappable if and only if
(29) 2(µ2 +M) + ℓ12

m (vµ, λ) + ℓ21
m (vµ, λ) = ℓ12

m (µ, λ) + ℓ12
m (µ, λ).

Proof. By Lemma 5.9, an arrow (µ − kα2 → vµ) is in Arr2
m(µ, λ) if and only if

0 ⩽ k < µ2 +M . It follows that ℓ2
m(µ) = ℓ2

m(vµ) − 1. Moreover, by (15), we have
ℓ1

m(µ, λ) = ℓ1
m(vµ, λ) − 2(µ2 +M).

The claim now follows directly from (14). □
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λ

µvµ

Figure 9. We have µ1 ⩾ λ1, so to check whether µ → vµ is swap-
pable we just need to count the weights below µ and vµ. In this
example they are both 3, hence the edge is swappable.

We now need to estimate carefully ℓ12
m (µ, λ) and ℓ21

m (µ, λ), i.e. we need to char-
acterize the arrows in Arr12

m (µ) and Arr21
m (µ) whose starting point is contained in

Conv(W · λ).
We are now ready to classify all swappable α2-edges. We have already seen that it

is always swappable if µ1 ⩽ 0. Now we divide the rest into two cases: µ1 ⩾ λ1 and
0 < µ1 < λ1. As illustrated in Figure 9, in the case µ1 ⩾ λ1 it is sufficient to compare
the number of weights below µ and vµ in the convex hull of W ·λ. We prove now this
analytically.

Proposition 5.17. Let µ be such that µ1 ⩾ λ1. Then µ → vµ is swappable if and
only if

µ2 ⩾ −λ2 + 1 and M ⩽

⌈
λ2 − µ2

2

⌉
.

Proof. Since µ1 ⩾ λ1 and µ ⩽ λ, we have µ2 ⩽ λ2. Since µ < vµ we have M +µ2 > 0.
We know that if qµ ⩽ λ then µ → vµ is swappable. In the other direction, if µ2 ⩽ −λ2

or µ2 > −λ2 and M >
⌈

λ2−µ2
2

⌉
then it follows from (23) that qµ ̸⩽ λ. So it is enough

to consider the case qµ ̸⩽ λ.
We have λ1 ⩽ µ1 < (vµ)1 and (vµ)2 ⩽ λ2. In this case, we have

(30) ϕ̂21(vµ, λ) = λ1 + λ2 − µ2 − 2M = ϕ̂21(µ, λ) − 2(µ2 +M).
Combining this with (29) and (23) we get that µ → vµ is swappable if and only if

ϕ̂12(µ, λ) = ϕ̂12(vµ, λ), which is equivalent to

min
(
λ2 + µ2,

⌊
λ2 + µ2

2

⌋)
= min

(
λ2 −M,

⌊
λ2 + µ2

2

⌋)
.

This equality holds if and only if both minima are achieved at
⌊

λ2+µ2
2

⌋
, i.e. if

λ2 + µ2 ⩾

⌊
λ2 + µ2

2

⌋
⩽ λ2 −M.

So we have −µ2 < M ⩽
⌈

λ2−µ2
2

⌉
, which is equivalent to µ2 ⩾ −λ2 + 1 and the claim

follows. □
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Proposition 5.18. Let µ ⩽ λ be such that 0 < µ1 < λ1. Then µ → vµ ∈ EN (λ) if
and only if

(31) M >
λ1 − µ1

2 + max
(

−µ2,

⌈
λ2 − µ2

2

⌉)
.

Proof. Notice that if the inequality (31) holds, then qµ ̸⩽ λ by (23). Since µ → vµ is
swappable if qµ ⩽ λ, we can just assume that qµ ̸⩽ λ.

We begin by proving the following inequality.

Claim 5.19. We have (vµ)2 < −λ2.

Proof of the claim. We have (vµ)2 = −µ2 − 2M . If µ2 ⩽ −λ2, then −µ2 − 2M <
−M < µ2 ⩽ −λ2. If µ2 ⩾ λ2, we have −µ2 − 2M < −µ2 ⩽ −λ2.

If −λ2 < µ2 < λ2, then we have by (23) that

−µ2 − 2M < µ2 + 2µ1 − 2ϕ̂12(µ, λ)

= −λ1 + µ1 + µ2 − 2
⌊
λ2 + µ2

2

⌋
⩽ −λ2 □

Assume first µ1 < (vµ)1 ⩽ λ1, or equivalently that M ⩽ λ1−µ1
2 −µ2. Since qµ ̸⩽ λ,

we have by (23) that

(32) M >
λ1 − µ1

2 − min(λ2,

⌊
λ2 − µ2

2

⌋
),

forcing µ2 < M − λ1−µ1
2 < −λ2. Now we can easily compute both sides of (29) and

check that they are both equal to λ1 +µ1 +2(λ2 +µ2). So µ → vµ is always swappable.
Assume now µ1 < λ1 < (vµ)1, that is, that M > λ1−µ1

2 − µ2. Since we assumed
that qµ ̸⩽ λ, by (23), we also have that

(33) M >
λ1 − µ1

2 +
⌊
λ2 − µ2

2

⌋
.

In this case (29) is equivalent to

(34) 3λ1 + µ1

2 + 2λ2 + µ2 −M = λ1 + µ1 + λ2 + µ2 + min
(
λ2 + µ2,

⌊
λ2 + µ2

2

⌋)
and we get an equality if and only if

(35) M = λ1 − µ1

2 + max
(

−µ2,

⌈
λ2 − µ2

2

⌉)
Notice that by (33) we cannot have M < λ1−µ1

2 +
⌈

λ2−µ2
2

⌉
. The claim now follows. □

We can restate Proposition 5.18 in more convenient terms.

Corollary 5.20. Assume 0 < µ1 < λ1. Then (µ → vµ) ∈ EN (λ) if and only if
λ1 < (vµ)1 and qµ ̸⩽ λ, except when λ2 ̸≡ µ2 (mod 2), λ2 + µ2 > 0 and

M = λ1 − µ1

2 +
⌈
λ2 − µ2

2

⌉
Proof. As in the proof of Proposition 5.18, we know that the only case in which
λ1 < (vµ)1, qµ ̸⩽ λ and (µ → vµ) ∈ ES(λ) is for M as in (35). Since λ1 < (vµ)1

then M > λ1−µ1
2 − µ2. Since qµ ̸⩽ λ then M > λ1−µ1

2 +
⌈

λ2−µ2
2

⌉
. So the equality in

(35) is possible if and only if
⌈

λ2−µ2
2

⌉
>

⌊
λ2−µ2

2

⌋
and

⌈
λ2−µ2

2

⌉
> −µ2, i.e. if λ2 ̸≡ µ2

(mod 2) and λ2 + µ2 ⩾ 1. □
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λ

µvµ

Figure 10. The exceptional case in which the edge µ → vµ is swap-
pable even if (vµ)1 > λ1.

Example 5.21. Let λ = (3, 2), µ = (1,−1) and M = λ1−µ1
2 −

⌈
λ2−µ2

2

⌉
= 3. As

illustrated in Figure 10, in this case the edge µ → vµ is swappable even if (vµ)1 > λ1.

5.6. Analysis of α12-edges. Assume now that m + 1 = 4M − 2, so that qM :=
tm+1 is the reflection corresponding to the root Mδ − α∨

12, i.e. a reflection over the
hyperplane {ν | ⟨ν, α∨

12⟩ = −M}. Let r := rM , q := qM and v := vM so that
the reflections in the reflection subgroup Wm+1 are {s1, r, q, v}. The classification of
NS-edges in the α12-direction can be reduced to the known case of α2-edges, as the
Proposition 5.22 shows.

Proposition 5.22. An edge of the form µ → qµ is swappable if and only if s1µ → vs1µ
is swappable.

Proof. It is enough to show that

(36) ℓm(µ, λ) − ℓm(qµ, λ) = ℓm+2(s1µ, λ) − ℓm+2(vs1µ, λ).

Claim 5.23. Conjugation by s1 induces a bijection

Arrm(µ, λ) ∖ {s1µ → µ} ∼= Arrm(s1µ, λ) ∖ {µ → s1µ}

which sends (uµ → µ) to (s1uµ → s1µ). In particular, we have ℓm(µ, λ) =
ℓm(s1µ, λ) + 1 if µ1 > 0.

Proof of the claim. Notice that, since m = 4M − 3, we have β∨ ∈ N(ym) if and only
if s1(β∨) ∈ N(ym). If tµ <m µ for t = sNδ−α∨ with α∨ ∈ {α∨

2 , α
∨
12, α

∨
21}, then also

s1(α∨) ∈ {α∨
2 , α

∨
12, α

∨
21} and, since ⟨µ, α∨⟩ = ⟨s1(µ), s1(α∨)⟩ it follows by (11) that

also s1ts1s1(µ) <m s1(µ). If t = sNδ+α∨
1

with N ̸= 0, then s1ts1 = sNδ−α∨
1

and we
have

tµ <m µ ⇐⇒ sgn(N)⟨µ, α∨
1 ⟩ > |N |

⇐⇒ sgn(−N)⟨s1(µ), α∨
1 ⟩ > | −N |

⇐⇒ s1t(µ) <m s1(µ). □

We assume now µ1 < 0 and let ν = s1(µ). Notice that (qµ)1 < 0. Since vs1 = s1q,
using the claim, (36) is equivalent to

ℓm(ν, λ) − ℓm(vν, λ) = ℓm+2(ν, λ) − ℓm+2(vν, λ).
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For any weight µ′, the symmetric difference Arrm(µ′, λ) △ Arrm+2(µ′, λ) is con-
tained in {qµ′ → µ′, rµ′ → µ′} since these are the two only edges which we are
possibly reversing. Then the claim follows since we have

ℓm+2(ν, λ) − ℓm(ν, λ) = |{qν, rν} ∩ {⩽ λ}| = ℓm+2(vν, λ) − ℓm(vν, λ).

