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On the automorphism group of a putative
Conway 99-graph

Patrick G. Cesarz & Andrew J. Woldar

Abstract Let Γ be a Conway 99-graph, that is, a strongly regular graph with parameters
(99, 14, 1, 2). Existence of such a graph remains an elusive open problem, however various au-
thors have made significant contributions by analyzing the structure of the automorphism group
G = Aut(Γ). In this paper we duplicate many results of our predecessors (e.g. Behbahani &
Lam, Crnković & Maksimović), but crucially, we accomplish this without the aid of a computer.
Specifically, we give computer-free proofs that divisibility of |G| by 2 implies |G| divides 6 while
divisibility of |G| by 7 implies G ∼= Z7.

1. Introduction
The question of existence of a strongly regular graph with parameters (99, 14, 1, 2) is
a longstanding open problem. Its possible existence was first suggested by Norman
Biggs in 1969 [2]. According to the account given by Richard Guy in [9], John H.
Conway worked on this problem as early as 1975. Later, Conway would offer a $1000
prize to anyone who could solve it (see [6], where it is listed as problem 2 among five
posed open problems). From that point onward, a strongly regular graph having these
parameters came to be known colloquially as a Conway 99-graph.

In [6] Conway gave an alternate formulation of the existence problem, which we
here reproduce:

Is there a graph with 99 vertices in which every edge (i.e. pair of
joined vertices) belongs to a unique triangle and every nonedge (pair
of unjoined vertices) to a unique quadrilateral?

Famously, A.A. Makhnev and I.M. Minakova proved in [12] that a strongly reg-
ular graph with parameters (v, k, 1, 2) can only exist if k = u2 + u + 2 where u ∈
{1, 3, 4, 10, 31}. Such graphs are known to exist for u ∈ {1, 4} but not much is known
about the remaining cases. Should a Conway 99-graph exist, it would correspond to
the case u = 3.

In [12, Theorem 2.7] it is asserted that the order of the automorphism group G of
a Conway 99-graph must divide 2 · 33 · 7 · 11. In [11, Corollary 2.4] Makhnev asserts
the following:

If G contains an involution t, then one of the following holds:
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(i) If |G| is divided by 7 then |G| divides 42, [O(G), t] = 1, and in the case
|G| = 42 the subgroup O(G) is nonabelian. (Here O(G) denotes the maximal
odd-order normal subgroup of G.)

(ii) |G| divides 6.
Below we summarize results of various authors on the automorphism group of a

Conway-99 graph that were obtained since publication of [11, 12] and which were
brought to our attention by an anonymous referee (see [5, p.16]):

(a) In [1] Behbahani & Lam showed that any automorphism of prime order must
have order 2 or 3.

(b) In [7] Crnković & Maksimović ruled out groups of order 6 or 9.
In the present paper, we prove the following:
(1) If 2 divides |G|, then |G| divides 6.
(2) If |G| is divisible by 7, then G is isomorphic to Z7.

Importantly, we stress that results (1) and (2) are obtained without the aid of
a computer. To the best of our knowledge, this has not been accomplished in any
previous published work on the problem.

Our choice of notation and terminology are standard. We refer the reader to [3, 4,
5, 8, 13] as excellent sources of background material.

Our paper is organized as follows. In Section 2 we establish a labeling scheme for
the vertices of a putative Conway 99-graph Γ under the assumption that 7 divides |G|.
This allows us to embed G in the symmetric group of degree 14.

In Section 3 we prove that Γ admits no order 14 automorphisms. This is a crucial
step toward showing that divisibility by 2 implies |G| divides 6.

In Section 4 we show that divisibility by 7 implies G is isomorphic to either Z7
or Frob(21) (the Frobenius group of order 21). Assuming the latter, we are next able
to construct a unique feasible G-orbit partition of V (Γ) which we subsequently show
cannot exist. As a result, divisibility by 7 implies G ∼= Z7.

2. Preliminaries
Throughout this paper, Γ will denote a putative Conway 99-graph, i.e. a strongly
regular graph with parameters (99, 14, 1, 2). We denote its automorphism group by G.
Although Γ is not vertex transitive, a result first proved by Wilbrink [14], one can
always “hang” the graph from any vertex x ∈ V (Γ) whereby vertices are grouped
together in accordance with their distance from x. This is a property of distance-
regular graphs in general and strongly regular graphs in particular. In such case, we
refer to x as the “root vertex”.

As is customary, we denote by Γ1(x) and Γ2(x) the set of neighbors and non-
neighbors of x respectively, commonly referred to as the first and second subcon-
stituents of Γ. When x is understood from context, we will abbreviate these sets
by Γ1 and Γ2. In Figure 1 we depict the distance distribution diagram for Γ. Note
that the diagram indicates that |Γ1| = 14 and |Γ2| = 84.

For the moment we assume x ∈ V (Γ) is an arbitrary vertex, however in due course
our choice of x will carry special significance. We label the 14 neighbors of x by iX,
1 ⩽ i ⩽ 7, X ∈ {L, R}, see Figure 2. Since λ = 1, we may assume without loss of
generality that {iL, iR} is an edge for every 1 ⩽ i ⩽ 7.

Observe that for any {X, Y } = {L, R}, the vertices iX, jY ∈ Γ1 are adjacent if
and only if i = j. As µ = 2, each pair of nonadjacent vertices iX, jY ∈ Γ1 must have
a unique common neighbor in Γ2. We label this common neighbor ijXY . As there are(14

2
)

− 7 = 84 pairs of nonadjacent vertices in Γ1, we see that each of the 84 vertices
in Γ2 receives a unique label, again due to µ = 2.

Algebraic Combinatorics, Vol. 8 #2 (2025) 380



On the automorphism group of a Conway 99-graph
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Figure 1. Distance distribution diagram of Γ

x

4L 4R3R 5L3L 5R2R 6L2L 6R1R 7L1L 7R

Figure 2. A labeling scheme for Γ1

Lemma 2.1. Suppose g ∈ G fixes Γ1 ∪ {x} pointwise. Then g fixes Γ2 pointwise, i.e. g
is the identity automorphism.

Proof. Evident from our labeling scheme and the fact that µ = 2. □

Lemma 2.2. Suppose there exists s ∈ G with |s| = 7. Then s fixes a unique vertex
in V (Γ), hence the ⟨s⟩-orbit structure on V (Γ) is [1, 714] (i.e. one orbit of size 1
and 14 orbits of size 7).

Proof. As |V (Γ)| = 99 ≡ 1 (mod 7) we deduce that s must have at least one fixed
vertex which we may choose to fulfill the role of root vertex x of Γ. This establishes
that both Γ1 and Γ2 are s-invariant. In particular, the orbit structure of ⟨s⟩ on Γ1
is [72], [17, 7], or [114]. As iL is a fixed point of s if and only if iR is, the number of
fixed points must be even, i.e. the ⟨s⟩-orbit structure is either [72] or [114]. However,
Lemma 2.1 rules out [114], leaving [72] as the orbit structure on Γ1. Now suppose a
vertex ijXY ∈ Γ2 is fixed by s. As µ = 2 and |s| is odd, s must fix the µ-graph
Γ1(x) ∩ Γ1(ijXY ) = {iX, jY } vertex-wise, a contradiction. This proves the ⟨s⟩-orbit
structure on Γ2 is [712]. The result follows. □

Remark 2.3. Note that one consequence of our labeling scheme, together with
the assumption in Lemma 2.2, is that the automorphism group Aut(Γ) embeds in
Sym(Γ1) ∼= S14. By relabeling the vertices of Γ1, we may assume that s = sLsR

where sL = (1L, 2L, . . . , 7L) and sR = (1R, 2R, . . . , 7R). The two ⟨s⟩-orbits on Γ1
are now transparent. They are {1L, 2L, . . . , 7L} and {1R, 2R, . . . , 7R}.

