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Normal covers of 2-arc-transitive graphs of
prime-power order

Marston Conder & Primož Potočnik

Abstract In a paper by Cai Heng Li in Bull. London Math. Soc. 33 (2001), it was suggested
that ‘non-basic’ 2-arc-transitive graphs of prime-power order that occur as normal covers of
smaller 2-arc-transitive graphs might be rare and difficult to construct. This note describes
some of the background to Li’s suggestion, and gives some examples of small valency, and then
goes on to show that in fact there are infinitely many examples of valency d, for every integer
d ⩾ 2. It is also noted that the hypercubes Qn for n ⩾ 4 even, together with a 2-arc-transitive
group G of index 2 in Aut(Qn), show that the claims of Corollary 1.2 in the above paper by Li
are not quite correct.

1. Introduction
An s-arc in a graph Γ is a sequence (v0, v1, . . . , vs) of vertices of Γ such that any two
consecutive vi are adjacent, and any three consecutive vi are distinct. A graph Γ is
said to be s-arc-transitive if its automorphism group Aut(Γ) is transitive on the set
of all s-arcs in Γ, and s-arc-regular if Aut(Γ) is sharply-transitive (which means it
acts regularly) on the set of all s-arcs in Γ. Vertex-transitive and arc-transitive graphs
(respectively) are s-arc-transitive for s = 0 and s = 1. All graphs in this paper are
simple, and are finite unless specified otherwise.

The investigation of arc-transitive graphs is a classical topic in algebraic graph
theory which goes back to the seminal work of Tutte [21] on connected graphs of
valency 3 (often called cubic graphs). A very important subclass of arc-transitive
graphs are those for which the stabiliser of a vertex in the automorphism group acts
primitively on the neighbourhood of that vertex, and in particular, those for which
this action is doubly-transitive. Note that the latter condition is equivalent to 2-arc-
transitivity (when the graph is vertex-transitive). A very large amount of work has
been devoted to a project on classification of finite 2-arc-transitive graphs – see for
example [6, 4, 7, 9, 17], to name just a few papers – with the paper of Cai-Heng Li
[8] making a notable contribution to this wider project.

The purpose of our paper is to address some of the issues that remained unresolved
in [8]. In particular, we focus on Li’s suggestion that ‘non-basic’ 2-arc-transitive graphs
of prime-power order that occur as normal covers of smaller 2-arc-transitive graphs
might be rare and difficult to construct. Contrary to this suggestion, we show that
infinite families of such covers exist for all valencies and feasible primes. Also we
exhibit an infinite family of counter-examples to one of the main theorems (Corollary
1.2) in [8].
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Before stating our findings, we first give a brief overview of the concepts of a normal
quotient and a normal cover of a graph. These concepts, the origin of which can be
traced back to the work of Peter Lorimer [11], were developed and successfully used
by Cheryl Praeger [17] and have now become a standard tool in the investigation of
some aspects of arc-transitive graphs.

If G is a group of automorphisms of a connected graph Γ and N a normal subgroup
of G, then a smaller graph ΓN can be constructed by taking the orbits of N on V (Γ)
as vertices, and joining two such orbits ∆1 and ∆2 by an edge in ΓN whenever there
exists an edge {v1, v2} in Γ such that v1 ∈ ∆1 and v2 ∈ ∆2. In this case ΓN is
said to be a normal quotient of Γ with respect to G. Note that the quotient group
G/N acts (possibly unfaithfully) on V (ΓN ) as a group of automorphisms, and if G
acts transitively on the s-arcs of Γ, then G/N acts transitively on the s-arcs of ΓN .
Moreover, if N has at least three orbits on V (Γ) and if G acts transitively on the
2-arcs of Γ, then the valencies of Γ and ΓN coincide (by an easy argument showing
that every 2-arc contains vertices from three different orbits of N). The graph Γ is
then called a normal cover of ΓN . In this case the group G/N acts faithfully on the
vertices of ΓN and the stabiliser (G/N)∆ of a vertex ∆ = vN of ΓN is isomorphic to
the stabiliser Gv of the vertex v of Γ. We say in this case that G projects along the
covering projection to G/N and that G/N lifts to the group G.