In fact, by Lemma 5.11 we have ν < qν, and vν < rvν and qv ⩽ λ ⇐⇒ s1qν =
rvν < λ. Similarly, we have ν < rν and vν < qvν and rν ⩽ λ ⇐⇒ s1rν = qrν < λ.

The case µ1 ⩾ 0 is similar. □

5.7. Analysis of α21-edges. We conclude the classification of swappable edges by
looking at edges in the α21-direction. In this case, the classification is trivial since, as
it turns out, all the α21-edges are swappable.

Proposition 5.24. Any edge of the form µ → µ− kα21 is swappable.

Proof. We can assume that µ−kα21 = s(2M−j)δ−α∨
21

(µ) with j = 0 or j = 1. The root
(2M−j)δ−α∨

21 is the (4M−1−2j)-th root occurring in (13). Let m+1 = 4M−1−2j
so that r := tm+1 = s(2M−j)δ−α∨

21
.

We have ℓ1(µ) = ℓ1(rµ) and ℓ21(µ, λ) = ℓ21(rµ, λ) − 1, so to show that µ → rµ is
swappable it is enough to check that

(37) ℓ2(µ, λ) + ℓ12(µ, λ) = ℓ2(rµ, λ) + ℓ12(rµ, λ).

We consider first the case j = 0, so Wm is the reflection subgroup with reflections
s1, qM , rM , vM . Notice that r = rM . If µ1 ⩾ 0 and vMµ ⩾ µ then Conv(Wm · µ) ⊂
Conv(W ·λ) and the edge µ → rµ is swappable by the same argument as in the proof
of Proposition 5.13.

Assume now µ1 ⩾ 0 and vMµ < µ. Notice that we also have vMrµ < rµ. If qµ ⩽ λ,
then again Conv(Wm · µ) ⊂ Conv(W · λ). If qµ ̸⩽ λ, then also s1qµ = qrµ ̸⩽ λ and
we can rewrite (37) as

(38) ℓ2
m(µ) + ϕ̂12(µ, λ) = ℓ2

m(rµ) + ϕ̂12(rµ, λ).

Claim 5.25. We have µ2 < −λ2.

Proof of the claim. we have µ > vMµ so µ2 + M < 0. If µ2 ⩾ −λ2 then ϕ̂12(µ, λ) =
λ1 + µ1 +

⌊
λ2+µ2

2

⌋
and qµ ̸⩽ λ implies by (23) that µ1 + µ2 + 2M > λ1 + λ2. In

particular, µ1 > λ1 + λ2 − µ2 − 2M ⩾ λ1, so ϕ̂21(µ, λ) = λ2 + µ2 + λ1 but this leads
to a contradiction since rµ ⩽ λ and by (24) we get µ1 + µ2 + 2M ⩽ λ1 + λ2. □

We now go back to the proof of (38). We have ℓ2
m(µ) = −µ2 −M −1 and ℓ2

m(rµ) =
µ1+µ2+M−1. Since µ2 < −λ2 we have by Lemma 5.6 that ϕ̂12(µ, λ) = µ1+λ1

2 +λ2+µ2

and ϕ̂12(rµ, λ) = µ1+λ1
2 + λ2 − µ1 − µ2 − 2M and the claim easily follows. The case

µ1 < 0 is analogous.
Consider now the case j = 1. The proof here is similar, with the main difference

being that the reflections in Wm are s1, qM , rM , vM but r ̸= rM . In fact, we have
r = s(2M−1)δ−α∨

21
and rM = s2Mδ−α∨

21
. In the case µ1 ⩾ 0 and vMµ ⩾ µ, or qMµ ⩽ λ

then, similarly to the previous case, we have

{⩽m µ} ⊂ Conv(Wm · µ) ∖ {rMµ} ⊂ Conv(W · λ).

(In other words, the convex hull of Wm ·µ must lie inside Conv(W ·λ), except possibly
for rMµ, but this does not matter since µ <m rMµ.) It follows that µ → rµ is
swappable. If µ > vMµ and qMµ ̸⩽ λ then we conclude by checking the identity (38)
as before. The case µ1 < 0 is symmetric. □
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5.8. Consequences of the classification. We can summarize the results from
the previous three sections in the following proposition.

Proposition 5.26. Assume µ1 > 0 and let t be a reflection. If the edge µ → tµ is not
swappable, then t corresponds to a root of the form Mδ − α∨

2 .

Proof. By Proposition 5.24, we know that µ → tm+1µ cannot be in the α21-direction.
Since µ1 ⩾ 0, by Proposition 5.22 we also know that it cannot be in the α12-direction.
Hence, the only possibility is that it is an edge in the α2 direction. □

The classification of swappable edges also allows us to easily compare swappable
edges for different atoms.

Proposition 5.27. Let µ ⩽ λ with µ1 ⩾ 0. Let m = 4M so that tm = sMδ−α∨
2

and
assume µ < tmµ ⩽ λ. Consider the arrow (µ → tmµ) ∈ E(λ).

(1) If (µ → tmµ) ∈ ES(λ), then (µ → tmµ) ∈ ES(λ+ kϖ2), for any k ⩾ 0.
(2) If (µ → tmµ) ∈ ES(λ), then for any k < m such that µ < tkµ ⩽ λ, we also

have (µ → tkµ) ∈ ES(λ).
(3) If (µ → tmµ) ∈ EN (λ), then λ−ϖ2 is dominant and µ ⩽ λ−ϖ2.

Proof. The first two statements are clear from the explicit description given in Propo-
sition 5.17 and Proposition 5.18.

To prove (3), first notice that if λ2 = 0, by Lemma 5.15 and Proposition 5.18 there
can be no non-swappable edges.

We now need to show the inequalities from Lemma 5.4 for µ and for λ′ = λ−ϖ2.
In fact, by Lemma 5.15 and Proposition 5.18, we only need to establish the following
inequalities, since they describe the hyperplanes delimiting the red region in Figure 8:

(1) µ1 + µ2 ⩽ λ1 + λ2 − 1
(2) µ1 ⩽ λ1 + 2λ2 − 2
(3) µ2 ⩾ −λ1 − λ2 + 1

However note that if µ lies on either one of the hyperplanes defined by µ1 = λ1+2λ2
or µ2 = −λ1 − λ2 or , then tmµ ≰ λ since tmµ is “on the left” of µ. Therefore the
only inequality we really need to prove is 1.

We assume that the inequality is not true, that is, µ lies in the hyperplane defined
by λ1 + λ2 = µ1 + µ2. In particular, since µ ⩽ λ, such µ must belong to the “top
side” of the octagon Conv(W · λ) and it must satisfy λ1 ⩽ µ1 ⩽ λ1 + 2λ2 and
−λ2 ⩽ µ2 ⩽ λ2. Also (tmµ)2 must lie on the same side of the octagon, so necessarily
then (tmµ)2 = −µ2 − 2M ⩾ −λ2, which holds if and only if

M ⩽
λ2 − µ2

2 .

We get a contradiction, since by Proposition 5.17 the edge µ → tmµ is swappable. □

We are now ready to count the number of non-swappable edges.

Definition 5.28. For µ ⩽ λ and m ∈ N, we denote by

Nm(µ, λ) := |{k ⩽ m | µ < tkµ ⩽ λ and µ → tkµ is not swappable}|
the number of non-swappable edges in EN (λ) corresponding to a reflection tk, for
k ⩽ m, with starting point µ. Let

N∞(µ, λ) := |{k ∈ N | µ < tkµ ⩽ λ and µ → tkµ is not swappable}| .

Lemma 5.29. If µ ⩽ tmµ ⩽ λ, then Nm(tmµ, λ) = 0.

Proof. If (tmµ)1 ⩾ 0, this follows directly from Lemma 5.12. The case (tmµ) < 0 is
symmetric. □
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Note that since Γλ is a finite graph, we have N∞(µ, λ) = Nm(µ, λ) for m large
enough. If µ1 ⩾ 0, the only non-swappable edges are in the α2-direction, so in this
case we have

Nm(µ, λ) =
∣∣∣{1 ⩽ K ⩽

⌊m
4

⌋
| (µ → sKδ−α∨

2
µ) ∈ EN (λ)

}∣∣∣ .
Proposition 5.30. Let M̃ = min(

⌊
m
4

⌋
,−µ2 + ϕ̂2(µ, λ)) and assume that µ1 ⩾ 0.

Then we have

Nm(µ, λ) =



M̃ + min(µ2,
⌊

µ2−λ2
2

⌋
) if µ1 ⩾ λ1

M̃ + µ1−λ1
2 + min(µ2,

⌊
µ2−λ2

2

⌋
) if 0 < µ1 < λ1, µ2 ⩽ λ2

and µ1 + µ2 ⩾ −λ2

0 if µ1 = 0, µ2 ⩾ λ2

or µ1 + µ2 ⩽ −λ2.

Proof. This follows directly from Propositions 5.17 and 5.18. □

If µ1 ⩾ 0, taking the limit m → ∞ we get

(39) N∞(µ, λ) =



ϕ̂2(µ, λ) − max(0,
⌈

µ2+λ2
2

⌉
) if µ1 ⩾ λ1;

ϕ̂2(µ, λ) + µ1−λ1
2 − max(0,

⌈
µ2+λ2

2

⌉
) if 0 < µ1 < λ1, µ2 ⩽ λ2

and µ1 + µ2 ⩾ −λ2;

0 if µ1 = 0, µ2 ⩾ λ2

or µ1 + µ2 ⩽ −λ2.

If µ1 < 0 we have N∞(µ, λ) = N∞(s1(µ), λ). In particular, we have

(40) N∞(µ, λ) =



ϕ̂12(µ, λ) + min
(

0, −µ1 − λ1

2

)
− max

(
0,

⌈
µ1 + µ2 + λ2

2

⌉) if µ1 + µ2 ⩽ λ2

and µ2 ⩾ −λ2;

0 if µ1 + µ2 ⩾ λ2

or µ2 ⩽ −λ2.

