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Multigraded strong Lefschetz property for
balanced simplicial complexes

Ryoshun Oba

Abstract Generalizing the strong Lefschetz property for N-graded algebras, we introduce the
multigraded strong Lefschetz property. We show that, for a ∈ Nm

+ , the generic Nm-graded
Artinian reduction of the Stanley-Reisner ring of an a-balanced homology sphere over a field
of characteristic 2 satisfies the multigraded strong Lefschetz property. As a corollary, we prove
that the flag h-numbers of an a-balanced simplicial sphere satisfy hb ⩽ hc for b ⩽ c ⩽ a − b.
This result can be viewed as a common generalization of the unimodality of the h-vector of a
simplicial sphere by Adiprasito and the balanced generalized lower bound inequality by Juhnke-
Kubitzke and Murai. We further generalize these results to a-balanced homology manifolds and
a-balanced simplicial cycles over fields of characteristic 2.

1. Introduction
The face numbers of simplicial complexes have been extensively studied in algebraic
and topological combinatorics over the last few decades. A recent breakthrough an-
nounced by Adiprasito [2] (see also [3, 14, 24]) is the hard Lefschetz theorem for
the Stanley-Reisner ring of a simplicial (or homology) sphere, which generalizes the
work of Stanley [27] that proved the same property for the boundary complex of a
simplicial polytope. An important combinatorial consequence of this algebraic result
is the generalized lower bound inequality (GLBI), which asserts that the h-vector
of a simplicial sphere is unimodal (more generally, hard Lefschetz theorem implies
the celebrated g-conjecture). The balanced GLBI of Juhnke-Kubitzke and Murai [11],
together with the hard Lefschetz theorem for a simplicial sphere, asserts that the
h-vector of a simplicial (d − 1)-sphere satisfies the stronger inequality

(1) hi(
d
i

) ⩽
hi+1(

d
i+1
) for i <

d

2

if its 1-skeleton is d-colorable. To bridge these two results, we prove a multigraded ver-
sion of the strong Lefschetz property for a-balanced simplicial spheres, which implies
a common generalization of GLBI and balanced GLBI.

For a positive integer vector a = (a1, . . . , am) with |a| := a1 + · · · + am = d, a pair
(∆, κ) of a (d−1)-dimensional simplicial complex ∆ and a vertex coloring κ of ∆ into
m colors is called a-balanced if each face of ∆ contains at most aj vertices of color j
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for each j = 1, . . . , m. Stanley [26] initiated the study of a-balanced simplicial com-
plexes in connection with the fine multigraded algebra structure of its Stanley-Reisner
ring. In particular, the Stanley-Reisner ring of an a-balanced simplicial complex with
a ∈ Nm

+ admits a system of parameters that is homogeneous in the fine Nm-grading
induced by the coloring [26].

With this in mind, we introduce the multigraded strong Lefschetz property for
an Nm-graded algebra. (We defer most definitions to the following sections.) Let k
be a field, and let A =

⊕
0⩽b⩽a Ab be an Artinian Gorenstein standard Nm-graded

k-algebra with A0 ∼= Aa
∼= k. Here, c ⩽ d denotes the component-wise inequality

ci ⩽ di for all i, and an Nm-graded algebra is standard if it is generated by degree-
one elements under the coarse N-grading. We say that A has the multigraded strong
Lefschetz property (as an Nm-graded algebra) if there is a sequence ℓ = (ℓ1, . . . , ℓm)
with ℓj ∈ Aej

for each j = 1, . . . , m such that the multiplication map

×ℓa−2b : Ab → Aa−b

is an isomorphism for all b ∈ Nm with b ⩽ a
2 . Here ej ∈ Nm is the j-th unit

coordinate vector, and we let tc =
∏m

j=1 t
cj

j for t = (t1, . . . , tm) and c = (c1, . . . , cm).
The elements ℓ1, . . . , ℓm are called Lefschetz elements for A. We prove the following:

Theorem 1.1. Let k be a field of characteristic 0 or 2, and let (∆, κ) be an a-
balanced homology sphere over F2. Then, the generic Nm-graded Artinian reduction
A = k̃[∆]/(Θ) of the Stanley-Reisner ring k[∆] has the multigraded strong Lefschetz
property.

Here, k̃ is a purely transcendental field extension of k, obtained in the generic
Nm-graded Artinian reduction (see Section 4 for details). Note that, Theorem 1.1 is
a common generalization of the hard Lefschetz theorem for a simplicial sphere [2,
14, 24] and the dual weak Lefschetz property for a rank-selected subcomplex of a
completely balanced simplicial sphere [11, Theorem 3.3], under the same assumption
on the characteristic of the field as Theorem 1.1. We conjecture that Theorem 1.1
holds for any k[∆] when k is infinite and ∆ is a homology sphere over k, independent
of the characteristic. Our proof of Theorem 1.1 is based on an anisotropy technique
in characteristic 2 used in [3, 4, 14, 24]. As a corollary of Theorem 1.1, we obtain
the following combinatorial consequence for the flag h-vector (hb)b of an a-balanced
homology sphere over F2. (See also Corollary 5.3 for an additional combinatorial
corollary for the h-vector.)

Theorem 1.2. For an a-balanced homology sphere (∆, κ) over F2, we have hb ⩽ hc

for any b, c ∈ Nm with b ⩽ c ⩽ a − b.

Note that Theorem 1.2 can be regarded as a common generalization of GLBI
and the balanced GLBI. (GLBI corresponds to the case of m = 1 in Theorem 1.2.
The balanced GLBI (1) follows from the inequality hiej

⩽ h(i+1)ej
for a = 1 + 2iej

together with the averaging argument of Goff, Klee, and Novik [9]. For further details,
see [1, 11].)

We further generalize the almost strong Lefschetz property for manifolds [5, Section
8], the strong Lefschetz property for simplicial cycles (after Gorensteinification) [3,
Theorem I], and the top-heavy strong Lefschetz property for doubly Cohen-Macaulay
complexes [3, Corollary 3.2] to the a-balanced setting. As a combinatorial corollary of
this generalization for manifolds (without boundary), we obtain the following general-
ization of Theorem 1.2 regarding the flag h′′-vector (h′′

b)b of a homology manifold over
F2. See also Corollary 7.5. Note that, over a field of characteristic 2, every homology
manifold is orientable. The notation b ⪇ c means b ⩽ c and b ̸= c.
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Theorem 1.3. For a ∈ Nm
+ , let (∆, κ) be an a-balanced connected homology manifold

over F2. Let b, c ∈ Nm be integer vectors with b ⪇ c ⪇ a−b. Then, we have h′′
c ⩾ h′′

b +(
a
b

)
β̃|b|, where β̃i is the i-th reduced Betti number of ∆ over F2, and

(
a
b

)
=
∏m

j=1
(

aj

bj

)
.

Theorem 1.3 can be regarded as a common generalization of the manifold GLBI [19]
and the balanced manifold GLBI [12]. For doubly Cohen-Macaulay complexes, we
prove the following generalization of Theorem 1.2.

Theorem 1.4. An a-balanced doubly Cohen-Macaulay complex (∆, κ) over F2 satisfies
the same inequality as in Theorem 1.2: hb ⩽ hc for any b, c ∈ Nm with b ⩽ c ⩽ a−b.

Cook, Juhnke-Kubitzke, Murai, and Nevo [7] investigated whether an Nm-graded
Artinian reduction of the Stanley-Reisner ring of an a-balanced simplicial sphere,
with a ∈ Nm

+ , satisfies the weak or strong Lefschetz property as an N-graded algebra
(under the coarse N-grading). In Theorem 8.1, we show that, in the generic Nm-graded
Artinian reduction of the Stanley-Reisner ring of an a-balanced simplicial sphere, the
multiplication by a generic linear form is full rank “at the ends”. On the other hand,
by generalizing the counterexamples given in [7, 23], for any positive integers i and d
with i < d

2 , we construct a (d − i, i)-balanced simplicial sphere ∆ such that, for any
infinite field k, no N2-graded Artinian reduction of k[∆] satisfies the weak Lefschetz
property as an N-graded algebra (Theorem 8.3).

This paper is organized as follows. After we provide the necessary background on
simplicial complexes and Stanley-Reisner ring in Section 2, we recall Lee’s formula for
the evaluation map in Section 3. In Section 4, the generic Nm-graded Artinian reduc-
tion is defined, and a differential formula for the evaluation map in the multigraded
setting is derived. Theorem 1.1 for fields of characteristic 2 is proved via anisotropy
in Section 5, and the proof of Theorem 1.1 for fields of characteristic 0 is given in
Section 6. In Section 7, generalizations of Theorem 1.1 to manifolds, simplicial cy-
cles, and doubly Cohen-Macaulay complexes are discussed. In Section 8, the weak
Lefschetz property as an N-graded algebra is discussed.

