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Nonabelian partial difference sets
constructed using abelian techniques

James A. Davis, John Polhill, Ken Smith & Eric Swartz

Abstract A (v, k, λ, µ)-partial difference set (PDS) is a subset D of a group G such that
|G| = v, |D| = k, and every nonidentity element x of G can be written in either λ or µ different
ways as a product gh−1, depending on whether or not x is in D. Assuming the identity is
not in D and D is inverse-closed, the corresponding Cayley graph Cay(G, D) will be strongly
regular. Partial difference sets have been the subject of significant study, especially in abelian
groups, but relatively little is known about PDSs in nonabelian groups. While many techniques
useful for abelian groups fail to translate to a nonabelian setting, the purpose of this paper is to
show that examples and constructions using abelian groups can be modified to generate several
examples in nonabelian groups. In particular, in this paper we use such techniques to construct
the first known examples of PDSs in nonabelian groups of order q2m, where q is a power of an
odd prime p and m ⩾ 2. The groups constructed can have exponent as small as p or as large
as pr in a group of order p2r. Furthermore, we construct what we believe are the first known
Paley-type PDSs in nonabelian groups and what we believe are the first examples of Paley–
Hadamard difference sets in nonabelian groups, and, using analogues of product theorems for
abelian groups, we obtain several examples of each. We conclude the paper with several possible
future research directions.

1. Introduction
This work focuses on the algebraic structure known as a partial difference set (PDS).
A (v, k, λ, µ)-PDS is a subset D of a group G such that |G| = v; |D| = k; every
nonidentity element of D can be written as d1d−1

2 , where d1, d2 ∈ D, in λ differ-
ent ways; and every nonidentity element of G − D can be written as d1d−1

2 , where
d1, d2 ∈ D, in µ different ways. These sets have received much attention due to their
correspondences with strongly regular graphs, codes, bent functions, and association
schemes.

Over the past few decades, numerous constructions of PDSs have been given in
many abelian groups (for example, [6, 10, 15, 18, 19, 22, 25]). The methods nearly
always include the use of characters, no doubt because they provide a relatively simple
proof. Recent work has shed light on the fact that PDSs can be constructed in non-
abelian groups as well, see for instance [3, 8, 9, 26, 30, 31]. We believe that nonabelian
groups will provide many interesting examples of PDSs, even though relatively few
examples are known in this setting (see [26, Sections 4–5] for a recent survey).

In a previous paper [26], the authors investigated PDSs in nonabelian groups for
which there are no abelian PDSs with those parameters. In this situation, both the
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parameters and the PDS itself are called genuinely nonabelian. On the other end of
the spectrum, there are examples of PDSs in nonabelian groups that are not genuinely
nonabelian, such as in [9]; that is, given a (v, k, λ, µ)-PDS in an abelian group, there
also exists a (v, k, λ, µ)-PDS in a nonabelian group. While one of the main themes
of [26] is that many tools from the abelian setting simply do not apply to nonabelian
groups, the purpose of this paper is to show that several constructions and existence
results in abelian groups have direct analogues in nonabelian groups. In fact, in sev-
eral instances, both the abelian group and the nonabelian group act on the same
underlying combinatorial object (in this case, the same strongly regular graph).

The main results of this paper can be summarized as follows.
(1) Let q be a power of an odd prime p and m ⩾ 2. Then, there exist nonisomor-

phic, nonabelian groups of order q2m and exponent p whose nonidentity ele-
ments can be partitioned into PDSs (Theorem 3.4, Remark 3.7, Theorem 3.9,
Remark 3.10, Theorem 3.11).

(2) Let q be a power of an odd prime p. There exists a nonabelian group of order
q4 and exponent p that can be partitioned into q + 3 PDSs, the union of any
of which is also a PDS (Theorem 3.14). In particular, this group contains a
Paley-type PDS (Corollary 3.15).

(3) Let t ⩾ 2 and p be an odd prime. The group

Ĝt :=
〈

x, y : xpt

= ypt

= 1, yxy−1 = x(p−1)pt−1+1
〉

∼= Zpt ⋊(p−1)pt−1+1 Zpt

can be partitioned into 2p PDSs in such a way that the union of any of them
is also a PDS. In particular, there is a Paley-type PDS in Ĝt (Theorem 4.6).

(4) If two groups G and G′ of order v possess Paley-type PDSs, then the group
G × G′ also contains a Paley-type PDS (Theorem 5.1). Combined with the
results of (2) and (3), this provides infinitely many more examples of Paley-
type PDSs in nonabelian groups.

(5) If a group G of order v contains a Paley-type PDS and the group G′ of
order v ± 2 contains a skew Hadamard difference set (DS), then the product
group G × G′ contains a Paley–Hadamard DS in the Stanton–Sprott (Twin
prime power) family (Theorem 5.3). Combined with the results of (2) and (3),
this provides more examples of Paley–Hadamard difference sets in nonabelian
groups.

(6) In many cases, the group ring calculations needed to prove a product theorem
in the abelian case (that is, the existence of PDSs in abelian groups G and
G′ imply the existence of a PDS in G × G′) do not depend on whether or not
the groups are abelian, meaning that they will automatically translate to the
nonabelian setting (Lemma 6.1, Theorem 6.2).

To the best of our knowledge, the PDSs constructed in this paper are the first
infinite families of PDSs in nonabelian groups of order qd, where q is an odd prime
power and d is not a multiple of 3. (Partial difference sets have been constructed
in nonabelian groups of order q3, where q is an odd prime power, in [30] and [26].)
Moreover, in this paper we construct what we believe are the first known Paley-type
PDSs in nonabelian groups and what we believe are the first examples of Paley–
Hadamard DSs in nonabelian groups.

This paper is organized as follows. Section 2 contains preliminary material related
to PDSs, association schemes, and quadratic forms. In Section 3, we will use geometric
techniques to construct families of PDSs in certain nonabelian groups or order q2m

and exponent p, where p is an odd prime and q is a power of p. In Section 4, we
will use group ring equations from the abelian world to obtain PDSs in groups of
the form G = Zpr ⋊ Zpr that have a large center, Z(G) = pG ∼= Zpr−1 × Zpr−1 .
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Section 5 highlights new constructions of Paley-type PDSs and how they can be
used to construct new difference sets using the twin prime power construction. In
Section 6, we show that group ring equations will be forced to hold for various product
constructions previously shown to work for abelian groups by characters. In this case,
since the input group ring relations for the product are identical for the abelian case
as for the nonabelian case we can avoid messy group ring equations. The product
will take as input the nonabelian PDSs from Sections 3 and 4 and will generate new
PDSs in many nonabelian groups. We conclude in Section 7 with some remarks and
a considerable list of open problems.

2. Preliminaries
2.1. Partial difference sets. Let G be a finite group of order v with a subset D of
order k. Suppose further that the differences d1d2

−1 for d1, d2 ∈ D, d1 ̸= d2, represent
each nonidentity element of G precisely λ times. Then, D is a (v, k, λ)-difference set
(DS) in G.

Now suppose that G is a finite group of order v with a subset D of order k. Suppose
further that the differences d1d2

−1 for d1, d2 ∈ D, d1 ̸= d2, represent each nonidentity
element of D exactly λ times and the nonidentity element of G − D exactly µ times.
Then, D is called a (v, k, λ, µ)-partial difference set (PDS) in G. The survey article of
Ma is an excellent resource for these sets [17]. Typically, a proper PDS D for which
λ ̸= µ will have the two properties that the identity element from G is not in D
and that x ∈ D implies x−1 ∈ D, and such a PDS is called regular. A PDS having
parameters (n2, r(n−1), n+r2 −3r, r2 −r) for some natural number r is called a Latin
square type PDS. Similarly, a PDS having parameters (n2, r(n+1), −n+r2+3r, r2+r)
is called a negative Latin square type PDS. Assuming the PDS is regular, the Cayley
graph for a (v, k, λ, µ)-PDS will always be a strongly regular graph with the same
parameters; that is, the corresponding Cayley graph has v vertices, every vertex has
k neighbors, adjacent vertices have λ common neighbors, and nonadjacent vertices
have µ common neighbors.