A remarkable property is that the number of NS edges gives exactly the correction
term in (18) for non-swappable edges.

Proposition 5.31. For any µ ⩽ λ with tm+1µ ⩽ λ, we have

ℓm+1(µ, λ) − ℓm+1(tm+1µ, λ) − 1 = ℓm(µ, λ) − ℓm(tm+1µ, λ) + 1 = Nm+1(µ, λ).

Proof. The first equality is clear because µ <m tm+1µ <m+1 µ, so we just need to
show the second one.

If µ → tm+1µ is swappable the claim is clear since Nm+1(µ, λ) = 0 by Proposi-
tion 5.27. We can assume µ1 > 0 and v := tm+1 = sMδ−α∨

2
, since the case µ1 < 0 and

tm+1 = sMδ−α∨
12

is analogous. In this case we have qMµ ̸⩽ λ and qMvµ ̸⩽ λ.
Assume first µ1 ⩾ λ1. Then

ℓm(µ, λ) − ℓm(vµ, λ) + 1 = ℓ12
m (µ, λ) − ℓ12

m (vµ, λ) =

= min(λ2 + µ2,

⌊
λ2 + µ2

2

⌋
) − min(λ2 −M,

⌊
λ2 + µ2

2

⌋
)

= M + min(µ2,

⌊
µ2 − λ2

2

⌋
)
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In fact, since µ → vµ is not swappable, and λ2 + µ2 > λ2 − M , we have λ2 −
M >

⌊
λ2+µ2

2

⌋
. The same computation also shows that the minimal K such that

µ → sKδ−α∨
2
µ ∈ EN (λ) is

K = max(−µ2,

⌈
λ2 − µ2

2

⌉
) + 1

so also Nm+1(µ, λ) = M −K + 1 = M + min(µ2,
⌊

µ2−λ2
2

⌋
).

Assume now µ1 < λ1. Recall that in this case we have µ2 ⩾ −λ2 + 1. As in (34),
we have

ℓm(µ, λ) − ℓm(tm+1µ, λ) + 1 = M +
⌊
µ2 − λ2

2

⌋
+ µ1 − λ1

2

In this case, the minimal K such that µ → sKδ−α∨
2
µ ∈ EN (λ) is

K = λ1 − µ1

2 +
⌈
λ2 − µ2

2

⌉
+ 1.

and again Nm+1(µ, λ) = M −K + 1. □

We can also generalize Proposition 5.31 to the case when tm+1µ ̸⩽ λ. In this case
ℓm(tm+1µ, λ) is not properly defined, so we first need to generalize its definition.

Definition 5.32. Let µ ∈ X and assume µ1 ⩾ 0. For m ∈ N and i ∈ {2, 12, 21} we
define

ℓ̂i
m(µ, λ) :=

{
ℓi

m(µ, λ) if µ ⩽ λ

ϕ̂i(µ, λ) if µ ̸⩽ λ,

where here ϕ̂i(µ, λ) is to be interpreted as the function given in Lemma 5.6 (notice
that ϕ̂i is not properly defined if µ ̸⩽ λ). Then we define

ℓ̂m(µ, λ) := ℓ1(µ) + ℓ2
m(µ) + ℓ̂21

m (µ, λ) + ℓ̂12
m (µ, λ).

Notice that ℓ̂m(tmµ, λ) = ℓm(tmµ, λ) if m = 4M and µ ⩽ tmµ ⩽ λ.

Corollary 5.33. Let µ ⩽ λ and m = 4M . Then we have

ℓm(µ, λ) − ℓ̂m(tmµ, λ) − 1 = Nm(µ, λ)

Proof. Let v := tm. We can assume vµ ̸⩽ λ, otherwise the claim follows by Proposi-
tion 5.31. Notice that this forces qMµ ̸⩽ λ and rMµ ̸⩽ λ. Notice also that ℓ2

m(vµ) =
−µ2 −M − 1 and that Nm(µ, λ) = N∞(µ, λ).

Assume first µ1 ⩾ λ1. We have

ℓm(µ, λ) − ℓ̂m(vµ, λ) − 1 = ϕ̂12(µ, λ) − ϕ̂12(vµ, λ) + ϕ̂2(µ, λ) − ℓ2
m(vµ) − 1

= M + min(µ2,

⌊
µ2 − λ2

2

⌋
) + ϕ̂2(µ, λ) − µ2 −M

= ϕ̂2(µ, λ) + min(0,−
⌈
λ2 + µ2

2

⌉
).
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Assume now µ1 < λ1. In this case, we have

ℓm(µ, λ) − ℓ̂m(vµ, λ) − 1 = M +
⌊
µ2 − λ2

2

⌋
+ µ1 − λ1

2 + ϕ̂2(µ, λ) − ℓ2
m(vµ) − 1

= M + min(µ2,

⌊
µ2 − λ2

2

⌋
) + ϕ̂2(µ, λ) − µ2 −M

= ϕ̂2(µ, λ) + min(0,−
⌈
λ2 + µ2

2

⌉
) + µ1 − λ1

2 .

The claim follows by comparing these formulas with (39). □

5.9. Non-swappable staircases. In type An, swapping functions can be defined
within a single atom. Unfortunately, the existence of non-swappable edges in type C2
means that we cannot do the same, causing a relevant increase in complexity. Instead,
for every non-swappable edge, the swapping functions we are going to construct in
Section 6 will involve two elements from two different atoms within the same preatom.
To determine which are the two atoms involved we need to introduce a new quantity,
which we call the elevation of an edge and that measures the height of the maximal
staircases of non-swappable edges lying underneath it.
Definition 5.34. Let e = (µ → µ− kα) ∈ E(λ) be an edge. We call the elevation of
e the minimum integer j ⩾ 0 such that (µ → µ − (k − j)α) ∈ ES(λ − jϖ2) and we
denote it by Ω(e).

Notice that Ω(e) = 0 if and only if e is swappable. The elevation of a non-swappable
edge is well defined by Proposition 5.18.

In the other direction, we need a way to control how many times an element gets
swapped with elements from higher atoms.
Definition 5.35. Let k ⩾ 0 and let µ ⩽ λ. A staircase of non-swappable edges over
(µ, λ) (or NS-staircase, for short) is a sequence of edges (ei)1⩽i⩽a such that

• ei := (µ → µ− (n+ i)α) ∈ EN (λ+ iϖ2) for any i = 1, . . . , a.
• n = 0 or e0 := (µ → µ− nα) ∈ ES(λ).

We define D̂∞(µ, λ)to be the length of the longest NS-staircase over (µ, λ). We
define D̂m(µ, λ)to be the length of the longest NS-staircase over (µ, λ) where the label
of every edge in ei is a root in N(ym).
Example 5.36. Let λ = (3, 1) and µ = (3, 0). Then e0 := µ → µ − α2 = v1µ is a
swappable edge, while e1 := (µ → µ− 2α2) ∈ EN (λ+ϖ2) and e2 := (µ → µ− 3α2) ∈
EN (λ + 2ϖ2), as illustrated in Figure 11. So (e1, e2) is a NS staircase of (µ, λ) and
we have Ω(e2) = 2, Ω(e1) = 1 and Ω(e0) = 0.

Moreover, as illustrated in Figure 12, the staircase (e1, e2) cannot be extended,
since µ− 4α2 ̸⩽ λ+ 3ϖ2. Hence, we have D̂∞(µ, λ) = 2.
Lemma 5.37. There exists at most one non-empty NS-staircase over (µ, λ).
Proof. Assume that the there are two non-empty NS-staircases of the form µ →
µ− (n+ i)α ∈ EN (λ+ iϖ2) and µ → µ− (n′ + i)β ∈ EN (λ+ iϖ2). Now, if µ1 > 0,
by Proposition 5.26 we have α = β = α2 and if µ1 < 0 we have α = β = α12, so in
particular α = β.

We can assume n′ < n. Since µ → µ − nα ∈ ES(λ), by Proposition 5.27.1), we
have that µ → µ − nα ∈ ES(λ + ϖ2). With this and Proposition 5.27.2), we get
(µ → µ − (n′ + 1)α) ∈ ES(λ + ϖ2). Our second NS-staircase must therefore be
empty. □

Lemma 5.38. If Nm(µ, λ) = 0 and µ < tmµ ⩽ λ, then also D̂m(µ, λ) = 0.
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e0

λ
µµ− α2

e1

λ+ϖ2

µµ− 2α2
e2

λ+ 2ϖ2

µµ− 3α2

Figure 11. The edge e0 is swappable while e1 and e2 are not. To
check this, since µ1 ⩾ λ1, as explained in Proposition 5.17, it is
enough to compare the number of weights in the convex hull lying
below µ and vµ.

λ+ 3ϖ2

µµ− 4α2

Figure 12. We have µ−4α2 ̸⩽ λ+3ϖ2 and the NS staircase (e1, e2)
from Figure 11 cannot be extended.

Proof. Assume that µ1 > 0. If µ → tkµ ∈ ES(λ) for k ⩽ m, then also µ → tkµ ∈
ES(λ + ϖ2) by Proposition 5.27. If tkµ ̸⩽ λ and (µ → tkµ) ∈ EN (λ + ϖ2), then
tk = sKδ−α∨

2
. But this cannot happen by Lemma 5.12.

The case µ1 < 0 is symmetric. □

Proposition 5.39. If µ1 > 0 we have

D̂∞(µ, λ) =


max(0,min(λ1, µ1) − 1) if − λ2 ⩽ µ2 ⩽ λ2

and µ2 ̸≡ λ2 (mod 2);
max(0,min(µ1, λ1) + λ2 + µ2) if µ2 < −λ2;
0 otherwise.
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Proof. Let (ei)1⩽i⩽a = (µ → vM+iµ)1⩽i⩽a be a non-empty maximal NS-staircase
over (µ, λ) with M ⩾ −µ2.