As we were writing up this paper, we noticed a connection between Theorem 1.1 and
bipartite rigidity [13], including an application to a Grünbaum-Kalai-Sarkaria type
inequality for embeddable a-balanced simplicial complexes. Details will be provided
in an upcoming paper.

2. Preliminaries
We highlight some definitions and notations that we use (see [28] for general reference).

2.1. Simplicial complexes. Throughout, by a simplicial complex, we mean an ab-
stract simplicial complex, i.e., a downward-closed collection of subsets of a finite set.
The vertex set of a simplicial complex ∆ is denoted by V (∆). For a (d−1)-dimensional
simplicial complex ∆, the f -vector of ∆ is the integer vector f(∆) = (f−1, . . . , fd−1),
where fi is the number of i-dimensional faces of ∆. The h-vector of ∆ is the integer
vector h(∆) = (h0, . . . , hd) defined by

hi =
i∑

j=0
(−1)i−j

(
d − j

i − j

)
fj−1 for i = 0, . . . , d.

We denote the set of nonnegative integers (resp. positive integers) by N (resp. N+).
For a = (a1, . . . , am) ∈ Nm, we define |a| = a1 + · · · + am. Recall that for a =
(a1, . . . , am) ∈ Nm

+ with |a| = d, a pair (∆, κ) of a (d − 1)-dimensional simplicial
complex ∆ and a map κ : V (∆) → [m] = {1, . . . , m} is called a-balanced if |τ ∩
κ−1(j)| ⩽ aj holds for any τ ∈ ∆ and j ∈ [m]. Such a map κ is called a coloring of ∆.
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The pair (∆, κ) is called an a-balanced simplicial complex (though it is technically a
pair), and we often say that (∆, κ) satisfies a certain property when ∆ satisfies it. Note
that a (d−1)-dimensional simplicial complex is 1d-balanced if and only if its 1-skeleton
is d-colorable, where 1d denotes the all-ones vector of length d. Such a case is also
referred to as completely balanced or simply balanced in the literature. Additionally,
any (d − 1)-dimensional simplicial complex is (d)-balanced under the monochromatic
coloring. Let (∆, κ) be an a-balanced simplicial complex with a ∈ Nm

+ . The flag f -
vector of (∆, κ) is an m-dimensional array (fb)0⩽b⩽a, where fb is the number of faces
σ ∈ ∆ such that |σ ∩ κ−1(j)| = bj for j = 1, . . . , m. The flag h-vector of (∆, κ) is an
m-dimensional array (hb)0⩽b⩽a defined by

hb =
∑

0⩽c⩽b

(−1)|b|−|c|
(

a − c

b − c

)
fc for all b ∈ Nm with b ⩽ a,

where
(

c
b

)
=
∏m

j=1
(

cj

bj

)
. These vectors refine the usual f - and h-vectors in the sense

that fi−1 =
∑

b⩽a,|b|=i fb and hi =
∑

b⩽a,|b|=i hb for i = 0, . . . , d.

2.2. Stanley-Reisner rings and fine gradings. For an Nm-graded module M
and b ∈ Nm, we denote the graded component of M of degree b by Mb.

Let k be a field, and let ∆ be a simplicial complex. We denote by k[x] the polyno-
mial ring k[xv : v ∈ V (∆)]. The Stanley-Reisner ring of ∆ over k is k[∆] = k[x]/I∆,
where I∆ is the ideal generated by xτ =

∏
v∈τ xv for all τ ̸∈ ∆. It is known that the

Stanley-Reisner ring of ∆ has Krull dimension dim ∆ + 1. For a (d − 1)-dimensional
simplicial complex ∆, a length d sequence of linear forms Θ = (θ1, . . . , θd) of k[∆]
is called a linear system of parameters (l.s.o.p. for short) for k[∆] if k[∆]/(Θ) =
k[∆]/(θ1, . . . , θd) is a finite-dimensional k-vector space. The resulting quotient alge-
bra k[∆]/(Θ) is called an Artinian reduction of k[∆] with respect to Θ, and it is
usually denoted by A(∆) or simply A. It is known that if k is an infinite field, then
k[∆] always has an l.s.o.p.

For an a-balanced simplicial complex (∆, κ) with a ∈ Nm, the polynomial ring k[x]
has a natural Nm-grading, sometimes called the fine grading, defined by deg xv =
eκ(v), where ej ∈ Nm denotes the j-th unit coordinate vector. For an a-balanced
simplicial complex (∆, κ), we say that a system of parameters Θ for k[∆] is Nm-graded
(or Nm-homogeneous or a-colored) if each θi is homogeneous in the fine Nm-grading of
k[∆]. Stanley [26, Theorem 4.1] showed that if k is an infinite field, every a-balanced
simplicial complex (∆, κ) has an Nm-graded l.s.o.p. Θ for k[∆], and (k[∆]/(Θ))b = 0
unless 0 ⩽ b ⩽ a. Note that, for an Nm-graded l.s.o.p. Θ for the Stanley-Reisner ring
of an a-balanced simplicial complex, Θ contains exactly aj elements of degree ej for
each j.

2.3. Homological properties. The link of a face τ ∈ ∆ is defined as lkτ (∆) =
{σ ∈ ∆ : σ ∩ τ = ∅, σ ∪ τ ∈ ∆}. The (closed) star of a face τ ∈ ∆ is defined as
stτ (∆) = {σ ∈ ∆ : σ ∪ τ ∈ ∆}. For W ⊆ V (∆), define ∆ − W = {τ ∈ ∆ : τ ̸⊇ W}.

A simplicial complex ∆ is called Cohen-Macaulay over k if there exists an
l.s.o.p. (θ1, . . . , θd) for k[∆] such that k[∆] is a free k[θ1, . . . , θd]-module. By Reis-
ner’s theorem, a simplicial complex ∆ is Cohen-Macaulay over k if and only if it is
pure and, for every face σ ∈ ∆, H̃i(lkσ(∆);k) = 0 for all i ̸= dim ∆ − |σ| (see [28,
Corollary II.4.2]). Here, H̃∗(∆;k) denotes the reduced simplicial homology group
of ∆ with coefficients in k. Note that, for an a-balanced Cohen-Macaulay complex
(∆, κ), the equality dim(k[∆]/(Θ))b = hb holds for 0 ⩽ b ⩽ a.

For an N-graded k[x]-module M , its socle is the submodule Soc(M) = {a ∈ M :
ma = 0}, where m = (x1, . . . , xn) is the maximal graded ideal of k[x]. An N-graded
k-algebra of Krull dimension zero is called Gorenstein if its socle is a one-dimensional
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k-vector space. Note that a finitely generated standard N-graded k-algebra A = A0 ⊕
· · · ⊕ Ad with Ad ̸= 0 is Gorenstein if and only if dim Ad = 1 and the multiplication
map Ai × Ad−i → Ad

∼=→ k is a nondegenerate bilinear pairing for i = 0, . . . , d [5,
Lemma 36].

We say that a (d−1)-dimensional simplicial complex ∆ is a simplicial (d−1)-sphere
if its geometric realization is homeomorphic to Sd−1. A (d − 1)-dimensional simplicial
complex ∆ is a homology (d − 1)-sphere over k if H̃∗(lkτ ∆;k) ∼= H̃∗(Sd−|τ |−1;k)
for every face τ ∈ ∆. If ∆ is a homology sphere over k, an Artinian reduction A =
k[∆]/(Θ) of k[∆] is Gorenstein with respect to any l.s.o.p. Θ [28, Theorem II.5.1].
A (d − 1)-dimensional simplicial complex ∆ is a homology (d − 1)-manifold over k if
H̃∗(lkτ ∆;k) ∼= H̃∗(Sd−|τ |−1;k) for every nonempty face τ ∈ ∆.

A pure (d−1)-dimensional simplicial complex is strongly connected if for every pair
of facets σ and τ of ∆, there is a sequence of facets σ = σ0, σ1, . . . , σm = τ such that
|σi−1 ∩ σi| = d − 1 for i = 1, . . . , m. A (d − 1)-pseudomanifold (without boundary)
is a strongly connected pure (d − 1)-dimensional simplicial complex such that every
(d − 2)-face is contained in exactly two facets. A (d − 1)-pseudomanifold is orientable
over k if H̃d−1(∆;k) ∼= k.

2.4. Lefschetz properties. An Artinian Gorenstein standard N-graded algebra
A = A0 ⊕ · · · ⊕ Ad with A0 ∼= Ad

∼= k is said to have the weak Lefschetz property if
there exists a linear form ℓ ∈ A1 such that the multiplication map ×ℓ : Ai → Ai+1 is
either injective or surjective (or both) for i = 0, . . . , d − 1. It is said to have the strong
Lefschetz property if there exists a linear form ℓ ∈ A1 such that the multiplication
map ×ℓd−2i : Ai → Ad−i is an isomorphism for all i ⩽ d

2 . For a general reference of
Lefschetz properties, see [10].