The earliest examples of PDSs date back to Paley [21], though his work long pre-
dates the systematic study of PDSs. Paley showed that the nonzero squares in Fq

will be a (q, q−1
2 , q−5

4 , q−1
4 )-PDS in the additive group when q is a prime power and

q ≡ 1 (mod 4). We will call these Paley partial difference sets, and more generally
(v, v−1

2 , v−5
4 , v−1

4 )-PDSs will be Paley-type partial difference sets. This family of PDSs
has received much attention in abelian groups. Davis was the first to construct Paley-
type PDSs in groups that are not elementary abelian [6], work that was subsequently
generalized in [16] and [27]. Polhill found examples where v was not a prime power
in [24].

Paley [21] showed in the case when q is a prime power and q ≡ 3 (mod 4) that
the set of nonzero squares will instead be a (q, q−1

2 , q−3
4 )-difference set, now called

a Paley–Hadamard difference set. Stanton and Sprott found new examples of Paley–
Hadamard difference sets [29] which are known as Twin prime power difference sets
in the additive group of Fq × Fq+2, when q and q + 2 are both prime powers.

Partial difference sets are often studied within the context of the particular group
ring Z[G], whether the group G is abelian or not. For a subset D of a group G,
we abuse notation slightly and write D :=

∑
d∈D d and D(−1) :=

∑
d∈D d−1. The

following equation will then hold for a regular (v, k, λ, µ)-partial difference set D in
the group G with identity 1G:

DD(−1) = DD = λD + µ(G − D − 1G) + k1G = (λ − µ)D + µG + (k − µ)1G.
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2.2. Association schemes. When studying PDSs, and in particular those with
(negative) Latin square type parameters, one often has a partition of the nonidentity
elements into multiple PDSs. As such, they form a multi-class association scheme,
and so it will be helpful to consider these mathematical structures.

Let X be a finite set. An association scheme with d classes on X is a partition of
X × X into sets R0, R1, . . . , Rd (relations, or associate classes) such that

(1) R0 = {(x, x) : x ∈ X } (the diagonal relation);
(2) for each ℓ, Rt

ℓ = {(y, x) : (x, y) ∈ Rℓ} = Rℓ′ for some ℓ′;
(3) for all i, j, k in {0, 1, 2, . . . , d} there is an integer pk

ij such that, for all
(x, y) ∈ Rk,

|{z ∈ X : (x, z) ∈ Ri and (z, y) ∈ Rj}| = pk
ij .

When pk
ij = pk

ji for all k, i, j then the association scheme is called commutative. If
ℓ = ℓ′ for all ℓ, then the association scheme is said to be symmetric; otherwise, it is
nonsymmetric.

Each of the relations Rl can be interpreted as a directed graph with vertex set X
and edge set Rl, Γl = (X , Rl) for all l. An association scheme can be viewed as a
decomposition of the complete directed graph with vertex set X into directed graphs
Γl with the property that for i, j, k ∈ {1, 2, · · · d} and for xy ∈ E(Γk),

|{z ∈ X : xz ∈ E(Γi) and zy ∈ E(Γj)}| = pk
ij ,

where E(Γi) is edge set of graph Γi. The graphs Γi are called the graphs of the asso-
ciation scheme. Likewise, a symmetric association scheme can be viewed as a decom-
position of the complete graph on vertex set X into undirected graphs. A strongly
regular graph Γ corresponds to a symmetric association scheme with two classes,
where R1 = {(x, y) : xy ∈ E(Γ)} and R2 = {(x, y) : x ̸= y and (x, y) /∈ R1}.

For an association scheme, we can interpret the relations as adjacency matrices for
the graphs, i.e. {0, 1}-matrices indexed by the vertex set V such that for the matrix
Ai there is a 1 in position (x, y) exactly when (x, y) ∈ Ri. Then, we have:

(1) A0 = I;
(2) A0 + A1 + · · · + Ad = J, the matrix with all 1’s;
(3) for each i there is some i′ with Ai

t = Ai′ ;
(4) AiAj = Σkpij

kAk.
This collection forms what is known as the Bose–Mesner algebra, and what is key

for this article is that for a commutative association scheme it will necessarily follow
that the Bose–Mesner algebra is commutative, so that the graph adjacency matrices
satisfy AiAj = AjAi for all i, j.

Given an association scheme, we can take unions of classes to produce graphs with
larger edge sets, with such unions termed fusions. Fusions are not always association
schemes in general, but when a particular association scheme has the property that
any of its fusions also forms an association scheme we call the scheme amorphic. For
an excellent introduction to amorphic association schemes, see [32].

It is not difficult to prove that d-class amorphic association schemes are symmetric
when d ⩾ 3.

Lemma 2.1. An amorphic association scheme with d ⩾ 3 classes is symmetric.

Proof. Let {R0, . . . , Rt} be an amorphic association scheme, d > 2, and suppose
there exists i, 1 ⩽ i ⩽ d, such that Rt

i = Rj , j ̸= i. Without loss of generality,
assume Rt

1 = R2. Consider the fusion {S0, S1, S2}, where S0 = R0, S1 = R1, and
S2 =

⋃
k⩾2 Rk. In this case, St

1 ̸= S0, S1, S2, violating property (2) of association
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schemes, a contradiction. Therefore, an amorphic association scheme with d ⩾ 3
classes is symmetric. □

Note that all association schemes with 2 classes are trivially amorphic. On the other
hand, all association schemes we consider here are symmetric, since they correspond
to edge-decompositions of the complete graph. Thus, for our purposes, all amorphic
association schemes we consider are symmetric.

Lemma 2.2. Symmetric association schemes are commutative.

Proof. Let {R0, . . . , Rd} be a symmetric association scheme. We consider the associ-
ated adjacency matrices:

d∑
k=0

pk
jiAk = AjAi = At

jAt
i = (AiAj)t =

(
d∑

k=0
pk

ijAk

)t

=
d∑

k=0
pk

ijAt
k =

d∑
k=0

pk
ijAk.

Since
∑d

i=0 Ai = J , this implies pk
ji = pk

ij for all i, j, k, i.e. the association scheme is
commutative. □

Thus, a symmetric association scheme is commutative, and hence any association
scheme corresponding to a partition of the edges of a complete graph into strongly
regular graphs is an amorphic, symmetric, and commutative association scheme.

Partial difference sets give rise to strongly regular Cayley graphs. When we parti-
tion the nonidentity elements of a group into partial difference sets, we also have a
partition of the complete Cayley graph into strongly regular Cayley graphs.

Now we are ready to consider what will be an essential ingredient for many of the
constructions in this article, a powerful result of van Dam:

Theorem 2.3. [33, Theorem 3] Let {Γ1, Γ2, . . . , Γd} be an edge-decomposition of the
complete graph on a set X, where each Γi is strongly regular. If the Γi are all of Latin
square type or all of negative Latin square type, then the decomposition is a d-class
amorphic association scheme on X.

We interpret the implications of this result into the context of PDSs to form the
following, which we will use throughout the paper.

Corollary 2.4. Suppose the nonidentity elements of a group G can be partitioned
into a collection of PDSs all of Latin square type or all of negative Latin square type,
{P1, P2, . . . , Pn}. Then, a union of any number of these PDSs is also a PDS of that
same type. Moreover, PiPj = PjPi in the group ring Z[G].