Assume first µ1 ⩾ λ1. We have e1 = (µ → vM+1µ) ∈ EN (λ + ϖ2), so by Propo-
sition 5.17 we get µ2 < −λ2 or M + 1 >

⌈
λ2+1−µ2

2

⌉
. We have either vMµ = µ or

e0 = (µ → vMµ) ∈ ES(λ). In the first case we get −M = µ2. In the second case we
have µ2 ⩾ −λ2 + 1, M ⩽

⌈
λ2−µ2

2

⌉
and M + 1 >

⌈
λ2+1−µ2

2

⌉
, so the only possibility is

M =
⌈
λ2 − µ2

2

⌉
=

⌈
λ2 − µ2 + 1

2

⌉
,

which also implies λ2 ̸≡ µ2 (mod 2).
Assume further that µ2 < −λ2. From the discussion above we must have M = −µ2.

It is easy to check that for any k ⩾ 1 we have ek ∈ EN (λ+kϖ2) if vM+kµ ⩽ λ+kϖ2
and that

vM+kµ ⩽ λ+ kϖ2 ⇐⇒
⌊
λ1 + λ2 + µ2 − k

2

⌋
⩾ 0

so we get D̂∞(µ, λ) = max(0, λ1 + λ2 + µ2).
Assume now µ2 ⩾ −λ2. If λ2 ̸≡ µ2 (mod 2) then D̂∞(µ, λ) = 0. If λ2 ̸≡ µ2 (mod 2)

we must have M =
⌈

λ2−µ2
2

⌉
. Since vMµ ⩽ λ, from (22) we get⌈
λ2 − µ2

2

⌉
⩽

⌊
λ1 + λ2 − µ2

2

⌋
,

so this is possible only if λ1 > 0. It easy to check that for any k ⩾ 1 if vM+kµ ⩽ λ+
kϖ2, then also (µ → vM+k(µ)) ∈ EN (λ+kϖ2). Moreover, from (22) vM+k ⩽ λ+kϖ2
we see that is equivalent to⌈

λ2 − µ2

2

⌉
⩽

⌊
λ1 + λ2 − µ2 − k

2

⌋
which is true if and only if k ⩽ λ1 − 1. Hence D̂∞(µ, λ) = max(0, λ1 − 1).

The proof in the case 0 < µ1 < λ1 is similar. Since e1 ∈ EN (λ + ϖ2) we have
M + 1 > λ1−µ1

2 + max(−µ2,
⌈

λ2−µ2+1
2

⌉
). We have either vMµ = µ or (µ → vMµ) ∈

ES(λ). However, the first case is not possible because

M + 1 = −µ2 + 1 ⩽
λ1 − µ1

2 + max(−µ2,

⌈
λ2 − µ2 + 1

2

⌉
).

In the second case, we have M ⩽ λ1−µ1
2 + max(−µ2,

⌈
λ2−µ2

2

⌉
), which forces

(41) max(−µ2,

⌈
λ2 − µ2

2

⌉
) = (−µ2,

⌈
λ2 − µ2 + 1

2

⌉
)

and M = λ1−µ1
2 +max(−µ2,

⌈
λ2−µ2

2

⌉
). The equality in (41) can only occur if µ2 < −λ2

or if µ2 ⩾ −λ2 and λ2 ̸≡ µ2 (mod 2).
Assume now µ2 < −λ2. Then M = λ1−µ1

2 − µ2. It is easy to check that for any
k ⩾ 1 we have ek ∈ EN (λ+ kϖ2) if vM+kµ ⩽ λ+ kϖ2 and that

vM+kµ ⩽ λ+ kϖ2 ⇐⇒
⌊
µ1 + λ2 + µ2 − k

2

⌋
⩾ 0

so we get D̂∞(µ, λ) = max(0, µ1 + λ2 + µ2).
Finally assume µ2 ⩾ −λ2. If λ2 ̸≡ µ2 (mod 2) then D̂∞(µ, λ) = 0. If λ2 ̸≡ µ2

(mod 2) we must have M = λ1−µ1
2 +

⌈
λ2−µ2

2

⌉
. It easy to check that for any k ⩾ 1
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if vM+kµ ⩽ λ + kϖ2, then also (µ → vM+k(µ)) ∈ EN (λ + kϖ2). Moreover, from
(22) vM+k ⩽ λ + kϖ2 we see that is equivalent to k + 1 ⩽ µ1. Hence D̂∞(µ, λ) =
max(0, µ1 − 1). □

Corollary 5.40. If µ1 < 0 we have

D̂∞(µ, λ) =


max(0,min(λ1,−µ1) − 1) if − λ2 ⩽ µ1 + µ2 ⩽ λ2

and µ1 + µ2 ̸≡ λ2 (mod 2);
max(0,min(−µ1, λ1) + λ2 + µ1 + µ2) if µ1 + µ2 < −λ2;
0 otherwise.

Proof. This immediately follows from Proposition 5.39, since by symmetry (cf. Propo-
sition 5.22) we have D̂∞(µ, λ) = D̂∞(s1(µ), λ). □

Suppose than T ∈ A(λ−kϖ2) ⊂ P(λ). In our applications in Section 6, we are only
interested in NS staircase over (wt(T), λ− kϖ2) that live inside the preatom P(λ). In
other words, we truncate our NS staircases (ei)1⩽i⩽a so that a ⩽ k.

The following quantity measures the longest possible truncated NS staircase over
(µ, λ− kϖ2) in a preatom of highest weight λ.

Definition 5.41. Assume that k ⩾ 0 and µ ⩽ λ− kϖ2. Then, for any m ∈ N ∪ {∞}
we define

Dm(µ, λ, k) := min(k, D̂m(µ, λ− kϖ2)).

6. The charge and recharge statistics
6.1. A family of cocharacters. Let X̂ = X ⊕ Zd be the cocharacter lattice
of the extended torus T∨

ext = T∨ × C∗, where T∨ is the maximal torus of G∨. Let
X̂Q := X̂ ⊗Z Q and X̂R := X̂ ⊗Z R.

We recall some definitions from [25]. The KL region is the subset of X̂Q of the
elements η such that ⟨α∨, η⟩ > 0 for all α∨ ∈ Φ̂∨

+. Concretely, an element in the KL
region can be written as η = λ+Cd where λ ∈ X++ and C > ⟨λ, β∨⟩ for all β∨ ∈ Φ∨

+.
The MV region is the subset of X̂Q consisting of elements of the form η = λ + Cd,
with λ ∈ X++ and C = 0.

We call a wall a hyperplane in X̂R of the form

Hα∨ := {η ∈ X̂R | ⟨η, α∨⟩ = 0} ⊂ X̂R

for α∨ ∈ Φ̂∨. For λ ∈ X+, we denote by Φ̂∨(λ) the set of all the labels present in the
graph Γλ. We say that a wall Hα∨ is a λ-wall if α∨ ∈ Φ̂∨(λ). We call a λ-chamber
(or simply a chamber, if λ is clear from the context) the intersection of X̂Q with a
connected component of

X̂R ∖
⋃

α∨∈Φ̂∨(λ)
Hα∨ .

Two chambers are adjacent if they are separated by a single λ-wall. The KL chamber
is the unique chamber containing the KL region and the MV chamber is the unique
chamber containing the MV region. We say that λ ∈ XQ is regular if it does not lie
on any wall. Otherwise, we say that λ is singular.

For λ ∈ X+, let Grλ denote the corresponding spherical Schubert variety in the
affine Grassmannian of G∨ (cf. [25, §2.1.2.]). For any regular η ∈ X̂ and any µ ⩽ λ
the hyperbolic localization induces a functor

HLη
µ : Db

T ∨×C∗(Grλ) → Db(pt) ∼= VectZ,
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where Db
T ∨×C∗(Grλ) is the derived category of T∨ × C∗-equivariant constructible

sheaves on the Schubert variety Grλ with Q-coefficients, and Db(pt) is the derived
category of sheaves on a point, which is equivalent to the category of graded Q-vector
spaces (see [25, §2.4]). In general, for any regular η ∈ X̂Q we can define HLη

µ as HLNη
µ ,

where N is any positive integer such that Nη ∈ X̂. By abuse of terminology, we may
then refer to all the elements in X̂Q as cocharacters.

Let h̃ := grdim(HLη
µ(ICλ)), where ICλ denotes the intersection cohomology sheaf

of Grλ. The polynomials h̃η
µ,λ(v) are called renormalized η-Kazhdan–Lusztig polyno-

mials. We say that a function r : B(λ) → Z is a recharge for η if we have

h̃η
µ,λ(q 1

2 ) =
∑

T∈B(λ)µ

qr(T) ∈ Z[q 1
2 , q− 1

2 ].

If ηKL is in the KL chamber and µ ∈ X+, then

Kµ,λ(q) = h̃ηKL

µ,λ (q 1
2 )q 1

2 ℓ(µ)

is a Koskta–Foulkes polynomial by [25, Proposition 2.16]. So if rKL is a recharge
for ηKL in the KL region, we obtain a charge statistic c : B(λ) → Z by setting
c(T) := rKL(T)+ 1

2ℓ(wt(T)). Notice that if wt(T) ∈ X+ this is equal to c(T) = rKL(T)+
⟨wt(T), ρ∨⟩.

We specialize [26, Definition 3.7] to our setting.

Definition 6.1. Let λ ∈ X+. We call λ-parabolic region the subset of X̂Q consisting
of regular cocharacters η such that

• ⟨η, β∨⟩ > 0 for every β∨ of the form Mδ − α∨
1 with M > 0, or of the form

Mδ + α∨, with α ∈ Φ+ and M ⩾ 0, and
• ⟨η, β∨⟩ < 0 for every β∨ ∈ Φ̂∨

+(λ) of the form Mδ−α∨
i such that M > 0 and

i ∈ {2, 12, 21}.

The walls that separate the parabolic region from the KL region are precisely

HMδ−α∨
i

with M > 0 and i ∈ {2, 12, 21}.

