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Intersection cohomology of type-A toric
varieties

Andras Szenes & Olga Trapeznikova

Abstract Type-A toric varieties may be obtained as GIT quotients with respect to a torus
action with weights corresponding to roots of the group SL(k) for some k > 1. These varieties
appear in various important applications, in particular, as normal cones to strata in moduli
spaces of vector bundles. In this paper, we describe the intersection Betti numbers of these
varieties, and those of some associated projective varieties. We present an elegant combinatorial
model for these numbers, and, using the work of Hausel and Sturmfels, we show that the relevant
intersection cohomology groups are endowed with a canonical product structure.

1. Introduction
Let α1, . . . , αn ∈ Hom(T,C∗) be n weights of a complex torus of dimension k−1, and
let x1, . . . , xn be the coordinates on Cn. Considering the weights as elements of an
additive group, and using the exponential notation, we can write the corresponding
diagonal action of an element q ∈ T as

q · (x1, . . . , xn) 7→ (qα1x1, . . . , q
αnxn).

The ring of T -invariant polynomial functions on Cn then is the ring of functions of
an affine algebraic variety, which we denote by X = X(A, 0), where A = [α1, . . . , αn].
In our constructions, we will always assume that the sequence A is unimodular, i.e.
any (k− 1)-tuple of these weights is either linearly dependent, or has determinant ±1
with respect to the lattice ZA they generate. For the purposes of this introduction,
we will consider the case when n = k(k − 1), and A is the root system of the group
SL(k):

A = [αij = εi − εj | 1 ⩽ i ̸= j ⩽ k].
where εi, i = 1, . . . k, are the “coordinate weights” of (C∗)k acting on Ck.

A variant of this construction is obtained by fixing a weight θ ∈ NA and considering
the graded algebra

∞⊕
j=0

Sjθ,
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where Sjθ is the linear span of the monomials in C[x1, . . . , xn] of weight jθ. The
corresponding variety X(A, θ) is smooth for generic θ, and projective over X(A, 0),
which means, in particular, that there is a canonical proper map

φθ : X(A, θ)→ X(A, 0).
We note that for every η ∈ ZA, there is a well defined line bundle Lη on X(A, θ) for
any θ, and the line bundle Lθ → X(A, θ) is the polarization for the projective map
ϕθ.

This variety appears in various contexts; in particular, it is a model for the normal
cone of the singular points of the moduli spaces of semistable bundles on curves, and
thus plays an important role in the calculation of the intersection cohomologies of
these spaces [14, 15, 5].

The quotient variety X is usually very singular, and the topological invariants
most adapted to this situation are the intersection cohomology groups IH∗(X). The
central problem we address in this paper, is the calculation of the associated Poincaré
polynomial

g(k, t) =
[d/2]∑
i=0

git
i =

[d/2]∑
i=0

dim IH2i(X) · ti,

where d = n− k = k(k − 2).
A related problem is the study of the topology of the projective toric variety X̂,

associated to A as follows. Let κ : C∗ → C∗ be the tautological weight of the group
C∗, set T̂ = T × C∗, and consider the weight data Â = [α + κ | α ∈ A] for the
group T̂ . Then we set X̂ = X(Â, κ), and note that the variety X is the cone over X̂
associated to the line bundle Lκ, i.e. it may be obtained as the total space of Lκ with
the zero-section collapsed to a point.

The properties of intersection cohomology imply that IH∗(X̂) satisfies Poincaré
duality, and thus the corresponding Poincaré polynomial

h(k, t) =
d∑

i=0
hit

i =
d∑

i=0
dim IH2i(X̂) · ti

is palindromic.
Our notation for these polynomials is motivated by the g-and-h-polynomial calculus

of Stanley [16], of which our polynomials are examples. This, in particular, implies that
(1) gi = hi − hi−1 for 0 ⩽ i ⩽ [d/2].

Let us describe contents of our paper. In §2 we set the basic notation and describe
the necessary concepts of the theory of toric varieties, while in §3 we give a brief
introduction to intersection cohomology. A key result, proved in is §4 (cf. also §6.1),
is that for a generic θ, the canonical map φθ : X(A, θ) → X(A, 0) is small (cf.
Theorems 4.5 and 6.1), and as a consequence, the intersection cohomology group
IH∗(X) is isomorphic to the cohomology of the fiber H∗(φ−1

θ (0)) as an additive
group.

Remark 1.1. After this work was finished, we became aware of the preprint [12] of
Mauri and Migliorini from a year earlier, who prove this in a more general context of
arbitrary Lawrence toric varieties (see [12, Proposition 4.17]).

The structures introduced in our combinatorial proof are used later to give a graph-
theoretic interpretation of the coefficients of the polynomial g(k, t+ 1) as follows. Let
Gk be the set of oriented graphs with vertex set {1, 2, . . . , k}, and for G ∈ Gk, denote by

• e(G) the number of edges of G, and by
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• outG(m) the number of outgoing edges from the vertex m in G.
We show (cf. Theorem 4.5) that

Theorem 1.2. g(k, t+ 1) = ĝ0 + ĝ1t+ ĝ2t
2 + · · ·+ ĝ[d/2]t

[d/2], where

ĝi =
∣∣∣∣ {
G ∈ Gk

∣∣∣∣ G is acyclic and connected, with e(G) = i+ k − 1,
outG(1) = 0 and outG(m) > 0 for m > 1.

} ∣∣∣∣.
For calculating the polynomial g(k, t), we present the following recursion (cf. The-

orem 4.19).
Theorem 1.3. Let p(m, t) = 1 + t+ t2 + · · ·+ tm−1, and set g(1, t) = 1. Then

g(k, t) =
∑

J⊂{2,...,k}
J ̸=∅

(−1)|J|−1p(k − |J |, t)|J| · g(k − |J |, t).

Note that while the function g determines the function h (cf. (1)), nevertheless,
going between the two functions is nontrivial, because of the truncation involved in
their relation (cf. [16]). In §5 we show that for k = 3, the h-polynomial coincides with
that of the product of projective spaces (cf. Lemma 5.2), and then present an efficient
recursion for the general case (cf. Theorem 5.3), which, in a certain sense, produces
a resolution of IH∗(X̂) in terms of such products:
Theorem 1.4. Set h(1, t) = 1; then

h(k, t) = p(k − 1, t)k −
∑

(λ1,...,λs)⊢k
s⩾2,|λi|⩾2

t

∑
i<j

|λi|·|λj |
s∏

i=1
h(|λi|, t),

where we denote by k the set {1, 2, . . . , k}.
We also give a graph-theoretic interpretation of the h-polynomial (cf. Theorem 5.5):

Theorem 1.5. h(k, t+ 1) = ĥ0 + ĥ1t+ ĥ2t
2 + · · ·+ ĥdt

d with

ĥi =
∣∣∣∣ {
G ∈ Gk

∣∣∣∣ G has an oriented cycle, e(G) = i+ k, and
there is a path to the vertex 1 from any other vertex.

} ∣∣∣∣.
Finally, we note that our variety is an example of Lawrence toric varieties studied

by Hausel and Sturmfels [9]. They showed, in particular, that the cohomology rings of
the varieties φ−1

θ (0) are identical for different regular values of θ, even though these
varieties are not, in general, all isomorphic. This allows us to define a canonical ring
structure on the intersection cohomology IH∗(X) (cf. Theorem 6.3).

2. Preliminaries: toric varieties
This section contains the notation and basic facts from the theory of toric varieties.
For more details, we refer the reader to [7, 17].

2.1. The quotient construction. Let g =
⊕n

i=1 Rωi be a real vector space with
a fixed ordered basis, and let

(2) 0→ a→ g
B−→ t→ 0

be an exact sequence of finite dimensional real vector spaces of dimensions n − d, n
and d, respectively. We denote by Γg =

⊕n
i=1 Zωi the lattice in g, and assume that

Γg intersects a in a lattice Γa of full rank; we denote the image B(Γg) in t by Γt. The
sequence (2) restricted to the lattices is also exact, as well as the dual sequence

0→ t∗ → g∗ A−→ a∗ → 0
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restricted to the dual lattices Γ∗
t ,Γ∗

g and Γ∗
a. Denoting the dual basis by {ωi}, we have

g∗ =
⊕n

i=1 Rωi and Γ∗
g =

⊕n
i=1 Zωi.

We introduce the notation αi for the vector A(ωi) ∈ Γ∗
a and consider the sequence

A = [α1, . . . , αn]. Note that according to our assumptions, the elements of A generate
Γ∗
a over Z.