3. Lee’s formula for the evaluation map
Let k be a field of arbitrary characteristic, and let ∆ be a (d−1)-dimensional simplicial
complex. Let A = k[∆]/(Θ) = A0 ⊕ · · · ⊕ Ad be an Artinian reduction of k[∆] with
respect to an l.s.o.p. Θ for k[∆]. Then, by [29, Corollary 3.2], Ad is linearly isomorphic
to H̃d−1(∆;k). Thus, for a (d − 1)-pseudomanifold ∆ (without boundary) which is
orientable over k, Ad is a one-dimensional linear space. The linear isomorphism Ψ :
Ad

∼=→ k, which is uniquely determined up to scaling, is called the evaluation map
(or degree map, volume map, Brion’s isomorphism). Lee [16] provided an explicit
description of the evaluation map Ψ with the appropriate scaling. (Although Lee’s
description was originally over k = R, it readily extends to an arbitrary field. See also
an equivalent description by Karu and Xiao [14].) As the formula and the appropriate
normalization play an important role, we recall the formula below.

We introduce some conventions and notation that will be used throughout the
paper. We assume that V (∆) = [n] := {1, . . . , n} and denote k[x] = k[x1, . . . , xn].
For a sequence J = (v1, . . . , vk) of vertices (possibly with repetitions), we denote
xJ = xv1 · · · xvk

. We abbreviate the projection from k[x] to an Artinian reduction A of
k[∆], provided that it does not cause confusion. Hence, for example, the composition
k[x]d ↠ Ad

∼=→ k is also denoted as Ψ. An l.s.o.p. Θ = (θ1, . . . , θd) for k[∆] is
associated with a map p : V (∆) → k

d through the relation θk =
∑

v∈V (∆) p(v)kxv for
k = 1, . . . , d. The map p is called a point configuration of ∆. For a positively oriented
facet σ = [v1, . . . , vd] of ∆, let [σ] = det

(
p(v1) · · · p(vd)

)
.

We also need the following notation to state Lee’s formula. Let v∗ be a new vertex
not in V (∆) with an associated position p′(v∗) ∈ k

d, and for a positively oriented
facet σ = [v1, . . . , vd], let [σ − vi + v∗] be the determinant of the matrix obtained by
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replacing the i-th column of the matrix
(
p(v1) · · · p(vd)

)
with p′(v∗). Here, p′(v∗) has

to be in sufficiently general position so that none of [σ − vi + v∗] vanishes. (One may
need to extend the field to choose such a vector when k is a finite field.)

We are now ready to state Lee’s formula.

Lemma 3.1. [14, Lemma 3.1, Theorem 3.2] Let ∆ be an orientable (d − 1)-
pseudomanifold over a field k. Fix an orientation for the facets of ∆. Let A be
an Artinian reduction of k[∆] with respect to an l.s.o.p. Θ, and let Ψ : Ad → k be
the evaluation map. Then, under a suitable normalization, the following hold:

(i) For any positively oriented facet σ ∈ ∆, we have Ψ(xσ) = 1
[σ] .

(ii) More generally, for any length d sequence of vertices J = (v1, . . . , vd), we have

Ψ(xJ) =
∑

σ∈∆: facet, σ⊇supp(xJ )

1
[σ]

∏d
k=1[σ + v∗ − vk]∏
v∈σ[σ + v∗ − v] .(2)

Here, the sum is taken over all positively oriented facets of ∆ containing
supp(xJ) := {v1, . . . , vn}.

Throughout the paper, we assume that the evaluation map Ψ is normalized so that
Lemma 3.1(i) holds. We note that although we need the position p′(v∗) of a new vertex
to explicitly write down the formula (2), the right-hand side of (2) is independent of
the choice of the position of v∗.

Remark 3.2. As a side note, we describe how the formula (2) is derived from the
work of Lee [16] for the case where k = R. Define an inner product between degree d

homogeneous polynomials a(x) =
∑

|r|=d ar
xr

r! and b(x) =
∑

|r|=d br
xr

r! by

⟨a(x), b(x)⟩ =
∑

|r|=d

arbr.

The orthogonal complement of (I∆ +(Θ))d := (I∆ +(Θ))∩k[x]d is called the linear d-
stress space of (∆, p), where p is the point configuration associated with Θ. The linear
d-stress space is linearly isomorphic to Ad, and thus there is a single polynomial γ,
unique up to scaling, that generates the linear d-stress space. The map k[x]d → k; a 7→
⟨a, γ⟩ is a nonzero linear function that vanishes on (I∆ + (Θ))d. Hence, Ψ (considered
as a function over k[x]d) coincides with this map (up to scaling). This means that Ψ
maps a monomial to a coefficient of γ, and hence it remains to describe the coefficients
of the canonical linear d-stress γ. The coefficients of the squarefree terms of γ are given
in [16, Proof of Theorem 14], and the coefficients of the non-squarefree terms are then
given by [16, Theorem 11]. These agree with the formula (2).

4. Generic Nm-graded Artinian reduction and differential
formula

4.1. Generic Nm-graded Artinian reduction. Let (∆, κ) be an a-balanced sim-
plicial complex with a ∈ Nm

+ and |a| = d. We define the generic Nm-graded Artinian
reduction of k[∆] as follows. Fix a partition I1 ⊔ · · · ⊔ Im of [d] such that |Ij | = aj

for j = 1, . . . , m. Consider the set of auxiliary indeterminates

{pk,v : k ∈ [d], v ∈ V (∆), k ∈ Iκ(v)},

Algebraic Combinatorics, Vol. 8 #3 (2025) 780
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and let k̃ = k(pk,v) denote the rational function field of these indeterminates with
coefficients in k. Define the Nm-graded l.s.o.p. Θ = (θ1, . . . , θd) byθ1

...
θd

 = P

x1
...

xn

 ,

where the (k, v)-th entry of the coefficient matrix P is pk,v if k ∈ Iκ(v), and 0 other-
wise. The quotient Nm-graded algebra A = k̃[∆]/(Θ) is called the generic Nm-graded
Artinian reduction of k[∆] (with respect to the coloring κ and a). Note that when
m = 1, the generic N-graded Artinian reduction coincides with the generic Artinian
reduction in the sense of [24]. We remark that, to remain consistent with the defini-
tion of [24], A = k̃[∆]/(Θ) is referred to as the generic Nm-graded Artinian reduction
of k[∆], not of k̃[∆], though A is the Artinian reduction of k̃[∆] in the usual sense.
By [26, Theorem 4.1], as an Nm-graded algebra, A decomposes into Nm-homogeneous
components as A =

⊕
0⩽b⩽a Ab. The homogeneous decomposition as a coarse N-

graded algebra is denoted as A =
⊕d

i=0 Ai.

4.2. Differential formula in characteristic 2. In the generic N-graded Ar-
tinian reduction, the right-hand side of (2) in Lee’s formula is a rational function of
the auxiliary indeterminates pk,v. (As mentioned, it is independent of the position of
the new vertex.) Papadakis and Petrotou [24] considered the partial derivative of (2)
with respect to new indeterminates pk,v, and they proved a remarkable formula in
characteristic 2. This formula was later generalized by Karu and Xiao [14, Theorem
4.1]. We recall this formula here (see also [3] for a different formula that holds in
arbitrary characteristic).

In this subsection, we assume that the field k is of characteristic 2. In this case,
every pseudomanifold is orientable. For a (d−1)-pseudomanifold ∆, let A = k̃[∆]/(Θ)
be the generic (N-graded) Artinian reduction of k[∆], where k̃ = k(pkv : k ∈ [d], v ∈
V (∆)). For a length d sequence I = (v1, . . . , vd) of vertices, define the differential
operator ∂I by ∂p1,v1

◦ · · · ◦ ∂pd,vd
, where ∂pk,v

denotes the (formal) partial derivative
with respect to pk,v. Under these notations, the following holds.

Theorem 4.1. [14, Theorem 4.1] Let ∆ be a (d − 1)-pseudomanifold, and let k be a
field of characteristic 2. Let A = k̃[∆]/(Θ) be the generic N-graded Artinian reduction
of k[∆], where k̃ = k(pkv : k ∈ [d], v ∈ V (∆)). Let Ψ : Ad → k̃ be the evaluation map
normalized as in Lemma 3.1. Then, for any length d sequences I and J of vertices,

∂IΨ(xJ) = Ψ(
√

xIxJ)2.

Here, for a monomial xL, define its square root √
xL as xK if there exists a monomial

xK with x2
K = xL, and 0 otherwise.