Proof. Such a collection of PDSs corresponds to a strongly regular Cayley graph
decomposition of the complete graph on |G| points, which will be amorphic by The-
orem 2.3 and inherently symmetric, since the edges are undirected. As such, any
fusion of the graph is a strongly regular graph of the same type as the PDSs Pi

and therefore any union of PDSs
⋃

i Pi corresponds to another PDS of that type.
By Lemma 2.2, the association scheme is commutative, and it follows that the graph
adjacency matrices commute and therefore so do the group ring equations for the
PDSs: i.e. PiPj = PjPi. □

We remark that such a partition of the nonidentity elements of a group G is called
a Cayley (association) scheme. Cayley schemes are equivalent to Schur rings [14], and
amorphic association schemes of (negative) Latin square type were previously used
in [9] to construct examples of PDSs in nonabelian 2-groups.
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2.3. Quadratic forms. Quadratic forms have been used for constructing PDSs of
both Latin square type and negative Latin square type (see [17]). Let q be a power
of a prime. We denote the field with q elements by Fq. A quadratic form Q on a
d-dimensional vector space Fd

q over Fq is a function Q : Fd
q → Fq such that:

(i) Q(αx) = α2Q(x) for all α ∈ Fq and all x ∈ Fd
q , and

(ii) the function β : Fd
q × Fd

q → Fq given by β(x, y) = Q(x + y) − Q(x) − Q(y) is
Fq-bilinear.

A quadratic form Q is said to be nondegenerate if β(x, y) = 0 for all y ∈ Fd
q implies

x = 0. We have the following well-known result, which we state only for vector spaces
of even dimension when q is odd. (For information about quadratic forms on V = Fn

q ,
where n is odd and/or q is even, see [2, Theorem 3.28].)

Theorem 2.5. [2, Theorem 3.28] Let Q be a nondegenerate quadratic form on
V = F2m

q , where q is odd. There exists a basis for V such that exactly one of the
following holds for all x = (x1, . . . , x2m) ∈ V :

(i) Q(x) = x1x2 + x3x4 + · · · + x2m−1x2m, or
(ii) Q(x) = x1x2 + x3x4 + · · · + x2m−3x2m−2 + x2

2m−1 + bx2
2m, where −b is a

nonsquare in Fq.

If (i) of Theorem 2.5 holds, then we say Q is hyperbolic and has type ε = +1 (often
denoted simply with “+” when used as a superscript), and, if (ii) of Theorem 2.5
holds, then we say Q is elliptic and has type ε = −1 (often denoted simply with “−”).

3. Nonabelian PDS families related to affine polar graphs
Let q be an odd prime power and m ⩾ 2. Let V = F2m

q be equipped with a non-
degenerate quadratic form Q of type ε = ±1. In particular, by Theorem 2.5, if
x = (x1, . . . , x2m) ∈ V , we will assume

Q(x) = x1x2 + x3x4 + · · · + x2m−1x2m

if ε = 1, and we will assume

Q(x) = x1x2 + x3x4 + · · · + x2m−3x2m−2 + x2
2m−1 + bx2

2m,

where −b is a nonsquare in Fq, if ε = −1. Note that there is a nondegenerate symmetric
bilinear form β associated with Q.

The graphs VOε(2m, q) are defined by taking the vectors in V to be vertices, with
distinct vectors u, v ∈ V adjacent if Q(v − u) = 0. As noted in [5, Section 3.3.1],
VOε(2m, q) is a strongly regular graph with

v = q2m,

k = (qm − ε)(qm−1 + ε),
λ = q(qm−1 − ε)(qm−2 + ε) + q − 2,

µ = qm−1(qm−1 + ε).

The graphs VNOε(2m, q) are defined by taking the vectors in V to be vertices,
with distinct vectors u, v ∈ V adjacent when Q(u − v) is a nonzero square in Fq. As
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noted in [5, Section 3.3.2], the graph VNOε(2m, q) is a strongly regular graph with

v = q2m,

k = 1
2(q − 1)(qm − ε)qm−1,

λ = 1
4qm−1(q − 1)(qm − qm−1 − 2ε) + εqm−1,

µ = 1
4qm−1(q − 1)(qm − qm−1 − 2ε).

Finally, we note that the complement to VOε(2m, q)∪VNOε(2m, q) in the complete
graph on V will itself be a strongly regular graph isomorphic to VNOε(2m, q). To see
this, note that this new graph has adjacency defined by u ∼ v when Q(v − u) is a
nonsquare in Fq. If a is a nonsquare in Fq, the map ϕ : v 7→ av interchanges nonsquares
with nonzero squares, and Q(vϕ − uϕ) = Q(av − au) = a2Q(v − u) is still a nonzero
square if and only if Q(v − u) is, meaning ϕ is an isomorphism between VNOε(2m, q)
and this new complement graph, which we will denote by VNOε

2(2m, q). Therefore,
the complete graph on V can be partitioned into VOε(2m, q), VNOε(2m, q), and
VNOε

2(2m, q). We remark that when ε = +1 the graphs are of Latin square type, and
when ε = −1 the graphs are of negative Latin square type. For an analysis of such
graphs with q even, see [9].

3.1. Automorphisms of affine polar graphs. We represent the elements of the
affine general linear group AGL(2m, q) in the form [M, u], where M ∈ GL(2m, q) and
u ∈ V , where for all (row vectors) v ∈ V,

v[M,u] := vM + u,

and multiplication in AGL(2m, q) is defined by

[M1, v1][M2, v2] = [M1M2, v1M2 + v2].

The special orthogonal group SOε(2m, q) is the set of all determinant 1 matrices
in GL(2m, q) preserving the bilinear form β (and quadratic form Q), and, given a
subspace U of V , denote the subgroup of translations of V by vectors in U by TU ,
i.e.

TU := {[I, u] : u ∈ U},

where I is the 2m × 2m identity matrix. Hence,

ASOε(2m, q) := {[M, v] : M ∈ SOε(2m, q), v ∈ V } ∼= TV ⋊ SOε(2m, q),

where the semidirect product denotes the natural action of SOε(2m, q) on TV and
M ∈ SOε(2m, q) is identified naturally with [M, 0] ∈ AGL(2m, q).

Lemma 3.1. The group ASOε(2m, q) is a subgroup of automorphisms of each of
VOε(2m, q), VNOε(2m, q), and VNOε

2(2m, q).

Proof. Let [M, w] ∈ ASOε(2m, q) and u, v ∈ V . Then,

Q(v[M,w] − u[M,w]) = Q((vM + w) − (uM + w)) = Q((v − u)M) = Q(v − u),

and so [M, w] preserves adjacency in all three graphs. □

We could have chosen TV ⋊GOε(2m, q), where GOε(2m, q) is the general orthogonal
group, in Lemma 3.1; however, in the coming sections, we will be interested in p-
elements of these groups, where q is a power of p, and thus it suffices to consider
ASOε(2m, q).
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Remark 3.2. Note that TV ⊆ ASOε(2m, q) is an elementary abelian regular subgroup
of automorphisms of each of VOε(2m, q), VNOε(2m, q), and VNOε

2(2m, q), and so
the corresponding decomposition of the nonidentity elements of TV into PDSs is an
amorphic Cayley scheme. In the following subsections, we will find “twists” of the
group TV in ASOε(2m, q) – roughly speaking, replacing certain translations [I, v] by
elements of the form [M, v], where M ̸= I – to provide new examples of PDSs in
nonabelian groups. The constructions in this section produce isomorphic association
schemes to the known amorphic Cayley scheme in TV .

3.2. A family of PDSs in nonabelian groups of order q2m. Fix ε = ±1. Let v
be a nonsingular vector in V , i.e. Q(v) ̸= 0, so ⟨v⟩ is a nonsingular subspace. The
stabilizer of ⟨v⟩ in SOε(2m, q) contains an elementary abelian group H of order q;
see, e.g. [4, Sections 2.2.1, 8.2], [13, Tables 3.5 E, F and Proposition 4.1.6], or [34,
Section 3.7.4]. Note that vM = v for all M ∈ H: we know that 0M = 0, and that
vM = v follows from the Orbit-Stabilizer Theorem.

Since v is nonsingular, we have V = ⟨v⟩ ⊕ v⊥, where

v⊥ := {u ∈ V : β(u, v) = 0};

to see this, note that the map β(−, v) : V → Fq is a linear transformation with
kernel v⊥. Since vM = v for all M ∈ H and M preserves β, we have v⊥M = v⊥,
i.e. v⊥ is an H-invariant subspace.