Lemma 2.4. Every vertex of Γ2 lies on five 3-cycles wholly inside Γ2. Thus there are
140 3-cycles in Γ2.

Proof. Clearly, every vertex in Γ lies on seven 3-cycles. Given a vertex v ∈ Γ2 it has
precisely two Γ1-neighbors u and w. As λ = 1, each of vu and vw must be an edge
in a unique 3-cycle. Moreover, these two 3-cycles cannot coincide. Indeed, this would
require that u and w be adjacent, whence uwx would be a second 3-cycle on the edge
uw where x is the root vertex. This proves the remaining five 3-cycles on v lie entirely
inside Γ2. But now we have that the total number of 3-cycles in Γ2 is 84·5

3 = 140 as
claimed. □
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3. Consequences of divisibility by 2
In this section, we prove |G| must divide 6 under the assumption that |G| is even. A
critical role here is played by Theorem 3.11 in which we prove that G cannot have
any order 14 automorphisms.

Lemmas 3.1 and 3.2 set the groundwork for the rest of this section.

Lemma 3.1. Suppose G contains a cyclic subgroup K of order 14. Then K = ⟨st⟩
where s = (1L, 2L, . . . , 7L) (1R, 2R, . . . , 7R) and t = (1L, 1R) (2L, 2R) . . . (7L, 7R).

Proof. Let CS(s) = (⟨sL⟩ × ⟨sR⟩) ⋊ ⟨t⟩ denote the centralizer of s in S = Sym(Γ1).
There are seven involutions in CS(s) which take the form

t(sR)i

= (1L, (1 + i)R) (2L, (2 + i)R) . . . (7L, iR),

0 ⩽ i ⩽ 6, and in each case ⟨st(sR)i⟩ is a cyclic subgroup of CS(s) of order 14.
However, since t(sR)i maps 1L to (1 + i)R and 1R to (1 − i)L, adjacency is preserved
only if i = 0. Thus t is the unique involution in Aut(Γ1) whereby K = ⟨st⟩ is the
unique cyclic subgroup of order 14 in Aut(Γ1). □

Lemma 3.2. K = ⟨st⟩ fixes the root vertex x of Γ but has no other fixed points. Thus
each of the remaining seven K-orbits on Γ has size 14.

Proof. Recall from Lemma 2.2 that x is the unique vertex fixed by s ∈ K. As t
commutes with s we have that xt is fixed by s, whence xt = x. Thus x is the unique
vertex fixed by K.

We now consider K-orbits on V (Γ)∖{x}. Clearly, K fuses the two ⟨s⟩-orbits in Γ1
so we are left to consider the orbit structure of K on Γ2. Suppose there exists an ⟨s⟩-
orbit O that is K-invariant. Then as |t| = 2 and |O| = 7, there must be a vertex v ∈ O
fixed by t. Let iX be a Γ1-neighbor of v. Then iY = (iX)t must also be a Γ1-neighbor
of v. But this violates λ = 1 as iX and iY are adjacent. We conclude that all K-orbits
of Γ2 have size 14. □

Remark 3.3. It is easy to see that a set of orbit representatives in the action of K
on Γ2 is given by {12LL, 13LL, 14LL, 12LR, 13LR, 14LR}. Moreover, each numeri-
cal coordinate i occurs exactly four times in each orbit. For example, in the orbit with
representative 12LL, the coordinate 3 occurs in each of 23LL, 34LL, 23RR, 34RR.
However, these four vertices are distributed evenly into pairs in the sense that 23LL,
34LL are neighbors of 3L while 23RR, 34RR are neighbors of 3R.

Consider the equitable partition π induced by the K-orbits O1, O2, . . . , O6 on Γ2.
As is customary, we refer to π as a K-orbit partition. We denote by bij the number of
Oj-neighbors of any fixed vertex in Oi and refer to it as an orbit valency (or simply
valency) due to what occurs naturally in the quotient graph Γ2/π. Orbit valencies
for which i = j will be called internal and expressed as bi rather than bii. All other
valencies will be referred to as external. Pictorially, bij appears as a label of an arc
from Oi to Oj , however in our case this arc is an edge (i.e. bij = bji for all i, j) since
all orbits Oi have the same size.

At present we have that st is an order 14 automorphism of the subgraph of Γ
induced on Γ1 ∪ {x}. We wish to show st cannot extend to an automorphism of Γ.
Our first step toward this objective is to count in two ways the cardinality of the set

S = {uvw : uvw is a 2-path with w ∈ Oi},

where u is a fixed vertex in Oi (see Figure 3).

Algebraic Combinatorics, Vol. 8 #2 (2025) 382



On the automorphism group of a Conway 99-graph
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Figure 3. A general K-orbit partition on Γ2 where K = ⟨st⟩ ∼= Z14

For each of the bi neighbors of u in Oi there is a unique 2-path from u to w (since
λ = 1). Similarly, for each of the 13−bi non-neighbors of u in Oi there are two 2-paths
from u to w (since µ = 2). Thus |S| = bi · 1 + (13 − bi) · 2 = 26 − bi.

On the other hand, we may condition our count on the location of the intermediate
vertex v. For v in Oj there are bij (bij −1) such 2-paths. In addition, u has exactly two
neighbors in Γ1 each of which has a unique neighbor w ∈ Oi ∖ {u} (cf. Remark 3.3).
This gives |S| =

∑6
j=1 bij (bij − 1) + 2. Equating these two expressions for |S|, we

obtain 26 − bi =
∑6

j=1 bij (bij − 1) + 2. But due to the fact that
∑6

j=1 bij = 12, this
simplifies to

(1) 36 −
(
b 2

i + bi

)
=

∑
j ̸=i

b 2
ij

We divide our analysis into cases based on an assumed value for bi. Once a choice of bi

is made, we find all ways of expressing 36 −
(
b 2

i + bi

)
as a sum of five squares while

maintaining the valency requirement
∑6

j=1 bij = 12. Note that bi ⩽ 5 since otherwise
the value of 36 −

(
b 2

i + bi

)
would be negative.

All solution sets are provided in the lemma below. Verification of the list is straight-
forward, so is left to the reader. Note that each solution set is expressed as an ordered
pair of the form (

bi,
{

a2, a3, a4, a5, a6
})

.

This is because unlike the internal valency bi which remains fixed, the values
a2, a3, . . . , a6 may be assigned to the external valencies bij in any specified manner.
Thus, there are multiple solutions corresponding to each solution set achieved by
suitably permuting the members of the multiset

{
a2, a3, a4, a5, a6

}
. Below, we list

these members in decreasing order.

Lemma 3.4. For bi ∈ {1, 3, 5} there are no solutions to equation 1. For other values
of bi the solutions are listed as follows:

(a)
(
0,

{
4, 3, 3, 1, 1

})
and

(
0,

{
3, 3, 3, 3, 0

})
when bi = 0.

(b)
(
2,

{
4, 3, 2, 1, 0

})
when bi = 2,

(c)
(
4,

{
3, 2, 1, 1, 1

})
and

(
4,

{
2, 2, 2, 2, 0

})
when bi = 4.
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For future reference, it is convenient to designate these solution sets by type, e.g.
I.

(
0,

{
4, 3, 3, 1, 1

})
, II.

(
0,

{
3, 3, 3, 3, 0

})
, III.

(
2,

{
4, 3, 2, 1, 0

})
IV.

(
4,

{
3, 2, 1, 1, 1

})
, V.