We generalize the formula in Theorem 4.1 to the setting of generic Nm-graded
Artinian reductions using a simple substitution trick. Let (∆, κ) be an a-balanced
pseudomanifold, and let A = k̃[∆]/(Θ) be the generic Nm-graded Artinian reduction
of k[∆], where k̃ = k(pkv). We say that a length d sequence of vertices I = (v1, . . . , vd)
(possibly with repetition) is κ-transversal if k ∈ Iκ(vk) for k = 1, . . . , d. Note that
I = (v1, . . . , vd) is a κ-transversal sequence if and only if the corresponding auxiliary
indeterminates p1,v1 , . . . , pd,vd

exist. Moreover, for every degree-a monomial xJ in
k[x], J can be reordered into a κ-transversal sequence. For a κ-transversal sequence
I = (v1, . . . , vd), define the differential operator ∂I as ∂p1,v1

◦· · ·◦∂pd,vd
. The following

differential formula for the map Ψ holds in the a-balanced setting.
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Lemma 4.2. Let (∆, κ) be an a-balanced (d − 1)-pseudomanifold for a ∈ Nm
+ with

|a| = d and let k be a field of characteristic 2. Let A = k̃[∆]/(Θ) be the generic
Nm-graded Artinian reduction of k[∆] with respect to κ and a. Let Ψ : Aa → k̃ be the
evaluation map normalized as in Lemma 3.1. Then, for any κ-transversal sequence I
and any length d sequence J of vertices,

∂IΨ(xJ) = Ψ(
√

xIxJ)2.

Proof. Denote the generic N-graded Artinian reduction of k[∆] by A′ = K[∆]/(Θ),
where K = k(pkv : k ∈ [d], v ∈ V (∆)), and denote the corresponding normalized
evaluation map by Ψ′ : A′

d → K. Let R be the localization of k[pkv : k ∈ [d], v ∈ V (∆)]
at the irreducible polynomials {pkv : k ̸∈ Iκ(v)}. Fix a κ-transversal sequence I and a
length d sequence J of vertices. By Theorem 4.1, we have the identity
(3) ∂I(Ψ′(xJ)) = Ψ′(

√
xIxJ)2.

Here, we have Ψ′(xJ), Ψ′(√xIxJ) ∈ R. This follows from the fact that, in the right-
hand side of Lee’s formula (2), the denominators do not vanish after substituting
pkv = 0 for all pairs (k, v) with k ̸∈ Iκ(v) by the Kind-Kleinschmidt’s criterion on an
l.s.o.p. for Stanley-Reisner ring [28, Lemma III.2.4].

The map ξ : R → k̃ defined by the substitution pkv = 0 for all (k, v) with k ̸∈ Iκ(v)
is a ring homeomorphism, and ξ commutes with the partial derivative ∂pk,v

for any
(k, v) with k ∈ Iκ(v). As we have ξ ◦ Ψ′(xL) = Ψ(xL) for any total degree d monomial
xL, we can deduce the desired identity from (3). □

Lemma 4.2 can be readily strengthened as follows.

Corollary 4.3. Let (∆, κ), d, A, and Ψ be as in Lemma 4.2. For a κ-transversal
sequence I, an element g ∈ Ai with i ⩽ d

2 , and a length d − 2i sequence J of vertices,

∂IΨ(g2xJ) = Ψ(g
√

xIxJ)2

holds.

Proof. Express g as g =
∑

K λKxK with λK ∈ k̃. (Recall that we are abbreviating
the projection from the polynomial ring to A.) Then, we have

∂IΨ(g2xJ) (∗)= ∂IΨ
(∑

K

λ2
Kx2

KxJ

)
=
∑
K

∂I(λ2
KΨ(x2

KxJ)) (by the linearity of Ψ, ∂I)

(∗∗)=
∑
K

λ2
K∂IΨ(x2

KxJ)

=
∑
K

λ2
KΨ(xK

√
xIxJ)2 (by Lemma 4.2)

= Ψ(g
√

xIxJ)2.

Here (∗) follows from the identity (
∑

K λKxK)2 =
∑

K λ2
Kx2

K in characteristic 2, and
(∗∗) follows from the identity ∂pk,v

(f2g) = f2∂pk,v
(g) for all f, g ∈ k̃ in characteris-

tic 2. □

5. Proof of Theorem 1.1 via anisotropy
Throughout this section, we assume that k is a field of characteristic 2 and that (∆, κ)
is an a-balanced homology sphere over F2 for a ∈ Nm

+ with |a| = d. Let A = k̃[∆]/(Θ)
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be the generic Nm-graded Artinian reduction of k[∆], where k̃ = k(pkv). By the
Gorensteinness of A, the multiplication map Ai×Ad−i → Ad

Ψ→ k̃ is nondegenerate for
each 0 ⩽ i ⩽ d. Hence, the multiplication map Ab×Aa−b → Aa

Ψ→ k̃ is nondegenerate
for each b ∈ Nm with b ⩽ a. We refer to this property as the multigraded Poincaré
duality.

Our proof of Theorem 1.1 relies on the anisotropy technique used in [3, 4, 14, 24].
For a vector space W over a field k, a bilinear form φ : W × W → k is anisotropic
if φ(u, u) ̸= 0 for any nonzero u ∈ W . Note that a bilinear form φ : W × W → k

is anisotropic if and only if its restriction φ|W ′×W ′ is nondegenerate for any nonzero
subspace W ′ of W . We prove the following combination of anisotropy and the multi-
graded strong Lefschetz property over a field of characteristic 2 with explicit Lefschetz
elements.

Theorem 5.1. Let (∆, κ) be an a-balanced homology sphere over F2, and let k be
a field of characteristic 2. Let A = k̃[∆]/(Θ) be the generic Nm-graded Artinian
reduction of k[∆]. Define ℓj =

∑
v∈κ−1(j) xv ∈ Aej

for j = 1, . . . , m. Then, for any
b ∈ Nm with b ⩽ a

2 , the bilinear form Q : Ab × Ab → k̃ defined by

Q(g, h) = Ψ(ghℓa−2b)

is anisotropic, where Ψ : Aa → k̃ is the evaluation map.

To prove Theorem 5.1, we first prove an auxiliary lemma, which can be viewed as
a multigraded version of the weak Lefschetz property together with anisotropy. (See
also [14, Corollary 4.3].)

Lemma 5.2. Let (∆, κ), a, k, A, and ℓj be as in Theorem 5.1. Let S be a (possibly
empty) subset of [m], and let eS =

∑
j∈S ej ∈ Nm denote the characteristic vector of

S. For b ∈ Nm with 2b + eS ⩽ a, define the bilinear form Q′ : Ab × Ab → A2b+eS
by

Q′(g, h) = ghℓeS .

Then Q′(g, g) ̸= 0 for any nonzero g ∈ Ab,.

Proof. Suppose that g is a nonzero element of Ab. As Aa−b is generated by monomials,
by the multigraded Poincaré duality of A, there is a monomial xK of degree a − b
such that gxK ̸= 0 in Aa. Its square x2

K is of degree 2a − 2b, where 2a − 2b ⩾ a + eS

by assumption. Thus, there exist a κ-transversal sequence I and a set of vertices
U∗ ∈ VS :=

∏
j∈S κ−1(j) and a length d − 2|b| − |S| sequence of vertices J satisfying

x2
K = xIxU∗xJ . (Since, for any degree-a monomial xL, L can be reordered into

a κ-transversal sequence, the desired decomposition x2
K = xIxU∗xJ is obtained by

assigning variables greedily.)
Now we have the following identity:

∂IΨ(Q′(g, g)xJ) = ∂IΨ
( ∑

U∈VS

g2xU xJ

)
(by ℓeS =

∑
U∈VS

xU )

=
∑

U∈VS

∂IΨ(g2xU xJ) (by the linearity of Ψ, ∂I)

=
∑

U∈VS

Ψ(g
√

xIxU xJ)2 (by Corollary 4.3)

(∗)= Ψ(g
√

xIxU∗xJ)2 = Ψ(gxK)2.(4)
Here, in (∗), we use the fact that, by the definition of square root, for a fixed monomial
xL = xIxJ , there is a unique squarefree monomial xU ′ with √

xLxU ′ ̸= 0. By our
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choice of U∗, this is achieved by taking xU ′ = xU∗ . As monomials xU for U ∈ VS are
all distinct and squarefree, the equality (∗) holds. Now, gxK is a nonzero element in
Aa and Ψ is an isomorphism, so we have Ψ(gxK)2 ̸= 0. Hence, by the identity (4),
∂IΨ(Q′(g, g)xJ) must be nonzero. Therefore Q′(g, g) is nonzero. □

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Suppose that Q(g, g) = 0 for some g ∈ Ab. As Ψ is an isomor-
phism, we have g2ℓa−2b = 0. By applying Lemma 5.2 for

g
∏

j∈[m]

ℓ

⌊ aj −2bj
2

⌋
j

and S = {j ∈ [m] : aj − 2bj is odd}, we have

(5) g
∏

j∈[m]

ℓ

⌊ aj −2bj
2

⌋
j = 0.