Remark 3.3. Choosing a nonsingular vector v is not strictly necessary for this con-
struction: as long as the elementary abelian group H stabilizes a decomposition
V = ⟨v⟩ ⊕ U for some complementary subspace U to ⟨v⟩, the construction will work.

Since H is an elementary abelian group of order q, H is naturally isomorphic to
(Fq, +). For each α ∈ Fq, we will denote by Aα the corresponding element of H under
this natural isomorphism. Define

A := {[Aα, αv] : α ∈ Fq}.

Since v is fixed by right multiplication by elements of H, A is an elementary abelian
group of order q that is itself naturally identified with (Fq, +).

Recall that Tv⊥ is the set of elements of the form [I, u] for u ∈ v⊥. Then, for
u ∈ v⊥, we have

[Aα, αv]−1[I, u][Aα, αv] = [A−1
α , −αv][I, u][Aα, αv] = [I, uAα] ∈ Tv⊥ ,

so A normalizes Tv⊥ .
Define

Gε
1 := ⟨Tv⊥ , A⟩ = Tv⊥ ⋊ A.

Theorem 3.4. The group Gε
1 is a nonabelian group of order q2m in which the non-

identity elements can be partitioned into D0 ∪ D1 ∪ D2, where each Di is a PDS,
Cay(Gε

1, D0) ∼= VOε(2m, q), and Cay(Gε
1, D1) ∼= Cay(Gε

1, D2) ∼= VNOε(2m, q).

Proof. First, we have |Gε
1| = q2m since Gε

1 = Tv⊥ ⋊ A, |Tv⊥ | = |v⊥| = q2m−1, and
|A| = q. Moreover, since H acts faithfully on V and fixes ⟨v⟩ pointwise, there exist
u ∈ v⊥ and A ∈ H such that uA ̸= u. Since A ∈ H, there is a unique w ∈ ⟨v⟩ such
that [A, w] ∈ ⟨A⟩. Thus,

[I, u][A, w] = [A, uA + w] ̸= [A, u + w] = [A, w][I, u],

and hence Gε
1 is nonabelian.

Let x ∈ V . Then, we may write x = w + u, where w ∈ ⟨v⟩ and u ∈ v⊥. There is
a unique A ∈ H such that [A, w] ∈ A, and so [A, x] = [A, w + u] = [A, w][I, u] is an
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element of Gε
1 such that 0[A,x] = x, and hence Gε

1 is transitive on V . Since |Gε
1| = |V |,

in fact Gε
1 acts regularly on V .

Finally, since A ∈ SOε(2m, q) for all [A, x] ∈ Gε
1, Gε

1 ⩽ ASOε(2m, q), and, by
Lemma 3.1, Gε

1 is a subgroup of automorphisms of VOε(2m, q), VNOε(2m, q), and
VNOε

2(2m, q). The result follows. □

Example 3.5. We can construct a concrete example for each ε, q, and m. When ε = 1,
for α ∈ Fq we define

Cα :=


1 0 0 α
0 1 0 −α
α −α 1 α2

0 0 0 1

 ,

and when ε = −1, for α ∈ Fq we define

Cα :=


1 −α2 α 0
0 1 0 0
0 −2α 1 0
0 0 0 1

 .

Then, we may choose

Aα :=
(

I2m−4 0
0 Cα

)
.

Let {ei : 1 ⩽ i ⩽ 2m} be the standard basis for V . Then, we may choose v = e1 + e2
if ε = 1 and v = e2 if ε = −1.

Example 3.6. As another example, if m > 2, for α ∈ Fq, if

Bα :=


1 0 0 0
0 1 −α 0
0 0 1 0
α 0 0 1

 ,

then we may choose

Aα :=
(

Bα 0
0 I2m−4

)
with v = e5 + e6 (regardless of the value of ε). Thus, when m > 2, we may actually
assume G+

1 = G−
1 .

Remark 3.7. Every element of Gε
1 can be expressed uniquely as [Aα, αv + u], where

α ∈ Fq and u ∈ v⊥. Since

[Aα, αv + u]p =
[

Ap
α, pαv + u

p−1∑
i=0

Ai
α

]
=
[
I, u(Aα − I)p−1] ,

the choices of Aα from Examples 3.5 and 3.6 show that, when p > 3 or m > 2, we can
choose Gε

1 to have exponent p. That such groups can be chosen to have exponent 3
when p = 3 and m = 2 follows from direct inspection with GAP [11].

3.3. A second family of PDSs in nonabelian groups of order q2m. The
second family of PDSs requires a bit more care. We will assume for this construction
that either m > 2 or, if m = 2, ε = 1. As in Example 3.6, for α ∈ Fq, if

Bα :=


1 0 0 0
0 1 −α 0
0 0 1 0
α 0 0 1

 ,
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we then define

Aα :=
(

Bα 0
0 I2m−4

)
.

(Again, we allow m = 2 as long as the quadratic form Q is hyperbolic.) In this case,
H := {Aα : α ∈ Fq} is an elementary abelian group of order q preserving the form Q.
Define

U := ⟨e1, e4, e5, e6, . . . , e2m⟩ .

Direct calculation shows that U is an H-invariant subspace of V .
Define

B := ⟨[Aα, αe2 + βe3] : α, β ∈ Fq⟩ .

Lemma 3.8. The group B is an elementary abelian group of order q2. In particular,
for each w ∈ ⟨e2, e3⟩, there exists a unique element [A, x] ∈ B with x = w.

Proof. Noting that H fixes e3, a direct calculation shows that, for all α, β, γ, δ ∈ Fq,
we have

[Aα, αe2 + βe3][Aγ , γe2 + δe3] = [Aγ , γe2 + δe3][Aα, αe2 + βe3]
= [Aα+γ , (α + γ)e2 + (β + δ − αγ)e3].

The result follows. □

Recalling that U is H-invariant, for any u ∈ U , we have
[Aα, αe2 + βe3]−1[I, u][Aα, αe2 + βe3] = [A−1

α , −αe2 − (α2 + β)e3][I, u][Aα, αe2 + βe3]
= [I, uAα] ∈ TU ,

so B normalizes TU .
Define

G2 := ⟨TU , B⟩ = TU ⋊ B.

Theorem 3.9. Let m > 2 or, if m = 2, then ε = 1. The group G2 is a nonabelian
group of order q2m in which the nonidentity elements can be partitioned into D0 ∪
D1 ∪ D2, where each Di is a PDS, Cay(G2, D0) ∼= VOε(2m, q), and Cay(G2, D1) ∼=
Cay(G2, D2) ∼= VNOε(2m, q).

Proof. The proof is largely the same as that of Theorem 3.4. First, we have |G2| = q2m

since G2 = TU ⋊ B, |TU | = |U | = q2m−2, and |B| = q2. Moreover, not all vectors in U
are fixed by H; for example, e4A1 = e1 + e4, and so

[I, e4][A1, e2] = [A1, e1 + e2 + e4] ̸= [A1, e2 + e4] = [A1, e2][I, e4],

and hence G2 is nonabelian.
Let x ∈ V . Then, we may write x = w + u, where w ∈ ⟨e2, e3⟩ and u ∈ U . There

is a unique A ∈ H such that [A, w] ∈ B, and so [A, x] = [A, w + u] = [A, w][I, u] is an
element of G2 such that 0[A,x] = x, and hence G2 is transitive on V . Since |G2| = |V |,
in fact G2 acts regularly on V .

Finally, since A ∈ SOε(2m, q) for all [A, x] ∈ G2, G2 ⩽ ASOε(2m, q), and, by
Lemma 3.1, G2 is a subgroup of automorphisms of VOε(2m, q), VNOε(2m, q), and
VNOε

2(2m, q). The result follows. □

Remark 3.10. A similar calculation to that done in Remark 3.7 shows that G2 has
exponent p.