(
4,

{
2, 2, 2, 2, 0

})
We also extend this terminology to orbits, saying an orbit is of type T if its set of
valencies correspond to a solution set of type T ∈ {I, II, III, IV, V}.

We next count in two ways the number of 2-paths starting from a fixed vertex u
in Oi and ending at some vertex w in Oj , j ̸= i. Here u has exactly bij neighbors
in Oj , and as λ = 1 there exists a unique 2-path starting at u and ending at w for
each neighbor w of u in Oj . Similarly, u has 14−bij non-neighbors in Oj , and as µ = 2
there are exactly two 2-paths starting at u and ending at each non-neighbor w of u
in Oj . Thus in total there are bij · 1 + (14 − bij) · 2 = 28 − bij such 2-paths from u
into Oj when j ̸= i.

For the second count, we focus on the location of an intermediate vertex v in each
such 2-path. Here v can occur in any of the six K-orbits on Γ2 as well as in Γ1. In the
case of K-orbits on Γ2, there are bik choices for v in Ok, and for each such v there
are bkj choices for w in Oj . This gives bikbkj 2-paths of desired type. In addition, there
are two choices for v in Γ1 each of which has two neighbors w in Oj . This produces
four more 2-paths. Thus, in total there are precisely

∑6
k=1 bikbkj + 4 paths of the

type in question when j ̸= i.
Equating these two counts yields 28 − bij =

∑6
k=1 bikbkj + 4, or equivalently

(2) 24 − bij =
6∑

k=1
bikbkj .

Lemma 3.5. In a K-orbit partition of Γ2 (cf. Figure 3) we have the following:
(a) The number of orbits of type I is at most 2.
(b) The number of orbits of type II is at most 1.
(c) The number of orbits of type III is at most 4.
(d) The number of orbits of type IV is at most 4.
(e) The number of orbits of type V is at most 1.

Proof. (a): Suppose there exist two orbits Oi and Oj of type I. Then since bi = bj = 0,
equation 2 reduces to 24 − bij =

∑
k ̸=i,j bikbkj . Note that this equation is satisfied

only if bij = 4, which results in the solution 20 = 32 + 32 + 12 + 12. As an orbit of
type I has only one external valency 4, there cannot be a third orbit of this type.

(b): Let Oi and Oj be two orbits of type II. Since bi = bj = 0, equation 2 again
reduces to 24 − bij =

∑
k ̸=i,j bikbkj . But regardless of how one chooses bij ∈ {0, 3}

and reorders the corresponding multisets, this equation is never satisfied. Thus there
is at most one orbit of type II.

(c): Let Oi and Oj be two orbits of type III. Since bi = bj = 2, equation 2
becomes 24 − 5bij =

∑
k ̸=i,j bikbkj . In this case one has bij ∈ {0, 1, 2, 3, 4}. There are

no solutions if bij ∈ {1, 2}, however every remaining choice of bij works. Specifically,
if bij = 0 one gets 24 = 4 · 1 + 3 · 4 + 2 · 3 + 1 · 2 as a solution. For bij = 3 one gets
9 = 4 · 0 + 2 · 4 + 1 · 1 + 0 · 2, while for bij = 4 one gets 4 = 3 · 0 + 2 · 1 + 1 · 2 + 0 · 3.
Having only three allowable external valencies adjoining pairs of type III orbits, it is
not possible to have a fifth orbit of this type.

(d): Given any two orbits Oi and Oj of type IV, we have that bij ∈ {1, 2, 3}.
As b1 = b2 = 4, equation 2 becomes 24−9bij =

∑
k ̸=i,j bikbkj . Clearly bij = 1 leads to

a solution, namely 15 = 12 + 12 + 22 + 32, but other choices of bij fail. Since a type IV
orbit has only three available external valencies equal to 1, there can be at most four
orbits of this type.
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I II III IV V
I 2 0 4 0 0
II 0 1 4 4 1
III 2 1 4 2 1
IV 0 1 4 4 1
V 0 1 4 4 1

Table 1. Bounds on the number of orbits of mixed type

(e): Finally, suppose there are two orbits Oi and Oj of type V. Then since bi =
bj = 4, equation 2 becomes 24 − 9bij =

∑
k ̸=i,j bikbkj . Here bij ∈ {0, 2} and neither

choice leads to a solution. This proves there is at most one orbit of type V. □

In the above, we applied equation 2 to bound the number of orbits of a given
type that can occur in a K-orbit partition of Γ2. We now do the same for orbits of
mixed type. Note that we do not strive to obtain sharp bounds at this stage. Our goal
is simply to eliminate several possibilities in an expedient manner.

Lemma 3.6. Let Ti , Tj ∈ {I, II, III, IV, V}. Then the (Ti , Tj)-entry in Table 1 bounds
from above the number of orbits of type Tj that can coexist with a fixed orbit of type Ti
in a K-orbit partition of Γ2.

Proof. Note that the diagonal entries in Table 1 were previously confirmed in
Lemma 3.5. Moreover, one need not check any entry (Ti , Tj) that is equal to the
diagonal entry (Tj , Tj) since the latter is the maximum allowable number of orbits
of type Tj in any K-orbit partition of Γ2.

Case 1. (I, II) = (II, I) = 0 : Clearly, the only option for the shared valency
is bij = 3. As bi = bj = 0, equation 2 reduces to 21 =

∑
k ̸=i,j bikbkj where bik ∈

{4, 3, 1, 1} and bkj ∈ {3, 3, 3, 0}. It is easy to see that no permutation of multisets
leads to a solution, i.e. (I, II) = 0. (For (II, I) = 0, the only change to the above
is bik ∈ {3, 3, 3, 0} and bkj ∈ {4, 3, 1, 1}.)

Case 2. (I, IV) = (IV, I) = 0 : In this case bi = 0 and bj = 4, so equation 2 reduces
to 21 − 5bij =

∑
k ̸=i,j bikbkj . Here there are two options for bij . If bij = 1 then we get

16 =
∑

k ̸=i,j bikbkj where bik ∈ {4, 3, 3, 1} and bkj ∈ {3, 2, 1, 1} and no permutation of
multisets leads to a solution. For the second option bij = 3, we get 6 =

∑
k ̸=i,j bikbkj

where bik ∈ {4, 3, 1, 1} and bkj ∈ {2, 1, 1, 1}. Again no permutation of multisets gives
a solution. Thus (I, IV) = (IV, I) = 0.

Case 3. (I, V) = (V, I) = 0 : Here the multisets {4, 3, 3, 1, 1} and {2, 2, 2, 2, 0} are
disjoint, so there is no possible valency that can adjoin two orbits of these respective
types.

Case 4. (III, IV) = 2 : In this case, bi = 2 and bj = 4 so equation 2 becomes
24 − 7bij =

∑
k ̸=i,j bikbkj . There are three choices for bij , namely bij ∈ {3, 2, 1}.

If bij = 3 the equation reduces to 3 =
∑

k ̸=i,j bikbkj where bik ∈ {4, 2, 1, 0} and
bkj ∈ {2, 1, 1, 1}, and it is immediate that there is no solution. If bij = 2 we obtain
10 =

∑
k ̸=i,j bikbkj where bik ∈ {4, 3, 1, 0} and bkj ∈ {3, 1, 1, 1}. Here there is a unique

solution, namely 10 = 4 · 1 + 3 · 1 + 1 · 3 + 0 · 1. Finally, if bij = 1 we obtain 17 =∑
k ̸=i,j bikbkj where bik ∈ {4, 3, 2, 0} and bkj ∈ {3, 2, 1, 1}. In this case there are three

solutions, namely 17 = 4·3+3·1+2·1+0·2 = 4·1+3·3+2·2+0·1 = 4·2+3·1+2·3+0·1.
In any case, there are just two possibilities for the valency adjoining an orbit of fixed
type III to an orbit of type IV. We conclude that (III, IV) = 2.