Note that normal quotients and covers of graphs allow an inductive approach to
the analysis of 2-arc-transitive graphs. Given a d-valent graph Γ and a group G acting
transitively on its 2-arcs, one can first check whether G contains a non-trivial normal
subgroup N having at least three orbits on V (Γ). If such a group exists, then Γ is
a normal cover of a d-valent quotient ΓN such that G projects to a 2-arc transitive
group G/N of ΓN . Moreover, by taking N to be a maximal normal subgroup subject
to having at least three orbits on V (Γ), one obtains the quotient Γ̄ = ΓN and a group
Ḡ = G/N acting transitively on the 2-arcs of Γ̄ such that every non-trivial normal
subgroup of Ḡ has at most 2 orbits on V (Γ̄); such a graph Γ̄ is then said to be Ḡ-basic.

The above observation implies that every graph admitting a 2-arc-transitive group
G is a normal cover of a basic Ḡ-basic graph Γ̄ with Ḡ acting transitively on the
2-arcs and lifting to the group G. This suggests the following two-step approach to
the analysis of 2-arc-transitive graphs: First, determine all pairs (Γ, G) where Γ is
G-basic and G is 2-arc-transitive, and then as a second step, analyse normal covers of
the G-basic graphs along which the 2-arc-transitive group G lifts. While the first step
of this approach can often be resolved using a variant of the O’Nan-Scott theorem for
(bi)-quasi-primitive permutation groups and the classification of finite simple groups,
the second step usually proves to be a much harder problem.

This inductive approach can be applied to any subclass of 2-arc-transitive graphs
that are closed under taking normal quotients. For example, in his 2001 paper [8] Cai
Heng Li used this method to analyse 2-arc-transitive graphs of prime-power order
(which are obviously closed under the operation of taking normal quotients, for every
given prime). This brings us to the topic of our paper.

The first step of the above process was pursued by Li, and he left the second step
as an open problem (see [8, Problem]), but he did state that he was inclined to think
that “non-basic 2-arc-transitive graphs of prime-power order would be rare and hard
to construct.”

Before proceeding, however, we note that unfortunately Li’s definition of a ‘non-
basic’ graph Γ in [8] was unclear: Did it mean that the graph Γ is not Aut(Γ)-basic?
or that there is some 2-arc-transitive G ⩽ Aut(Γ) for which the graph is not G-
basic? or that for every such G the graph Γ is not G-basic? This distinction is quite
important, because there exist 2-arc-transitive graphs that are basic with respect
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to one 2-arc-transitive group but non-basic with respect to another 2-arc-transitive
group of automorphisms. (Consider, for example, the graphs Kn,n − nK2 for n ⩾ 5,
or the hypercubes Qn for n ⩾ 5 odd; see Section 3.) Later in [8], Li claimed that the
graph Kn,n−nK2 is basic, and so it became clear that ‘basic’ means G-basic for some
such G, and hence that ‘non-basic’ should be understood in the strictest of the three
possible senses.

Definition 1.1. A 2-arc-transitive graph Γ is said to be non-basic provided that for
every 2-arc-transitive group G of automorphisms of Γ, the graph Γ is not G-basic.

Li’s suggestion on rarity of non-basic 2-arc-transitive graphs of prime-power order
was brought to the first author’s attention in a recent conference lecture by Cheryl
Praeger, which appeared to be based on the assumption that it was well-founded. This
piqued the first author’s curiosity, and soon led him to discover two families of such
graphs with small valency, the first being the obvious family of examples of cycles of
prime-power order ps ⩾ 8 with s > 1, and the other a family of 2-arc-regular 3-valent
normal covers of the complete graph K4 (see Section 2). In turn, this prompted him
to invite the second author to join him in investigating the situation further, and led
us to the following theorem.