Theorem 3.11. Let m > 2 or, if m = 2, then ε = +1. The groups Gε
1 and G2 are not

isomorphic.
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Proof. If m > 2, we can choose H to be the same group in each case. If W is the
subspace of points fixed by H, then

W = ⟨e1, e3, e5, . . . , e2m⟩ ,

which has dimension 2m − 2. In each case, the central elements are of the form [I, w],
where w ∈ W . Since v = e5 + e6 ∈ W , |Z(Gε

1)| = q2m−3. On the other hand,
|Z(G2)| = |W | = q2m−2, which proves the claim for m > 2

The proof is similar when m = 2 and ε = 1: when Aα = Cα (as in Example 3.5),
we see that the subspace of of points fixed by H is W = ⟨e1 + e2, e4⟩, and, since
v = e1 + e2,

Z(G+
1 ) = {[I, βe4] : β ∈ Fq}.

Thus, |Z(G+
1 )| = q. On the other hand,

Z(G2) = {[I, w] : w ∈ W},

and so |Z(G2)| = q2, which proves the claim when m = 2 and ε = 1. □

3.4. A (q + 3)-class amorphic association scheme in a group of order q4.
Let V = GF (q)4, where q is an odd prime. Let Q(x) = x1x2 + x3x4, a hyperbolic
form on V , and consider the group

G := G2 = TU ⋊ B
defined in Subsection 3.3, and define

H := {Bα : α ∈ Fq}.

As in Theorem 3.9, we take D0 to be the elements [C, x] in G where Q(x) = 0;
D1 to be the elements [C, x] in G where Q(x) is a nonzero square; and D2 to be
the elements [C, x] in G where Q(x) is a nonzero nonsquare. Since each vector x
in V occurs exactly once as the second component of an element [C, x] ∈ G, we may
identify the elements of G with the corresponding vector in the second component.
In other words, we identify D0 with the set V0 of vectors x in V such that Q(x) = 0,
D1 with the set V1 of vectors x in V such that Q(x) is a nonzero square, and D2 with
the set V2 of vectors x in V such that Q(x) is a nonsquare.

Lemma 3.12. The set V0 can be partitioned into q + 1 disjoint subsets of size q2 − 1,
where each subset is the set of nonzero vectors in a 2-dimensional subspace of V .
Moreover, we can take each subset of the partition of V0 to be H-invariant.

Proof. To see that we have a H-invariant partition for V0, we define v∞ := e4 =
(0, 0, 0, 1) and, for each α ∈ Fq, we define vα := e2+αe4 = (0, 1, 0, α). Since Q(vα) = 0,
both vα, vαB ∈ V0 for all B ∈ H. Moreover, if we define u∞ := e1 = (1, 0, 0, 0),
uα := αe1 − e3 = (α, 0, −1, 0) for α ∈ Fq, and Uα := ⟨vα, uα⟩, for each α ∈ Fq ∪ {∞}
and β ∈ Fq, we have

vαBβ = vα + βuα ∈ Uα.

Since uα ∈ ⟨e1, e3⟩, uαBβ = uα for each α, β, and thus each Uα is an H-invariant
subspace. It is routine to check that the q+1 subspaces Uα, α ∈ Fq ∪{∞} are pairwise
disjoint, and since |V0| = (q+1)(q2−1), these subspaces form an H-invariant partition
of V . □

Proposition 3.13. Let D ⊂ V be a H-invariant subset of V , and view (V, +) as the
elementary abelian group of order q4. Then, G is isomorphic to a regular subgroup of
Aut(Cay(V, D)); that is, if

D′ := {[C, x] ∈ G : x ∈ D},

then Cay(G, D′) ∼= Cay(V, D).
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Proof. Viewing V additively, we then can define the graph Cay(V, D), where vectors
v and w are adjacent iff v − w ∈ D. For any [C, x] ∈ G, we have

v[C,x] − w[C,x] = (vC + x) − (wC + x) = (v − w)C,

and so v − w ∈ D iff v[C,x] − w[C,x] ∈ D. Since G is transitive on V and preserves
adjacency in Cay(V, D), the result follows. □

Recall the definitions of D1 and D2 in G from above. Let Fq ∪ {∞} =
{α3, . . . , αq+3}, define

Ui := Uαi

as in the proof of Lemma 3.12, and define
Di := {[C, x] ∈ G : x ∈ Ui − {0}} .

Theorem 3.14. Each Di, 1 ⩽ i ⩽ q + 3, is a PDS of Latin square type in G. Con-
sequently, {Di : 1 ⩽ i ⩽ q + 3} corresponds to a (q + 3)-class amorphic association
scheme, and a union of any number of these PDSs is also a PDS of Latin square type
in G.

Proof. First, D1 and D2 are PDSs of Latin square type in G with r = q(q − 1)/2 by
Theorem 3.9.

Since each Ui is a subspace of size q2, each graph Cay(V, Ui − {0}) is a union of
disjoint complete subgraphs, i.e. each graph Cay(V, Ui −{0}) is a (q4, q2 −1, q2 −2, 0)-
strongly regular graph of Latin square type. By Proposition 3.13, this means each Di,
3 ⩽ i ⩽ q + 3 is also a PDS of Latin square type. Finally, since {Di : 3 ⩽ i ⩽ q + 3}
is a partition of D0 and {D0, D1, D2} is a partition of G, {Di : 1 ⩽ i ⩽ q + 3} is a
(q + 3)-class amorphic association scheme. The result follows from Corollary 2.4. □

Corollary 3.15. The group G contains a Paley-type PDS.

Proof. Define

D := D1 ∪
(q+5)/2⋃

i=3
Di,

i.e. D is the union of D1 and half of the Di’s, where i ⩾ 3. By Theorem 3.14, D is a
PDS of Latin square type, and, since D contains the elements of D1 and exactly half
of the elements of D0,

|D| = q(q − 1)(q2 − 1)
2 + (q + 1)(q2 − 1)

2 = q4 − 1
2 .

The result follows. □

4. Partial difference sets in semidirect products with a large
center

Let p be a prime, and define G :=
〈

x, y : xp2 = yp2 = 1, xy = yx
〉

∼= Z2
p2 . The fol-

lowing sets were shown in [6] to be (p4, p(p2 − 1), 2p2 − 3p, p2 − p)-PDSs in G for
1 ⩽ i ⩽ p − 1:

Pi =
(

p−1⋃
j=0

(〈
xyj+pi

〉
−
〈
xpypj

〉))
∪
(〈

xpiy
〉

− ⟨yp⟩
)

.

The following subgroups with the identity removed are trivial (p2, p2 −1, p2 −2, 0)-
PDSs:

Sj =
〈
xyj
〉

− {1} for 0 ⩽ j ⩽ p − 1, S∞ = ⟨y⟩ − {1}.
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The Pi and Sj partition the nonidentity elements of G into Latin square type PDSs.
The next theorem applies Theorem 2.3 to this collection.

Theorem 4.1. The collection {P1, P2, . . . , Pp−1, S0, S1, . . . , Sp−1, S∞} is a 2p-class
amorphic association scheme on G.

Combining Corollary 2.4 with Theorem 4.1 implies that

D :=
(

p−1
2⋃

j=1
Pi

)
∪

(
p−1

2⋃
j=0

Sj

)

is a Paley-type
(

p4, p4−1
2 , p4−5

4 , p4−1
4

)
-PDS.

This construction was the first known PDS with Paley-type parameters in a group
that was not elementary abelian; other abelian PDSs with these parameters have since
appeared (see, for instance, [27]).

We now show that a similar construction will produce Paley-type PDSs in certain
nonabelian groups, which along with the construction in the previous section (Corol-
lary 3.15) are the first such constructions of Paley-type PDSs in nonabelian groups
known to these authors. Consider the group

Ĝ2 :=
〈

x, y : xp2
= yp2

= 1, yxy−1 = xp2−p+1
〉

∼= Zp2 ⋊p2−p+1 Zp2 .