As all cases in the lemma statement have been treated, the proof is complete. □
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The reader will note that the relation in Lemma 3.6 is not generally symmetric.
Let us write [Ia, II b, III c, IV d, V e] to indicate a K-orbit partition of Γ2 having a

orbits of type I, b orbits of type II, and so on. (If an orbit of specific type does not
occur in the partition, we simply omit that type from the above partition notation.)

Lemma 3.7. There is no K-orbit partition of the form [III c, IV 6−c] for any c.

Proof. By Lemma 3.5, one has 2 ⩽ c ⩽ 4. As a type III orbit has a single valency of 4
and a type IV orbit has none, there are c/2 external valencies of 4 in the partition.
This means c must be even. However, by Lemma 3.6 the existence of a type III orbit
requires that there be at most two type IV orbits. This implies 6−c ⩽ 2 whence c = 2
is prohibited. Thus c = 4.

As shown in the proof of Lemma 3.5, each pair of type III orbits must share an
external valency of 0, 3 or 4. But as there are four type III orbits, every such valency
gets used. On the other hand, we showed in Lemma 3.5 that two orbits of type IV
must share an external valency of 1. This leaves a type IV orbit with an unusable
valency 3, again a contradiction. □

One conclusion of Lemma 3.7 is that a viable K-orbit partition of Γ2 must contain
an orbit of type I, II or V. By way of the next two lemmas, we narrow this down
considerably.

Lemma 3.8. There is no K-orbit partition that contains an orbit of type I.

Proof. By Lemma 3.6, the only possible orbit partition containing a type I orbit is
[I2, III4]. However, we have seen that no pair of type III orbits can share an external
valency of 2 (cf. proof of Lemma 3.5(c)). As no type I orbit admits such a valency,
we see that each orbit of type III has an unusable external valency of 2. The result
follows. □

Lemma 3.9. A K-orbit partition of Γ2 must be of the form [II, IV4, V].

Proof. By Lemmas 3.7 and 3.8, a K-orbit partition must contain at least one orbit of
type II or V. Suppose there exists a type II orbit in the partition. Then by Lemma 3.5
there cannot be a second orbit of type II, nor can there be more than one orbit of
type V. Thus the partition is of the form [II, IIIc, IVd, Ve] where c + d + e = 5 and
0 ⩽ e ⩽ 1. Also, as in the proof of Lemma 3.7, c must be even.

Suppose first that c = 2. Then by Lemma 3.6 we have d ⩽ 2, whence the partition
must be of the form [II, III2, IV2, V]. In the proof of Lemma 3.6(d), we saw that any
two orbits of respective types III and IV must be adjoined by a valency of either 1
or 2. As there are two type IV orbits, both these external valencies get used adjoining
a type III orbit to these type IV orbits. But this prohibits the existence of a type V
orbit since such an orbit has four external valencies of 2 and there are no longer any
valencies of 2 in a type III orbit to accommodate this.

For c = 4, the argument is similar. Each pair of two type III orbits must share a
valency of 0, 3 or 4. As there are four type III orbits in this case, every such valency
gets used adjoining orbits of this type. However, a type II orbit has four external
valencies of 3. As a type III orbit no longer has a valency of 3 to accommodate this,
we reach a contradiction This proves c = 0 when a type II orbit is assumed to occur
in the partition.

Our only remaining case is to assume a type V orbit occurs in the partition. Here
the four external valencies of 2 in such an orbit get used adjoining it to four other
orbits, be they of type III or IV. But this implies there must be an orbit of type II in
the partition, a case we have already treated. We conclude that a K-orbit partition
of Γ2 must indeed be of the form [II, IV4, V]. □
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Figure 4. The lone surviving K-orbit partition of Γ2 (cf. Lemma 3.9)

We depict the K-orbit partition of type [II, IV4, V] in Figure 4. It too will be shown
to not exist in due course.

Lemma 3.10. Neither a type IV orbit nor a type V orbit can contain a 3-cycle.

Proof. First observe that type IV and type V orbits have internal valency 4. In any
orbit of either type we may fix a vertex v and denote its neighbors by vp, vr, vs, vt

where p, r, s, t ∈ K. However v p−1
, v r−1

, v s−1
, v t−1 must also be neighbors of v. This

means, with one exception, the automorphisms p, r, s, t must come in pairs. The one
exception is if two or four of p, r, s, t are involutory. However, this cannot be the case
since K contains a unique involution. Therefore, without loss of generality we may
assume r = p−1 and t = s−1. Moreover, we know that |r|, |t| ∈ {7, 14}. Three broad
cases can arise here, namely |r| = |t| = 7, |r| = |t| = 14 and |r| = 7, |t| = 14.

Case 1. |r| = |t| = 7: In this case the orbit is comprised of two connected com-
ponents but that won’t affect our argument. Since K contains a unique subgroup of
order 7, we must have r = t m for some integer m ∈ {2, 3}. However, both subcases
violate λ = 1 as depicted in Figure 5. Specifically, if r = t2 then the edge vtv t 2 lies
on two 3-cycles, while if r = t3 the edge vv t 4 suffers the same fate. (Note that the
subcases m = 4, 5 are identical to m = 3, 2 respectively.)

Case 2. |r| = |t| = 14: Here we have r = t m where m ∈ {3, 5}. Both subcases
violate µ = 2 as indicated in Figure 6. Specifically, if r = t 3 then vertices v t 3 and v t 5

have v t 2 , v t 4 , v t 6 as common neighbors, whereas if r = t 5 then vertices v and v t 4

have v t 5 , v t 9 , v t−1 as common neighbors.
Case 3. |r| = 7, |t| = 14: Here there are three subcases to consider, namely

r ∈ {t2, t4, t6} as indicated in Figure 6. The first and last of these subcases lead
to violations. Specifically, r = t 2 violates λ = 1 since the edge vv t lies on two 3-cycles
with respective antipodal vertices v t 2 and v t −1 . In contrast, r = t 6 violates µ = 2
since the vertices v t 4 and v t 11 have v t 3 , v t 10 , v t 12 as common neighbors (as well
as v t 5). Curiously, the case r = t 4 does not lead to any λ or µ violations, however it
produces no 3-cycles either. This completes the proof of the lemma. □

Theorem 3.11. G does not contain any order 14 elements.
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Figure 5. The case |r| = |t| = 7 of Lemma 3.10
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Figure 6. The case |r| = |t| = 14 of Lemma 3.10

Proof. By way of contradiction, suppose G contains an element of order 14. By
Lemma 3.1 we may assume this element is st, and as usual we set K = ⟨st⟩. Lemma 3.9
now asserts that a K-orbit partition must be of the form [II, IV4, V] as depicted in
Figure 4. We claim this orbit partition cannot occur.

For this purpose, it behooves us to restrict the action on V (Γ) from K ∼= Z14 to
⟨s⟩ ∼= Z7. This latter action yields 15 orbits: one fixed vertex (the root x) and 14
orbits of size 7. Let B be the 15 × 15 quotient matrix corresponding to this action.
We compute the trace of B in two different ways.

First, let A be the adjacency matrix of Γ. We know that the characteristic poly-
nomial of B must divide that of A. Further, we know that the spectrum of A is
{14, 3(54), −4(44)}. Since each row sum of B is 14, we conclude that 14 is an eigen-
value of B. The spectrum of B is therefore {14, 3(a), −4(14−a)} for some nonnegative
integer a ⩽ 14, and accordingly the trace of B is 14 + 3a − 4(14 − a) = 7a − 42.