Theorem 1.2. For every prime p and every integer d ⩾ 3, there exists an integer m
such that every 2-arc-transitive graph of valency d and order pk such that k ⩾ m is
non-basic. Moreover, for every 2-arc-transitive graph Γ of prime-power order, there
exists an infinite family of non-basic 2-arc-transitive normal covers of Γ with order a
power of the same prime. In particular, for every integer d ⩾ 2, there exist infinitely
many non-basic 2-arc-transitive graphs of prime-power order with valency d.

This theorem shows that contrary to the suggestion in [8], examples of non-basic 2-
arc-transitive graphs are in some sense plentiful and exist for all possible valencies and
feasible primes. Moreover, the family provided in Section 2 shows that the suggestion
made in [8] is not the case even when the graphs are assumed to be 2-arc-transitive
but not 3-arc-transitive (or equivalently, ‘2-transitive’ as defined in [8]).

In Section 3, we focus on the family of hypercubes Qn for n ⩾ 3. We show that
Qn is a non-basic 2-arc-transitive graph if and only if n = 3 or n is an even integer,
thus providing examples for all even valencies, and also showing that the conclusions
(1) and (3) of Corollary 1.2 in [8] are not valid.

In Section 4, we extend our investigation to all valencies and prove our Theorem 1.2.
In particular, we show that every hypercube graph Qn (for even or odd n > 1) can
be covered by infinitely many non-basic 2-arc-transitive graphs of prime-power order
with valency n.

2. Examples of valency 3
The cube graph Q3 of order 8 is a 2-arc-regular cubic graph of type 21 (as described in
[3]), with automorphism group S4 × C2. It is also a non-basic 2-arc-transitive graph,
as it has K4 as a normal quotient via the central subgroup of order 2 generated
by the automorphism that interchanges antipodally opposite vertices. In this section
we exhibit an infinite family of non-basic 2-arc-transitive normal covers of K4 with
2-power order, and with automorphism group acting regularly on the set of 2-arcs.

To see this, note that by the theory of arc-transitive 3-valent graphs, the auto-
morphism group G of every finite graph Γ in the class 21 is a quotient of the infinite
group G 1

2 with presentation G 1
2 = ⟨ h, p, a | h3 = p2 = a2 = (ap)2 = (hp)2 = 1 ⟩,

which is isomorphic to PGL(2,Z). Conversely, every finite quotient G of this group
that is ‘smooth’ (in the sense that the orders of h, p, a, ap and hp are preserved)
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is a 2-arc-regular group of automorphisms of some 3-valent graph Γ, and if Γ is not
3-arc-transitive, then G = Aut(Γ). Moreover, if Γ has order 2n, then G has order
6|V (Γ)| = 3 · 2n+1 for some n, and so by Burnside’s pαqβ theorem, G is soluble.

The automorphism group S4 of K4 is isomorphic to the quotient G 1
2 /J where J is

one of the two normal subgroups of index 24 in G 1
2 , generated by either (ha)3 and its

conjugates, or (hap)3 and its conjugates. (These two subgroups are interchanged by
the automorphism θ of G 1

2 taking (h, p, a) to (h, p, ap), which extends the group G 1
2

to the universal group G3 for the class 3 in [3].) By Reidemeister-Schreier theory (or
its implementation as the Rewrite command in Magma [2]), the subgroup J is free
of rank 3.

Now for any 2-power m = 2s for s ⩾ 1, let Lm = J ′J (m) be the characteristic
subgroup of J generated by all commutators and all m th powers of elements of J .
Then Lm is a normal subgroup of index 24m3 in G 1

2 , not preserved by the automor-
phism θ above, and because a finite cubic graph admitting a 2-arc-regular group of
automorphisms is at most 3-arc-transitive (by Corollary 2.2 of [3]), it follows that
G 1

2 /Lm is isomorphic to the automorphism group of a 2-arc-regular 3-valent graph of
type 21, with order 4m3 = 22+3s. Moreover, as N = J/Lm is a normal subgroup of
G 1

2 /Lm, with quotient (G 1
2 /Lm)/(J/Lm) ∼= G 1

2 /J ∼= Aut(K4), this graph is a normal
cover of K4 (and hence is a non-basic graph), as required.