By multiplying both sides of (5) by g, we obtain

g2
∏

j∈[m]

ℓ

⌊ aj −2bj
2

⌋
j = 0.

Repeating this argument reduces the power of ℓjs, and after a finite number of steps,
we eventually conclude that g = 0. □

Now Theorem 1.1 in characteristic 2 is immediate.

Proof of Theorem 1.1 in characteristic 2. Suppose that the field k is of characteristic
2. Define the Lefschetz elements ℓj for j = 1, . . . , m as in Theorem 5.1. Then Theo-
rem 5.1 implies that the linear map ×ℓa−2b : Ab → Aa−b is injective for every b ⩽ a

2 .
By the multigraded Poincaré duality of A, we have dim Ab = dim Aa−b, and thus the
map is an isomorphism. □

Theorem 1.2 follows readily as a corollary of Theorem 1.1.

Proof of Theorem 1.2. By Theorem 1.1 over a field k of characteristic 2, the compo-
sition

Ab
×ℓc−b

−→ Ac
×ℓa−b−c

−→ Aa−b

is a linear isomorphism. Hence, the linear map ×ℓc−b : Ab → Ac is injective. Thus,
it follows that hb = dim Ab ⩽ dim Ac = hc, as desired. □

By taking a weighted sum of Theorem 1.2, we can prove that the h-vector of an a-
balanced homology sphere is multiplicatively increasing “at appropriate ends”. More
precisely, we have the following result.

Corollary 5.3. For an a-balanced homology sphere (∆, κ) over F2 with a =
(a1, . . . , am) ∈ Nm

+ , we have
hi(

m+i−1
i

) ⩽
hi+1(
m+i
i+1
)

for every nonnegative integer i ∈ N with i ⩽ minm
j=1

aj−1
2 .
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Proof. For any b ∈ Nm with |b| = i and any j ∈ [m], 2b + ej ⩽ a holds by the
assumption i ⩽ minm

j=1
aj−1

2 . So, by Theorem 1.2, we have hb ⩽ hb+ej
. The desired

inequality follows from

(m + i)
∑
|b|=i

hb =
∑
|b|=i

m∑
j=1

(bj + 1)hb ⩽
∑
|b|=i

m∑
j=1

(bj + 1)hb+ej
= (i + 1)

∑
|c|=i+1

hc

and the equality hi′ =
∑

|b|=i′ hb for i′ = i, i + 1. □

We remark that, although the balanced GLBI can be obtained from Theorem 1.2,
Corollary 5.3 is not a generalization of the balanced GLBI. Specifically, when a = 1,
Corollary 5.3 only yields the trivial inequality h0 ⩽ h1/m. There are other examples
in which we can obtain inequalities on the h-numbers from Theorem 1.2 using the
same technique of grouping some colors and taking a weighted sum, as in [11, 15]. For
example, one can prove the inequality k

2 h1 ⩽ h2 for a 21k-balanced simplicial sphere.
Nevertheless, many open questions remain about the behavior of the h-vector of an
a-balanced simplicial sphere “around the middle”.

6. From characteristic 2 to characteristic 0
In this section, we prove the multigraded strong Lefschetz property (Theorem 1.1)
in characteristic 0, building on the result in characteristic 2. Although the argument
presented in this section may be well-known, we include it here for completeness.

We begin with a lemma about the basis (see also [14, Lemma 5.1]).

Lemma 6.1. Let (∆, κ) be an a-balanced homology sphere over F2. Let k be a field
of characteristic 0. Let B be a set of monomials that forms a basis of the generic
Nm-graded Artinian reduction F̃2[∆]/(Θ) of F2[∆]. Then, B also forms a basis of the
generic Nm-graded Artinian reduction A = k̃[∆]/(Θ) of k[∆].

Proof. Let d = |a|, and let k̃ = k(pk,v : (k, v) ∈ I), where I denotes the set of indices
of all auxiliary indeterminates used in the generic Nm-generic Artinian reduction.
By [14, Lemma 2.1 (2)] and the fact that whether ∆ is a homology sphere over a
given field depends only on its characteristic, ∆ is also a homology sphere over k̃.
Hence, by Reisner’s theorem, F̃2[∆]/(Θ) and A have the same dimension h0 + · · ·+hd

as an F̃2-vector space and a k̃-vector space, respectively. Thus, it suffices to prove
that B is linearly independent in A.

Suppose, to the contrary, that B is linearly dependent in A. Then, there is some
number D ∈ N such that the finite set of elements

S =
{

bθα : b ∈ B, α ∈ Nd, deg b + |α| = D
}

is linearly dependent in k̃[∆]D. Here deg b denotes the degree of b under the natural
N-grading and θα =

∏d
j=1 θ

αj

j . Let M be the standard basis of k̃[∆]D consisting of
all monomials of degree D whose support is contained in ∆. For each s ∈ S, there is
a unique (ts,m)m∈M with ts,m ∈ Z[pk,v : (k, v) ∈ I] such that s −

∑
m∈M ts,mm ∈ I∆.

Consider the |S| × |M | matrix T = (ts,m). The linear dependence of S implies that T

is row dependent over the field k̃ of characteristic 0.
On the other hand, since F̃2[∆] is a free F̃2[θ1, . . . , θd]-module, S is linearly in-

dependent in F̃2[∆]D. This implies that the matrix T modulo 2 is row independent
over F̃2. Thus, there is a row-full square submatrix of T whose determinant (as a
polynomial in Z[pk,v : (k, v) ∈ I]) is nonzero modulo 2. This contradicts the fact that
T is row dependent over a field k̃ of characteristic 0. □
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We now prove Theorem 1.1 in characteristic 0.

Proof of Theorem 1.1 in characteristic 0. Let k be a field of characteristic 0 and let
A = k̃[∆]/(Θ). Define the Lefschetz elements as in Theorem 5.1. As discussed in
the proof Lemma 6.1, ∆ is also a homology sphere over k̃. Hence, k̃[∆] is a free
k̃[θ1, . . . , θd]-module and dim Ab = dim Aa−b for b ∈ Nm. Thus, it suffices to prove
the injectivity of the linear map ×ℓa−2b : Ab → Aa−b.

To do so, pick a basis B of F̃2[∆]/(Θ) consisting of monomials (such a basis can be
obtained by ordering all the monomials of F2[x] of degree at most d = |a| and choosing
linearly independent ones in a greedy manner). By Lemma 6.1, B is also a basis for
A. Let {m1, . . . , mk} = B ∩ k̃[x]b be a basis of Ab. Then ×ℓa−2b : Ab → Aa−b is
injective if and only if the set of polynomials S = {mlℓ

a−2bθα : l = 1, . . . , k, α ∈ Nd}
is linearly independent in k̃[∆]. By Theorem 1.1 for a field of characteristic 2, we
know that S is linearly independent in F̃2[∆]. Using a similar argument as in the
proof of Lemma 6.1, this implies the linear independence of S in k̃[∆]. Thus, the map
×ℓa−2b : Ab → Aa−b is injective. □

Remark 6.2. We remark that if Theorem 1.1 holds for some (Θ, ℓ1, . . . , ℓm), where
Θ is an Nm-graded l.s.o.p. of k̃[∆] and ℓj ∈ Aej , then the same conclusion holds for
any generic such Nm-graded (Θ, ℓ1, . . . , ℓm). That is, the collection of an Nm-graded
l.s.o.p. Θ and ℓj ∈ Aej

(j = 1, . . . , m) satisfying the conclusion of Theorem 1.1 (both
in characteristic 0 and in characteristic 2) forms a nonempty Zariski open set in the
appropriate space.

7. Manifolds, simplicial cycles, 2-CM complexes
7.1. Manifolds. For homology manifolds over F2, we have the following theorem,
which can be viewed as a multigraded version of the almost strong Lefschetz property.

Theorem 7.1. For a ∈ Nm
+ , let (∆, κ) be an a-balanced homology manifold over F2.

For a field k of characteristic 0 or 2, let A = k̃[∆]/(Θ) be the generic Nm-graded
Artinian reduction of k[∆], and let ℓj be a generic element in Aej

for j = 1, . . . , m.
Then, for any b ∈ Nm and j ∈ [m] with b ⩽ a−ej

2 , the multiplication map

×ℓa−2b−ej : Ab+ej → Aa−b

is surjective.