The complexified torus Ta = Hom(Γ∗
a,C∗) acts on Cn diagonally with weights

(α1, . . . , αn). We will be interested in the quotients of this action in the sense of
geometric invariant theory. Let

S = C[x1, . . . , xn], deg(xi) = αi ∈ Γ∗
a

be the ring of polynomials graded by the semigroup NA ⊂ Γ∗
a. For θ ∈ NA, we denote

by Sθ the vector space of homogeneous polynomials in S of degree θ. Then S0 is a
finitely generated subalgebra of homogeneous degree zero polynomials and Sθ is a
module over S0 for any θ ∈ NA.

We define the affine toric variety X(A, 0) as the affine GIT quotient of Cn by the
torus Ta action:

X(A, 0) := Cn//0Ta = Spec(S0).

For any θ ∈ NA, we define the toric variety X(A, θ) as the relative projective GIT
quotient of Cn by the Ta-action:

X(A, θ) := Cn//θTa := Proj(S(θ)),

where S(θ) is the finitely generated S0-algebra
⊕

r t
rSrθ, which is N-graded by the

degree of t.

2.2. Gale duality and toric fans. Recall that any toric variety X may be asso-
ciated to a fan Σ in the lattice Γt ⊂ t in such a way that each cone σ ∈ Σ corresponds
to an affine subset of X (cf. [7, §1.4]). In this section, we describe the fan which corre-
sponds to the toric variety X(A, θ) defined above (for the result, see Proposition 2.3).

2.2.1. Chambers in the A-picture. We begin with the definition of some basic concepts
related to our weight sequence A = [α1, . . . , αn].

• For a set or sequence Z of vectors in a real vector space, denote by Cone(Z)
the closed cone spanned by the elements of Z. By convention, the cone over
the empty set is the origin of the vector space.

• Denote by BInd(A) the set of basis index sets, i.e. the set of those subsets
I ⊂ {1, . . . , n} for which the set {αi}i∈I is a basis of a∗. We will use the
notation αI ⊂ A for the basis associated to I ∈ BInd(A).

• Denote by ∂A the union of the boundaries of the simplicial cones spanned by
elements of A:

∂A =
⋃
{∂Cone(αI)| I ∈ BInd(A)}.

A connected component of the open set Cone(A)∖∂A in a∗ is called a chamber,
and the set of chambers will be denoted by Ch(A).

• We will call θ ∈ Γ∗
a generic, if it lies in one of the chambers of A.

• For a chamber c ∈ Ch(A), we define BInd(A, c) to be the set of those I ∈
BInd(A) for which Cone(αI) ⊃ c.

The sequence B = [β1, . . . , βn], where be βi = B(ωi) in t (cf. (2)) is called the Gale
dual of the sequence A. This notion is involutive, i.e. the Gale dual of the sequence
B is A.
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2.2.2. Gale duality and fans. A fan Σ on B is a finite collection of cones of the form
σ = Cone(βI), I ⊂ {1, 2, . . . , n}, satisfying some additional properties (cf. [7, §1.4]);
in particular, the union of σ ∈ Σ is the cone Cone(B). A fan is simplicial if all of its
cones are simplicial; further, it is unimodular if every maximal cone of Σ is spanned
by a basis of Γt.

There is a standard construction of toric varieties Σ 7→ X(Σ) from fans in the
lattice Γt (cf. [7, §1.4]). The toric variety X(Σ) is a toric orbifold, i.e. has only finite
quotient singularities, if and only if Σ is simplicial. In the unimodular case, simplicial
fans give rise to smooth toric varieties.

The torus Tt = Hom(Γ∗
t ,C∗) is embedded in X(Σ) as an open subset, and its

standard action on itself extends to an action on X(Σ).
Notation 2.1. The orbits of the Tt-action on X(Σ) are in bijection with the cones
σ ∈ Σ. Given σ ∈ Σ, we denote by O(σ) the corresponding orbit, and by V (σ) the
orbit closure of O(σ). Note that given σ, σ′ ∈ Σ, σ ⊂ σ′ if and only if V (σ′) ⊂ V (σ)
and dim(σ) = codim(V (σ) ⊂ X(Σ)).

Next, we say that the fan Σ1 is a refinement of Σ2 if for every cone σ1 ∈ Σ1
there exists a cone σ2 ∈ Σ2 such that σ1 ⊂ σ2. In this case, we can define a map
ψ̂Σ : Σ1 → Σ2 by setting ψ̂Σ(σ1) to be the smallest cone in Σ2 that contains σ1, and
this induces a so-called toric morphism ψ : X(Σ1)→ X(Σ2).

The following lemma describes the fundamental relation between the Gale dual
configurations A and B.
Lemma 2.2. A linear combination

∑
i miαi vanishes if and only if there is a linear

functional l ∈ t∗ such that l(βi) = mi.
This relationship is instrumental in the proof of the following important statement.

Proposition 2.3. Let A be a sequence in a∗ and let c be a chamber in Ch(A).
(1) If I ∈ BInd(A, c), then its complement I = {1, . . . , n} ∖ I is an element of

BInd(B), i.e. the set βI = {βi}i∈I is a basis of t.
(2) The set of simplicial cones Cone(βI), I ∈ BInd(A, c) forms a simplicial fan

Σ(c) on B. In particular, the interiors of these cones are disjoint and their
union is Cone(B).

(3) Let θ ∈ c, then the GIT quotient X(A, θ) is the toric variety associated to the
fan Σ(c).

(4) The affine toric variety X(A, 0) is associated to the fan with a single top-
dimensional cone: the convex polyhedral cone Cone(B) spanned by B.

Remark 2.4. Recall that for every scheme X there is a canonical morphism
ψ : X → X0

to the affine scheme X0 = Spec(H0(X,OX)) of regular functions on X. This map
for X(A, θ) is the canonical map to X(A, 0), and, in the unimodular case, this is a
resolution of singularities.
2.2.3. Polar polytopes. Finally, we note that there is a simple way to associate a fan,
and thus a toric variety, to a convex polytope.

Let P ⊂ t be a rational convex polytope, i.e. such that an integral multiple of its
vertices {v1, v2, . . . , vN} lie in the lattice Γt. For simplicity, first, we will assume that∑N

i=1 vi = 0. Then we denote by ΣP the fan whose cones are the cones over the proper
faces of P (here, we include the empty face). Following the notation from above, we
denote by X(ΣP ) the associated toric variety. If the center of mass of P is not at the
origin, then we replace the polytope P by its shifted copy P − 1

N

∑N
i=1 vi.
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More generally, if P̃ is a subdivision of the boundary of P , i.e. P̃ is a collection
of convex polytopes whose union is the boundary of P , and the intersection of two
polytopes in P̃ is a polytope in P̃ (cf. Figure 3), then the cones over the polytopes in
P̃ form a fan, which we will also denote by Σ

P̃
. Then Σ

P̃
is a refinement of ΣP , which

induces a toric morphism X(Σ
P̃

) → X(ΣP ). Note that while X(ΣP ) is projective,
the variety X(Σ

P̃
) is not necessarily projective.

3. Intersection cohomology
In this section, we collect a few basic facts about small morphisms and the intersection
cohomology of toric varieties, needed in our paper.

3.1. Small maps. Let Ỹ be a connected nonsingular variety, and ψ : Ỹ → Y be
a proper surjective map onto a variety Y of the same dimension. A stratification
for ψ is a decomposition of Y into finitely many locally closed nonsingular subsets
Y =

⊔n
k=0 Sk such that ψ−1(Sk)→ Sk is a topologically locally trivial fibration. The

subsets Sk are called strata.
Denote by dk := dim(ψ−1(yk)) the dimension of the fiber of ψ over any point

yk ∈ Sk. The map ψ is called small, if
(3) codim(Sk) = dim(Y )− dim(Sk) > 2dk

for every nondense stratum Sk for the map ψ.
Small maps play an important role in the calculation of the intersection cohomology

groups of singular varieties [8]. In general, the intersection cohomology IH∗(Y ) of an
irreducible complex projective d-dimensional variety Y is a module over the singular
cohomology ring H∗(Y ), and satisfies Poincaré duality and the Hard Lefschetz the-
orem [1, Theorem 5.4.10]. The latter means that for some element ω ∈ H2(Y ) (the
class of a hyperplane section) and for 0 ⩽ k ⩽ d the multiplication by ωd−k mapping
IHk(Y )→ IH2d−k(Y )) is an isomorphism of vector spaces. One can define then, for
0 ⩽ k ⩽ d, the primitive intersection cohomology of Y as

IHk
prim(Y ) = IHk(Y )/ω IHk−2(Y ).