Note that the diagonal entries of B correspond to the internal valencies of orbits.
Thus the trace of B is the sum of these internal valencies. In the action of ⟨s⟩ on
Γ1 ∪ {x}, we have the fixed vertex x (obviously with internal valency zero) and two
orbits of size 7, each having internal valency zero so yielding no contribution to the
trace. In Γ2 we have 12 ⟨s⟩-orbits of size 7 which fuse in pairs to form the six K-
orbits of Γ2. Five of these six K-orbits have internal valency 4, which, as a direct
consequence of Lemma 3.10, decompose into pairs of ⟨s⟩-orbits each having internal
valency 2. The sixth K-orbit has internal valency 0 so contributes nothing to the trace.
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It follows that the trace of B is 10(2) = 20. Equating our two computations now yields
20 = 7a − 42, an obvious contradiction since a must be integral. We conclude that a
putative Conway 99-graph cannot admit an automorphism of order 14. □

Proposition 3.12. |G| is not divisible by 14.

Proof. Suppose 14 divides |G|. Then by [12] one has |G| ∈ {14, 42}. Recall from [11]
that [O(G), t] = 1, where O(G) is the maximal odd order normal subgroup of G
and t ∈ G is an involution. This alone rules out D14, D42, D14 × Z3 and Frob(42)
as possible isomorphism types of G. The only remaining possibilities are Z14, Z42,
Z7 × S3 and Frob(21) × Z2. However, each of these groups has an element of order
14 so is ruled out by Theorem 3.11. □

Corollary 3.13. If 2 divides |G|, then |G| divides 6.

Proof. This is an immediate consequence of Proposition 3.12 and [11, Corollary 2.4].
□

4. Consequences of divisibility by 7
In this section, we prove G ∼= Z7 under the assumption that |G| is divisible by 7.
Our first step in this direction is to show that |G| must divide 21. This leads to just
two possible isomorphism types for G, namely Z7 and the Frobenius group Frob(21).
Ultimately, we rule out Frob(21) to obtain our desired result.

Lemma 4.1. Suppose 7 divides |G|, and let P7 be a Sylow 7-subgroup of G. Then P7
is normal in G.

Proof. By [12] and Proposition 3.12, |G| must divide 33·7·11. By Sylow’s Theorem, the
number n7 of Sylow 7-subgroups must satisfy n7 = [G :NG(P7)] and n7 ≡ 1 (mod 7).
It is straightforward to deduce that P7 ⊴ G for all orders of G except possibly 32 ·7 ·11
and 33 · 7 · 11. However, in these two cases one has P11 ⊴ G where P11 is a Sylow 11-
subgroup of G. As P7 does not embed in Aut(P11) ∼= Z10 it follows that [P7, P11] = 1.
But then P11 ⩽ NG(P7) whence n7 = [G : NG(P7)] ∈ {1, 9, 27}. We now conclude
from the congruence n7 ≡ 1 (mod 7) that n7 = 1. Hence P7 ⊴ G as claimed. □

Proposition 4.2. Divisibility by 7 implies |G| divides 21.

Proof. By our labeling scheme in Section 2 and Remark 2.3, it is clear that P7 = ⟨s⟩
where s = (1L, 2L, . . . , 7L) (1R, 2R, . . . , 7R). Furthermore, as ⟨s⟩ ⊴ G by Lemma 4.1,
we have that G embeds in the normalizer NS(⟨s⟩) where S = Sym(Γ1) ∼= S14. Thus
the order of G must simultaneously divide |NS(⟨s⟩)| = 22 ·3·72 and 33 ·7·11. Obviously
this implies |G| divides 21. □

Corollary 4.3. If 7 divides |G|, then G is isomorphic to either Z7 or Frob(21).

Proof. By Proposition 4.2, |G| ∈ {7, 21}. There are only two groups of order 21 up
to isomorphism, namely Z21 and Frob(21). But 3 does not divide the order of the
centralizer CS(s) = (⟨sL⟩ × ⟨sR⟩)⋊ ⟨t⟩ ∼= (Z7 ×Z7)⋊Z2 where S = Sym(Γ1). Thus G
cannot contain an element of order 21, i.e. G ̸∼= Z21. □

In what follows, we gather detailed information about a putative Conway 99-
graph Γ under the assumption that G ∼= Frob(21). Throughout, we assume G = ⟨s, r⟩
with |r| = 3. Since r normalizes ⟨s⟩, it is clear that r fixes the root vertex x whence
Γ1 and Γ2 are G-invariant. Still, we have yet to pin down the precise structure of r.
This is remedied below.
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Figure 7. General form of a G-orbit partition of Γ2

Lemma 4.4. With notation as above, we may assume

r = (1L, 2L, 4L) (3L, 6L, 5L) (1R, 2R, 4R) (3R, 6R, 5R).

Proof. It is immediate that r is an element in the normalizer NS(⟨s⟩) in S = Sym(Γ1).
Applying standard group theoretic arguments, one deduces that there are 98 elements
of order 3 in NS(⟨s⟩) and these take the form((

(1L, 2L, 4L)(3L, 6L, 5L)
)(sL)i(

(1R, 2R, 4R)(3R, 6R, 5R)
)(sR)j )±1

where 0 ⩽ i, j ⩽ 6. However, it is easily verified that such an element is an automor-
phism of Γ1 if and only if i = j. Thus, the 14 elements of order 3 in G are precisely(

(1L, 2L, 4L) (3L, 6L, 5L) (1R, 2R, 4R) (3R, 6R, 5R)
)± s i

from which the result follows. □

Lemma 4.5. The G-orbit structure on Γ is [1, 72, 214].

Proof. As 21 does not divide 14, the two ⟨s⟩-orbits on Γ1 cannot fuse under the action
of G. Thus the G-orbit structure on Γ1 is [72].

Now let O be an arbitrary G-orbit on Γ2. We claim G acts regularly on O from
which the desired result will follow. To this end, suppose ijXY ∈ O is fixed by
some g ∈ G, where X, Y ∈ {L, R}. It follows that |g| = 3, since s has no fixed
points in Γ2. As λ = 1, we have i ̸= j. Thus since µ = 2, g must either fix or
interchange the two Γ1-neighbors of ijXY , i.e. {iXg, jY g} = {iX, jY }. But as G has
odd order, these vertices must be fixed by g, that is, iXg = iX and jY g = jY . As g
preserves adjacency, we must also have (iXC)g = iXC and (jY C)g = jY C where
{X, XC} = {Y, Y C} = {L, R}. In every instance, we obtain iLg = iL and jLg = jL.
By transitivity of ⟨s⟩ on the orbit containing iL, we get jL = iLz for some z ∈ ⟨s⟩.
This gives jL[z,g] = iLg −1zg = iLzg = jLg = jL, i.e. jL is a fixed point of [z, g]. But
[z, g] ∈ ⟨s⟩ because ⟨s⟩ is normal in G. This implies [z, g] = 1, a contradiction since G
is nonabelian. We conclude that the G-orbit structure on Γ2 is [214] as claimed. □

Remark 4.6. Now that we understand the orbit structure of G on Γ2, it is trivial to de-
termine a corresponding set of orbit representatives, viz. {12LL, 12RR, 12LR, 12RL}.
For brevity we shall denote these orbits as LL, RR, LR, RL, respectively. We indicate
the corresponding G-orbit partition of Γ2 in Figure 7.
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For ijXY ∈ Γ2, we refer to iX and jY as its coordinates. In the result that follows,
we demonstrate a manner in which the coordinates of the 12 Γ2-neighbors of a fixed
vertex in Γ2 are balanced.