To prove Theorem 7.1, we highlight useful conventions for stars and links. Let Θ be
an l.s.o.p. for k[∆]. Recall that Θ is identified with a point configuration p : V (∆) →
k

d, where d = dim ∆ + 1. Let τ ∈ ∆ be a face. The l.s.o.p. for the star in ∆ is
obtained by the restriction of p to V (stτ ∆), and an l.s.o.p. for the link is obtained
by the projection of p|V (lkτ ∆) to kd/ span p(τ)(1). Throughout, we always assume this
convention for stars and links, and when A = k[∆]/(Θ) is the Artinian reduction of
k[∆] with respect to Θ, the corresponding Artinian reduction of k[stτ ∆] and k[lkτ ∆]
are denoted by A(stτ ∆) and A(lkτ ∆), respectively. Note that if (∆, κ) is a-balanced
and Θ is an Nm-graded l.s.o.p., for a face τ ∈ ∆(b), lkτ ∆ is (a − b)-balanced by the
restriction of κ and the corresponding l.s.o.p. for k[lkτ ∆] is also Nm-graded. Here, for
an a-balanced simplicial complex (∆, κ), we denote ∆(b) = {τ ∈ ∆ : |τ ∩ κ−1(j)| =
bj for all j ∈ [m]}. We have the following lemmas.

(1)To obtain an l.s.o.p. for the link lkτ ∆ explicitly, one needs to identify k
d/ span p(τ) with

k
d−|τ |. Up to an isomorphism, the resulting Artinian reduction of k[lkτ ∆] does not depend on the

identification.
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Lemma 7.2 (Cone lemma). Let (∆, κ) be an a-balanced simplicial complex with a ∈
Nm

+ , and let Θ be an Nm-graded l.s.o.p. for k[∆]. Let A = k[∆]/(Θ) be the Artinian
reduction of k[∆] with respect to Θ. Then for any vertex v ∈ V (∆), there is a degree
preserving isomorphism of Nm-graded algebras

A(lkv ∆)∗ ∼= A(stv ∆)∗.

Proof. For completeness, we include the proof of this well-known lemma (2). Let d =
dim ∆ + 1 and R = k[xv : v ∈ V (stv ∆)]. To reflect our convention for the star, we
denote the l.s.o.p. for k[stv ∆] also as θ1, . . . , θd. By our convention for the link, for
the l.s.o.p. θ′

1, . . . , θ′
d−1 for k[lkv ∆], we have an identity of ideals (xv, θ′

1, . . . , θ′
d−1) =

(θ1, . . . , θd) in R. Thus, we have the desired isomorphism since

Ilkv ∆ = (xv) + Istv ∆. □

Lemma 7.3. Let (∆, κ) be an a-balanced simplicial complex with a ∈ Nm
+ , and let Θ be

an Nm-graded l.s.o.p. for k[∆]. Let A = k[∆]/(Θ) be the Artinian reduction of k[∆]
with respect to Θ. Then, for each j ∈ [m], there is a degree preserving surjection⊕

v∈∆(ej )
A(stv ∆)∗ ↠ A(∆)∗+ej

.

Proof. For each v ∈ ∆(ej), the multiplication by xv induces a map φv : k[stv ∆]∗
·xv→

k[∆]∗+ej . Consider their sum

φ :
⊕

v∈∆(ej )
k[stv ∆]∗ → k[∆]∗+ej

over all v ∈ ∆(ej). Then φ is surjective since every monomial of k[x] with Nm-degree
at least ej is divisible by some xv with v ∈ ∆(ej). So, φ induces a surjection between
the Artinian reductions. □

Proof of Theorem 7.1. We have the following commutative diagram:

A(∆)b+ej A(∆)a−b

⊕
v∈∆(ej ) A(lkv ∆)b

⊕
v∈∆(ej ) A(lkv ∆)a−b−ej

×ℓa−2b−ej

×ℓa−2b−ej

∼=

Here, the vertical maps are the composition of an isomorphism in Lemma 7.2 and a
surjection in Lemma 7.3. For each v ∈ ∆(ej), (lkv ∆, κ|V (lkτ ∆)) is an (a−ej)-balanced
homology sphere over F2. Thus, by Theorem 1.1 and Remark 6.2, the map

×ℓa−2b−ej : A(lkv ∆)b → A(lkv ∆)a−b−ej

is an isomorphism for each v ∈ ∆(ej). The bottom horizontal map in the diagram is
a direct sum of these isomorphisms, so it is an isomorphism. Thus the top horizontal
map is surjective. □

We now derive a numerical consequence of Theorem 7.1, stated in Theorem 1.3.
Theorem 1.3 is expressed in terms of flag h′′-vectors, which is a suitable modification

(2)See also [16, Theorem 7] for a vector space isomorphism version of the statement (over R).
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of flag h-vectors. Given a field k, for an a-balanced simplicial complex (∆, κ), the flag
h′-vector (h′

b)0⩽b⩽a and the flag h′′-vector (h′′
b)0⩽b⩽a of (∆, κ) are defined as follows:

h′
b = hb −

(
a

b

)|b|−1∑
j=1

(−1)|b|−j β̃j−1

 ,

h′′
b =

{
h′

b −
(

a
b

)
β̃|b|−1 (if b ̸= a)

h′
b (if b = a)

.

Note that for a Cohen-Macaulay complex, both the flag h′-vector and flag h′′-vector
coincide with the flag h-vector. For a (d − 1)-dimensional simplicial complex, its h′-
vector (h′

i)0⩽i⩽d (resp. h′′-vector (h′′
i )0⩽i⩽d) is defined as the flag h′-vector (resp. flag

h′′-vector) considered as the monochromatic simplicial complex. Note that the equal-
ities h′

i =
∑

|b|=i h′
b and h′′

i =
∑

|b|=i h′′
b hold.

For homology manifolds, algebraic interpretations of h′- and h′′-vectors are given
by Schenzel [25] and Novik and Swartz [20]. The following lemma is the balanced
analogue of these interpretations about flag h′- and h′′-vectors. A homology (d − 1)-
manifold ∆ over k is said to be orientable if β̃d−1 equals the number of connected
components of ∆. Recall that, for a graded k[x1, . . . , xn]-module M , its socle is the
submodule Soc(M) = {a ∈ M : ma = 0}, where m = (x1, . . . , xn) denotes the
maximal graded ideal.

Lemma 7.4. Let (∆, κ) be an a-balanced connected homology manifold over k and let
Θ be an Nm-graded l.s.o.p. for k[∆]. Let A = k[∆]/(Θ) be an Artinian reduction of
k[∆] with respect to Θ. Then,

(i) (Schenzel’s formula [12, Theorem 3.1]) h′
b = dim Ab for each b ∈ Nm.

(ii) [12, Corollary 3.3] h′′
b = dim Ab/ Soc◦

b for each b ∈ Nm, where Soc◦ =⊕
0⩽b⪇a Soc(A)b denotes the internal socle of A.

(iii) (Dehn-Sommerville relation [12, Theorem 4.1]) If ∆ is orientable, then h′′
b =

h′′
a−b for each b ∈ Nm.

We remark that every homology manifold over a field of characteristic 2 is ori-
entable. Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let b, c ∈ Nm be integer vectors with b ⪇ c ⪇ a − b. Then
there exists some j ∈ [m] such that b + ej ⩽ c. By Theorem 7.1, the composition

A(∆)b+ej

×ℓc−b−ej

−→ A(∆)c
×ℓa−b−c

−→ A(∆)a−b is surjective, so the latter map ×ℓa−b−c :
A(∆)c → A(∆)a−b is surjective. Since c ⪇ a−b, the degree c component of the socle
is contained in the kernel of this map. Thus by Lemma 7.4, we have the inequality

(6) h′′
c = dim A(∆)c − dim Soc(A(∆))c ⩾ dim A(∆)a−b = h′

a−b.

To complete the proof, we now convert (6) to an inequality between flag h′′-vectors.
For this, if b ̸= 0, by Lemma 7.4 (iii), we have

h′
a−b = h′′

a−b +
(

a

b

)
β̃|a−b|−1

= h′′
b +

(
a

b

)
β̃|b| (β̃k = β̃d−k−1 for k ⩾ 1 by Poincaré duality),(7)

while the same equality (7) also holds for b = 0 since h′
a = 1 and h′′

0 +
(

a
0
)
β0 = 1+0 =

1. By (6) and (7), the desired inequality h′′
c ⩾ h′′

b +
(

a
b

)
β̃|b| follows. □
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Corollary 7.5. For a ∈ Nm
+ , let (∆, κ) be an a-balanced connected homology mani-

fold over F2. Then, we have
h′′

i +
(

d
i

)
β̃i(

m+i−1
i

) ⩽
h′′

i+1(
m+i
i+1
)

for every nonnegative integer i ∈ N with i ⩽ minm
j=1

aj−1
2 , where d = |a|.