Remark 2.1. In fact it can be shown that every connected 2-arc-transitive graph of
2-power order is a normal cover of K4. This follows from some of the content of [13],
for example. Furthermore, it can be shown using [13], or the theory of 2-arc-transitive
cubic graphs of type 21 that every 2-arc-regular 3-valent graph of type 21 with 2-power
order greater than 8 is a normal cover of Q3 as well.

3. The hypercubes
For n ⩾ 3, the n-hypercube graph Qn is the graph whose vertices may be taken as
the ordered n-tuples of elements of Z2, with two such n-tuples adjacent if and only
if they differ in exactly one position. (Equivalently, the vertices are subsets of the set
{1, 2, . . . , n}, with two such subsets adjacent if and only if one can be obtained from
the other by deleting one element.) This is an n-valent regular graph of order 2n, and
is clearly 2-arc-transitive, but not 3-arc-transitive.

We should point out that the subgroup structure of Aut(Qn) is rather complex and
not easy to determine, even when restricted to vertex-transitive groups. For example,
it was shown by Pablo Spiga in [18] that the number of non-isomorphic groups that
act regularly on the vertices of Qn grows exponentially with respect to n2 (as n tends
to infinity). This fact makes the hypercubes quite intriguing objects, especially when
some control over the subgroups of their automorphism group is needed.

The aim of this section is to prove the following theorem.

Theorem 3.1. Let n ⩾ 3 be an integer. Then the hypercube Qn is a basic 2-arc-
transitive graph if and only if n > 3 and n is odd. Equivalently, Qn is a non-basic if
and only if n = 3 or n is even.

Proof. Let us start with some initial comments. Observe first that the automorphism
group of Qn is the wreath product C2 ≀ Sn, of order 2nn!, and indeed Qn is a Cayley
graph for the ‘base’ group B = (C2)n, with involutory generators bj taking the ‘zero’
vertex 0 = (0, 0, . . . , 0) of Qn to the standard elementary basis vector ej (with a single
‘1’ in position j) for 1 ⩽ j ⩽ n. Also Aut(Qn) is a semi-direct product B ⋊ H, where
H = Aut(Qn)0 is the stabiliser of the zero vertex 0, and H is isomorphic to Sn. Note
that the action of H by conjugation on B corresponds to permuting the entries of the
vectors in Zn

2 by elements of Sn in the natural way.
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Two important normal subgroups of Aut(Qn) that are contained in B are the ‘trace’
subgroup T generated by the central involution z = b1b2 . . . bn, and the ‘augmentation’
subgroup A generated by elements of B expressible as words of even length on the
generating set {b1, b2, . . . , bn}. Note that A contains T if and only if n is even.

We have already seen in Section 2 that Q3 is a non-basic 2-arc-transitive graph, as
claimed.

Suppose now that n is odd and n > 3. Let G be the subgroup of Aut(Qn) = B⋊Sn

consisting of all the elements bh, b ∈ B, h ∈ Sn, such that either b ∈ A and h ∈ An,
or b ∈ B ∖ A and h ∈ Sn ∖ An. Then G is a subgroup of Aut(Qn) of index 2 such
that G0 = G ∩ Sn = An. In particular, G is vertex-transitive. Moreover, since n ⩾ 5,
the stabiliser G0 = An acts doubly transitively on the neighbourhood of 0, implying
that G is 2-arc-transitive.

Next suppose that Qn is not G-basic, and let N be a non-trivial normal subgroup
of G with at least three orbits on V (Qn). Then J = N ∩ A is a proper subgroup
of A which is invariant under conjugation by An. The only subgroups of B that are
invariant under the conjugation of An are 1, T , A and B, but as J has at least 3
orbits on V (Qn), it cannot be A or B. Also because n is odd, T is not a subgroup
of A, implying that J ̸= T . Hence J = 1. In particular, N intersects A trivially, and
thus N and A centralise each other. But T is central in Aut(Qn), and B = ⟨A, T ⟩,
so it follows that N centralises B. Also because B is an abelian permutation group
acting regularly on V (Qn), it is equal to its own centraliser in the symmetric group
of V (Qn). Thus N ⩽ B ∩ G = A, implying that N = J = 1, which is a contradiction.
This contradiction shows that Qn is in fact G-basic, and hence that Qn is a basic
2-arc-transitive graph.

