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Weights on homogeneous coherent
configurations

Akihide Hanaki

Abstract D. G. Higman generalized the notion of a coherent configuration and defined a
weight. In this article, we will modify the definition and investigate weights on coherent config-
urations. If our weights are on a thin homogeneous coherent configuration, that is essentially
a finite group, then there is a natural correspondence between the set of equivalence classes of
weights and the 2-cohomology group of the group. We also give a construction of weights as a
generalization of Higman’s method using monomial representations of finite groups.

1. Introduction
In [3], D. G. Higman established basic theory of coherent configurations, and in [4],
he generalized the notion of a coherent configuration and defined a weight. Typical
examples of coherent configurations are defined using permutation representations of
finite groups, and weights are defined using monomial representations [2]. However,
after [4], weights have been little studied. In this article, we will modify the definition
and investigate weights on coherent configurations. Especially, we will consider weights
on homogeneous coherent configurations. Homogeneous coherent configurations are
just (not necessarily commutative) association schemes in [8]. In Higman’s definition,
a weight is a generalization of a coherent configuration, but we will consider a weight
on a coherent configuration.

In Section 2, we will give definitions. Also we will define equivalence of weights,
which is not considered in [4]. A finite group G can be considered as a homogeneous
coherent configuration. In Section 3, we consider this case and show that there is a
natural correspondence between the set of equivalence classes of weights and the 2-
cohomology group of the group G. In Section 4, we generalize the method by Higman
using monomial representations of finite groups.

Let X be a finite set. We denote by MX(C) the matrix algebra both rows and
columns of whose matrices are indexed by the set X. For ax ∈ C (x ∈ X), diag(ax |
x ∈ X) ∈ MX(C) is the diagonal matrix with the (x, x)-entry ax. For c ⊂ X × X,
Ac ∈ MX(C) is defined by (Ac)x,y = 1 if (x, y) ∈ c and 0 otherwise. For c ⊂ X × X,
c∗ = {(y, x) | (x, y) ∈ c}. Obviously, Ac∗ = AT

c , the transposed matrix of Ac.
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2. Coherent configurations and weights
2.1. Coherent configurations. Let X be a finite set. We consider the following
conditions.

(C1) C is a partition of X × X. Namely, C is a collection of non-empty subsets of
X × X, X × X =

⋃
c∈C c, and c ∩ c′ = ∅ for c ̸= c′ ∈ C.

(C2) If c ∈ C, then c∗ ∈ C.
(C3) There is a subset ∆ of C such that

⋃
d∈∆ d = {(x, x) | x ∈ X}.

(C4) CC =
⊕

c∈C CAc is an algebra.
The pair X = (X, C) is called a configuration if (C1) holds. The configuration X
is said to be precoherent if (C1), (C2) and (C3) hold. The configuration X is said
to be coherent if (C1), (C2), (C3) and (C4) hold. The algebra CC is called the
adjacency algebra of X. When ∆ is a singleton, a coherent configuration X is said to
be homogeneous. Homogeneous coherent configurations are just (non-commutative)
association schemes in [8].

Example 2.1. [Thin homogeneous coherent configurations] Let G be a finite group.
For g ∈ G, define cg = {(x, y) ∈ G × G | xg = y}. Then X(G) = (G, {cg | g ∈ G}) is a
homogeneous coherent configuration. In this case, we say that X(G) is thin.

Example 2.2. [Schurian homogeneous coherent configuration, centralizer algebra] Let
G be a finite transitive permutation group on X, and let T be the permutation repre-
sentation of G related to X. Set V = {A ∈ MX(C) | AT (g) = T (g)A for all g ∈ G},
the centralizer algebra. Then V has a basis consisting of 01-matrices (G-orbits on
X × X). We can define a homogeneous coherent configuration. In this case, we say
that the homogeneous coherent configuration is schurian.

2.2. Weights. Let X = (X, C) be a coherent configuration. For W ∈ MX(C), we
define the support of W by

spt(W ) = {(x, y) ∈ X × X | Wxy ̸= 0}.

For c ∈ C, we set
AW

c = Ac ◦ W,

where ◦ is the entry-wise product (Hadamard product). We consider the following
conditions.

(W1) spt(W ) =
⋃

d∈D d for some subset D of C, and, if d ⊂ spt(W ), then d∗ ⊂
spt(W ).