Every cocharacter ηP of the form

ηP = A1ϖ1 +A2ϖ2 + Cd

with 0 ≪ A1 ≪ C ≪ A2 lies in the parabolic region.(3)

We consider the following family of cocharacters:

(42) η : Q⩾0 → X̂Q, η(t) = ηP + td.

Observe that η(t) is in the KL chamber for t ≫ 0. We can choose t0 such that η(t0)
is in the KL chamber and for any i we choose ti+1 < ti so that η(ti) and η(ti+1) lie in
adjacent λ-chambers until we arrive at tM in the parabolic region. We can furthermore
choose tM = 0 and set tM+1 = . . . = t∞ = 0 and ηi := η(ti) for any i ∈ N ∪ {∞}.

6.2. Recharge statistics from the parabolic to the KL region. Our goal
is to attach a recharge statistic to each of the cocharacters ηi.

Let T ∈ B(λ). Recall that by Definitions 4.10 and 4.25 we have

T ∈ A(λ− at(T)ϖ2 − 2 pat(T)ϖ1) ⊂ P(λ− 2ϖ1(T)) ⊂ B(λ).

(3)More precisely, sufficient conditions are 0 < A1 < C < A2
γ

where γ = max{M | Mδ − β∨ ∈
Φ∨(λ)}.
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Definition 6.2. Assume that T ∈ P(λ) ⊂ B(λ′) with µ := wt(T). Let a := at(T) and
p := pat(T) so that λ′ = λ+ 2pϖ1. We define

σm(T) := ℓm(µ, λ− aϖ2) − Nm(µ, λ− aϖ2) + Dm(µ, λ, a) + a+ 2p.
Let rm(T) := −σm(T) + ⟨λ′, ρ∨⟩ = −σm(T) + ⟨λ, ρ∨⟩ + 3p.

Our main result is the following.

Theorem 6.3. The function rm : B(λ) → Z is a recharge statistic for ηm for any
m ∈ N ∪ {∞}.

The proof that ri is a recharge for ηi is divided in two parts. We first show directly
in Subsection 6.3 that r∞ is a recharge statistic for η∞ = η(0), i.e. a recharge in the
parabolic region, and then we construct for any i swapping functions between ηi and
ηi+1. After putting everything together, this proves that rKL := r0 is a recharge in
the KL region, and we can easily obtain from that the following formula for a charge
statistic in type C2.

Corollary 6.4. The function c : B(λ)+ → Z defined as
c(T) = ⟨λ− wt(T), ρ∨⟩ − at(T) − pat(T)

is a charge statistic.

Proof. By definition, we have N0 = D0 = 0 and ℓ0 = ℓ. Hence

c(T) = r0(T) + 1
2ℓ(wt(T)) = ⟨λ, ρ∨⟩ − 1

2ℓ(wt(T)) − at(T) − 2 pat(T)

is a charge statistic. We conclude since, for T ∈ B(λ)+, we have ℓ(wt(T)) =
2⟨wt(T), ρ∨⟩. □

6.3. Recharge in the parabolic region. Let ηMV be a cocharacter in the MV
region and ηP be in the parabolic region. The only walls separating ηMV from ηP are
of the form HMδ−α∨

1
, with M > 0. We know from [25, Eq. (21)] that

rMV (T) = −⟨ρ∨,wt(T)⟩.
is a recharge in the MV region. To construct a recharge in the parabolic region, after
Levi branching, we can assume we are in rank 1 and thus compute the recharge as
illustrated in [25, §3.1]. In particular, it follows from [25, Lemma 3.8] that

rP (T) = −⟨ρ∨,wt(T)⟩ + ϕ1(T) − ℓ1(wt(T))
is a recharge in the parabolic region. It remains to show the equality between rP and
r∞.

Let T ∈ P(λ) ⊂ B(λ+ 2pϖ) with p = pat(T) and let a = at(T) and µ = wt(T). At
m = ∞, we have

σ∞(T) = ℓ1(µ) +
∑

i∈{2,12,21}

ϕ̂i(µ, λ− aϖ2)

−N∞(µ, λ− aϖ2) + D∞(µ, λ, a) + a+ 2p.(43)
Our next goal is to simplify the expression (43).

Lemma 6.5. We have ϕ̂21(µ, λ− aϖ2) + a = ϕ̂21(µ, λ).

Proof. This follows directly from Lemma 5.6. □

Proposition 6.6. Let µ = wt(T) and assume that µ1 ⩽ 0. We have ϕ2(T) = ϕ̂2(µ, λ−
aϖ2) and

ϕ12(T) = ϕ̂12(µ, λ− aϖ2) − N∞(µ, λ− aϖ2) + D∞(µ, λ, a).
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The proof of Proposition 6.6 is rather long and technical and we postpone it to
Subsection 6.4.

Lemma 6.7. Let µ = wt(T). We have

(44) σ∞(T) = ℓ1(µ) + ϕ2(T) + ϕ12(T) + ϕ̂21(µ, λ) + 2p.

Proof. If µ1 ⩽ 0, this follows immediately from Lemma 6.5 and Proposition 6.6.
If µ1 > 0, then let T′ = s1(T). Recall that atoms are stable under s1 by Lemma 4.19.

So the element T′ can also be characterized as the element in the same atom of T with
weight s1(µ). Notice that ϕ̂21, N∞ and D∞ are preserved by s1, while ϕ̂2(µ, λ−aϖ2) =
ϕ̂12(s1(µ), λ − aϖ2) and ℓ1(µ) = ℓ1(s1(µ)) − 1. It follows that σ∞(T) = σ∞(T′) − 1.
On the other hand, we also have ϕ2(T) = ϕ12(T′) and ϕ12(T′) = ϕ2(T), so we obtain
the desired identity (44) for T as well. □

Proposition 6.8. We have rP (T) = r∞(T) for any T ∈ B(λ′).

Proof. Let µ = wt(T) and assume T ∈ P(λ) ⊂ B(λ+ 2pϖ1). By Lemma 6.7 we have

r∞(T) = −ℓ1(µ) − ϕ2(T) − ϕ12(T) − ϕ̂21(µ, λ) + ⟨λ, ρ∨⟩ + p.

So our claim is equivalent to
⟨λ+ µ, ρ∨⟩ − ϕ̂21(µ, λ) = ϕ1(T) + ϕ2(T) + ϕ12(T) − p = Z(T) − p.

By Proposition 4.14 and Lemma 5.6 we have

⟨µ+ λ, ρ⟩ − ϕ̂21(µ, λ) = λ2 + µ2 + 3
2λ1 + 3

2µ1 − min(λ1,
λ1 + µ1

2 , λ1 + µ1)

= λ2 + µ2 + λ1 + µ1 − min(λ1 − µ1

2 , 0, λ1 + µ1

2 )

= Z(T) − p. □

6.4. Computing ϕ2. It remains to prove the identity Proposition 6.6.
We begin by considering the case at(T) = 0. The general case will follow by induc-

tion on the atomic number.

Proposition 6.9. For any T ∈ P(λ) with wt(T)1 ⩽ 0 we have ϕ2(T) = ϕ̂2(wt(T), λ−
at(T)ϖ2).

Proof. Let µ ⩽ λ. Consider the multiset
M2(µ, λ) := {ϕ2(X) | X ∈ P(λ) with wt(X) = µ}

Since P(λ) is a union of f2-strings, we have an equality of multisets

(45) M2(µ, λ) = {ϕ̂(µ, λ− kϖ2) | 0 ⩽ k ⩽ λ2 with µ ⩽ λ− kϖ2}.
In fact, the f2-strings contained in P(λ) which pass through an element of weight µ
are in bijection with the atoms in P(λ) containing an element of weight µ.

The claim now follows by induction on λ2. If λ2 = 0, then P(λ) = A(λ) and
M2(µ, λ) = {ϕ2(T)} = {ϕ̂2(µ, λ)}.

If λ2 > 0, consider the embedding Ψ : P(λ−ϖ2) ↪→ P(λ) from Definition 4.18. The
map Ψ is weight-preserving and we have ϕ2(Ψ(X)) = ϕ2(X) and at(Ψ(X)) = at(X)+1
for any X ∈ P(λ−ϖ2) with wt(X)1 ⩽ 0. If T = ψ(X) for some X ∈ P(λ−ϖ2), then
ϕ2(T) = ϕ2(X) = ϕ̂2(µ, λ−ϖ2 − at(X)ϖ2) and the claim follows. Otherwise, we have
T ∈ A(λ) = P(λ) ∖ Ψ(P(λ−ϖ2)) and by (45) we see that

{ϕ2(T)} = M2(µ, λ) ∖M2(µ, λ−ϖ2) = {ϕ̂2(µ, λ)}. □

Lemma 6.10. Let T ∈ P(λ) ⊂ B(λ) and let µ = wt(T). Assume µ1 < 0 and at(T) = 0.
Then we have ϕ1(T) = max(0, µ1 + µ2 − λ2,−µ2 − λ2).
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Proof. Let str2(T) = (a, b, c, d). By Corollary 4.27 we have

at(T) = 0 ⇐⇒ (c = d = 0) or (b = λ1 + 2c− 2d and d ⩽ 1 or c = λ2 + d)

As computed in (10), we have

ϕ1(T) = λ1 + 2a− 2b+ 2c− 2d+ max(d, 2c− b, b− 2a).

We now divide into several cases. Assume first c = d = 0. Then the statement is
equivalent

(46) λ1 + 2a− b− min(2a, b) = max(0, λ1 − b,−2λ2 − b+ 2a).

Since µ1 = λ1 − 2b+ 2a < 0 and b ⩽ λ1, we have 2a ⩽ b, so the LHS in (46) is λ1 − b.
Moreover, λ1 − b ⩾ 0 and λ1 − b ⩾ 2a− b− 2λ2 otherwise we get. λ1 + 2λ2 < 2a < b.
So the RHS in (46) is also equal to λ1 − b.