Suppose now that n is even, and let G be any 2-arc-transitive subgroup of Aut(Qn).
(Actually in the first part of what follows, G can be any arc-transitive subgroup.) Then
Gv acts transitively on the neighbourhood of v in Qn, so |G ∩ H| = |Gv| is divisible
by n and therefore |G| is divisible by n2n. Note here also that GB is a subgroup of
Aut(Qn) since B is normal in Aut(Qn). We proceed to consider J = G ∩ B, which is
a normal 2-subgroup of G contained in B.

If J is trivial, then |GB| = |G||B|/|J | = |G||B| is divisible by n2n 2n, but also
|GB| divides |Aut(Qn)| = 2nn!, and therefore 2n divides (n − 1)!, which is easily seen
to be impossible, because the largest integer j such that 2j divides m! is at most m
(and equals m if and only if m itself is a power of 2). Hence J is non-trivial.

Next, if |B : J | > 2, then |J | ⩽ 2n−2 and so G ∩ B = J has at least 22 = 4 orbits
on V (Qn), which implies that (Qn)J is a proper normal quotient of Qn, making Qn

non G-basic. On the other hand, suppose |B : J | = 1 or 2, and also that n is even.
If J contains the augmentation subgroup A mentioned above, then also G contains
the trace subgroup T , which has 2n−1 orbits on V (Qn), and makes Qn non G-basic.
Otherwise N = J ∩ A has index 4 in B, and has at least 4 orbits on V (Qn), again
making Qn non G-basic.

Hence if n is even, then for every 2-arc-transitive subgroup G ⩽ Aut(Qn), the
graph Qn is not G-basic, so Qn itself is non-basic. Thus Qn is non-basic for n = 3 (as
in the previous family) and for all even n ⩾ 4 (by the above analysis). □

Hence we have another family of counter-examples to the ‘rarity’ suggestion in [8],
this time with arbitrarily large even valency.

Next, recall that for odd n > 3, the 2-arc-transitive subgroup G of index 2 in
Aut(Qn) considered in the proof of the above theorem makes Qn a G-basic graph.

These examples show that part (1) of Corollary 1.2 in [8] is not quite correct. The
latter asserted that if Γ is a connected graph of prime-power order, and Γ is G-basic for
some 2-arc-transitive subgroup G of Aut(Γ), then Γ is isomorphic to K2m,2m − 2mK2
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for some m, or Γ is Aut(Γ)-basic. But Qn is G-basic for the index 2 subgroup of
Aut(Qn) described above, and yet is not isomorphic to K2m,2m − 2mK2 for any m,
and also Qn is not Aut(Qn)-basic, because it is an Aut(Qn)-normal cover of (Qn)T

where T is the trace subgroup.
They also do the same for part (3), which asserted that if Γ is a connected graph

of prime-power order, and G is a 2-arc-transitive subgroup of Aut(Γ) that acts as a
biprimitive affine group on V (Γ), then either Γ is isomorphic to K2m,2m or K2m,2m −
2mK2, or soc(G) = soc(Aut(Qn)). But if Γ = Qn where n is odd and n > 3, then
clearly the first part of this conclusion does not hold, and also the second part is
impossible because the trace subgroup T is a minimal normal subgroup of Aut(Qn)
and hence is a subgroup of soc(Aut(Qn)), but T is not a subgroup of G and so cannot
be a subgroup of soc(G).

Finally (in this section) we note that with some extra work (using some advanced
theory of 2-transitive groups proved by Aschbacher [1], Praeger [16] and Liebeck,
Praeger and Saxl [10]), it can be shown that every 2-arc-transitive subgroup of
Aut(Qd) contains the augmentation subgroup A ∼= Cd−1

2 .

4. All valencies greater than 2
After finding the above families of examples, we considered it a challenge to construct
or find a non-basic example of a 2-arc-transitive graph of prime-power order with odd
valency d > 3. This turned out to be easy, however, by taking a cover of the 5-cube.