(W2) Wxx ̸= 0 for all x ∈ X.
(W3) CW C =

⊕
c∈C CAW

c is an algebra.
(W4) W is hermitian, ||Wxy|| ∈ {0, 1} for all x, y ∈ X, and Wxx = 1 for all x ∈ X.

We call W a weight on X if (W1), (W2) and (W3) hold. We call W an H-weight on
X if (W1), (W2), (W3) and (W4) hold (“H-” is due to Higman).

Remark 2.3. In [4], Higman called W a weight if X is a precoherent configuration
and (W1) and (W4) hold, and a coherent weight if W is a weight and (W3) holds (the
condition (W2) automatically holds by (W4)). Thus, in Higman’s sense, weights are
not necessarily on coherent configurations, and CC is not necessarily an algebra. In
our definition, weights are on coherent configurations and we require that CC is also
an algebra.

Example 2.4. The “all one” matrix W is a weight on any coherent configuration,
and called the standard weight. In this case, CW C = CC. The identity matrix W is a
weight on any coherent configuration, and called the trivial weight.
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Example 2.5. Let G be a finite group, H a subgroup of G. The induced representation
from the trivial representation of H to G is the transitive permutation representa-
tion and defines a homogeneous coherent configuration X(G, H) as in Example 2.2.
Let φ be a linear character of H, and let Uφ be the representation of H afford-
ing φ. Consider the monomial representation U↑G

φ and set Vφ = {A ∈ M|G:H|(C) |
AU↑G

φ (g) = U↑G
φ (g)A for all g ∈ G}. Then Vφ determines an H-weight on X(G, H) [2].

2.3. Equivalence. We define an equivalence of weights on a coherent configuration.
Let W and W ′ be weights on a coherent configuration X = (X, C). Set Aut(X) = {σ ∈
Sym(X) | cσ = c for all c ∈ C}, where cσ = {(xσ, yσ) | (x, y) ∈ c} and Sym(X) is the
symmetric group on X. Let Pσ ∈ MX(C) be the permutation matrix corresponding
to σ ∈ Sym(X). We say that W and W ′ are equivalent and write W ∼ W ′ if there
exist ax ∈ C× (x ∈ X), γ(c) ∈ C× (c ∈ C) and σ ∈ Aut(X) such that

W ′ = diag(ax | x ∈ X)−1P −1
σ

∑
c∈C

γ(c)AW
c Pσ diag(ax | x ∈ X).

We remark that W =
∑

c∈C AW
c . We say that two H-weights W and W ′ are H-

equivalent and write W ∼H W ′ if W ∼ W ′ for ||ax|| = ||γ(c)|| = 1 and γ(c∗) = γ(c)−1

(x ∈ X, c ∈ C).

3. Weights on a finite group
In this section, we consider weights and H-weights on a thin homogeneous coherent
configuration, a finite group (Example 2.1). We will show that weights are essentially
factor sets, in this case.

We recall the basic theory of 2-cohomology of a finite group with reference to [7].
Let G be a finite group. A function α : G×G → C× is called a factor set or a 2-cocycle
if

(∗) α(g, h)α(gh, k) = α(g, hk)α(h, k)

hold for all g, h, k ∈ G. It is possible to change C× to an abelian group M and consider
the action of G on M , but we will consider only the trivial action on C×. If we consider
a vector space

⊕
g∈G Cvg, where {vg | g ∈ G} is a formal basis of the space, with the

multiplication vgvh = α(g, h)vgh, then the condition (∗) is equivalent to the associativ-
ity of the multiplication. Thus, for a factor set α, we can define the generalized group
algebra (also known as twisted group algebra) C(α)G =

⊕
g∈G Cvg. The set Z2(G,C×)

of all factor sets is an abelian group by (αβ)(g, h) = α(g, h)β(g, h). The change of ba-
sis vg 7→ γ(g)vg yields the change of the factor set α(g, h) 7→ γ(g)γ(h)γ(gh)−1α(g, h).
We say that factor sets α and β are equivalent and write α ∼ β if there exists a map
γ : G → C× such that β(g, h) = γ(g)γ(h)γ(gh)−1α(g, h). A factor set α is called a
2-coboundary if there exists a map γ : G → C× such that α(g, h) = γ(g)γ(h)γ(gh)−1.
The set B2(G,C×) of all 2-coboundaries is a subgroup of Z2(G,C×). The factor
group H2(G,C×) = Z2(G,C×)/B2(G,C×) is called the 2-cohomology group of G. An
element of H2(G,C×) is an equivalence class of factor sets.