The intersection cohomology of toric varieties is intimately related to the theory
of convex polytopes [3, 16]. We will now briefly review this relation.

3.2. Intersection cohomology of toric varieties. Let P be a simplicial d-
dimensional polytope, and denote by fi the number of its i-dimensional faces. One
associates to P its f -polynomial

f(P, t) = td + f0t
d−1 + f1t

d−2 + · · ·+ fd−2t+ fd−1,

its h-polynomial
(4) h(P, t) = hdt

d + · · ·+ h1t+ h0 := f(P, t− 1),
and its g-polynomial

(5) g(P, t) = h0 + (h1 − h0)t+ (h2 − h1)t2 + · · ·+ (h[d/2] − h[d/2]−1)t[d/2].

The following theorem calculates the dimension of the intersection cohomology
groups of a toric orbifold.

Proposition 3.1. [7, §5.2] Let P be a simplicial d-dimensional rational polytope with
h-polynomial h(P, t) =

∑d
k=0 hkt

k, and let X(ΣP ) be the associated toric orbifold.
Then
(6) dimH2k(X(ΣP )) = hk and H2k+1(X(ΣP )) = 0 for 0 ⩽ k ⩽ d.
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Remark 3.2. Note that it follows from (6) and the definition (5) that the coefficient
hk−hk−1 is the dimension of the primitive cohomology of the toric variety X(ΣP ) in
degree k, and thus, in particular, it is non-negative.

When the polytope P is not simplicial, the corresponding toric variety X(ΣP )
will have singularities, which are not of finite quotient type. In this case, the or-
dinary cohomology group is not a purely combinatorial invariant, but depends also
on some geometric data of the polytope [13]. A better invariant to consider is the
intersection cohomology of X(ΣP ). Then the “generalized” h-polynomial h(P, t) =∑

dimIH2k(X(ΣP ))tk is a purely combinatorial invariant, i.e. it can be again defined
from the face lattice of the polytope P .

For a simplicial polytope P , we have H∗(X(ΣP )) = IH∗(X(ΣP )), and hence, in
this case, the generalized h-polynomial of P coincides with the one defined in (4). Now,
following Stanley [16], we give combinatorial definitions of the h and g polynomials
for a not necessarily simplicial polytope.

Let P be a d-dimensional polytope and suppose that the h and g polynomials have
been defined for all convex polytopes of dimension less than d. We set

(7) h(P, t) =
∑

F <P

g(F, t)(t− 1)d−1−dim(F ),

where the sum runs over all proper faces F of P , including the empty face ∅, for
which g(∅, t) = h(∅, t) = 1 and dim(∅) = −1. The polynomial g(P, t) is defined
from the polynomial h(P, t) as in (5). Formulas (5) and (7) then inductively define
the polynomials g and h for all polytopes.

Remark 3.3. Note that this definition agrees with definitions given in (4) and (5),
since the g-polynomial of any simplex equals 1.

The following theorem calculates the dimension of the intersection cohomology
groups of a toric variety.

Theorem 3.4 ([6]). Let P be a d-dimensional rational polytope and let X(ΣP ) be the
toric variety, associated to the fan ΣP . Then

(i) h(P, t) =
∑d

k=0 dimIH2k(X(ΣP ))tk and IH2k+1(X(ΣP )) = 0 for 0 ⩽
k ⩽ d;

(ii) g(P, t) =
∑[d/2]

k=0 dimIH2k
prim(X(ΣP ))tk.

Finally, we recall the following basic consequence of the decomposition theorem [1]
applied to a small resolution of singularities of affine toric varieties.

Theorem 3.5 ([11]). Let Σ be a fan whose cones are the cones over the faces of a
rational convex polytope P , including an empty face and P itself. Let Σ̃ be a simplicial
refinement of Σ such that the morphism ψ : X(Σ̃)→ X(Σ) of the corresponding affine
toric varieties is small. Given a face F < P , we pick a point yF in the Tt-orbit O(σ)
(see Notation 2.1), where σ is the cone over the face F in the fan Σ. Then

H2k(ψ−1(yF )) ≃ IH2k
prim(X(ΣF )) for 0 ⩽ k ⩽ [dim(X(ΣF ))/2].

In particular, for F = P , we have yP = 0 and
H2k(ψ−1(0)) ≃ IH2k(X(Σ)) ≃ IH2k

prim(X(ΣP )).

4. The g-polynomial of the Gale dual type-A root polytope
In this section, we study certain generalized Gale dual type-A root polytopes. The
main result of this section, Theorem 4.5, calculates the g-polynomials of these poly-
topes as generating functions of the number of a certain oriented graphs, graded by
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the number of their edges. Theorem 4.19 presents a recursive formula, which is an
effective tool for the calculation of these same g-polynomials.

4.1. The type-A root polytope. Denote by ε1, . . . , εk : Rk → R the standard
coordinates on Rk. The quotient vector space

ak = Rk/R · (1, . . . , 1)
is naturally dual to the subspace

a∗
k = {λ1ε1 + · · ·+ λkεk | (λ1, . . . , λk) ∈ Rk, λ1 + · · ·+ λk = 0},

which is endowed with a full rank sublattice
Γ∗
ak

= {λ1ε1 + · · ·+ λkεk| (λ1, . . . , λk) ∈ Zk, λ1 + · · ·+ λk = 0}.
For 1 ⩽ i ̸= j ⩽ k, we define the element αij = εi − εj ∈ Γ∗

ak
, and we set

Φk = {αij | 1 ⩽ i ̸= j ⩽ k},
which is the set of roots of the Ak−1 root system.

The type-A root polytope is defined as the convex hull of the set of roots Φk in the
vector space a∗

k. The Gale transformation converts the set Φk of k(k− 1) root vectors
in a∗

k into the set of k(k − 1) vectors in an appropriate (k − 1)2-dimensional space,
which we will denote by Ψk. The Gale dual type-A root polytope is the convex hull of
the set of vectors from Ψk.

Example 4.1. The Gale dual type-A root polytope, corresponding to the root system
A2, is a three-dimensional prism shown in Figure 1.

β12

β31 β23

β21

β13 β32

Figure 1. The Gale dual root polytope, corresponding to the root
system A2.

Remark 4.2. The Gale dual type-A polytope is a particular case of a Lawrence poly-
tope [9].

In this paper, we will study the Gale dual root polytope, obtained from the type-A
root system with multiplicities. For this, we fix integers rij ∈ N for 1 ⩽ i < j ⩽ k, set
rji = rij and consider the ordered sequence
(8)
A(r12, r13, . . . , rk−1 k) = [α12, . . . , α12, α21, . . . , α21, α13, . . . , α13, . . . , αk k−1] ∈ Γ∗

ak

of the root vectors αij ∈ Φk, where the vector αij is repeated rij times. Following the
notation from page 577, we set

n := |A| = 2
∑

1⩽i<j⩽k

rij and d := n− k + 1.

We consider the Gale dual sequence B(r12, . . . , rk−1k) and denote by Π(r12, . . . , rk−1k)
the polytope obtained as the convex hull of the vectors in B(r12, . . . , rk−1k). It follows
from Lemma 2.2 that, similarly to the root configuration, this dual configuration is not
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full dimensional: Π(r12, . . . , rk−1k) is a d− 1-dimensional polytope in a d-dimensional
vector space.

We can also deduce from Lemma 2.2 that the polytope Π(r12, . . . , rk−1k) does not
contain the origin in its interior; in fact, the toric variety X(A(r12, . . . , rk−1k), 0) (cf.
page 578) is an affine cone over the singular projective toric variety X(ΣΠ(r12,...,rk−1k))
(cf. Proposition 2.3).

Notation 4.3. The fan corresponding to the toric variety X(A(r12, . . . , rk−1k), 0)
consists of the cones over the faces of Π, including Π itself; according to our convention,
we denote the cone over the face F < Π by Cone(F ).

Example 4.4. A simple calculation shows that for k = 2 the polytope Π(r12) is a
product of two (r12−1)-dimensional simplices, and thus the toric variety X(A(r12), 0)
is an affine cone over the product of projective spaces Pr12−1 × Pr12−1.

4.2. Small maps and the combinatorics of the g-polynomial. Before we for-
mulate the main result of this section, Theorem 4.5, we introduce some extra notation
related to graphs.

• We denote by Kk = Kk(r12, . . . , rk−1k) the directed graph with vertex set
{1, 2, . . . , k} and with number of oriented edges from i to j equal to rij . We
will use the notation ←−ij for the edge directed from j to i.