We can now assume b = λ1 +2c−2d, so we have ϕ1(T) = max(−λ1 +2a−2c+3d, 0),
while the RHS can be rewritten as max(0, d− 2c,−2λ2 + d+ 2a− λ1). Moreover, we
have d− 2c ⩽ 0 and µ1 = −λ1 + 2a− 2c+ 2d ⩽ 0.

So it is enough to show that

(47) max(0, µ1 + d) = max(0, µ1 − 2(c− λ2 − d) + d)

The equality is clear if c = λ2 + d and it also follows if d ⩽ 1 since that both term
vanish for µ1 < 0. □

Proposition 6.11. Let T ∈ P(λ) and let µ = wt(T). Assume µ1 ⩽ 0 and at(T) = 0.
Then we have ϕ12(T) = ϕ̂12(µ, λ) − N∞(µ, λ).

Proof. If µ1 = 0, then ϕ12(T) = ϕ2(T), ϕ̂12(T) = ϕ̂2(T) and N∞(µ, λ) = 0, so the claim
follows from Proposition 6.9. We assume in the rest of the proof µ1 < 0. We can also
assume that T lies in the largest preatom, i.e. P(λ) ⊂ B(λ). In fact, since Φ commutes
with s1 and f2, the claim for the other preatoms easily follows by induction.

Recall now by Proposition 6.9 that ϕ2(T) = ϕ̂2(µ, λ). We divide into three cases.
We first assume µ1 + µ2 ⩽ λ2 and µ2 ⩾ −λ2. Notice that this precisely means

ϕ1(T) = 0. By Equation (39), we have in this case

ϕ̂12(T) − N∞(µ, λ) = max(0,
⌊
λ2 + µ1 + µ2

2

⌋
) − min(0, −λ1 − µ1

2 ).

Let χ := λ2 + µ1 + µ2. Then by Propositions 4.14 and 6.9 and lemma 6.10 we have

ϕ12(T) = Z(T) − ϕ1(T) − ϕ2(T)

= λ1 + µ1

2 + χ+ max(0, −µ1 − λ1

2 ) − min(χ,
⌊χ

2

⌋
, λ2).

Notice that min(0, −λ1−µ1
2 ) + max(0, −λ1−µ1

2 ) = −λ1−µ1
2 and that λ2 ⩾

⌊
χ
2

⌋
. So,

our claim results equivalent to the easy-to-check identity

χ− min(χ,
⌊χ

2

⌋
) = max(0,

⌈χ
2

⌉
).

We now assume that µ1 + µ2 > λ2 or that µ2 < −λ2. In both cases, we have
from Lemma 5.4 that µ1 > −λ1, so Z(T) = λ1 + λ2 + µ1 + µ2. Moreover, from
Proposition 5.31 we have N∞(µ, λ) = 0, so the claim is equivalent to Z(T) − ϕ1(T) −
ϕ2(T) = ϕ̂12(T).

If µ1 + µ2 > λ2, then ϕ̂2(T) = λ1−µ1
2 + λ2 and ϕ̂12(T) = λ1+µ1

2 + λ2, so the desired
equality reduces to the identity

λ1 + λ2 + µ1 + µ2 − µ1 − µ2 + λ2 − λ1

2 + µ1

2 − λ2 = λ1

2 + µ1

2 + λ2.
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Finally, if µ2 < −λ2, the desired equality reduces to the identity

λ1 + λ2 + µ1 + µ2 + µ2 + λ2 − λ1

2 + µ1

2 − µ1 − µ2 − λ2 = λ1

2 + µ1

2 + λ2 + µ2. □

Proposition 6.12. Let T ∈ P(λ) and let µ = wt(T). Let A := at(T). If µ1 ⩽ 0, we
have

ϕ12(T) = ϕ̂12(µ, λ−Aϖ2) − N∞(µ, λ−Aϖ2) + D∞(µ, λ,A).

Proof. As in Proposition 6.11 we can assume that P(λ) ⊂ B(λ). We show the claim
it by induction on A. If A = 0, the claim immediately follows from Lemma 6.10 since
D∞(µ, λ, 0) = 0.

If A > 0, then T = Ψ(U) for some U ∈ P(λ− ω2) ⊂ B(λ− ω2) with at(U) = A− 1.
By induction, we have

ϕ12(U) = ϕ̂12(µ, λ−Aϖ2) − N∞(µ, λ−Aϖ2) + D∞(µ, λ−ϖ2, A− 1).
So it suffices to show that, for any U in P(λ − ϖ2) ⊂ B(λ − ϖ2) with wt(U) = µ, we
have

ϕ12(Ψ(U)) − ϕ12(U) = D∞(µ, λ,A) − D∞(µ, λ−ϖ2, A− 1)
(48)

= min(A, D̂∞(µ, λ−Aϖ2)) − min(A− 1, D̂∞(µ, λ−Aϖ2)).

Let str2(U) = (a, b, c, d). We know from Corollary 4.24 that

ϕ12(Ψ(U)) − ϕ12(U) =
{

1 if d = 0 and 2a > b > 2c or d ̸= 0, λ1 and b ⩾ 2a+ d

0 otherwise.

However, notice that we cannot have d = 0 and 2a > b > 2c since otherwise µ1 =
λ1 + 2a− 2b+ 2c > λ1 + 2c− b ⩾ 0. It follows that (48) is equivalent to showing that

D̂∞(µ, λ−Aϖ2) ⩾ A ⇐⇒ d ̸= 0, λ1 and b ⩾ 2a+ d.

We show this in the following lemma. □

Lemma 6.13. Let X ∈ P(λ) ⊂ B(λ) with µ = wt(X) such that µ1 < 0. Let A := at(X)
and str2(X) = (a, b, c, d). We have

D̂∞(µ, λ−Aϖ2) > A ⇐⇒ d ̸= 0, λ1 and b ⩾ 2a+ d.

Proof. Recall from Corollary 5.40 that we have

D̂∞(µ, λ−Aϖ2) =



max(0,min(λ1,−µ1) − 1)
if µ1 + µ2 + λ2 ⩾ A,

µ1 + µ2 +A ⩽ λ2 and
µ1 + µ2 ̸≡ λ2 −A (mod 2);

max(0,min(−µ1, λ1) + λ2

−A+ µ1 + µ2) if µ1 + µ2 + λ2 < A;

0 otherwise.

Moreover, from Proposition 4.26 we have

A = at(X) =
{

min(c, λ1 + 2c− b) if d = 0
λ1 + 2c− 2d− b+ min(λ2 + d− c, d− 1) if d > 0.

We divide the proof into three cases.
First case: d = 0. We claim that in this case we actually have D̂∞(µ, λ−Aϖ2) =

0. Notice that µ1 + µ2 + λ2 = λ1 + 2λ2 − b ⩾ λ1 + 2c− b ⩾ A. So we can also assume
that A ⩽ λ2 − µ1 − µ2 = b − λ1. Notice that this is equivalent to c + λ1 ⩾ b and
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A = λ1 + 2c− b. However, if A = λ1 + 2c− b then µ1 +µ2 +λ2 +A ≡ 0 (mod 2), and
therefore D̂∞(µ, λ−Aϖ2) = 0.

Second case: d = λ1. In this case we have A = min(λ2 + c − b, 2c − b − 1) and
µ1 + µ2 + λ2 = 2λ2 − b. It follows that µ1 + µ2 + λ2 ⩾ A if and only if λ2 ⩾ c. Recall
also that b ⩽ 2c− λ1.

Assume first λ2 ⩾ c, so that A = 2c− b− 1 and µ1 + µ2 + λ2 ⩾ A. The claim now
follows since D̂∞(µ, λ−Aϖ2) ⩽ λ1 − 1 ⩽ 2c− b− 1.

Assume now λ2 < c so that A = λ2 + c− b and µ1 +µ2 +λ2 ⩽ A. The claim follows
because, if D̂∞(µ, λ − Aϖ2) ⩾ 0, then D̂∞(µ, λ − Aϖ2) ⩽ λ1 + λ2 + µ1 + µ2 − A =
λ1 + λ2 − c ⩽ λ2 + c− b = A.

Third case: d ̸= 0, λ1. In this case we have b = λ1 − 2d + 2c. Notice that
b ⩾ 2a+ d is equivalent to λ1 − 2a+ 2c > 3d. We also have A = min(λ2 + d− c, d− 1)
and µ1 + µ2 + λ2 = 2λ2 − 2c+ d, so µ1 + µ2 + λ2 ⩾ A if and only if λ2 ⩾ c.

Assume first λ2 ⩾ c, so that A = d−1 and µ1 +µ2 +λ2 ⩾ A. Notice that λ1 −1 > A
and also

−µ1 − 1 > A ⇐⇒ λ1 + 2c− 2a− 2d− 1 > d− 1 ⇐⇒ λ1 + 2c− 2a > 3d

Hence, D̂∞(µ, λ−Aϖ2) > A if and only if λ1 + 2c− 2a > 3d.
Finally assume λ2 < c so that A = λ2 + d − c and µ1 + µ2 + λ2 < A. In this

case we have D̂∞(µ, λ − Aϖ2) = max(0,min(0, µ1 + λ1) + λ2 + µ2 − A). We have
µ1 + λ1 + λ2 + µ2 −A = λ1 + λ2 − c > λ2 + d− c = A and

λ2 + µ2 −A > A ⇐⇒ λ1 + 2c− 2a > 3d.

It follows that D̂∞(µ, λ−Aϖ2) > A if and only if λ1 + 2c− 2a > 3d. □

7. Swapping functions
Recall the family of cocharacters {ηm}m∈N introduced in Subsection 6.1. The unique
wall separating ηm and ηm+1 is Hα∨

m+1
, where α∨

m+1 ∈ Φ̂∨
+ is the (m + 1)-th root

occurring in the sequence (13). As in (16), let t := tm+1 denote the corresponding
reflection. For any µ ∈ X such that µ < tµ ⩽ λ we define

ψtµ : B(λ)tµ → B(λ)µ

as follows. Let T ∈ B(λ)tµ and assume that T ∈ A(λ − aϖ2) ⊂ P(λ) and let e :=
(µ → tµ) ∈ E(λ − aϖ2). Then ψtµ(T) = T′, where T′ is the only element of weight µ
in A(λ− (a+ Ω(e))ϖ2) ⊂ P(λ).