Proposition 3.1 ([7, II. Section 7.2, Theorem 7.3, III. Lemma 5.4]). For a factor
set α of a finite group G, there exists a factor set β equivalent to α satisfying the
following conditions.

(1) β(g, 1) = β(1, g) = 1, β(g, g−1) = β(g−1, g) = 1 for all g ∈ G.
(2) β(g, h)2|G| = 1 for all g, h ∈ G.

Now we consider weights on a thin homogeneous coherent configuration. The next
lemma is clear by definition.
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Lemma 3.2. Let W be a weight on a thin homogeneous coherent configuration X(G)
defined by a finite group G. Then spt(W ) =

⋃
k∈K ck for some subgroup K of G,

where ck = {(x, y) ∈ G × G | xk = y}.

We say that W has “no zero entry”, if spt(W ) = G. Clearly, if W ∼ W ′ and W
has no zero entry, then so does W ′. The following theorems are the main results in
this section.

Theorem 3.3. Let X(G) be a thin homogeneous coherent configuration defined by a
finite group G. Then there exist natural bijections between the following sets:

(1) W : the set of ∼ equivalence classes of weights on X(G) having no zero entry,
(2) WH : the set of ∼H equivalence classes of H-weights on X(G) having no zero

entry,
(3) H2(G,C×) : the 2-cohomology group of G.

Theorem 3.4. Let X(G) be a thin homogeneous coherent configuration defined by a
finite group G. Then there exist natural bijections between the following sets:

(1) the set of ∼ equivalence classes of weights on X(G),
(2) the set of ∼H equivalence classes of H-weights on X(G),
(3)

⋃
K H2(K,C×), where K runs over all subgroups of G.

To prove the above theorems, we need some lemmas. For a moment, we suppose
that W is a weight on X(G) having no zero entry. Set cg = {(x, y) ∈ G × G | xg = y}
and Ag = Acg

, the adjacency matrix. By

AW
g AW

h = αW (g, h)AW
gh

for g, h ∈ G, we obtain a factor set αW . For a factor set α, we can define Wα ∈ MG(C)
by

(Wα)xy = α(x, x−1y).

Lemma 3.5. For a factor set α, Wα is a weight and αWα
= α.

Proof. By definition,

(AWα
g AWα

h )xy =
∑
z∈G

δxg,zα(x, x−1z)δzh,yα(z, z−1y) = δxgh,yα(x, g)α(xg, h)

= δxgh,yα(x, gh)α(g, h),
(AWα

gh )xy = δxgh,yα(x, x−1y) = δxgh,yα(x, gh).

Thus AWα
g AWα

h = α(g, h)AWα

gh and the result holds. □

The definition of Wα is quite natural, because it is based on the regular represen-
tation of the generalized group algebra C(α)G. The matrix Wα is also known as a
cocyclic matrix and considered in several papers, for example in [1, 6].

Lemma 3.6. Let W be a weight on a thin homogeneous coherent configuration X(G)
defined by a finite group G. Then

αW (g, h) = Wx,xgWxg,xgh

Wx,xgh

for all g, h, x ∈ G. In particular, if W is an H-weight, then ||αW (g, h)|| = 1 for all
g, h ∈ G.
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Proof. The result follows from

(AW
g AW

h )xy =
∑
z∈G

δxg,zWx,zδzh,yWz,y

= δxgh,yWx,xgWxg,xgh,

(AW
g AW

h )xy = αW (g, h)(AW
gh)x,y = αW (g, h)δxgh,yWx,xgh

for g, h, x, y ∈ G. □

For a factor set α, a weight W , and an H-weight W , we denote the ∼ equivalence
class containing α by [α], the ∼ equivalence class containing W by [W ], and the ∼H

equivalence class containing W by [W ]H , respectively. We define
Φ : H2(G,C×) → W, Φ([α]) = [Wα]

and show that Φ is a bijection.

Lemma 3.7. For a weight W , W ∼ WαW
.

Proof. Set
W ′ = diag((W1g)−1 | g ∈ G)−1W diag((W1g)−1 | g ∈ G).