Proof. The inequality between h′′-vectors is derived by taking a weighted sum of the
inequalities h′′

b +
(

a
b

)
β̃|b| ⩽ h′′

b+ej
over all b ∈ Nm with |b| = i and j ∈ [m] as follows:

(m + i)
(

h′′
i +

(
d

i

)
β̃i

)
=
∑
|b|=i

m∑
j=1

(bj + 1)
(

h′′
b +

(
a

b

)
β̃i

)

⩽
∑
|b|=i

m∑
j=1

(bj + 1)h′′
b+ej

= (i + 1)h′′
i+1. □

7.2. Simplicial cycles. For a (d − 1)-dimensional simplicial complex ∆ with
H̃d−1(∆;k) ̸= 0, we call a nonzero element µ ∈ H̃d−1(∆;k) a simplicial cycle. Let ∆
be a (d − 1)-dimensional simplicial complex, and let A = k[∆]/(Θ) be an Artinian
reduction of k[∆]. A simplicial cycle µ of ∆ induces a nonzero linear function
Ψµ : Ad → k by

(8) Ψµ(xσ) = µσ

[σ]
for each positively oriented facet σ ∈ ∆, where µσ is the coefficient of a facet σ and
[σ] is computed as in Lemma 3.1. Note that the linear function on Ad is determined
by the values of squarefree monomials [16, Theorem 9]. The existence of a linear
map satisfying (8) for all facets of ∆ can be verified by checking the equilibrium
condition [16, Theorem 10]. (Or alternatively consider weighted connected sum in the
formulation of Karu-Xiao [14].)

A nonzero linear function φ : k[x]d → k determines a standard Artinian Gorenstein
graded algebra k[x]/I. Specifically, f ∈ k[x]k is in I if and only if k ⩾ d + 1 or
φ(fg) = 0 for all g ∈ k[x]d−k. Thus the map Ψµ (by concatenating a projection
k[∆]d ↠ Ad to it) determines an Artinian Gorenstein k-algebra denoted as B(µ),
which is called the Gorensteinification of A [3]. Note that if ∆ is a homology sphere,
A is itself Gorenstein, and hence we have A = B(µ) for any nonzero µ ∈ H̃d−1(∆;k).
If A is Nm-graded, B(µ) is also Nm-graded and satisfies the multigraded Poincaré
duality.

Theorem 1.1 is generalized to a simplicial cycle over a field of characteristic 2 as
follows.

Theorem 7.6. For an a-balanced simplicial complex (∆, κ), let µ be a simplicial cycle
of ∆ over a field k of characteristic 2. Let A = k̃[∆]/(Θ) be the generic Nm-graded
Artinian reduction of k[∆] and let B(µ) be the Gorensteinification of A with respect
to µ. Then for generic elements ℓj ∈ B(µ)ej , where j = 1, . . . , m, the multiplication
map

×ℓa−2b : B(µ)b → B(µ)a−b

is an isomorphism for every b ∈ Nm with b ⩽ a
2 .

Proof Sketch. We provide only a proof sketch as the discussion is almost the same as
in Sections 3-5. Using a discussion similar to [14, Section 2.6], by introducing the cone
vertex, the simplicial cycle µ can be written as a weighted connected sum of simplex
boundaries with the weights in k. Accordingly, the map Ψµ is written as a weighted
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sum of the evaluation map of simplex boundaries. Hence, Ψ = Ψµ also satisfies the
differential formula in Lemma 4.2, and thus Corollary 4.3. We can prove the desired
statement for B(µ) in the same way as in the proof of Theorem 1.1 since in the proof
of Theorem 5.1 we only used the fact that A has the multigraded Poincaré duality,
which is now passed to B(µ). □

Remark 7.7. To deduce a (generalized) lower bound type inequality from Theo-
rem 7.6, it is imperative to understand the values dim A∗ and dim B∗ −dim A∗. To the
best of our knowledge, even in the natural N-graded case, these numbers are not well
understood outside of the setting of Buchsbaum complexes or homology manifolds.
(See [8, 17, 21, 22, 23] for research in this direction.) Further understanding of these
numbers would also be valuable from the perspective of skeletal rigidity [29].

From Theorem 7.6, we can obtain the following multigraded version of the top-
heavy Lefschetz property for doubly Cohen-Macaulay complexes. A simplicial complex
∆ is called a doubly Cohen-Macaulay complex (or a 2-CM complex) over a field k if
∆ is Cohen-Macaulay over k and for each vertex v, ∆ − v is Cohen-Macaulay over k
and has the same dimension as ∆.

Theorem 7.8. For a ∈ Nm
+ , let (∆, κ) be an a-balanced doubly Cohen-Macaulay com-

plex over a field k of characteristic 2. Let A = k̃[∆]/(Θ) be the generic Nm-graded
Artinian reduction of k[∆]. Then, for generic elements ℓj ∈ Aej

, where j = 1, . . . , m,
the multiplication map

×ℓa−2b : Ab → Aa−b

is injective for any b ∈ Nm with b ⩽ a
2 .

Proof. Let d = |a| and let µ1, . . . , µk be a basis of H̃d−1(∆;k). It is known that an
Artinian reduction of the Stanley-Reisner ring of a doubly Cohen-Macaulay complex is
a level ring [28, Section III.3], that is, Soc(A) = Aa. This implies that for any nonzero
x ∈ Ab, there exists y ∈ Aa−b such that (Ψµ1(xy), . . . , Ψµk

(xy)) ̸= 0. Thus, the map
A(∆)∗ →

⊕k
i=1 B(µi)∗ is injective. Consider the following commutative diagram:

A(∆)b A(∆)a−b

⊕k
l=1 B(µl)b

⊕k
l=1 B(µl)a−b

×ℓa−2b

×ℓa−2b

∼=

As the bottom map is an isomorphism by Theorem 7.6, the top map is injective. □

Now Theorem 1.4 is readily derived.

Proof of Theorem 1.4. For b ⩽ c ⩽ a − b, Theorem 7.8 implies that the linear map
×ℓb−c : Ab → Ac is injective. Thus hb = dim Ab ⩽ dim Ac = hc follows. □

We remark that the inequality of h-vectors in Corollary 5.3 also follows by the
same argument.

8. Lefschetz property as an N-graded algebra
Let (∆, κ) be an a-balanced simplicial complex for a ∈ Nm

+ with d = |a|. For sim-
plicity, in this section, we focus on the case when ∆ is a homology sphere. Let A be
the generic Nm-graded Artinian reduction of k[∆]. Here, instead of considering A as
an Nm-graded algebra, we regard A as an N-graded algebra A = A0 ⊕ · · · ⊕ Ad under
the coarse grading deg xv = 1 for all v ∈ V (∆), and investigate the weak Lefschetz
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property as an N-graded algebra. See [7, Conjecture 1.3] and [23, Conjecture 1.1] for
related conjectures.

8.1. Full-rankness at the ends. From Theorem 1.1, one can deduce that, for a
generic linear form ℓ ∈ A1, the multiplication map ×ℓ : Ai → Ai+1 is injective for
i ⩽ minm

j=1
aj−1

2 and surjective for i ⩾ d − 1 − minm
j=1

aj−1
2 . We can slightly extend

the range of i as follows.

Theorem 8.1. For a ∈ Nm
+ with |a| = d, let (∆, κ) be an a-balanced homology (d−1)-

sphere over F2 and let k be a field of characteristic 0 or 2. Let A = k̃[∆]/(Θ) be the
generic Nm-graded Artinian reduction of k[∆], and let ℓ =

∑
v∈V (∆) xv ∈ A1. Then

the multiplication map ×ℓ : Ai → Ai+1 is injective for i ⩽ min{ d−1
2 , a1

2 , . . . , am

2 } and
surjective for i ⩾ d − 1 − min{ d−1

2 , a1
2 , . . . , am

2 }.

Proof. As the characteristic 0 case follows from the characteristic 2 case by an ar-
gument used in Section 6, we assume that k is a field of characteristic 2. We first
show the injectivity for i ⩽ min{ d−1

2 , a1
2 , . . . , am

2 }. For this, it suffices to show that
the quadratic form Q : Ai → A2i+1 defined by Q(g) = g2ℓ satisfies the property that
Q(g) ̸= 0 if g ̸= 0. Suppose that g is a nonzero element in Ai. Then by Poincaré
duality (as an N-graded algebra), there is a monomial xK of total degree d − i such
that gxK ̸= 0 in Ad. Let b be the degree of the monomial xK in the Nm-grading.
Then we have 0 ⩽ b ⩽ a and |b| = d − i. Since i ⩽ minj∈[m]

aj

2 , we have b ⩾ a
2 .