• Denote by Gk = Gk(r12, . . . , rk−1k) the graph obtained from Kk by deleting
all edges ←−i1 for 1 < i ⩽ k. To emphasize the break of symmetry: we will color
the first vertex in Gk in red, and the other vertices in black.

• A directed graph is acyclic if it has no directed cycles.
• A directed graph is naked if every edge of this graph is contained in at least

one directed cycle.
• We will say that a directed graph G is rooted at the ith vertex if there is a

directed path in G from any vertex to the ith vertex.

Theorem 4.5. Let Π = Π(r12, . . . , rk−1k) be the Gale dual type-A root polytope defined
above, and let d̂ =

∑
i<j rij − k + 1. Then

g(Π, t+ 1) = ĝ0 + tĝ1 + t2ĝ2 + · · ·+ td̂ĝd̂,

where ĝi counts the number of acyclic subgraphs G ⊂ Gk with k vertices and k− 1 + i
edges, which are rooted at the first vertex.

Example 4.6. For Π = Π(1, 1, 1) from Example 4.1 we have ĝ0 = 3 and ĝ1 = 2 (cf.
Figure 2), hence g(Π, t) = 3 + 2(t− 1) = 1 + 2t.

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

Figure 2. Acyclic subgraphs of G3 that contain a spanning tree
rooted at the first vertex: there are 3 graphs with two edges and 2
graphs with three edges.

The strategy of the proof of Theorem 4.5 is as follows. First, we construct a toric
resolution of the singularities of the affine variety X(A(r12, . . . , rk−1k), 0), and in-
troduce some graph-theoretic tools based on the fact that weights of the Ta-action
correspond to edges of an oriented complete graph. Next, we prove that this resolution
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is small (cf. §3.1). The Decomposition Theorem (cf. Theorem 3.5) then allows us to
identify the intersection cohomology of X(A(r12, . . . , rk−1k), 0) with the cohomology
of the fibers of this small resolution. Finally, we describe the cohomology of the fibers
using generating functions for the number of certain oriented graphs.

Lemma 4.7 ([18, Lemma 4.12]). The simplicial cone Cone({α12, α13, . . . , α1k}) is a
chamber in Ch(A(r12, . . . , rk−1k)).

Note that θ1 = (k − 1,−1, . . . ,−1) ∈ Cone({α12, α13, . . . , α1k}), and consider the
corresponding toric variety X(A(r12, . . . , rk−1k), θ1). As our fan is unimodular, this
variety is smooth.

Example 4.8. Below is the chamber complex for the root system A2 and the tri-
angulation of the Gale dual root polytope Π(1, 1, 1) (cf. Example 4.1) given by the
chamber {α12, α13}.

α12

α21

α13

α23

α32

α31

β12

β31 β23

β21

β13 β32

Figure 3. The chamber complex for the root system A2 and the
triangulation of the Gale dual root polytope given by the chamber
{α12, α13}.

To simplify the notation, from now on, we omit the dependence onm, r12, . . . , rk−1k:
throughout this chapter, we will use the notation

• A := A(r12, . . . , rk−1k);
• Π := Π(r12, . . . , rk−1k);
• X := X(A(r12, . . . , rk−1k), 0);
• X̃ := X(A(r12, . . . , rk−1k), θ1) where θ1 = (k − 1,−1, . . . ,−1);
• Σ and Σ̃ for the toric fans of X and X̃, respectively;
• φ : X̃ → X for the canonical morphism defined in Remark 2.4; clearly, φ is a

toric morphism compatible with the refinement of fans φ̂Σ : Σ̃→ Σ.
It is well known (cf. e.g. [10]) that the fiber of the toric morphism φ : X̃ → X over

a point x ∈ X depends only on the orbit O(σ) ⊂ X (cf. page 579) that contains x.
We thus note that the decomposition

X =
⊔

F <Π
O(Cone(F )),

where F runs over the faces of Π, including the empty face and Π itself, is a stratifi-
cation (cf. §3.1) for the canonical morphism φ : X̃ → X.

Now we are ready to formulate our main technical result (see Remark 1.1, [12,
Proposition 4.17]).

Theorem 4.9. The canonical morphism φ : X̃ → X is small (cf. §3.1).
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4.3. Proof of Theorem 4.9. Clearly, we have dim X̃ = dimX, thus to prove that
the map φ is small, we need to show that for any non-empty face F < Π
(9) codim(O(Cone(F )) ⊂ X) > 2dim(φ−1(yF )),
where yF is a point in the orbit O(Cone(F )), which is a stratum for our stratification.
We start with the calculation of the codimension of O(Cone(F )) in X.

Associating to each element αij ∈ A the edge ←−ij of the graph Kk, we obtain a
natural correspondence between subsequences A ⊂ A and subgraphs of Kk. Applying
Gale duality, we also obtain the correspondence between subgraphs of Kk and subsets
of rays of the fan Σ (and thus rays of the fan Σ̃ as well).

The following lemma describes the faces of the polytope Π in terms of subgraphs
in Kk.

Lemma 4.10. Under the correspondence described above, naked graphs correspond to
faces of the polytope Π.

Proof. For any subsequence A ⊂ A, we denote by GA the graph corresponding to A.
By Gale duality, faces of Π correspond to subsequences A ⊂ A that have a positive
linear combination summing up to zero:

(10)
∑
α∈A

mαα = 0 with mα > 0.

Clearly, for any subsequence C ⊂ A that corresponds to a directed cycle GC of GA we
have

∑
α∈C α = 0 and one can subtract a multiple of this sum from (10) to obtain a

proper subsequence A′ ⊂ A that also has a positive linear combination summing up
to zero.

Assume that GA is not a naked graph; then, repeating the procedure described
above, we arrive at a nonempty subsequence of vectors Ā ⊂ A that has a positive
linear combination summing up to zero, and such that the corresponding directed
graph GĀ ⊂ Kk is acyclic. Since any directed acyclic graph contains a vertex with
only out-edges, we arrive at a contradiction with (10). □

Notation 4.11. We will denote the naked graph on k vertices corresponding to the
face F < Π by GF . In particular, the naked graph GΠ has no edges and G∅ = Kk.

Example 4.12. The naked graphs from Figure 4 correspond to the following faces of
the prism Π(1, 1, 1) (cf. Figure 1): the two-dimensional simplex {β13, β32, β21}, the
square {β13, β31, β32, β23}, two edges {β13, β31} and {β13, β32}, the vertex {β13}.

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

Figure 4. Naked graphs on 3 vertices.

Lemma 4.13. Denote by c1 the chamber Cone({α12, α13, . . . , α1k}) in Ch(A) (cf.
Lemma 4.7). Then the cones Cone(αI) for I ∈ BInd(A, c1) correspond to the
spanning trees in Gk, rooted at the first vertex.

Proof. First, note that the cone Cone(αI) is simplicial if and only if the vectors {αi}i∈I

are linearly independent; this happens if and only if the corresponding graph has no
(undirected) cycles, i.e. it is a tree.
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Next, note that θ1 = (k − 1,−1, . . . ,−1) is a point in the interior of c1, hence θ1
lies in the interior of Cone(αI) for each I ∈ BInd(A, c1). In other words, for each
I ∈ BInd(A, c1), θ1 can be written as a linear combination of vectors αi, i ∈ I with
positive coefficients; this implies that the corresponding graph has at least one out-
edge from the vertices 2, 3, . . . , k. Clearly, such graph cannot have an out-edge starting
at the first vertex, since this would create a cycle, hence the statement follows. □

Since the fan Σ̃ is simplicial, by Gale duality, we obtain the following statement.

Corollary 4.14. For 0 ⩽ l ⩽ (2
∑

i<j rij − k + 1), there is a bijection between the
codimension-l cones in the fan Σ̃ and the connected subgraphs of Kk with k vertices
and k − 1 + l edges, rooted at the first vertex.

For any graph G, we introduce the notation e(G) and s(G) for the number of edges
and connected components of G, correspondingly. It follows from Corollary 4.14 that

(11) codim(Cone(F )) = e(GF ) + s(GF )− k,

and thus

(12) codim(O(Cone(F )) ⊂ X) = dim(Cone(F )) = 2
∑

1⩽i<j⩽k

rij−e(GF )−s(GF )+1.

Since our goal is to compare this number with the right-hand side of (9), our next
step will be to analyze the fibers of φ.

In general, the combinatorics of fan refinements provides one with an explicit de-
scription of the fibers of any toric morphism (cf. [10]). To prove Theorems 4.5 and 4.9
we will only need to calculate the Betti numbers of these fibers (see Theorem 4.16 for
the result).