In the automorphism group C2 ≀ S5 of Q5, the stabiliser of a vertex v is isomorphic
to S5, the stabiliser of an arc (v, w) incident with v is isomorphic to S4, and the
stabiliser of the associated edge {v, w} is isomorphic to S4 × C2. Hence the group
Aut(Q5) is a finite quotient of the amalgamated free product F = S5 ∗S4 (S4 × C2).
Taking a particular transitive permutation representation of this group F on 20 points
gave rise to a group G of order 24 · |C2 ≀S5|, which turned out to be the automorphism
group of a non-basic 2-arc-transitive graph of order 24 · 32 (= 512) with valency 5,
covering Q5.

Similar examples of order 22d−1 and valency d can be constructed as covers of Qd

for d = 3, 4, 6, 7, 8 and 9, and we believe that such examples are like to exist for all
d > 2. This, however, could be difficult to prove. But we can prove the existence of
larger examples for every valency d > 2, using a slightly different approach.

Let us begin by recalling the following deep theorem, which is a culmination of
work that stretches over a number of papers by Weiss and Trofimov, with [20] being
the last in that series. A very good overview of the work involved in the proof can be
found in [23].

Theorem 4.1. [Weiss and Trofimov] For every integer d ⩾ 3, there exists a real
constant cd > 0 such that for every finite connected 2-arc-transitive graph Γ with
valency d, the order of the vertex-stabiliser in Aut(Γ) is at most cd.

Using this, we can now prove the following.

Lemma 4.2. For every prime p and every integer d ⩾ 3, there exists an integer md

such that every 2-arc-transitive graph of valency d and order pk such that k ⩾ md is
non-basic.

Proof. Let c = cd be the constant from Theorem 4.1, and let m be an integer such
that m > d and pm > c!. Also suppose that k ⩾ m, and let Γ be a 2-arc-transitive
graph of valency d and order pk, and let G be a subgroup of Aut(Γ) acting transitively
on the set of 2-arcs of Γ. Next let P be a Sylow p-subgroup of G, and let Q be the
core of P in G. By the definition of c, we see that |Gv| ⩽ c. Since the order of Γ is a

Algebraic Combinatorics, Vol. 8 #2 (2025) 474



Normal covers of 2-arc-transitive graphs

power of p, the group P acts transitively on V (Γ), and so |P | ⩾ pk > c!. Furthermore,
the index of P in G is at most equal to the order of the vertex-stabiliser Gv, which is
bounded above by c. But then the index of Q in G is at most c!, implying that Q is
non-trivial, and hence that the centre C of Q is a non-trivial abelian normal subgroup
of G.

Now the subgroup N generated by all the elements of order p in C is a non-trivial
elementary abelian normal p-subgroup of G. Suppose that N has just one or two orbits
on V (Γ). If N acts faithfully on each of its orbits, then Γ is a Cayley or bi-Cayley
graph on N , and in particular, N is generated by at most d elements (and in fact at
most d − 1 elements if N has two orbits on V (Γ)). But then the order of Γ is at most
pd, contradicting our choice of m. On the other hand, if N acts unfaithfully on one
of its orbits, say ∆, then let X be the kernel of that action. Then since N is abelian,
X = Nv for every v ∈ ∆, and so X is normal in Gv for every v ∈ ∆. Let u be a vertex
in the other N -orbit ∆′ such that U is not fixed by X and let v be its neighbour in ∆.
Since X is normal in Gv and Gv acts doubly-transitively on the neighbourhood Γ(v),
we see that X is transitive on Γ(v), and this implies that all vertices in Γ(v) share the
same neighbourhood. Then since Γ is connected, we conclude that Γ(v) = ∆′. But
then pk = |V (Γ)| = 2|Γ(v)| = 2d, contradicting our assumptions on k.

Therefore N has at least three orbits on V (Γ), showing that Γ is not G-basic, and
hence that Γ is a non-basic 2-arc-transitive graph. □

The next step in the proof of our Theorem 1.2 involves an observation that every
2-arc-transitive graph of prime-power order yields an infinite family of 2-arc-transitive
normal covers. We do that by using a standard tool of homological p-covers, which
we now explain.