Lemma 4.7. Let ijXY be a fixed but arbitrary vertex in Γ2 and consider collectively
the 24 coordinates appearing among its 12 Γ2-neighbors. Then the following hold:

(1) Each of iL, iR, jL, jR appears exactly once.
(2) Each of kL, kR appears exactly twice for each k ̸= i, j.
(3) Each of L and R appears 12 times, i.e. the Γ2-neighbors of a vertex in Γ2 are

L/R-balanced.

Proof. As in Lemmas 3.2 and 4.5 we let {X, XC} = {Y, Y C} = {L, R}. We must
show that each of iX, jY and iXC , jY C occurs exactly once as coordinates of the Γ2-
neighbors of ijXY . We treat the pair iX, jY first. Since λ = 1 and ijXY is adjacent
to iX ∈ Γ1, there is a unique vertex in Γ2 which is their common neighbor. Evidently
this vertex is of the form iℓXW for some W ∈ {L, R} with ℓW ̸= jY . Thus iX occurs
exactly once as a coordinate of a Γ2-neighbor of ijXY and by a symmetric argument
the same holds true for jY .

We next treat the pair iXC , jY C . Observe that since λ = 1, we have that ijXY and
iXC are nonadjacent. Since µ = 2, the vertices ijXY and iXC must have a unique
common neighbor iℓXCW ∈ Γ2 with iX being their second common neighbor. Thus
iXC occurs exactly once as a coordinate of a Γ2-neighbor of ijXY with a similar result
holding for jY C . As {iX, iXC} = {iL, iR} and {jY, jY C} = {jL, jR}, assertion (1)
is proved.

Now let k ̸= i, j and W ∈ {L, R}. Since µ = 2 and kW is nonadjacent to ijXY ,
there are exactly two vertices in Γ2 that are common neighbors of kW and ijXY .
Obviously, kW appears as a coordinate in each such neighbor, so twice in total. Thus
assertion (2) is proved. Finally, observe that (3) follows directly from (1) and (2). □

As a consequence of Lemma 4.7(3), we have the following.

Lemma 4.8. With notation as in Figure 7, b1 = b12 = b2, b13 = b23, and b14 = b24.

Proof. We apply Lemma 4.7(3) to vertices in LL, RR, LR, RL in that order. Prefatory
to this, note that the coordinates of vertices in LR and RL have a natural L/R-balance
built into them. This means we may safely ignore edges that adjoin any vertex in Γ2
to vertices in either of these two orbits when exploiting the property of balance.

Let u be a fixed vertex in LL. As u has valency b1 in LL, it must have b1 neighbors
in RR in order to restore L/R-balance. This proves b12 = b1. By a similar argument
based on RR, we have b12 = b2. Now let u be a vertex in LR. Clearly, every neighbor
of u in LL must be reciprocated by a neighbor in RR to maintain balance. This proves
b13 = b23. Applying this latter argument to vertices in RL yields b14 = b24. □

To further narrow down possible orbit valencies, we adopt the approach used in
Section 3. That is to say, we analyze 2-paths between vertices from pairs of orbits.
Let u be a fixed vertex in the orbit LL. We wish to count in two ways the cardinality
of the set S given by

S = {uvw : uvw is a 2-path with w ∈ RR}.

Observe that for each of the b1 neighbors of u in RR there is a unique 2-path in S
(since λ = 1), while for each of the 21 − b1 non-neighbors of u in RR there are two
such paths (since µ = 2). This gives |S| = b1 · 1 + (21 − b1) · 2 = 42 − b1.

We next condition our count on the location of the intermediate vertex v. Here we
rely heavily on Lemma 4.8.
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Figure 8. Narrowing down the valencies of a G-orbit partition of Γ2

If v lies in LL, there are b1 choices for v followed by b1 independent choices for w.
This gives a total of b2

1 paths in S assuming the intermediate vertex v is in LL. Note
that for v in RR the count is identical, i.e. there are b2

1 paths in S assuming v is
in RR.

Now suppose v is in the orbit LR. Since u has b13 neighbors in LR and each such
vertex has b13 neighbors in RR, the total number of paths in this case is b2

13. By a
similar argument the number of paths with v in RL is b2

14. Finally, we observe that
there is no 2-path with intermediate vertex v in Γ1. Indeed, this would require that
v = iL = jR for some i, j, which is absurd. Thus we obtain |S| = 2b2

1 + b2
13 + b2

14.
Equating the above two expressions for |S| yields
(3) 42 − b1 − 2b2

1 = b2
13 + b2

14.

The only integral solution to equation 3 is b1 = 2, b13 = b14 = 4 which, by virtue
of Lemma 4.8, narrows down the orbit valencies to the ones indicated in Figure 8.

We are nearly at the point of determining the unique orbit structure of G ∼=
Frob(21) acting on the second subconstituent Γ2 of a putative Conway 99-graph Γ.
To complete the process, we count in two ways the number of 2-paths originating at
a fixed vertex u in LR and ending at some vertex in RL.

On one hand, there are 4−b3 edges from u to some vertex w in RL, and in each case
there is a unique 2-path uvw since λ = 1. Similarly, for each of the 21−(4−b3) = 17+b3
vertices in RL nonadjacent to v there are two distinct 2-paths of required form. This
gives a total of (4 − b3) · 1 + (17 + b3) · 2 = 38 + b3 such 2-paths.

We next focus our count on the location of the intermediate vertex v. If v is in
either of LL or RR, there are 4 · 4 = 16 such 2-paths, while if v is in either of LR or
RL there are (4− b3)b3 = 4b3 − b 2

3 such 2-paths. Lastly, we consider v ∈ Γ1. Since u is
in LR, it has coordinates ijLR for some i ̸= j whence its two Γ1-neighbors are iL and
jR. Note that the 12 neighbors of iL in Γ2 are of the form ikLL and ikLR (= kiRL)
where k ̸= i. Thus six neighbors of iL lie in LR ∪ RL. However, these neighbors are
divided evenly between LR and RL, since ikLR is in LR if and only if ikRL is in RL.
Thus iL has three neighbors in LR and by a symmetric argument this holds true for
jR. This gives six more 2-paths starting at u and terminating at some vertex in RL.
Thus the total number of such 2-paths is 2(16) + 2(4b3 − b2

3) + 6 = 38 + 8b3 − 2b 2
3 via

this second count.
Equating the two counts yields 38 + b3 = 38 + 8b3 − 2b 2

3 which simplifies to 2b 2
3 −

7b3 = 0. Clearly, the only integral solution is b3 = 0 which gives us the following.
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Figure 9. The unique G-orbit partition of Γ2 where G ∼= Frob(21)

Proposition 4.9. Assume G ∼= Frob(21). Then the only feasible G-orbit partition of
Γ2 is the one depicted in Figure 9.

Remark 4.10. Observe that each of LR∪{x} and RL∪{x} is a coclique of size 22. This
is in fact the largest independence number allowable by the Hoffman Ratio Bound
(aka Hoffman–Delsarte inequality), see [10]. Further note from Figure 9 that every
vertex outside of LR ∪ {x} (resp. RL ∪ {x}) has precisely four neighbors in LR ∪ {x}
(resp. RL ∪ {x}).

Let us call a 3-cycle u1u2u3 of type (X1Y1, X2Y2, X3Y3) provided ui is in the orbit
XiYi where Xi, Yi ∈ {L, R} for 1 ⩽ i ⩽ 3.

Proposition 4.11. Each of LL and RR consists of seven vertex-disjoint 3-cycles.