Lemma 4.15. Let F be a face of Π, and let GF be the corresponding naked graph (cf.
Lemma 4.10). Denote by G1

F the set of connected subgraphs of Kk on k vertices, which
have the same directed cycles as the naked graph GF , and which are rooted at the first
vertex. Then, under the morphism φ̂Σ, the cone σ ∈ Σ̃ maps to the cone Cone(F ) ∈ Σ
if and only if σ corresponds (cf. page 585) to some graph in the set G1

F .

Proof. Denote by Gσ the subgraph of Kk that corresponds to the cone σ ⊂ Σ̃ under
the correspondence described on page 585. Repeating the argument from the proof of
Lemma 4.13, we conclude that Gσ is a connected graph rooted at the first vertex.

Recall that φ̂Σ(σ) = Cone(F ) if and only if σ ⊂ Cone(F ) and Cone(F ) is the
minimal cone in Σ that contains σ. Note that the first condition is equivalent to the
fact that Gσ contains the naked graph GF , while the second condition requires GF to
be the maximal naked graph contained in Gσ; thus Gσ should have the same directed
cycles as GF . □

Theorem 4.16 ([4, Corollary 4.7]). Let φ : X̃ → X be as on page 584. For any
face F < Π, denote by dl(F ) the number of (dim(Cone(F )) − l)-dimensional cones
σ ∈ Σ̃ such that the (relative) interior of σ maps to the (relative) interior of the cone
Cone(F ) ∈ Σ:

dl(F ) = |{σ ∈ Σ̃ | φ̂Σ(σ) = Cone(F ), codim(σ)− codim(Cone(F )) = l}|.

Then, for any point yF in O(Cone(F )) ⊂ X, the Poincaré polynomial of the fiber
φ−1(yF ) has the form∑

l⩾0
dimH2l(φ−1(yF ))t2l =

∑
l⩾0

dl(F )(t2 − 1)l.
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Putting together Lemma 4.15 and equation (11), we arrive at the following inter-
pretation of the numbers dl(F ) in terms of graphs.

Lemma 4.17. The number dl(F ) defined in Theorem 4.16 is equal to the number of
graphs in G1

F with e(GF ) + s(GF )− 1 + l edges.

In particular, it follows from Theorem 4.16 that for yF ∈ O(Cone(F )) the dimen-
sion of the fiber φ−1(yF ) is bounded from above by

max
G∈G1

F

{e(G)} − e(GF )− s(GF ) + 1.

Hence using expression (12) for the codimension of the strata O(Cone(F )) in X, we
can conclude that to prove (9), it is enough to show that

(13) 2
∑

1⩽i<j⩽k

rij > 2 max
G∈G1

F

{e(G)} − e(GF )− s(GF ) + 1

for any non-empty F < Π. Note that we can think of
2 max

G∈G1
F

{e(G)} − e(GF )

as the number of edges in the graph G ⊂ Kk such that G is obtained from the naked
graph GF by adding all possible edges between the connected components of GF .
Then, trivially, we have

2 max
G∈G1

F

{e(G)} − e(GF ) ⩽ e(Kk) = 2
∑

1⩽i<j⩽k

rij ,

with equality if and only if GF is a disjoint union of complete graphs. Hence we obtain
the inequality

2 max
G∈G1

F

{e(G)} − e(GF )− s(GF ) + 1 ⩽ 2
∑

1⩽i<j⩽k

rij − s(GF ) + 1 ⩽ 2
∑

1⩽i<j⩽k

rij ,

with equality if and only ifGF is a disjoint union of complete graphs and s(GF ) = 1. In
this latter case, GF is connected and complete, and thus GF = Kk. This corresponds
to the empty face F = ∅ with codim(O(Cone(∅))) = 0, and this completes the proof
of Theorem 4.9.

4.4. Proof of Theorem 4.5. Now we are ready to prove Theorem 4.5. Since the
map φ : X̃ → X is small, it follows from Theorems 3.5 and 3.4 that the g-polynomial
g(Π, t2) is equal to the Poincaré polynomial of the fiber φ−1(0).

By Theorem 4.16 and Lemma 4.17, the Poincaré polynomial of the fiber φ−1(0) is
equal to ∑

l

dimH2l(φ−1(0))t2l =
∑

l

dl(Π)(t2 − 1)l,

where dl(Π) is the number of graphs in G1
Π (cf. Lemma 4.15) with e(GΠ)+s(GΠ)−1+l

edges; after a change of variables, we arrive at the following statement:

(14) g(Π, t2 + 1) =
∑

l

dl(Π)t2l.

By Lemma 4.10, G1
Π is the set of acyclic subgraphs G ⊂ Kk, such that G has k

vertices and contains a spanning tree rooted at the first vertex; we also have e(GΠ) = 0
and s(GΠ) = k.

Clearly, a graph G ∈ G1
Π has no edges of the form ←−i1 for 2 ⩽ i ⩽ k, since otherwise

this edge together with a paths from i to 1 would create a directed cycle in G; hence
any graph G ∈ G1

Π is contained in Gk ⊂ Kk.
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We conclude that dl(Π) is equal to the number of acyclic subgraphs G of Gk with
k− 1 + l edges and k vertices, such that G is rooted at the first vertex. Now Theorem
4.5 follows from equation (14). □

Applying the same argument and using Lemma 4.15, we obtain the following state-
ment.

Corollary 4.18. Let F be a face of the Gale dual type-A root polytope Π =
Π(r12, . . . , rk−1k). Then g(F, t+1) =

∑
i⩾0 ĝit

i, where ĝi counts the number of graphs
G ∈ G1

F with e(GF ) + s(GF )− 1 + i edges and k vertices.

Now we present a recursive formula for the g-polynomial of the Gale dual type-A
root polytope.

Theorem 4.19. Let Π(r12, . . . , rk−1k) be a Gale dual type-A root polytope and let
p(n, t) = 1 + t + t2 + · · · + tn−1. For any nonempty subset J ⊂ {2, . . . , k} we denote
by J = {1, . . . , k} ∖ J its complement and by Π(rij∈J) the Gale dual root polytope
corresponding to the root system A|J|−1 defined by the sequence of vectors [αij ]i,j∈J ⊂
A(r12, r13, . . . , rk−1k) with αij repeated rij times. Then

g(Π(r12, . . . , rk−1k), t) =
∑

J⊂{2,...,k}
J ̸=∅

(−1)|J|−1g(Π(rij∈J), t) ·
∏
j∈J

p
( ∑

i∈J

rij , t
)
.

Proof. First, we perform a change of variables t→ t+ 1 in the recursion; by Theorem
4.5, the polynomial g(Π(r12, . . . , rk−1k), t + 1) counts the number of edges in acyclic
subgraphs of Gk with k vertices, rooted at the first vertex. Note that any such graph
has a vertex j ∈ {2, 3, . . . , k} that has no in-edges.

Now fix a nonempty subset J ⊂ {1, 2, . . . , k}. We claim that

(15) g(Π(rij∈J), t+ 1) ·
∏
j∈J

p
( ∑

i∈J

rij , t+ 1
)

=
∑

G∈G′
k

te(G)−k+1,

where the sum is taken over the set G′

k of the connected acyclic subgraphs G ⊂ Gk

with k vertices, rooted at the first vertex, such that the vertices j ∈ J of G has no
in-edges.

Indeed, let G be a graph satisfying these conditions.
• A simple calculation shows that the polynomial p

( ∑
i∈J rij , t+ 1

)
counts all

out-edges of G from the vertex j ∈ J .
• We denote by G∖J the graph obtained from G by deleting all vertices labelled

by j ∈ J and all edges attached to these vertices. Then clearly, G ∖ J is an
acyclic subgraph of Gk with vertex set J , rooted at the first vertex.

• Thus it follows from Theorem 4.5 that the edges of G∖ J are counted by the
polynomial g(Π(rij∈J), t+ 1).

• Noting that any edge of G is either an out-edge from some vertex j ∈ J , or
is an edge of G∖ J , we arrive at equation (15).

Now the recursion follows from the inclusion-exclusion principle. □

Example 4.20. For k = 3, the recursive formula has the following simple form

g(Π(r12, r13, r23), t) = p(r12 + r23, t) · g(Π(r13), t)
+ p(r13 + r23, t) · g(Π(r12), t)− p(r12, t) · p(r13, t).
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5. The h-polynomial of the Gale dual type-A root polytope
As explained in Example 4.4, for k = 2, we have X(ΣΠ(r12)) = Pr12−1×Pr12−1, hence
by Proposition 3.1 the h-polynomial of the polytope Π(r12) is equal to the Poincaré
polynomial (with deg(t) = 2) of the product of two projective spaces:

h(Π(r12), t) = (1 + t+ t2 + · · ·+ tr12−1)2.