For a given finite graph Γ and prime p, let Γ̃(p) denote its p-homological cover,
as defined in [12]. This is a connected graph which is characterised by a property of
its covering transformation group – the group preserving each fibre – namely that
covering transformation group acts regularly on each fibre, and is isomorphic to the
elementary abelian p-group Z β

p where β is the Betti number of Γ (namely the number
of edges not contained in a spanning tree for Γ). It is well known (for example by
[12, Proposition 6.4]) that the automorphism group G of Γ lifts to a subgroup G̃ of
Aut(Γ̃(p)) of the form Zβ

p .Aut(Γ), and that G acts transitively on the 2-arcs of Γ if
and only if G̃ acts transitively on the 2-arcs of Γ̃(p).

Another way of defining Γ̃(p) is by first considering the universal covering projection
Td → Γ, where Td is the (infinite) d-regular tree. Here the group G lifts to a subgroup
U of Aut(Td), and there exists a normal subgroup K ⩽ U , isomorphic to the free
group of rank β, such that Γ ∼= Td/K and G ∼= U/K. Now let N = [K, K]K(p) be
the subgroup of K generated by the derived subgroup of K and the p-th powers of
all elements of K. Then Γ̃(p) can be defined as the quotient graph Td/N . Since N is
characteristic in K, the group U projects to a group G̃ = U/N ⩽ Aut(Γ̃(p)).

Note that in the above definition, instead of the prime p one could take any prime-
power, say pk, and obtain a pk-homological cover Γ̃(pk). Then Aut(Γ) would still lift
along the corresponding covering projection Γ̃(pk) → Γ to a group (Zpk )β .Aut(Γ) ⩽

Aut(Γ̃(pk)).
Equipped with Lemma 4.2 and the above construction, one can now easily deduce

the following.
Lemma 4.3. Suppose there exists a finite 2-arc-transitive graph Γ with valency d ⩾ 3
whose order is a power of some prime p. Then there exists an infinite family of
d-valent non-basic 2-arc-transitive graphs, all regular covers of Γ, whose orders are
powers of p.
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Proof. We define a family of graphs Γi recursively, by setting Γ0 = Γ and then letting
Γj be the p-homological cover of Γj−1 for every positive integer j. (Alternatively, we
could let Γj = Γ̃(pj).) Then all of these graphs Γi are 2-arc-transitive normal covers
of Γ, with valency d, and the order of each one of them is a power of p. Moreover, the
order of all except finitely many of them exceeds pmd , where md is the constant from
Lemma 4.2, and hence all of them are non-basic. □

Noting that the d-hypercube graph Qd is a d-valent 2-arc-transitive graph with 2d

vertices, while the complete graph Kpm is a 2-arc-transitive (pm − 1)-valent graph on
pm vertices for every prime p and every positive integer m, it is easy to see that the
above lemma has the following straightforward consequence.
Corollary 4.4. For every integer d ⩾ 2, there exist infinitely many d-valent non-
basic 2-arc-transitive graphs with order a power of 2. Similarly, if p is a prime and
d = pm −1 for some integer m ⩾ 1, then there exist infinitely many d-valent non-basic
2-arc-transitive graphs with order a power of p.

In particular, the first part of Corollary 4.4 proves Theorem 1.2. But further, it is
known that a d-valent 2-arc-transitive graph with order a power of a prime p exists if
and only if either p = 2, or d+1 is a power of p, by [8, Corollary 3.5]. Hence it follows
that Corollary 4.4 deals with all possible values of the valency d and the prime p.