Define

P̂i :=
(

p−1⋃
j=0

(〈
xyj+pi

〉
−
〈
xpypj

〉))
∪
(〈

xpiy
〉

− ⟨yp⟩
)

and Ŝj :=
〈
xyj
〉

− {1} for 0 ⩽ j ⩽ p − 1, Ŝ∞ := ⟨y⟩ − {1}, and finally

D̂2 :=
(

p−1
2⋃

j=1
P̂i

)
∪

(
p−1

2⋃
k=0

Ŝk

)
.

We note that the formal sets Pi and P̂i appear the same, but the element (xyp+1)2 =
x2y2p+2 ∈ P1 whereas (xyp+1)2 = xp2+2y2 ∈ P̂1.

In order to demonstrate that P̂i is a PDS, we first prove two lemmas that we will
use in the proof of the result.

Lemma 4.2. Let 1 ⩽ i ⩽ (p − 1). For the group Ĝ2 and the subset P̂i defined above,
we have

p−1∑
j=0

(
(p2 − 2p)

〈
xyip+j

〉
+ p

〈
xpypj

〉)
+ (p2 − 2p)

〈
xipy

〉
+ p ⟨yp⟩

= (p2 − p)(p + 1)1
Ĝ2

+ (p2 − 2p)P̂i + (p2 − p) ⟨xp, yp⟩ .

Proof. All of the elements of P̂i of order p2 will appear (p2 − 2p) times, and all of the
elements of ⟨xp, yp⟩ will appear an additional p times. □

Lemma 4.3. For j, j′ ∈ {0, 1, . . . , p − 1} we have∑
j ̸=j′

(〈
xyip+j

〉
−
〈
xpypj

〉) (〈
xyip+j′

〉
−
〈

xpypj′
〉)

+
p−1∑
j=0

(〈
xyip+j

〉
−
〈
xpypj

〉) (〈
xip+jy

〉
−
〈
xpjyp

〉)
= (p2 − p)Ĝ2 − (p2 − p) ⟨xp, yp⟩ .
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Proof. A symmetry argument implies that all of the elements of order p2 appear the
same number of times in this sum, and the fact that these are different values of
j, j′ implies that we will not get any elements of order p. The result follows from a
counting argument. □

Theorem 4.4. Let p be a prime. The collection {P̂1, P̂2, . . . , P̂p−1, Ŝ0, Ŝ1, .., Ŝp−1, Ŝ∞}
is a 2p-class amorphic association scheme on Ĝ2 and the set D̂2 is a Paley-type(

p4, p4−1
2 , p4−5

4 , p4−1
4

)
-PDS in G2.

Proof. Since the Ŝi are all subgroups, they are all (trivial) Latin square type PDSs,
and Lemmas 4.2 and 4.3 imply the following.

P̂i

2
=

p−1∑
j=0

(〈
xyip+j

〉
−
〈
xpypj

〉)2 + (⟨xpy⟩ − ⟨yp⟩)2

+
∑
j ̸=j′

(〈
xyip+j

〉
−
〈
xpypj

〉)(〈
xyip+j′

〉
−
〈

xpypj′
〉)

+
p−1∑
j=0

(〈
xyip+j

〉
−
〈
xpypj

〉) (〈
xip+jy

〉
−
〈
xpjyp

〉)
= (p2 − p)(p + 1)1

Ĝ2
+ (p2 − 2p)P̂i + (p2 − p) ⟨xp, yp⟩ + (p2 − p)Ĝ2 − (p2 − p) ⟨xp, yp⟩

= (p3 − p)1
Ĝ2

+ (p2 − 2p)P̂i + (p2 − p)Ĝ2

= (p3 − p)1
Ĝ2

+ (2p2 − 3p)P̂i + (p2 − p)(Ĝ2 − P̂i − 1
Ĝ2

)

Thus, the P̂i are all (p4, p3 − p, 2p2 − 3p, p2 − p)-PDSs in Ĝ2 as claimed. Since these
are all Latin square type PDSs, Corollary 2.4 implies that any union of these PDSs
will be a PDS. In particular,

D̂2 =
(

p−1
2⋃

j=1
P̂i

)
∪

(
p−1

2⋃
k=0

Ŝi

)

is a
(

p4, p4−1
2 , p4−5

4 , p4−1
4

)
-PDS as required. □

We now turn to a generalization of this construction. Let

Gt =
〈

x, y : xpt

= ypt

= 1, xy = yx
〉

∼= Zpt × Zpt .

Polhill [27] showed that the sets Pt,i are Latin square type PDSs with parameters(
p2t,

pt − p

p − 1 (pt − 1), pt + (pt − p

p − 1 )2 − 3pt − p

p − 1 , (pt − p

p − 1 )2 − 3pt − p

p − 1

)
in Gt for 1 ⩽ i ⩽ p − 1, where Pt,i is defined to be
t−1⋃
r=1

pr−1−1⋃
j=0

(
p−1⋃
k=0

(〈
xyipr+pj+k

〉
−
〈

xpt−r

yjpt+1−r+kpt−r
〉))

∪
(〈

xipr+jpy
〉

−
〈

xjpt−r+1
ypt−r

〉)
.

If we define St,j :=
〈
xyj
〉

− {1Gt}, 0 ⩽ j ⩽ p − 1, and St,∞ := ⟨y⟩ − {1Gt}, then we
get the following theorem, which is analogous to Theorem 4.1.

Theorem 4.5. For t ⩾ 2, {Pt,1, Pt,2, . . . , Pt,p−1, St,0, St,1, . . . , St,p−1, St,∞} is a 2p-
class amorphic association scheme on Gt.
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The combination of Corollary 2.4 and Theorem 4.5 imply that

Dt :=
(

p−1
2⋃

i=1
Pt,i

)
∪

(
p−1

2⋃
j=0

St,j

)

is a Paley-type
(

p2t, p2t−1
2 , p2t−5

4 , p2t−1
4

)
-PDS in Gt.

We now construct Paley-type PDSs in the nonabelian group

Ĝt :=
〈

x, y : xpt

= ypt

= 1, yxy−1 = x(p−1)pt−1+1
〉

∼= Zpt ⋊(p−1)pt−1+1 Zpt .

To do this, we define a collection of disjoint PDSs that partition the nonidentity
elements of Ĝt in an analogous fashion as those defined in Gt: first, we define P̂t,i to
be
t−1⋃
r=1

pr−1−1⋃
j=0

(
p−1⋃
k=0

(〈
xyipr+pj+k

〉
−
〈

xpt−r

yjpt+1−r+kpt−r
〉))

∪
(〈

xipr+jpy
〉

−
〈

xjpt−r+1
ypt−r

〉)
;

then we define

Ŝt,j :=
〈
xyj
〉

− {1
Ĝt

},

Ŝt,∞ := ⟨y⟩ − {1
Ĝt

}.

The main construction in this section is the following, and along with those exam-
ples in the previous section are the first examples of Paley-type PDSs in nonabelian
groups known to the authors.

Theorem 4.6. For t ⩾ 2, {P̂t,1, P̂t,2, . . . , P̂t,p−1, Ŝt,0, Ŝt,1, . . . , Ŝt,p−1, Ŝt,∞} is a 2p-
class amorphic association scheme on Ĝt. Therefore,

D̂t :=
(

p−1
2⋃

i=1
P̂t,i

)
∪

(
p−1

2⋃
j=0

Ŝt,j

)

is a Paley-type
(

p2t, p2t−1
2 , p2t−5

4 , p2t−1
4

)
-PDS in Ĝt.

The proof uses the same reasoning as the proof of Theorem 4.4 and is left for the
reader.

Remark 4.7. Computational evidence suggests that the amorphic association schemes
produced by the constructions in this section are isomorphic to the amorphic associ-
ation schemes listed in Theorems 4.1 and 4.5.

5. Paley-type PDSs and Paley–Hadamard DSs in nonabelian
groups

In this section, we will use results from the previous sections to construct additional
examples of nonabelian Paley-type PDSs as well as nonabelian Stanton–Sprott (Twin
prime power) Paley–Hadamard DSs. Davis [6] used character theory to prove a prod-
uct construction for abelian groups; we will show that the theorem remains true for
nonabelian groups. The theorem will enable us to recursively build nonabelian PDSs
with Paley-type parameters.