Proposition 7.1. The collection of maps ψ = {ψν} is a swapping function between
ηm+1 and ηm. In particular, if rm+1 is a recharge for ηm+1 then rm is a recharge for
ηm.

To prove Proposition 7.1 we need to check that for any m and T we have rm+1(T) =
rm+1(ψtµ(T)) + 1, or equivalently that σm+1(T) = σm+1(ψtµ(T)) − 1.

Proposition 7.2. Assume T ∈ A(λ − kϖ2) ⊂ P(λ) with tµ = wt(T) and that e :=
(µ → tµ) ∈ E(λ− aϖ2). Then, we have

(49) σm+1(T) = σm+1(ψtµ(T)) − 1.

Proof. By Lemma 5.29 we have Nm+1(tµ, λ− aϖ2) = 0 and by Lemma 5.38 we also
get Dm+1(tµ, λ, a) = 0. Let Ω := Ω(e) and recall that ψtµ(T) is the element of weight
µ in the atom A(λ− (a+ Ω)ϖ2) ⊂ P(λ).

First assume Ω = 0, or equivalently that e is swappable. Since µ → tµ is swappable,
by definition we have ℓm+1(µ, λ−aϖ2) = ℓm+1(tµ, λ−aϖ2) + 1. By Proposition 5.27
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we have that Nm+1(µ, λ− aϖ2) = 0 and by Lemma 5.38, we also get Dm+1(µ, λ, a).
The claim now easily follows.

Assume now Ω > 0, so e is not swappable. Notice that Dm+1(µ, λ, a + Ω) = Ω.
Combining with Lemma 5.29, our claim (49) becomes equivalent to

ℓm+1(tµ, λ− aϖ2) = ℓm+1(µ, λ− (a+ Ω)ϖ2) − Nm+1(µ, λ− (a+ Ω)ϖ2) + 2Ω − 1.

We can assume µ1 ⩾ 0 as the case µ1 < 0 is symmetric. Because e is not swappable,
we have m+ 1 = 4M , qMµ ̸⩽ λ and rMµ ̸⩽ λ. In particular, by (23) and (24) we have
ℓ12

m+1 = ϕ̂12 and ℓ21
m+1 = ϕ̂21. Using Corollary 5.33, our claim is then equivalent to

(50) ℓm+1(tµ, λ− aϖ2) − ℓ̂m+1(tµ, λ− (a+ Ω)ϖ2) = 2Ω.

By Lemma 5.6 we have

ϕ̂21(tµ, λ− aϖ2) − ϕ̂21(tµ, λ− (a+ Ω)ϖ2) = Ω

ϕ̂12(tµ, λ− aϖ2) − ϕ̂12(tµ, λ− (a+ Ω)ϖ2) = Ω

because (tm+1µ)2 ⩽ −λ2 (as proven in Claim 5.19) and the identity (50) now follows
directly from the definition of ℓ̂m+1. □

Proof of Proposition 7.1. Proposition 7.2 precisely shows that ψ is a swapping func-
tion for rm+1. This means that we can obtain a new recharge r′

m for ηm by swapping
the values of rm+1 as indicated by ψ. It remains to show that rm = r′

m. In other
words, for t = tm+1 and for any µ ⩽ tµ we need to show that

(1) if wt(T) = tµ then rm(T) = rm+1(ψ(T)) = rm+1(T) − 1;
(2) if wt(U) = µ and U ∈ Im(ψtµ) then rm(U) = rm+1(ψ−1

tµ (U)) = rm+1(U) + 1;
(3) if wt(U) = µ and U ̸∈ Im(ψtµ) then rm(U) = rm+1(U).

The first statement is clear since rm(T) − rm+1(T) = ℓm+1(tµ, τ) − ℓm(tµ, τ) = −1
by Lemmas 5.29 and 5.38. Let now U ∈ A(ζ) with wt(U) = µ and let a := at(U). We
need to compute

rm(U) − rm+1(U) =ℓm+1(µ, ζ) − ℓm(µ, ζ) − Nm+1(µ, ζ) + Nm(µ, ζ)+
+ Dm+1(µ, ζ + aϖ2, a) − Dm(µ, ζ + aϖ2, a).(51)

If U ∈ Im(ψtµ), there exists Ω ∈ N such that e := (µ → tµ) ∈ E(ζ + Ωϖ2) and
Ω = Ω(e). If Ω = 0, then e is swappable and tµ ⩽ ζ. So (51) simplifies to rm(U) −
rm+1(U) = ℓm+1(µ, ζ) − ℓm(µ, ζ) = 1. If Ω > 0, then we have by Proposition 5.27.1
that (µ → tµ) ∈ EN (ζ) or tµ ̸⩽ ζ. It follows that

(52) ℓm+1(µ, ζ) − ℓm(µ, ζ) = Nm+1(µ, ζ) − Nm(µ, ζ) =
{

1 if tµ ⩽ ζ

0 if tµ ̸⩽ ζ,

so the first line in the RHS of (51) vanishes. Since Ω ⩽ a, the edge e belongs to
a truncated NS staircase over (µ, ζ + aϖ2), hence Dm+1(µ, ζ + aϖ2, a) − Dm(µ, ζ +
aϖ2, a) = 1.

Finally, assume that U ̸∈ Im(ψtµ). This means that (µ → tµ) ̸∈ ES(ζ), so (52)
holds again in this case. Moreover, there does not exists k ⩽ a such that f := (µ →
tµ) ∈ EN (ζ + kϖ2) with Ω(f) = k, from which it follows that Dm+1(µ, ζ + aϖ2, a) =
Dm(µ, ζ + aϖ2, a) and (51) can be simplified to rm(U) − rm+1(U) = 0. □
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7.1. Alternative formula. We can obtain an alternative formula for the charge
statistic by focusing on a single element and counting how many times its recharge
gets changed by a swapping function. In type A, this is discussed in [26, Remark 3.13].

Definition 7.3. We define ∆α : B(λ) → Z, for α ∈ Φ+ as the total contribution of
the swapping functions along the direction α. It is defined as

∆α =
∑

rm(T) − rm−1(T)

where the sum runs over all m such that the (unique) wall between the λ-chambers of
ηm and ηm−1 is of the form HMδ−α∨ .

We write ∆i := ∆αi for i ∈ {1, 2, 21, 12}.

We have rKL − rMV =
∑

α∈Φ+
∆α. Recall that in type A for any α ∈ Φ+ we

have ∆α(T) = ϕα(T) − ℓα(wt(T)). When we apply the swapping functions along the
α1-direction, to go from the MV region to the parabolic region, we regard B(λ) as a
crystal of type A1. It follows that ∆1(T) = ϕ1(T) − ℓ1(wt(T)) as in [25, Lemma 3.7].
Moreover, if T ∈ B+(λ), we have
(53) ∆1(T) = ϕ1(T) − ⟨wt(T), α∨

1 ⟩ = ϵ1(T).

Proposition 7.4. For T ∈ A(ζ) ⊂ B(λ) with wt(T) = µ and at(T) = a we have
(1) ∆21(T) = ϕ̂21(µ, ζ) − ℓ21(µ)(T).
(2) ∆2(T) = ϕ2(T) − ℓ2(wt(T))
(3) ∆12(T) = ϕ12(T) − ℓ12(wt(T))

Proof. By Proposition 5.24, the swaps in the α21-direction always occur within the
atom of T, so to compute ∆21(T) we just need to consider the string of elements in
the atom of T of weights µ + kα21. This means that we can compute ∆21 as in the
rank one case and have ∆21(T) = ϕ̂21(T) − ℓ21(µ).

Assume first µ1 ⩽ 0. Then the swapping occurring on T in the α2 direction only
occur within the atom of T, so as for ∆21, we have

∆2(T) = ϕ̂2(µ, ζ) − ℓ2(µ) = ϕ2(T) − ℓ2(µ),
where the second equality comes from Proposition 6.9.

Assume now µ1 ⩾ 0. Then by construction the number of swappable edges con-
taining µ in the atom of T is ϕ̂2(µ, ζ) − N∞(µ, ζ). Of these, there are ℓ2(µ) attached
to roots Mδ+α∨

2 , which do not correspond to any crossed wall. Moreover, T is also in
the image of D∞(µ, ζ + aϖ2, a) swapping functions, corresponding to non-swappable
edges in atoms bigger than A(ζ). It follows that

∆2(T) = ϕ̂2(µ, ζ) − ℓ2(µ) − N∞(µ, ζ) + D∞(µ, ζ + aϖ2, a) = ϕ2(T) − ℓ2(µ)
by Proposition 6.12.

The proof of the formula for ∆12 is symmetric. □

Assume now that T ∈ B+(λ). Then, as in (53), we have ∆2(T) = ϵ2(T) and ∆12(T) =
ϵ12(T).

Definition 7.5. Let T ∈ A(ζ) be such that wt(T) = µ. We define ϵ̂21(T) := ϕ̂21(µ, ζ)−
ℓ21(µ).

Notice that ϵ̂21(T) can equivalently be defined as the largest integer k such that
wt(T) + k ⩽ ζ, for T ∈ A(ζ).

For T ∈ B+(λ), we have rKL(T) − rMV (T) = ϵ1(T) + ϵ2(T) + ϵ12(T) + ϵ̂21(T). Since
rMV (T) + 1

2ℓ(wt(T)) = 0 for T ∈ B+(λ), it follows that
c(T) = ϵ1(T) + ϵ2(T) + ϵ12(T) + ϵ̂21(T)

Algebraic Combinatorics, Vol. 8 #2 (2025) 569



Leonardo Patimo & Jacinta Torres

is a charge statistic on B+(λ).
We conclude by giving a more explicit way to compute ϵ̂21(T).