In this section, we calculate h-polynomials of Gale dual polytopes which are associated
to the Ak−1 root system for k ⩾ 3.

5.1. k = 3 case. We start with the calculation of the h-polynomial of the polytope
Π(1, 1, 1), shown in Figure 1. This three-dimensional prism has

• 6 faces of dimension 0,
• 9 faces of dimension 1, and
• 2 faces of dimension 2, which are all simplicial;
• there are also 3 two-dimensional nonsimplicial faces, which are squares.

Using (5), we obtain that the g-polynomial of a square equals 1 + t. Then it follows
from (7) that

h(Π(1, 1, 1), t) = (t− 1)3 + 6(t− 1)2 + 9(t− 1) + 2 + 3(t+ 1) = (t+ 1)3.

Note that (t+ 1)3 is the Poincaré polynomial of P1×P1×P1, and by Proposition 3.1
it is equal to the h-polynomial of the octahedron, which is combinatorially dual to
the three-dimensional cube.

This corresponds to the fact that the prism Π(1, 1, 1) has a simplicial subdivision
Π̃(1, 1, 1) which does not add any vertices and divides every two-dimensional non-
simplicial face into two simplices by adding its diagonal (see Figure 5). The resulting
polytope Π̃(1, 1, 1) is combinatorially equivalent to the octahedron, and the map of
the corresponding projective toric varieties (cf. §2.2.3)

f : X(ΣΠ̃(1,1,1))→ X(ΣΠ(1,1,1))

is small. More precisely, it is an isomorphism outside the three singular points of
X(ΣΠ(1,1,1)) which correspond to the cones in ΣΠ(1,1,1) over the nonsimplicial faces,
and the fibers over these points are isomorphic to P1.

β12

β31 β23

β21

β13 β32

Figure 5. Refinement,
combinatorially equiva-
lent to the octahedron.

β12

β31

β21

β13

0

Figure 6. Calculation
of the fiber over the sin-
gular point.

We note that the compact toric variety corresponding to this refinement is not
projective.

Remark 5.1. Note that this agrees with Theorem 4.16 applied to the map

φ : X(A(1, 1, 1), (2,−1,−1))→ X(A(1, 1, 1), 0).
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As it is shown in the Figure 6, the corresponding morphism of fans φ̂Σ maps 2 three-
dimensional and 1 two-dimensional cones in ΣΠ̃(1,1,1) to the interior of the cone over
the square face of Π(1, 1, 1). Thus by Theorem 4.16 the Poincaré polynomial of the
fiber over the singular point should have the form (t2 − 1) + 2, which is indeed equal
to the Poincaré polynomial of P1.

It turns out that the h-polynomial of any Gale dual polytope obtained from the
A2 root system has the following elegant form, which is a special case of Theorem 5.3.

Lemma 5.2. Let Π(r12, r13, r23) be a Gale dual type-A root polytope and set ri =∑
j ̸=i rij. Then the h-polynomial of Π(r12, r13, r23) is equal to the Poincaré polynomial

of the product of projective spaces Pr1−1 × Pr2−1 × Pr3−1 :

h(Π(r12, r13, r23), t) =
3∏

i=1
(1 + t+ t2 + · · ·+ tri−1).

5.2. Arbitrary k.

Theorem 5.3. Let Π(r12, . . . , rk−1k) be a Gale dual type-A root polytope and let ri =∑
j ̸=i rij. Given a subset λ ⊂ {1, . . . , k}, we denote by Π(rij∈λ) the Gale dual root

polytope corresponding to the root system A|λ|−1 defined by the sequence of vectors
[αij ]i,j∈λ ⊂ A(r12, . . . , rk−1k) with αij repeated rij times. Then
h(Π(r12, . . . , rk−1k), t) =

k∏
i=1

(1 + t+ · · ·+ tri−1)−
∑

(λ1,...,λp)⊢{1,...,k}
p⩾2, |λm|⩾2

t

( ∑
m<n

∑
i∈λm

∑
j∈λn

rij

)
p∏

m=1
h(Π(rij∈λm), t),

where the sum is taken over the partitions λ = (λ1, . . . , λp) of the set k = {1, . . . , k}
that have at least 2 parts and do not have parts of cardinality 1.

Proof. First, we perform a change of variables t → t + 1 and rewrite the equation
from Theorem 5.3 in the following form

(16)
k∏

i=1
((t+ 1)ri − 1)/t =

∑
λ⊢k

|λm|⩾2

(t+ 1)

( ∑
m<n

∑
i∈λm

∑
j∈λn

rij

)
p∏

m=1
h(Π(rij∈λm), t+ 1).

We can interpret the left-hand side of (16) in terms of graphs as follows.

Lemma 5.4. Let ri =
∑

j ̸=i rij, then
k∏

i=1
((t+ 1)ri − 1)/t =

∑
i⩾0

p̂it
i,

where p̂i counts the number of subgraphs of Kk with k+ i edges and k vertices, which
have an out-edge from each vertex.

Proof. Note that the ith factor in the product counts the number of out-edges from
the ith vertex in a subgraph of Kk. □

Now we describe the right-hand side of (16) in terms of graphs.

Theorem 5.5. We have the following combinatorial description of the h-polynomial
of the Gale dual type-A root polytope Π(r12, . . . , rk−1k):

(17) h(Π(r12, . . . , rk−1k), t+ 1) =
∑

G∈K′
k

te(G)−k,
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where the sum is taken over the set K′

k of subgraphs of the complete graph Kk which
have k vertices, at least one cycle and which are rooted at the first vertex.

Proof. Using equations (7), (11) and Corollary 4.18, we obtain that

h(Π(r12, . . . , rk−1k), t+ 1) (7)=
∑
F⪇Π

g(F, t+ 1)td−dim(F )−1(18)

(11)=
∑
F⪇Π

g(F, t+ 1)te(GF )+s(GF )−k−1(19)

4.18=
∑
F⪇Π

∑
G∈G1

F

te(G)−k =
∑

G⊂K′
k

te(G)−k(20)

as claimed. □

We can thus rewrite the right-hand side of equation (16) as

(21)
∑
λ⊢k

|λi|⩾2

∑
G∈K′′

k

te(G)−k,

where the last sum is taken over the set K′′

k of subgraphs G ⊂ Kk which contain
subgraphs Gλ1 , . . . , Gλp

satisfying the following conditions:
• the set of vertices of Gλi

is λi ⊂ {1, . . . , k};
• Gλi

contains a directed cycle;
• Gλi is rooted at the smallest vertex vi ∈ λi;
• all edges in G between the sets of vertices λi and λj are in one direction: from
λi to λj , if the minimum of λi ∪ λj is equal to the minimum of λi.

The last condition follows from the observation that the exponent of (t + 1) on the
right-hand side of equation (16) is half of the number of edges in the graph Kk between
the sets of vertices λ1, . . . , λp.

In fact, to prove Theorem 5.3, we need to choose the root vertex of Gλi and the
direction of the edges between the sets of vertices λi and λj in a more subtle way
(for the result, see Lemma 5.10). The following construction allows us to perform a
change of the root vertex.

Construction 5.6 (roots). Let G be an acyclic subgraph of Kk, which has k vertices
and is rooted at the first vertex. We change the direction of all edges in all directed
paths in G from the ith vertex to the first vertex.

Lemma 5.7. This construction induces a one-to-one correspondence between the
acyclic subgraphs of Kk, which have k vertices and are rooted at the first vertex and
the acyclic subgraphs of Kk with k vertices, which are rooted at the ith vertex.

Throughout this section, we will use the following construction.

Construction 5.8 (cycles). Let G be a subgraph of Kk which contain at least one
directed cycle. Removing all edges from G, that are not contained in any directed cycle,
we obtain the maximal naked subgraph GF ⊂ G. We say that a connected component
of GF is non-trivial, if it contains at least one edge; let s be the number of non-trivial
connected components of GF . We order the non-trivial components C1 ≺ · · · ≺ Cs in
such way that for any 1 ⩽ i < j ⩽ s the minimal vertex of Ci ∪Cj is contained in Ci.