Proof. By transitivity of G on its orbits, each orbit of 3-cycles in Γ2 has size 21
with the exception being 3-cycles of type (LL, LL, LL) or (RR, RR, RR). Indeed,
orbits of 3-cycles of these two types would have to be of size 7 since the 3-cycles
remain internal to their respective orbits. As there are a total of 140 3-cycles in Γ2
(cf. Lemma 2.4), their division into n7 orbits of size 7 and n21 orbits of size 21 must
satisfy 7n7 +21n21 = 140. Moreover, 0 ⩽ n7 ⩽ 2 since each of LL and RR has internal
valency 2. Since the only integral solution to the above is n7 = 2 and n21 = 6, each
of LL and RR must contain seven vertex-disjoint 3-cycles as claimed. □

Our goal is to prove the G-orbit partition depicted in Figure 9 cannot exist. To this
end we consider the finer ⟨s⟩-orbit partition of Γ2. (Recall that G = ⟨s, r⟩ with r as
defined in Lemma 4.4.) Observe that each of LL, RR, LR, RL decomposes into three
⟨s⟩-orbits. We denote these latter 12 orbits by (XY )i where XY ∈ {LL, RR, LR, RL}
and 1 ⩽ i ⩽ 3. Here, we are obviously requiring that (XY )i ⊂ XY for all i.

We will again apply the method we used in Section 3 to determine orbit valencies bij

by counting 2-paths, only this time our focus will be on the aforementioned ⟨s⟩-orbit
partition. Thus, we begin by counting in two ways the cardinality of the set

S = {uvw : uvw is a 2-path with w ∈ (XY )i},

where u is a fixed vertex in (XY )i. For each of the bi neighbors of u in (XY )i there
is a unique 2-path from u to w (since λ = 1). Similarly, for each of the 6 − bi non-
neighbors of u in (XY )i there are two 2-paths from u to w (since µ = 2). This gives
|S| = bi · 1 + (6 − bi) · 2 = 12 − bi.
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We next condition our count on the location of the intermediate vertex v. For v
in (XY )j there are bij (bij − 1) such 2-paths. Additionally, if XY ∈ {LL, RR} then u
has exactly two neighbors in Γ1 each of which has a unique neighbor w ∈ (XY )i∖{u}.
In contrast, if XY ∈ {LR, RL} there are no such neighbors in Γ1. This gives |S| =∑12

j=1 bij (bij −1)+c, where c = 2 if XY ∈ {LL, RR} and c = 0 if u if XY ∈ {LR, RL}.
Equating these two expressions for |S|, we obtain 12 − bi =

∑12
j=1 bij (bij − 1) + c. But

due to the fact that
∑12

i=1 bij = 12, this simplifies to

(4) 24 − c −
(
b 2

i + bi

)
=

∑
j ̸=i

b 2
ij

We divide our analysis into cases based on an assumed value for bi. Once a choice
of bi is made, we find all ways of expressing 24 − c −

(
b 2

i + bi

)
as a sum of eleven

squares while maintaining the valency requirement
∑12

i=1 bij = 12.
Note that bi ⩽ 4 since otherwise the value of 24 − c −

(
b 2

i + bi

)
would be negative.

It is also clear by the Handshake Lemma that every internal valency bi must be even
because every ⟨s⟩-orbit is of size 7. In addition, we cannot have bi = 4 since this we
would lead to a violation of λ = 1. Thus bi ∈ {0, 2}.

However, recall from the coarser G-orbit partition of Γ2 that the internal valency
of LR and RL is 0 while that of LL and RR is 2. By Proposition 4.11 the internal
valencies of (LL)i and (RR)i must be zero since no 3-cycle in LL or RR can lie wholly
within an ⟨s⟩-orbit. We conclude that the internal degree of every ⟨s⟩-orbit is zero.

We are now prepared to list all feasible solution to equation 4. Verification of the
list is straightforward, so left to the reader.

Lemma 4.12. Solutions for orbits of type (LL)i or (RR)i are listed as follows:
(a)

(
0,

{
3, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0

})
(b)

(
0,

{
2, 2, 2, 2, 2, 1, 1, 0, 0, 0, 0

})
Solutions for orbits of type LRi or RLi are listed as follows:

(c)
(
0,

{
4, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0

})
(d)

(
0,

{
3, 3, 1, 1, 1, 1, 1, 1, 0, 0, 0

})
(e)

(
0,

{
3, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0

})
(f)

(
0,

{
2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0

})
We can fairly quickly eliminate sequences (c) and (d) from this list. According to the

G-orbit partition of Γ2 depicted in Figure 9, the orbit LR has external orbit valency
of 4 to each of LL, RR, RL. Assume now that sequence (c) corresponds to an ⟨s⟩-orbit
inside LR, say (LR)1. All three zeros in sequence (c) must be used in adjoining (LR)1
to (LR)1, (LR)2, (LR)3. This leaves the subsequence {4, 1, 1, 1, 1, 1, 1, 1, 1} to account
for all external orbit valencies of (LR)1. But as there is no 3-element subset of this
subsequence that sums to 4, there is no possible way to adjoin (LR)1 to any ⟨s⟩-orbit
outside of LR. (Of course the argument for RL is entirely symmetric.) This eliminates
sequence (c) as a possible solution.

The argument for eliminating sequence (d) is similar. As above, all three zeros
in sequence (d) are used to adjoin (LR)1 to (LR)1, (LR)2, (LR)3. This leaves the
subsequence {3, 3, 1, 1, 1, 1, 1, 1} to account for all external orbit valencies of (LR)1.
But as before, there is no 3-element subset of this subsequence that sums to 4. Hence,
sequence (d) is ruled out as well.

For future reference, it is convenient to designate the surviving solution by type,
e.g.

I.
(
0,

{
3, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0

})
II.

(
0,

{
2, 2, 2, 2, 2, 1, 1, 0, 0, 0, 0

})
III.

(
0,

{
3, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0

})
IV.

(
0,

{
2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0

})
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In what follows it behooves us to double count 2-paths of the form uvw where u
is a fixed vertex in (XY )i and w is an arbitrary vertex in (UV )j , UV ̸= XY . For
convenience we resort to the notation Oi (1 ⩽ i ⩽ 12) to represent the ⟨s⟩-orbits
(LL)1, (LL)2, (LL)3, (RR)1, (RR)2, (RR)3, (LR)1, (LR)2, (LR)3, (RL)1, (RL)2, (RL)3
in that order.

For the first count, we observe that u ∈ Oi has bij neighbors in Oj , and for
each such neighbor w ∈ Oj there is a unique 2-path uvw (since λ = 1). Similarly,
u has 7 − bij non-neighbors in Oj , and for each such non-neighbor w ∈ Oj there
are exactly two 2-paths of the form uvw (since µ = 2). Thus, there are a total of
bij · 1 + (7 − bij) · 2 = 14 − bij 2-paths of required form.

For our second count, we focus on the location of the intermediate vertex v in each
2-path uvw. Here v can occur in any in the twelve orbits of Γ2 as well as in Γ1. In the
case of orbits in Γ2, there are bik choices for v ∈ Ok and for each such choice there
are bkj choices for w ∈ Oj . This gives bikbkj 2-paths of this type. Finally, we denote
by cij the number of 2-paths that have intermediate vertex v in Γ1.

Equating these two counts yields

(5) 14 − bij =
12∑

k=1
bikbkj + cij .

Let C be the 12 × 12 quotient matrix corresponding to the action of ⟨s⟩ ∼= Z7
restricted to Γ2. Consistent with the above, we order the rows and columns of C
by (LL)1, (LL)2, (LL)3, (RR)1, (RR)2, (RR)3, (LR)1, (LR)2, (LR)3, (RL)1, (RL)2,
(RL3).

Proposition 4.13. Under the assumption that G ∼= Frob(21), there is no ⟨s⟩-orbit
LLi or RRj that has valency 3.