Then αW = αW ′ , W ∼ W ′, and W ′
1g = W ′

11 (g ∈ G). By setting x = 1 in Lemma 3.6,
we have αW (g, h) = W ′

g,gh and thus W ′ = WαW
. □

Lemma 3.8. For factor sets α and β, if α ∼ β, then Wα ∼ Wβ. (Namely, Φ is well-
defined.)

Proof. Suppose β(g, h) = γ(g)γ(h)γ(gh)−1α(g, h). We have Wα =
∑

g∈G AWα
g and

set W ′ =
∑

g∈G γ(g)AWα
g . Then W ′ ∼ Wα and W ′ is a weight with the factor set β.

By Lemma 3.7, W ′ ∼ Wβ and Wα ∼ Wβ . □

Lemma 3.9. The map Φ is surjective.

Proof. This is clear by Lemma 3.7. □

Lemma 3.10. For factor sets α and β, if Wα ∼ Wβ, then α ∼ β. (This means that Φ
is injective.)

Proof. For Wα =
∑

g∈G AWα
g and σ ∈ Aut(X), we can write

Wβ = diag(ag | g ∈ G)−1P −1
σ

∑
g∈G

γ(g)AWα
g Pσ diag(ag | g ∈ G).

Thus the factor set obtained by Wβ is γ(g)γ(h)γ(gh)−1α(g, h). We have α ∼ β. □

By Lemmas 3.8, 3.9, 3.10, Φ : H2(G,C×) → W is bijective.
We consider

Ψ : WH → W, Ψ([W ]H) = [W ]
and show that Ψ is a bijection. By definition, it is clear that Ψ is well-defined, namely,
if W ∼H W ′, then W ∼ W ′.

Lemma 3.11. If a factor set α satisfies the conditions (1) and (2) in Proposition 3.1,
then Wα is an H-weight.

Proof. Suppose that α satisfies (1) and (2). Recall that (Wα)xy = α(x, x−1y). Since
α(x, 1) = 1, (Wα)xx = 1 for x ∈ G. For all x, y ∈ G, ||(Wα)xy|| = ||α(x, x−1y)|| = 1
hold. By α(x, x−1) = 1, AWα

x−1 = (AWα
x )−1 = (AWα

x )∗. Thus Wα =
∑

x∈G AWα
x is

hermitian. Now Wα is an H-weight. □

Lemma 3.12. Ψ is surjective.
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Proof. Let W be a weight. By Lemma 3.7, W ∼ WαW
. By Proposition 3.1, there exists

a factor set β ∼ αW which satisfies the conditions (1) and (2) in Proposition 3.1. By
Lemmas 3.8, 3.11, Wβ is an H-weight and WαW

∼ Wβ . Now Ψ([Wβ ]H) = [Wβ ] = [W ]
and Ψ is surjective. □

Lemma 3.13. For H-weights W and W ′, if W ∼ W ′, then W ∼H W ′. (This means
that Ψ is injective.)

Proof. Suppose that W and W ′ are H-weights and set

W ′ = diag(ag | g ∈ G)−1P −1
σ

∑
g∈G

γ(g)AW
g Pσ diag(ag | g ∈ G).

We have αW ′(g, h) = γ(g)γ(h)γ(gh)−1αW (g, h) and ||αW (g, h)|| = ||αW ′(g, h)|| = 1
for all g, h ∈ G. Choose g0 ∈ G such that ||γ(g0)|| is maximal. By αW ′(g0, g0) =
γ(g0)2γ(g2

0)−1α(g0, g0), we have ||γ(g0)||2 = ||γ(g2
0)|| ⩽ ||γ(g0)|| and this shows

||γ(g0)|| ⩽ 1. Conversely, choose g1 ∈ G such that ||γ(g1)|| is minimal. Then we have
||γ(g1)|| ⩾ 1. This shows that ||γ(g)|| = 1 for all g ∈ G.

The absolute values of entries of P −1
σ

∑
g∈G γ(g)AW

g Pσ are 1. For all g, h ∈ G, we
can see that ||a−1

g ah|| = 1 and this shows ||ag|| = 1 for all g ∈ G. Now W ∼H W ′. □

Proof of Theorem 3.3. By Lemmas 3.8, 3.9, 3.10, Φ : H2(G,C×) → W is bijective.
By Lemmas 3.12, 3.13, Ψ : WH → W is bijective. □

We consider weights having zero entries.