Because of this and i ⩽ d−1
2 , the square x2

K can be written as x2
K = xIxv∗xJ for some

κ-transversal sequence I, some vertex v∗ ∈ V (∆), and some length d−2i−1 sequence
J of vertices. We have the identity

∂IΨ(Q(g)xJ) =
∑

v∈V (∆)

∂IΨ(g2xvxJ)

=
∑

v∈V (∆)

Ψ(g
√

xIxvxJ)2 (by Corollary 4.3)

(∗)= Ψ(g
√

xIxv∗xJ)2 = Ψ(gxK)2 ̸= 0,

where (∗) follows from the uniqueness of a variable xu with √
xIxuxJ ̸= 0 for fixed I

and J . Thus, we have Q(g) ̸= 0. Hence the desired injectivity is derived.
To prove the surjectivity, note that, by the Gorensteiness of A, Ad−i′ is a dual

vector space of Ai′ for each i′. Thus, the surjectivity of ×ℓ : Ad−1−i → Ad−i is
equivalent to the injectivity of ×ℓ : Ai → Ai+1. Hence the desired surjectivity at the
other end follows. □

Remark 8.2. The assumption i ⩽ d−1
2 for the injectivity (and i ⩾ d−1

2 for the sur-
jectivity) in Theorem 8.1 is redundant when m ⩾ 2. For example, to compare The-
orem 8.1 with Theorem 1.1, if (a1, . . . , am) = (2, . . . , 2) with m ⩾ 2, Theorem 8.1
guarantees the injectivity of ℓ : A1 → A2, which does not follow directly from Theo-
rem 1.1. See also [23] for a different proof for the injectivity of ℓ : A1 → A2.

8.2. Examples that fail the N-graded weak Lefschetz property. In Theo-
rem 8.1, we showed that ×ℓ : Ai → Ai+1 is generically full-rank at appropriate ends.
In contrast to Theorem 8.1, we construct examples of an a-balanced simplicial sphere
such that the full-rankness generically fails around the middle degrees. In [7, 23], such
an example was already obtained for a = (a1, 1) with a1 ⩾ 2. Let us begin by recalling
this construction.

The stellar subdivision of ∆ at a face σ ∈ ∆ is the simplicial complex
(∆ − σ) ∪ {{vσ} ∪ τ : τ ∈ stσ(∆), τ ̸⊃ σ},
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where vσ is a new vertex. Note that stellar subdivisions preserve the underlying topo-
logical space. Consider a stacked a1-sphere, and apply stellar subdivisions to all of
its facets. The resulting simplicial sphere ∆ is stacked and (a1, 1)-balanced with the
2-coloring κ defined by κ(v) = 2 if and only if v is a new vertex. It was shown in
[7, 23] that for any choice of an N2-graded l.s.o.p. Θ of k[∆], in the Artinian reduction
A = k[∆]/(Θ), the map ×ℓ : A1 → A2 is degenerate for any ℓ ∈ A1.

To generalize this construction, we consider a partial barycentric subdivision [6].
We denote by ∆(i) (resp. ∆(⩽i), ∆(⩾i)) the set of all faces of ∆ of dimension equal to
(resp. at most, at least) i. For a subset S of the power set of a finite set, the simplicial
complex spanned by S is {T : T ⊂ S for some S ∈ S}. For 0 ⩽ l < d and a pure (d−1)-
dimensional simplicial complex ∆, the l-th partial barycentric subdivision sdl(∆) of ∆
is defined as follows: For each τ ∈ ∆(⩾d−l), let vτ be a new vertex associated to τ , and
define sdl(∆) as the simplicial complex spanned by the sets τ0 ∪ {vτ1 , . . . , vτl

} over all
flags of faces τ0 ⊊ τ1 ⊊ · · · ⊊ τl of ∆ with dim τi = d−l−1+i for i = 0, . . . , l. Note that
we have sd0(∆) = ∆ and sdd−1(∆) coincides with the barycentric subdivision of ∆.
Equivalently, the l-th partial barycentric subdivision is obtained by ordering the faces
of ∆(⩾d−l) in decreasing order of dimension and then applying stellar subdivisions
one by one. As stellar subdivision preserves the underlying topological space, ∆ and
sdl(∆) have the homeomorphic geometric realizations. For a pure (d − 1)-dimensional
simplicial complex ∆ and l < d, sdl(∆) is (d − l, 1l)-balanced with the coloring
κ : V (sdl(∆)) → [l + 1] defined by κ(v) = 1 for v ∈ V (∆) and κ(vτ ) = |τ | − d + l + 1
for vτ ∈ V (sdl(∆)) ∖ V (∆), where 1l is the all ones vector of length l. By grouping
the last l colors of κ into one color, one can consider sdl(∆) as a (d − l, l)-balanced
simplicial complex. We denote the resulting 2-coloring by κ◦.

Our example is the i-th partial barycentric subdivision of a sphere with hi = hi+1.
(Such a sphere is called i-stacked [18], and a stacked (d−1)-sphere is always i-stacked
for i < ⌊d/2⌋.) More precisely, we have the following result.

Theorem 8.3. Let k be an infinite field, and let i, d be positive integers with i < d
2 .

Let ∆ be a simplicial (d − 1)-sphere with hi(∆) = hi+1(∆), and let sdi(∆) be the
i-th partial barycentric subdivision of ∆ with the associated 2-coloring κ◦. Consider
an l.s.o.p. Θ = (θ1, . . . , θd) for k[sdi(∆)] such that the j-th linear form θj is of
degree e2 under the N2-grading induced by κ◦ for j = d − i + 1, . . . , d. Then, for
the Artinian reduction A = k[sdi(∆)]/(Θ) with respect to Θ, the multiplication map
×ℓ : Ai → Ai+1 is degenerate for any linear form ℓ ∈ A1.

In particular, if (sdi(∆), κ◦) is viewed as an a = (d − i, i)-balanced simplicial com-
plex, there is no N2-graded l.s.o.p. Θ such that the Artinian reduction k[sdi(∆)]/(Θ)
has the weak Lefschetz property as an N-graded algebra.

Proof. As the geometric realizations of ∆ and sdi(∆) are homeomorphic, sdi(∆) is a
simplicial (d−1)-sphere. As sdi(∆) is obtained by a sequence of stellar subdivisions of
faces of codimension at most i, we have hi+1(sdi(∆))−hi(sdi(∆)) = hi+1(∆)−hi(∆) =
0. Hence dim Ai = hi(sdi(∆)) = hi+1(sdi(∆)) = dim Ai+1. Thus it suffices to prove
that the multiplication map ×ℓ : Ai → Ai+1 cannot be surjective for any linear form
ℓ ∈ A1. Intuitively, from the perspective of skeletal rigidity [29], under the normal-
ization ℓ =

∑
v∈V (sdi(∆)) xv, the surjectivity of ×ℓ : Ai → Ai+1 is equivalent to the

affine i-stress-freeness of the framework (sdi(∆), p), where p is the point configuration
associated to Θ. However the (d− i)-dimensional subframework induced by V (∆) has
the same i-skeleton as a (d − 1)-sphere ∆, so it must support an affine i-stress in
(d − i)-dimension. We now turn this geometric intuition into an algebraic proof.
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Let W = V (∆) be the vertex subset of sdi(∆). Consider the induced subcomplex
sdi(∆)W = {τ ∈ sdi(∆) : τ ⊂ W}. By definition, we have sdi(∆)W = ∆(⩽d−i−1). Let
π : k[xv : v ∈ V (sdi(∆))] ↠ k[xv : v ∈ V (∆)] be the natural projection. We have
π(k[sdi(∆)]) = k[sdi(∆)W ] by definition and π(θd−i+1) = · · · = π(θd) = 0 by the
assumption. Thus for any ℓ ∈ A1 we have

dim
(
k[sdi(∆)]/(Θ, ℓ)

)
i+1(9)

⩾
(
π(k[sdi(∆)])/(π(θ1), . . . , π(θd), π(ℓ)

)
i+1

=
(
k[∆(⩽d−i−1)]/(θ̃1, . . . , θ̃d−i, π(ℓ)

)
i+1

(∗)
⩾ dim

(
k[∆(⩽d−i−1)]/(θ̃1, . . . , θ̃d−i)

)
i+1

− dim
(
k[∆(⩽d−i−1)]/(θ̃1, . . . , θ̃d−i)

)
i
,

(10)

where we denote θ̃j = π(θj), and the inequality (∗) holds since π(ℓ) is a linear form.
Since the surjectivity of ×ℓ : Ai → Ai+1 is equivalent to the value (9) being 0, it
suffices to prove that the value (10) is positive.

To compute (10), note that (θ̃1, . . . , θ̃d−i) is an l.s.o.p. for k[∆(⩽d−i−1)]. This fol-
lows from the Kind-Kleinschmidt’s criterion [28, Lemma III.2.4]. Observe also that
∆(⩽d−i−1) is Cohen-Macaulay as ∆ is Cohen-Macaulay(3). Thus we have

dim
(
k[∆(⩽d−i−1)]/(θ̃1, . . . , θ̃d−i

)
j

= hj(∆(⩽d−i−1)) for j = 0, . . . , d − i.

Now in the Stanley’s triangle table for ∆ (see [30, p.250]), the h-vector of ∆(⩽d−i−1)

appears in the (d − i)-th row. So the consecutive difference hi+1(∆(⩽d−i−1)) −
hi(∆(⩽d−i−1)) appears in the (d − i + 1)-th row. As the h-vector of sdi(∆) is positive,
all the entries in the triangle table are positive. Thus, (10) is positive. We thus
verified the degeneracy of ×ℓ : Ai → Ai+1. □
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