Proof. By way of contradiction, suppose 3 occurs as a valency of (LL)i or (RR)j in
the ⟨s⟩-orbit partition of Γ2. This implies sequence I coincides with the valencies of
such an orbit. Since the valency between the G-orbits LL and RR is 2, the valency 3
in sequence I must be used to adjoin to an ⟨s⟩-orbit within LR or RL. Since all ⟨s⟩-
orbits of Γ2 are of equal size, it follows that all external valencies are bidirectional.
Thus without loss of generality, sequence III coincides with the valencies of the ⟨s⟩-
orbit (LR)1.

Our next observation depends solely on the assumption that ⟨s⟩ is a proper sub-
group of G = ⟨s, r⟩ ∼= Frob(21). Since r permutes the three ⟨s⟩-orbits within a given
G-orbit, we have that (XY )1, (XY )2, (XY )3 must share the same set of valencies for
every XY ∈ {LL, RR, LR, RL}. Recalling that the G-orbits LL and LR are adjoined
by a valency of 4, we may further assume that each (LL)i adjoins (LR)1, (LR)2, (LR)3
with valencies 3, 1, 0 in some order. This leads to the following 3 × 3 submatrix of C
corresponding to the orbit valencies adjoining each of (LL)i to each of (LR)j , where
1 ⩽ i, j ⩽ 3.  3 1 0

1 0 3
0 3 1


We next consider the four 3 × 3 submatrices that occur as block diagonals of C.

Since LR and RL are independent sets, the block corresponding to the ⟨s⟩-orbits
within each of them is the 3 × 3 zero matrix. Next recall from Lemma 4.11 that each
of LL and RR consists of seven disjoint 3-cycles. As the vertices of such 3-cycles must
occupy different ⟨s⟩-orbits, we obtain the following 3 × 3 submatrix for the ⟨s⟩-orbits
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within LL, as well as for those within RR. 0 1 1
1 0 1
1 1 0


Finally, recall that in the G-orbit partition, the orbit LL is adjoined to RR and RL
with orbit valencies of 2 and 4, respectively. This means we must arrange the unused
portion of sequence I, namely 2, 2, 1, 1, 0, 0, into two groups of three that sum to 2
and 4. Here there are two possibilities: {{1, 1, 0}, {2, 2, 0}} and {{2, 0, 0}, {2, 1, 1}}.
We indicate below the two matrices that reflect these possibilities in addition to what
we have deduced so far.

C1 =



0 1 1 0 1 1 3 1 0 0 2 2
1 0 1 1 0 1 1 0 3 2 0 2
1 1 0 1 1 0 0 3 1 2 2 0
0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0
3 1 0 0 0 0
1 0 3 0 0 0
0 3 1 0 0 0
0 2 2 0 0 0
2 0 2 0 0 0
2 2 0 0 0 0


C2 =



0 1 1 2 0 0 3 1 0 2 1 1
1 0 1 0 2 0 1 0 3 1 2 1
1 1 0 0 0 2 0 3 1 1 1 2
2 0 0 0 1 1
0 2 0 1 0 1
0 0 2 1 1 0
3 1 0 0 0 0
1 0 3 0 0 0
0 3 1 0 0 0
2 1 1 0 0 0
1 2 1 0 0 0
1 1 2 0 0 0


We first consider the matrix C1. We claim this matrix cannot be completed to

the desired matrix C. To prove this, we attempt to complete its fourth row, i.e. the
row corresponding to the ⟨s⟩-orbit (RR)1. Note that the value 1 already appears four
times in this row, which dictates that the orbit valencies of (RR)1 must coincide with
sequence I. In particular, the six unfilled entries in this row must match up with those
values in sequence I that have yet to be used, viz. 3, 2, 2, 1, 0, 0. As the external valency
that adjoins RR to each of LR and RL is 4, the above six values must be partitioned
into two groups of size 3 each summing to 4. Moreover, as the value 3 cannot occur
twice in any column, the desired partition is {{2, 2, 0}, {3, 1, 0}}.

We now apply equation 5 to the orbits (LL)2 and (RR)1. Note that in this case
we have b24 = 1 and c24 = 0. Further note that the righthand side of equation 5 is
simply the dot product of the second and fourth rows. For convenience, let us denote
by a, b, c, d, e, f the six missing entries of row 4 in that order. Then the dot product
in question is 2 + a + 3c + 2d + 2f , an even integer due to a, c ∈ {0, 2}. But this is a
contradiction since the lefthand side of equation 5 is 14 − b24 = 13 in this case.

We next turn our attention to the matrix C2. Again, we claim there is no compatible
way to complete the fourth row. The argument here is a bit more sophisticated than
the one provided for C1, but the basic ideas are the same. The only initial difference
is that the roles of {2, 2, 0} and {3, 1, 0} have been reversed.

We first apply equation 5 to the first and fourth rows of C2, noting that b14 = 2
and c14 = 0. Thus the lefthand side of equation 5 is 14 − 2 = 12 while the righthand
side is 3a + b + 2d + e + f . Thus we obtain

12 = 3a + b + 2d + e + f = (a + b + c + d + e + f) + (2a − c + d) = 8 + 2a − c + d

which implies d is even since c ∈ {0, 2}. Thus d = 0 because d ∈ {0, 1, 3}.
Our next step is to apply equation 5 to the second and fourth rows of C2, noting

that b24 = 0 and c24 = 0 in this case. Here equation 5 yields

14 = 4+a+3c+d+2e+f = 4+(a+b+c+d+e+f)+(2c−b+e) = 12+(2c−b+e)

which implies e is even since b ∈ {0, 2}. Thus e = 0 because e ∈ {0, 1, 3}. Together
we now have d = e = 0 which contradicts the fact that {d, e, f} = {0, 1, 3}. Since
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neither C1 nor C2 can be completed to the desired quotient matrix C, it follows
that 3 cannot occur as the valency of any orbit in an ⟨s⟩-orbit partition of Γ2. □

Proposition 4.14. The G-orbit partition in Figure 9 cannot exist.

Proof. We proceed as in the proof of Proposition 4.13 with the additional knowledge
that the valencies of all ⟨s⟩-orbits (LL)i and (RR)j coincide with sequence II. From
this, it is an easy matter to arrive at the partially completed matrix C3 below.

C3 =



0 1 1 2 0 0 0 2 2 0 2 2
1 0 1 0 2 0 2 0 2 2 0 2
1 1 0 0 0 2 2 2 0 2 2 0
2 0 0 0 1 1
0 2 0 1 0 1
0 0 2 1 1 0
0 2 2 0 0 0
2 0 2 0 0 0
2 2 0 0 0 0
0 2 2 0 0 0
2 0 2 0 0 0
2 2 0 0 0 0


Just as in the proof of Proposition 4.13, we claim there is no possible way to complete
the fourth row of C3 in a manner that is compatible with rows 1, 2, 3.

We first observe that the missing valencies of (RR)1, denoted by a, b, c, d, e, f for
notational convenience, must coincide with the remaining portion of sequence II,
viz. 2, 2, 2, 2, 0, 0. Applying equation 5 to the ⟨s⟩-orbits (LL)2 and (RR)1, we obtain
14 = 4 + 2a + 2c + 2d + 2f where we have used the fact that b24 = c24 = 0. However,
this easily simplifies to 5 = a + c + d + f , a contradiction since a, c, d, f ∈ {0, 2}.
Together with Proposition 4.13, this proves there is no possible ⟨s⟩-orbit partition
that fuses to the G-orbit partition in Figure 9. The result follows. □

Corollary 4.15. If 7 divides |G| then G ∼= Z7.

Proof. The result follows at once from Corollary 3.13 and Propositions 4.9 and 4.14.
□
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