Theorem 5.1. Suppose that the groups G and G′ of order v both possess PDSs
of the Paley-type having parameters

(
v, v−1

2 , v−5
4 , v−1

4
)
, D and D′ respectively.

Then,the group G := G × G′ also contains a Paley-type PDS with parameters(
v2, v2−1

2 , v2−5
4 . v2−1

4

)
.
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Proof. If D and D′ are Paley-type PDSs in G and G′, resp. then Dc = G − 1G − D
and D′c = G′ − 1G′ − D′ are also Paley-type PDSs in G and G′, respectively. The
following group ring equations then hold in G and G′ as a consequence of the sets
D, Dc, D′, D′c being PDSs:

DDc = DcD = v − 1
4 G∗,

D′D′c = D′cD′ = v − 1
4 G′∗,

where G∗ and G′∗ denote G − 1G and G′ − 1G′ , respectively.
Our Paley-type PDS in G = G × G′ is given by D = D(1 + D′) + Dc(1 + D′c), as

verified in the following group ring computation:
D2 = (D(1 + D′) + Dc(1 + D′c))2

= D2(1 + D′)2 + 2DDc(1 + D′)(1 + D′c) + (D′)2(1 + D′c)2

=
(

v − 5
4 D + v − 1

4 Dc + v − 1
2 1G

)(
v + 3

4 D′ + v − 1
4 D′c + v + 1

2 1G′

)
+v − 1

2 G∗
(

1 + v + 3
4 G′∗

)
+
(

v − 1
4 D + v − 5

4 Dc + v − 1
2 1G

)(
v − 1

4 D′ + v + 3
4 D′c + v + 1

2 1G′

)
= v2 − 1

4 1G + v2 − 5
4 D + v2 − 1

4 (G − D).

□

To illustrate the scope of Theorem 5.1, consider the groups G = Z25 ⋊21 Z25 and
G′ = G2 = ⟨TU , B⟩ (with q = 5 and m = 2) from the discussion before Theo-
rem 3.9. Both of these groups have (625, 312, 155, 156)-PDSs and hence G = G × G′

will have a
(

58, 58−1
2 , 58−5

4 , 58−1
4

)
-PDS. We can continue to apply the theorem by

first constructing a
(

58, 58−1
2 , 58−5

4 , 58−1
4

)
-PDS in G′ = Z2

25 × Z4
5 (both Z2

25 and Z4
5

have (625, 312, 155, 156)-PDSs, and Theorem 5.1 implies that their product will have
a PDS), and we can then apply Theorem 5.1 to get a

(
516, 516−1

2 , 516−5
4 , 516−1

4

)
-PDS

in G × G′. Repeated uses of the Theorem give constructions of Paley-type PDSs in
groups of the form G2t

, G′2t

, (G × G′)2t

, and G2t . As long as the sizes of the groups
are the same, we can repeatedly apply Theorem 5.1 to get Paley-type PDSs in larger
groups. One general example of a family with a variety of exponents for the constituent
groups is the following.

Corollary 5.2. The group Z4
p × (Zp2 ⋊p2−p+1 Zp2) × (Zp4 ⋊p4−p3+1 Zp4) × · · · ×

(Zp2t ⋊p2t −p2t−1+1 Zp2t ) has a Paley-type PDS for all t ⩾ 2.

Paley-type PDSs can in turn be used to generate Paley–Hadamard DSs using
the Stanton–Sprott construction [29]. As with the recursive construction for Paley-
type PDSs, we show that the input groups need not be abelian. Since we now have
constructions of nonabelian Paley-type PDSs, we will be able to construct new Paley–
Hadamard DSs that are nonabelian. To our knowledge, these are the first nonabelian
DSs with these parameters.

Theorem 5.3. Suppose that the group G contains a Paley-type
(
v, v−1

2 , v−5
4 , v−1

4
)
-

PDS and the group G′ contains a skew Hadamard
(

v ± 2, (v±2)−1
2 , (v±2)−3

4

)
-DS.
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Then,the product group G×G′ contains a Paley–Hadamard DS in the Stanton–Sprott
(Twin prime power) family.

Proof. We will prove the case where |G′| = v + 2, with the v − 2 case being extremely
similar. If D is a Paley-type

(
v, v−1

2 , v−5
4 , v−1

4
)
-PDS in G, then Dc = G − 1G − D is

also a Paley-type PDS. We use the facts from the proof of Theorem 5.1 together with
the similar equations for the skew-Hadamard DS D′ in G′ to get the following.

The set D := G + DD′ + DcD′(−1) ⊂ G × G′ is a DS as verified below:

DD(−1) =
(
G + DD′ + DcD′(−1)) (G + DD′ + DcD′(−1))(−1)

=
(
G + DD′ + DcD′(−1)) (G + DD′(−1) + DcD′)

= G2 + (GD)D′(−1) + (GDc)D′ + (GD)D′ + D2(D′D′(−1)) + (DDc)D′2

+(GD′)D′(−1) + (DDc)(D′(−1))2 + Dc2(D′(−1)D)
= vG(1G′ ) + (v − 1)G(D′ + D′(−1))

+
(

v − 1
4 G∗

)(
v − 3

4 + v − 1
4

)
G′∗

+
(

v − 1
4 G∗

)(((
v − 5

4 + v − 1
4

)
G∗ + (v − 1)1G

)(
v + 1

2 1G′ + v − 1
4 G′∗

))
.

Combining terms leads to the equation

DD(−1) = v2 + 2v − 3
4 G∗ + v2 + 2v − 1

2 1G ,

thus proving the result. □

Recall the group G2 from Section 3, letting q = 3 and m = 2. As examples
of Theorem 5.3, the nonabelian groups G2 × Z83 and (Z9 ⋊7 Z9) × Z83 each
have a (6723, 3361, 1680)-difference set; the nonabelian groups (G2)2 × Z6563,
(Z9 ⋊7 Z9) × G2 × Z6563, (Z9 ⋊7 Z9)2 × Z6563, and (Z81 ⋊55 Z81) × Z6563
have (45724643, 22862321, 11431160)-difference sets; and the nonabelian group
(Z27 ⋊19 Z27) × Z727 has a (529983, 264991, 132495)-difference set. A more general
corollary is the following (although there will be many nonabelian groups containing
a Paley–Hadamard difference set that are not contained in this result).

Corollary 5.4. Let r ⩾ 2. If q = p2r ± 2 is prime, then the nonabelian group

(Zp2r ⋊(p−1)p2r−1−1+1 Zp2r ) × Zq

has a
(
qp2r

, (qp2r − 1)/2, (qp2r − 3)/4
)
-difference set.

6. Many product theorems allow nonabelian groups
In the previous section, we used group rings to prove that two results previously
known in abelian groups also hold in nonabelian groups. In this section, we will show
that in some cases we can avoid the quadratic group ring calculations entirely because
the relations needed to simplify the calculations do not depend on whether the group
is abelian or not.

Lemma 6.1. Suppose the group G has a partition of the nonidentity elements into
PDSs P1, P2, . . . , Pn all of the Latin square type or all of the negative Latin square
type. If Pi and Pj have parameters (v, ki, λi, µi) and (v, kj , λj , µj) resp. with i ̸= j,
then Pi ∪ Pj will be a (v, ki + kj , λ, µ)-PDS for some λ and µ, and

PiPj = PjPi = (λ − λi − µj)Pi + (λ − λj − µi)Pj + (µ − µi − µj)(G − 1 − Pi − Pj),

independent of whether the group G is abelian or not.
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Proof. Let Pi be a (v, ki, λi, µi)-PDS. Then:
Pi

2 = (ki − µi)1G + λiPi + µi(G − Pi).
Now suppose that Pi and Pj are part of the partition of G into Latin or negative Latin
square type PDSs. Let Pi be a (v, ki, λi, µi)-PDS and Pj be a (v, kj , λj , µj)-PDS. The
key to getting a relation for PiPj is the fact that the union of disjoint PDSs of Latin
(alternatively negative Latin square type) will also be a PDS of the same type by
Corollary 2.4. The same corollary ensures PiPj = PjPi.