Finally, we point out that our proofs of Lemma 4.3 and Corollary 4.4 depend
heavily on Theorem 4.1 of Trofimov and Weiss, and hence on the classification of
finite simple groups. But if we want to prove only the claim of Corollary 4.4, then
the full power of Theorem 4.1 is not needed. In fact, since for hypercubes Qd as well
as for complete graphs Kd+1, the stabiliser of a vertex v in the automorphism group
induces the full symmetric group Sd on the neighbourhood of v, the following folklore
and easy-to-prove special case of Theorem 4.1 suffices, thereby avoiding the need for
classification of finite simple groups.
Lemma 4.5. For every integer d ⩾ 3, there exists a constant cd with the following
property: If Γ is a connected d-valent graph Γ admitting a vertex-transitive group of
automorphisms G such that the permutation group G

Γ(v)
v induced by the action of the

vertex-stabiliser Gv on the neighbourhood Γ(v) is isomorphic to the symmetric group
Sd, then |Gv| ⩽ cd.
Proof. We begin by pointing out that if d = 3, then a celebrated theorem of Tutte
[21] implies that |Gv| ⩽ 48. Also the case d = 4 was essentially dealt with by Gardiner
(see [5, Theorem 3.9]), with the bound on the order and the structure of Gv explicitly
stated in [15]. Similarly if d = 5, then one can deduce the bound on |Gv| from the
work of Weiss [23], with the structure of vertex- and edge-stabilisers explicitly given
in [14]. All of these facts were proved by elementary means, and do not require the
classification of finite simple groups. Hence from now on we will assume that d > 5.

Let Γ and G be as in the statement of this lemma, let {u, v} be an edge of Γ, and
let K be the kernel of the action of the arc-stabiliser Guv on Γ(u) ∪ Γ(v) ∖ {u, v}.
Also for each w ∈ V (Γ), let G

[1]
w denote the kernel of the action of Gw on Γ(w). Note

that Guv/K acts faithfully on the set Γ(u) ∪ Γ(v) ∖ {u, v}, so Guv/K is isomorphic
to a subgroup of Sd−1 × Sd−1, giving |Gv| = d|Guv| ⩽ d(d − 1)!2. Hence it suffices to
show that K is trivial.

So suppose that K is not trivial. Then by the Thompson-Wielandt theorem (see,
for example, [5, Corollary 2.3] or [19, 22]), we find that K is a p-group for some prime
p. Then since K is normal in Guv, it is contained in the maximal normal p-subgroup
Op(Guv) of Guv. Moreover, since Guv is normal in the edge-stabiliser G{u,v}, and
Op(Guv) is characteristic in Guv, it follows that Op(Guv)◁G{u,v}. Similarly, because
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K is the kernel of the action of G
[1]
v on Γ(u) ∖ {v}, we find that K is normal in G

[1]
v ,

and hence that K ⩽ Op(G[1]
v ) ◁ Gv.

Now consider the image of the sequence of groups Op(Guv)◁Guv ⩽ Gv under the
quotient projection q : G → G

Γ(v)
v that takes every element of Gv to the permutation it

induces on Γ(v). Clearly q(Gv) ∼= Sd and q(Guv) ∼= Sd−1, and as Op(Guv) is normal in
Guv, it follows that q(Op(Guv)) is either trivial or a normal p-subgroup q(Guv). Since
we are assuming that d > 5 and since q(Guv) ∼= Sd−1, we find that q(Op(Guv)) = 1
and hence that the kernel G

[1]
v of the projection q contains Op(Guv). But then because

G
[1]
v ⩽ Guv, and Op(Guv) is normal in Guv, it follows that Op(Guv) ⩽ Op(G[1]

v ). On
the other hand, G

[1]
v is clearly a normal subgroup of Guv, implying that Op(G[1]

v )◁Guv

and hence that Op(G[1]
v ) ⩽ Op(Guv). Thus we have shown that Op(Guv) = Op(G[1]

v ).
Finally, recall that Op(Guv) is normal in G{u,v}, while Op(G[1]

v ) is normal in Gv. As
these two groups coincide, it follows that they are normal in ⟨Gv, G{u,v}⟩, which by
connectivity of Γ equals G. In particular, Op(G[1]

v ) is a normal subgroup of G contained
in the stabiliser Gv, and hence is trivial. But this contradicts the fact that Op(G[1]

v )
contains K and hence is non-trivial.

Thus K = 1, and cd = d(d − 1)!2 can be taken as an upper bound on |Gv|, as
claimed. □
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