Notation 5.9. We will refer to these ordered non-trivial connected components of
GF as cycles of G.
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Lemma 5.10. The right-hand side of equation (16) can be expressed as the sum
(21), where now the last sum runs over graphs G ⊂ Kk, which contain subgraphs
Gλ1 , . . . , Gλp

satisfying the following four conditions:
(1) the set of vertices of Gλi

is λi ⊂ {1, . . . , k};
(2) Gλi contains a directed cycle;
(3) Gλi is rooted at the smallest vertex in the smallest cycle of G contained in

Gλi
;

(4) all edges in G between the sets of vertices λi and λj are given in one direction:
from λi to λj, if the smallest cycle in Gλi

∪Gλj
is contained in Gλi

.

Proof. First, note that any cycle Ci of G contains a directed path between any two
vertices, hence all vertices of Ci are contained in exactly one subgraph Gλj

⊂ G.
Let Gλi

be a subgraph of G, such that its root vertex, the minimum vi of λi, is not
contained in any cycle of G; denote by Cλi the smallest cycle of G, which is contained
in Gλi . We proceed as described in Lemma 5.7, with the vertices of acyclic graphs
replaced by the cycles of G. More precisely, we change the direction of all paths from
the vertices of Cλi to the root vertex vi; we thus obtain a graph rooted at the smallest
vertex of the smallest cycle contained in Gλi

, i.e. satisfying condition (3).
Similarly, to obtain condition (4) we consider the pairs of subgraphs Gλi

, Gλj
of

G, such that the minimum of λi ∪ λj is not contained in any cycle of G. We pick the
smallest cycle of G, which is contained in Gλi ∪ Gλj and change the direction of all
paths from the vertices of Gλi

to Gλj
, if needed. □

Notation 5.11. We introduce the notation L(16) for the set of subgraphs G ⊂ Kk

with k vertices that contain an out-edge from each vertex, and R(16) for the set of
subgraphs G ⊂ Kk satisfying conditions (1)-(4) from Lemma 5.10.

We showed in Lemmas 5.4 and 5.10 that the left-hand and the right-hand sides
of equation (16) count graphs (with fixed number of edges) from the sets L(16) and
R(16), correspondingly. Hence to prove equation (16), we need to construct a bijection
between two sets of graphs: L(16) and R(16).

We start by observing that any graph satisfying conditions (1)-(4) from Lemma
5.10 is clearly a subgraph of Kk with k vertices, and has an out-edge from each vertex,
and thus R(16) is a subset of L(16).

Now let G be an element of L(16). To obtain a map from L(16) to R(16), we need
to associate to G a partition (λ1, . . . , λp) of the set {1, . . . , k} and find subgraphs
Gλ1 , . . . , Gλp ⊂ G, satisfying conditions (1)-(4) from Lemma 5.10.

Let C1 ≺ · · · ≺ Cs be the cycles of G. We set λ0 = ∅, and for j ⩾ 0 we iterate the
following procedure to obtain a partition (λ1, . . . , λp) of {1, . . . , k}.

• Let λj be a subset of {1, . . . , k}, such that the set of vertices of each cycle
Ci of G is either contained in λj or does not intersect λj . We introduce the
notation G∖λj for the graph obtained from G by deleting all vertices labelled
by λ0 ∪ λ1 ∪ · · · ∪ λj and all edges attached to these vertices. We denote by
Cλj+1 the smallest cycle of G, which is contained in G∖λj .
• Let λj+1 ⊂ {1, . . . , k} be the set of vertices i of the graph G∖λj , such that
Cλj+1 is reachable from i, i.e. there is a directed path in G∖λj from the vertex
i to a vertex in a subgraph Cλj+1 .
• As observed above, for any 1 ⩽ i ⩽ s, the connected graph Ci contains a

directed path between any two vertices, hence the set of vertices of Ci is
either contained in λj+1 or does not intersect λj+1. We can thus repeat the
procedure, until we arrive at the empty graph G∖ λp for some p.

We make the following observation.
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Lemma 5.12. Let λ1, . . . , λp be subsets of {1, . . . , k} associated to a graph G as above.
Then (λ1, . . . , λp) is a partition of the set {1, . . . , k}.

Proof. It follows from the construction that all vertices of non-trivial cycles of G are
contained in the union λ1∪· · ·∪λp. We have to show that if the maximal naked graph
GF ⊂ G has a trivial connected component which consists of a single vertex v, then
v is an element of λi for some 1 ⩽ i ⩽ p.

Recall that G contains an out-edge from the vertex v, and thus there is a directed
path from v to some non-trivial cycle Cj of G; then it follows from the construction
that v belongs to the same subset λi ⊂ {1, . . . , k} as all vertices of Cj . □

We denote by Gλi
the subgraph of G obtained by taking vertices from λi ⊂

{1, . . . , k} and all edges between them. Then clearly, the collection of subgraphs
Gλ1 , . . . , Gλp of G satisfy conditions (1)-(4) from Lemma 5.10, and thus we obtain
a map from the set L(16) to the set R(16). It is easy to check that this map is a
bijection, and thus Theorem 5.3 follows. □

6. Multiplication
In this section, we introduce a ring structure on the intersection cohomology of the
affine toric variety X(A(r12, . . . , rk−1k), 0) induced by the small resolution of singu-
larities.

6.1. Other chambers. It turns out that we could have carried out the arguments
of §4.2-§4.4 for any chamber in the chamber complex Ch(A(r12, . . . , rk−1k)).

Proposition 6.1. Let θ be a generic point in NA(r12, . . . , rk−1k). Then the morphism
of toric varieties

φθ : X(A(r12, . . . , rk−1k), θ)→ X(A(r12, . . . , rk−1k), 0)

is small.

Proof. The proof follows the logic of the proof of Theorem 4.9. We repeat the argu-
ment with only minor changes, and thus we omit the details.

Let c be the chamber containing θ. As explained in the proof of Lemma 4.13, each
cone Cone(αI) for a basis index set I ∈ BInd(A(r12, . . . , rk−1k), c) correspond to a
spanning tree in Kk; we introduce the notation Trees(θ) for the set of these trees.

Let F be a face of Π, and let GF be the corresponding naked graph (cf. Lemma
4.10). Denote by Gθ

F the set of connected subgraphs of Kk with k vertices that have the
same directed cycles as the naked graph GF and that contain at least one tree from
Trees(θ). Then (cf. Theorem 4.16 and Lemma 4.17) for any point y in O(Cone(F )) ⊂
X the Poincaré polynomial of the fiber φ−1

θ (y) is equal to∑
l⩾0

dl(F )(t2 − 1)l,

where dl(F ) is the number of graphs in Gθ
F with e(GF ) + s(GF )− 1 + l edges.

Repeating the dimension estimates from the proof of Theorem 4.9, we arrive at
our statement. □

6.2. A ring structure on the intersection cohomology. Applying Theorem
3.5 to the small morphism φθ from Proposition 6.1, we obtain the following statement.

Corollary 6.2. Let θ and φθ be as in Proposition 6.1. There is an isomorphism

ψθ : H∗(φ−1
θ (0)) ∼−→ IH∗(X(A(r12, . . . , rk−1k), 0))
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between the cohomology groups of the fiber φ−1
θ (0) and the intersection cohomology

groups of the affine cone X(A(r12, . . . , rk−1k), 0). The isomorphism ψθ induces a ring
structure on the intersection cohomology of X(A(r12, . . . , rk−1k), 0).

The cohomology rings H∗(φ−1
θ (0)) were studied in [9]. In particular, it was

shown that they do not depend on the choice of the elements θ ∈ a∗
k (cf. Theo-

rem 6.3), and thus the induced ring structure on the intersection cohomology of
X(A(r12, . . . , rk−1k), 0) is canonical.
Theorem 6.3 ([9, Theorem 8.3]). Let θ be a generic point in NA(r12, . . . , rk−1k).
The cohomology ring of the fiber φ−1

θ (0) is canonically isomorphic to the quotient of
C[εi − εj , 1 ⩽ i < j ⩽ k] by the ideal generated by the polynomials

(22) pD(ε1, . . . , εk) =
∏

i∈D1,j∈D2

(εi − εj)rij ,

where D = D1 ⊔D2 runs over all nontrivial partitions of the set {1, 2, . . . , k}.
In the remainder of this section, we explain how these relations appear in our

graphical formalism.
We begin by describing the reducible variety φ−1

θ (0). We introduce the notation
Top(θ) for the subset of graphs in Gθ

Π with
∑

i<j rij edges, i.e. with the maximal
possible number of edges. Using Lemma 4.10, we can reformulate Lemma 2.1.11 from
[10] in terms of graphs in the following form.
Proposition 6.4. (i) The fiber of φθ over a point yΠ ∈ X(A(r12, . . . , rk−1k), 0)
is a connected reducible variety, whose irreducible components are toric varieties
parametrized by the elements in Top(θ).