Therefore, we can write two equations for (Pi +Pj)2, the first of which is expanding
and using the individual PDS parameters:

(Pi + Pj)2 = PiPj + PjPi + Pi
2 + Pj

2

= 2PiPj + (ki − µi)1G + λiPi + µi(G − Pi) + (kj − µj) + λjPj + µj(G − Pj).

Now we will use the fact that Pi ∪ Pj is a (v, ki + kj , λ, µ)-PDS.

(Pi + Pj)2 = (ki + kj − µ)1G + λ(Pi + Pj) + µ(G − Pi − Pj).
Setting the equations equal and solving yields:

PiPj = (λ − λi − µj)Pi + (λ − µi − λj)Pj + (µ − µi − µj)(G − 1 − Pi − Pj).
Hence, the relations for both Pi

2 and PiPj are determined by the parameters. Suppose
that G has a partition of the nonidentity elements into PDSs P1, P2, . . . , Pn and G′

has a partition of the nonidentity elements into PDSs P ′
1, P ′

2, . . . , P ′
n where Pi and P ′

i

have the same parameters. Then, the relations for Pi
2 and P ′

i
2 are the same for Pi

relative to G as for P ′
i relative to G′ and furthermore the relations for PiPj and P ′

i P ′
j

are the same for Pi and Pj relative to G as for P ′
i and P ′

j relative to G′. The result
follows. □

Theorem 6.2. Suppose the group G has a partition P = {1G = P0, P1, P2, . . . , Pn}
where all the Pi are Latin square type PDSs or negative Latin square type PDSs
and 1G is the identity in G. Let G′ be any other group, and suppose D =

∑n
i=0 PiA

′
i

is a PDS in G × G′, where A′
i ⊆ G′. Suppose there is another group Ĝ that has a

partition of its nonidentity elements into PDSs {P̂1, P̂2, . . . , P̂n} where Pi and P̂i have
the same parameters for all i. Then, D̂ =

∑n
i=0 P̂iA

′
i will be a PDS in Ĝ × G′ with

the exact same parameters as D.

Proof. Let D be a (v, k, λ, µ)-PDS in G × G′ so that:
DD(−1) = (k − µ)1G×G′ + λD + µ(G × G′ − D).

Consider D̂D̂(−1). Each term in the expansion will have one of the following forms:
1. (1

Ĝ
x′)(1

Ĝ
y′) = 1

Ĝ
x′y′ where x′, y′ ∈ G′. In our calculation of DD(−1) we

have the corresponding term (1Gx′)(1Gy′) = 1Gx′y′.
2. (1

Ĝ
x′)(P̂iy

′) = P̂ix
′y′ where x′, y′ ∈ G′. In our calculation of DD(−1) we have

the corresponding term (1Gx′)(Piy
′) = Pix

′y′.
3. (P̂ix

′)(P̂iy
′) = P̂i

2
x′y′ = ((ki−µi)1Ĝ

+λiP̂i+µi(Ĝ−P̂i))x′y′ where x′, y′ ∈ G′,
In our calculation of DD(−1) we have the corresponding term (Pix

′)(Piy
′) =

Pi
2x′y′ = (ki − µi)1G + λiPi + µi(G − Pi)x′y′, where both Pi and P̂i are

(v, ki, λi, µi)-PDSs.
4. (P̂ix

′)(P̂jy′) = P̂iP̂j(x′, y′) where x′, y′ ∈ G′. In our calculation of DD(−1) we
have the corresponding term (Pix

′)(Pjy′) = (PiPj)(x′y′). By the preceding
lemma, we know that PiPm = aPi + bPj + c(G − 1G − Pi − Pj) means that
P̂iP̂m = aP̂i + bP̂j + c(G − 1

Ĝ
− P̂i − P̂j) and vice versa, since the quadratic

group ring equations relating the Pi are determined by the parameters.

Algebraic Combinatorics, Vol. 8 #2 (2025) 416



Nonabelian partial difference sets constructed using abelian techniques

Therefore, when we expand D̂D̂(−1) we will the exact same count of terms for P̂ix
′

and 1
Ĝ

x′ for any x′ ∈ G′ as we would respectively for Pix
′ and 1Gx′ when calculating

DD(−1). It follows that:

D̂D̂(−1) = (k − µ)1
Ĝ×G′ + λD̂ + µ(Ĝ × G′ − D̂).

□

All of the product constructions in [7, 22, 23, 25, 26] satisfy the hypotheses of
Theorem 6.2 and hence can be used to construct nonabelian PDSs.

We illustrate one use of Theorem 6.2 by considering the case v = 729. In [22], prod-
uct constructions were given showing that there exists a partition of the nonidentity
elements of the groups Z3

2 × Z3
4 and Z3

2 × Z9 × Z9 into three PDSs of cardinalities
260, 234, and 234 respectively or 224, 252, and 252 respectively. Now we can use the
examples from Sections 3 (G+

1 , G−
1 , G2) and 4 (Z9 ⋊7 Z9) in conjunction with Theo-

rem 6.2 to add the following groups as having both of these PDS partitions: Z3
2 ×G+

1 ,
Z3

2 × G−
1 , Z3

2 × G2, and Z3
2 × Z9 ⋊7 Z9.

Moreover, by [25, p. 1645], we also have a partition of Z27 × Z27 into three PDSs
of cardinalities 260, 234, and 234, respectively. In fact, direct calculation in GAP [11]
shows that Z27 ⋊19 Z27 also has such a partition into three PDSs of cardinalities
260, 234, and 234, respectively. (The PDSs in Z27 ⋊19 Z27 are obtained from those in
Z27 × Z27 analogously as when moving from Gt to Ĝt in Section 4.)

7. Possible next steps
While we have constructed PDSs in several nonabelian groups, we believe there is
much more to be uncovered. We list some open questions.

(1) All the constructions in this paper are in p-groups. There have been some
constructions of Latin and negative Latin square type PDSs in nonabelian
non-p-groups, and in particular for |G| = 100 (see [12] and [28]), but aside from
these and a few other small examples little is known. It seems likely that there
will be some nonabelian groups with PDSs having the same parameters as
those that exist in certain abelian groups, and perhaps (such as with |G| = 100
there might be some genuinely nonabelian parameters).

(2) We saw four distinct techniques in this paper that used abelian PDSs to obtain
nonabelian PDSs: using quadratic forms and analyzing affine polar graphs, ex-
ploiting groups with a large center, calculating group ring equations in place of
characters, and identifying that certain product constructions depend only on
parameters. Abelian PDSs have been extensively studied, and there are many
other techniques to explore from this previous work. One could consider addi-
tional ways to carry over the well-developed techniques from abelian groups to
the less familiar nonabelian setting. Especially in light of [20], it seems likely
that at least some techniques from character theory would fit this description.

(3) Theorem 6.2 from Section 6 could be applied to other results from abelian
groups. In particular, there are likely to be many nonabelian PDSs in 2-groups.
(For example, consider the results of [9] combined with product theorems such
as Theorem 6.2.).

(4) In Section 6, the objective was to see that the technique of certain product
constructions can carry over to nonabelian input groups with the appropriate
partition. One starts to see that many nonabelian groups will have PDSs that
are the same as the abelian case. One could begin to catalog all the groups
that support (v, k, λ, µ)-PDSs for relatively small v.
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(5) Since PDSs produce strongly regular Cayley graphs, one could also begin to
catalog which groups have PDSs that correspond to the various nonisomorphic
(v, k, λ, µ)-strongly regular graphs for small v.

(6) In recent work (see, e.g. [1]), amorphic association schemes have been con-
structed using bent functions. It would be interesting to know whether the
amorphic schemes produced by Theorem 3.14 have connections to bent func-
tions.
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