Definition 7.6. Let T be in the biggest atom, that is we assume T ∈ A(λ) ⊂ P(λ) ⊂
B(λ) and let str2(T) = (a, b, c, d). We define

estr
21 (T) :=


(a− 1, b− 1, c, d) if c = d = 0
(a− 1, b− 2, c, d+ 1) if c > 0 and d = 0
(a, b, c− 1, d− 1) if d > 0

and e21(T) as the element in B(λ) such that str2(e21(T)) = estr
21 (T) if it exists, and 0 oth-

erwise. Finally, define ê12(T) as e12(T) if wt(T)1 ⩽ 0 and s1(e12(s1(T))) if wt(T)1 ⩾ 0.

Proposition 7.7. Let T ∈ A(λ) ⊂ B(λ)
• If ê21(T) ̸= 0, then ê21(T) ∈ A(λ) and ϵ̂21(T) > 0.
• If ê21(T) = 0 and ⟨wt(T), α∨

21⟩ ⩾ 0, then ϵ̂21(T) = 0.

Proof. It can be easily verified by Corollary 4.27 that if T ∈ A(λ) and ê21(T) ̸= 0,
then also ê21(T) ∈ A(λ).

To prove the second statement, we introduce operators f str
21 , f21, f̂21, similarly to

Definition 7.6, where f str
21 (T) is defined, for T ∈ A(λ) with str2(T) = (a, b, c, d) as

f str
21 (T) =


(a+ 1, b+ 1, c, d) if b < λ1 − 2d+ 2c
(a, b, c+ 1, d+ 1) if d = 0 or c = λ2 + d

(a− 1, b+ 2, c, d− 1) if d = 1 and c < λ2 + d

Again, one can verify via Corollary 4.27, that if T ∈ A(λ) also f̂21(T) ∈ A(λ). If
ϵ̂21(T) ̸= 0, there exists U ∈ A(λ) with wt(U) = wt(T)+α21. Then, we have f21(U) = T,
from which it follows that e21(T) = U ̸= 0, or f̂21(U) = 0. But we cannot have f̂21(U) =
0 and ⟨wt(U), α∨

21⟩ ⩾ 2. For example, if c = λ2 + d or d = 0, then f21(T) = 0 only if
a = λ2 + b− 2c+ 2d, which implies ⟨wt(U), α∨

21⟩ = wt(U)1 + 2 wt(U)2 = −b ⩽ 0. □

The proposition implies that ϵ̂21 is associated to the operator ê21. That is, we have
ϵ̂21(T) = max{k | êk

21(T) ̸= 0}. Similar expressions for ê21 on the other atoms can be
obtained recursively using the embeddings Φ and Ψ.

We believe that one can construct similar charge statistics in higher ranks.

Conjecture 7.8. Assume B is a crystal of type C3. Then there exists a function
ϵ̂32 : B → Z⩾0 such that

c(T) = ϵ1(T) + ϵ2(T) + ϵ2(s1(T)) + ϵ3(T) + ϵ3(s2(T)) + ϵ3(s1s2(T))
+ϵ̂32(T) + ϵ̂32(s1(T)) + ϵ̂32(s2s1(T))

is a charge statistic on B+(λ).

Notice that if wt(T) = 0 the conjecture predicts that c(T) = ϵ1(T)+2ϵ2(T)+3ϵ3(T)+
3ϵ̂321(T). We have checked in many examples that such a function exists on elements
of weight 0.

7.2. Comparison with the conjectural charge formula by Lecouvey. We
have checked in many examples using computers and it seems safe to conjecture that
our charge formula and the formula conjectured by Lecouvey in [14] coincide for
λ = kϖ1 (in this case Lecouvey’s conjecture is shown to be true in [6]). However, as
the following example shows, the two statistics do not coincide in general.

If λ = 2ϖ2, there are two tableaux of weight 0: T1 = 1 2

2 1
and T2 = 1 2

2 1
.

We have c(T1) = 4 and c(T2) = 2 while, if we denote the Lecouvey charge statistic
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by Lc, we have Lc(T1) = 2 and Lc(T2) = 4, after making the appropriate alphabet
conversions.

Appendix A. Proof of Proposition 4.14 with SageMath

R.<a,b,c,d,L1 ,L2>= PolynomialRing (QQ)
#L1 and L2 represent lam_1 and lam_2
K=R. fraction_field ()

def theta12 ():
X = [a,b,c,d]
X[0] = 1/K(1/d + b/c + a/b)
X[1] = 1/K(1/c + b^2/(a*c^2) + 1/(a*d^2))
X[2] = K(b+b^2*d/c+a*d)
X[3] = K(a+b^2/c+c/d^2)
F(a,b,c,d) = tuple (X)
return F

def theta21 ():
X = [a,b,c,d]
X[0] = 1/K(1/d+b/c^2+a^2/b)
X[1] = 1/K(1/c+1/(a*d)+b/(a*c^2))
X[2] = K(b+b^2*d/c^2+a^2*d)
X[3] = K(a+c/d+b/c)
F(a,b,c,d) = tuple (X)
return F

def RRTAux (P):
# From tropical polynomials we can remove coefficients bigger than 1.
# Moreover , we are only interested in the function on positive values of

a,b,c,d,L1 and L2
#we can remove monomials which are divisible by another monomial , as the

minimum is never
# expressed exclusively by them .

M = P. monomials ()
R = []
for i in range (len(M)):

for j in range (len(M)):
if M[i]. divides (M[j]) and i != j:

R. append (j)
return sum([M[j] for j in range (len(M)) if not j in R])

def RemoveRedundantTerms (X):
return RRTAux (X. numerator ())/ RRTAux (X. denominator ())

t12 = theta12 ()
t21 = theta21 ()
s1(a,b,c,d) = (L1*b^2*d^2/(a*c^2),b,c,d)
phi2(a,b,c,d) = L2*b*d/(a*c^2)
Phi2= K(L2*b*d/(a*c^2))
phi1aux (a,b,c,d) = L1*b^2*d^2/(a*c^2)
Phi1 = K( phi1aux (*t21))
phi12aux1 = s1(*t21)
phi12aux2 = t12(* phi12aux1 )
Phi12 = K(phi2(* phi12aux2 ))
Z = Phi2*Phi1* Phi12
RHS = K(L1^2*L2^2/(b*d*(1+L1*a*c/(b*d)+b*d/(a*c))))
Q = Z/RHS

We first compute the quotient Q on the subset of elements in P(λ) such that d = 0.
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f1(a,b,c,d,L1 ,L2) = (a,b,c,1,L1 ,L2)
Q1 = RemoveRedundantTerms (K(Q(*f1)(a,b,c,d,L1 ,L2)))
# Q(* f1) denotes composition of functions in Sage
print (Q1)
print (Q1. numerator ()-Q1. denominator ())

(a^3*c^3*L1 + a^2*c^4*L1 + a^2*b*c^2 + a*b*c^3 + a*b^2*c +
b^2*c^2 + b^3)/(a^3*c^3*L1 + a^2*c^4*L1 + a*c^5*L1 +
a^2*b*c^2 + a*b*c^3 + a*b^2*c*L1 + b^2*c^2 + b^3)
-a*c^5*L1 - a*b^2*c*L1 + a*b^2*c
There is one extra monomial (ab2c) in the numerator which does not occur in the
denominator and two additional monomials (ac5λ1 and ab2cλ1) in the denominator.
However, we have

• a+ 2b+ c+ λ1 ⩾ a+ 2b+ c ⩾ min(2a+ b+ 2c, 3b)
• a+ 5c+ λ1 ⩾ a+ b+ 3c (because b ⩽ λ1 + 2d− 2c)).

Hence, the minimum is never expressed by these monomials. So, the quotient function
Q is constantly zero on the elements of the preatom with d = 0.

Now we compute the quotient Q on the subset of elements in P(λ) such that d = λ1.
f2(a,b,c,d,L1 ,L2) = (a,b,c,L1 ,L1 ,L2)
Q2 = RemoveRedundantTerms (K(Q(*f2)(a,b,c,d,L1 ,L2)))
print (Q2)
print (Q2. numerator ()-Q2. denominator ())

(a^3*c^3*L1^2 + a^2*c^4*L1 + a^2*b*c^2*L1^2 + a*b*c^3*L1 +
a*b^2*c*L1^2 + b^2*c^2*L1^2 + b^3*L1^3)/(a^3*c^3*L1^2 +
a^2*c^4*L1 + a^2*b*c^2*L1^2+ a*c^5 + a*b*c^3*L1 +
a*b^2*c*L1^2 +b^2*c^2*L1^2 + b^3*L1^3)
-a*c^5
There is an extra monomial in the denominator: ac5. However, we have a + 5c ⩾
a + 2b + c + 2λ1 (because b ⩽ 2c − λ1)). Hence, the minimum is never expressed by
this monomial, and the tropical function Q is constantly zero when d = lam1. Finally,
we compute Q for b = λ1 + 2c− 2d.
f3(a,b,c,d,L1 ,L2) = (a,L1*c^2/d^2,c,d,L1 ,L2)
Q3 = RemoveRedundantTerms (K(Q(*f3)(a,b,c,d,L1 ,L2)))
print (Q3)
print (Q3. numerator ()-X. denominator ())

(a^3*d^4 + a^2*c*d^3 + a^2*c*d^2*L1 + a*c^2*d^2+ a*c^2*d*L1 +
c^3*d*L1 + c^3*L1^2)/(a^3*d^4 +a^2*c*d^3 + a^2*c*d^2*L1 +
a*c^2*d^2 + a*c^2*d*L1+ c^3*d*L1 + a*c^2*L1^2 + c^3*L1^2)
-a*c^2*L1^2
There is one extra monomial in the denominator: ac2λ2

1. However, we have a + 2c +
2λ1 ⩾ a + 2c + d + λ1 (because d ⩽ λ1). This shows again that Q is zero when
b = λ1 + 2d − 2c. Hence it is always zero on the preatom, concluding the proof of
Proposition 4.14 in the case pat(T ) = 0.
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