(ii) Let G ∈ Top(θ) and denote the sequence of its edges by AG ⊂ A(r12, . . . , rk−1k).
Then the irreducible component of φ−1

θ (0) associated to G is the toric variety
X(AG, θ), which has dimension

∑
i<j rij − k + 1.

(iii) For G1, . . . , Gm ∈ Top(θ), denote by G1 ∩ · · · ∩ Gm the graph obtained
by taking all common edges of G1, . . . , Gm. Then the irreducible components
X(AG1 , θ), . . . , X(AGm , θ) are glued along the toric variety X(AG1∩···∩Gm , θ).
Remark 6.5. Unlike their cohomology rings, the varieties φ−1

θ (0) are not necessar-
ily isomorphic for different θs. For example, let θ1 = (3,−1,−1,−1) and θrand =
(2,−3, 2,−1) be two points in the chamber complex Ch(A(1, 1, 1, 1, 1, 1)). A simple
calculation shows that φ−1

θ1
(0) has 6 irreducible components that have Poincaré poly-

nomials 1 + 2t2 + 2t4 + t6, while φ−1
θrand

(0) has 6 irreducible components, two of which
are isomorphic to P3.

To describe the ring structure on H∗(φ−1
θ (0)), we need one more ingredient: a

general statement about relations in the cohomology ring of compact toric varieties.
These are well-known; we will present them in the formalism of [17]. We will use the
notation of §2.1-§2.2.

Let θ be a weight in Γ∗
a. By the Chern-Weil construction, every polynomial on a

gives rise to a characteristic class of the toric variety X(A, θ). Thus there is a Chern-
Weil homomorphism χ : Sym(a∗) → H∗(X(A, θ)) from the polynomials on a to the
cohomology of X(A, θ). In particular, for any vector α ∈ Γ∗

a, χ(α) is an element of
H2(X(A, θ)).

Now let A be a sequence which lies in an open half space of the vector space
a∗, and assume that θ is generic. Then X(A, θ) is a projective orbifold, and for every
polynomial Q ∈ Sym(a∗), one can write explicit formulas for the intersection numbers∫

X(A,θ) χ(Q) using the Jeffrey-Kirwan residue [2, 17]. In this paper, we will only need
to integrate some particularly simple classes, described below.
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Proposition 6.6 ([17, Proposition 2.3]). Let A be a sequence which lies in an open
half space of a∗, and let θ be a generic point in Γ∗

a. Then, for any set of indices
J ⊂ {1, . . . , n}n−d we have ∫

X(A,θ)

∏
j∈J

χ(αj) = 0,

if the complement of {αj}j∈J in A does not span a∗.

Now we apply this statement to our situation. Let θ ∈ Γ∗
a be generic, G ∈ Top(θ)

and AG ⊂ A(r12, . . . , rk−1k) be as in Proposition 6.4. Given a nontrivial partition D =
D1⊔D2 of the set {1, 2, . . . , k}, denote by A[D] the subsequence [αij , αji]i∈D1,j∈D2 ⊂
A(r12, . . . , rk−1k), where the element αij ∈ A[D] is repeated rij times.

Clearly, the sequence AG ∩ ((A(r12, . . . , rk−1k)∖A[D]) corresponds to a subgraph
of Kk, which doest not contain any tree on k vertices. Then it follows from Proposition
6.6 that the product ∏

i∈D1
j∈D2

χ(αij)rij ∈ H∗(X(AG, θ))

is zero for any G ∈ Top(θ), hence it is equal to zero in H∗(φ−1
θ (0)). We have thus

reproduced the Hausel-Sturmfels relations given in (22).

Acknowledgements. We are grateful to Camilla Felisetti, Nicolas Hemelsoet, Gábor
Hetyei and Tamás Hausel for useful discussions.

References
[1] Alexander Beilinson, Joseph Bernstein, and Pierre Deligne, Faisceaux pervers, in Analysis and

topology on singular spaces, I (Luminy, 1981), Astérisque, vol. 100, Soc. Math. France, Paris,
1982, pp. 5–171.

[2] Michel Brion and Michèle Vergne, Arrangement of hyperplanes. I. Rational functions and
Jeffrey-Kirwan residue, Ann. Sci. École Norm. Sup. (4) 32 (1999), no. 5, 715–741.

[3] Mark Andrea de Cataldo and Luca Migliorini, The decomposition theorem, perverse sheaves
and the topology of algebraic maps, Bull. Amer. Math. Soc. (N.S.) 46 (2009), no. 4, 535–633.

[4] Mark Andrea de Cataldo, Luca Migliorini, and Mircea Mustaţă, Combinatorics and topology of
proper toric maps, J. Reine Angew. Math. 744 (2018), 133–163.

[5] Camilla Felisetti, Andras Szenes, and Olga Trapeznikova, Parabolic bundles and the intersection
cohomology of moduli spaces of vector bundles on curves, 2025, https://arxiv.org/abs/2502.
20327.

[6] Karl-Heinz Fieseler, Rational intersection cohomology of projective toric varieties, J. Reine
Angew. Math. 413 (1991), 88–98.

[7] William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Prince-
ton University Press, Princeton, NJ, 1993.

[8] Mark Goresky and Robert MacPherson, Intersection homology theory, Topology 19 (1980),
no. 2, 135–162.

[9] Tamás Hausel and Bernd Sturmfels, Toric hyperKähler varieties, Doc. Math. 7 (2002), 495–534.
[10] Yi Hu, Chien-Hao Liu, and Shing-Tung Yau, Toric morphisms and fibrations of toric Calabi-Yau

hypersurfaces, Adv. Theor. Math. Phys. 6 (2002), no. 3, 457–506.
[11] Mirko Mauri, Intersection cohomology of rank 2 character varieties of surface groups, J. Inst.

Math. Jussieu 22 (2023), no. 4, 1615–1654.
[12] Mirko Mauri and Luca Migliorini, Hodge-to-singular correspondence for reduced curves, J. Eur.

Math. Soc. (JEMS) (2024), published online first.
[13] Mark McConnell, The rational homology of toric varieties is not a combinatorial invariant,

Proc. Amer. Math. Soc. 105 (1989), no. 4, 986–991.
[14] Sven Meinhardt and Markus Reineke, Donaldson-Thomas invariants versus intersection coho-

mology of quiver moduli, J. Reine Angew. Math. 754 (2019), 143–178.
[15] Sergey Mozgovoy and Markus Reineke, Intersection cohomology of moduli spaces of vector bun-

dles over curves, 2024, https://arxiv.org/abs/1512.04076.

Algebraic Combinatorics, Vol. 8 #2 (2025) 595

https://arxiv.org/abs/2502.20327
https://arxiv.org/abs/2502.20327
https://arxiv.org/abs/1512.04076


Andras Szenes & Olga Trapeznikova

[16] Richard Stanley, Generalized H-vectors, intersection cohomology of toric varieties, and related
results, in Commutative algebra and combinatorics (Kyoto, 1985), Adv. Stud. Pure Math.,
vol. 11, North-Holland, Amsterdam, 1987, pp. 187–213.

[17] András Szenes and Michèle Vergne, Toric reduction and a conjecture of Batyrev and Materov,
Invent. Math. 158 (2004), no. 3, 453–495.

[18] Hannah Winkler, Triangulations of Gale duals of root polytopes, Ph.D. thesis, San Francisco
State University, 2014.

Andras Szenes, Section de mathématiques, Université de Genève
E-mail : Andras.Szenes@unige.ch

Olga Trapeznikova, Section de mathématiques, Université de Genève
E-mail : Olga.Trapeznikova@ist.ac.at
Faculty of Mathematics, IST Austria

Algebraic Combinatorics, Vol. 8 #2 (2025) 596

mailto:Andras.Szenes@unige.ch
mailto:Olga.Trapeznikova@ist.ac.at

	1. Introduction
	2. Preliminaries: toric varieties
	2.1. The quotient construction
	2.2. Gale duality and toric fans

	3. Intersection cohomology
	3.1. Small maps
	3.2. Intersection cohomology of toric varieties

	4. The g-polynomial of the Gale dual type-A root polytope
	4.1. The type-A root polytope
	4.2. Small maps and the combinatorics of the g-polynomial
	4.3. Proof of Theorem 4.9
	4.4. Proof of Theorem 4.5

	5. The h-polynomial of the Gale dual type-A root polytope
	5.1. k=3 case
	5.2. Arbitrary k

	6. Multiplication
	6.1. Other chambers
	6.2. A ring structure on the intersection cohomology

	References