Proof of Theorem 3.4. Let W be a weight on X(G) which can have zero entries. The
support of W determines a subgroup K of G. We can write W as a block diagonal
matrix, and all blocks are weights on K of the same factor set of K. We remark that
the support is invariant under equivalence of weights. Conversely, for a factor set α
of a subgroup K, we define a block diagonal matrix W with all diagonal blocks Wα.
Then W is a weight on X(G) with support K. Now the result holds. □

Remark 3.14. By the above arguments, we can see that every weight W on a finite
group is equivalent to an H-weight W ′. If the factor set of W is α and we choose β
as in Proposition 3.1, then W ∼ Wβ , Wβ is an H-weight, and every entry of Wβ is 0
or a root of unity.

4. A construction
In this section, we will generalize the result by Higman [2] to construct weights on
homogeneous coherent configurations. Higman used monomial representations of fi-
nite groups. We will define monomial representations of homogeneous coherent con-
figurations, and construct weights on homogeneous coherent configurations. As we
mentioned, homogeneous coherent configurations are association schemes in the sense
in [8]. We will use terminologies in [8, 9].

We summarize the theory of homogeneous coherent configurations (association
schemes) and their representations with reference to [3, 8].

Let X = (X, C) be a homogeneous coherent configuration. The adjacency algebra
CC is known to be semisimple. Thus we can write CC ∼=

⊕r
i=1 Mni

(C), and character
theory works well. By Irr(C), we denote the set of all irreducible characters of CC.
Naturally CC acts on CX, and we call CX the standard module. The standard char-
acter is also defined. The multiplicity of χ ∈ Irr(C) in the standard character is called
the multiplicity of χ and denoted by mχ. There is a natural CC-monomorphism from
the regular module CC to the standard module CX, and thus χ(1) ⩽ mχ holds for
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χ ∈ Irr(C). Let eχ be the central primitive idempotent corresponding to χ ∈ Irr(C).
Then the rank of eχ as an element in MX(C) is mχχ(1).

A subset D of C is called a closed subset of C (or X) if CD =
⊕

d∈D CAd is a
subalgebra of CC (see [9, Lemma 2.1.6]). Suppose that D is a closed subset. For x ∈ X,
set xD = {y ∈ X | (x, y) ∈

⋃
d∈D d}. We have a partition X = x1D ∪· · ·∪xmD. Then

(xiD, DxiD) is also a homogeneous coherent configuration, called a sub homogeneous
coherent configuration, where DxiD = {d ∩ (xiD × xiD) | d ∈ D}. We remark that
these sub homogeneous coherent configurations (xiD, DxiD), i = 1, . . . , m are not
necessarily isomorphic, but their adjacency algebras are isomorphic to CD. Thus
we can identify Irr(DxiD) and write Irr(D). Set X/D = {x1D, . . . , xmD}. Define
cD = {(xiD, xjD) | c ∩ (xiD × xjD) ̸= ∅} for c ∈ C and C//D = {cD | c ∈ C}. Then
(X/D, C//D) is a homogeneous coherent configuration, called the factor homogeneous
coherent configuration. We remark that C//D defines a partition of C.

Now we define monomial representations (characters) of homogeneous coherent
configurations. Let D be a closed subset of X = (X, C), and let φ ∈ Irr(D) be of
multiplicity one. The induced character φ↑C is called a monomial character of X. Let
ei ∈ MxiD(C) be the central primitive idempotent corresponding to φ ∈ Irr(D). Since
mφ = 1, the rank of ei is 1. By [5, Theorem 2.8], φ is essentially a character of a
cyclic group, namely, there exists a closed subset K of C such that the factors of its
sub homogeneous coherent configurations are isomorphic cyclic groups. Thus we may
assume that all ei are same matrices e. Now we can set

eφ =

e
. . .

e

 ∈ CD ⊂ CC ⊂ MX(C),

the primitive idempotent in CD corresponding to φ ∈ Irr(D). The right CD-module
eφCD affords the character φ, and so the induced module, the module of the monomial
representation, is

eφCDCD ⊗ CC ∼= eφCC.

We consider the endomorphism algebra EndCC(eφCC) ∼= eφCCeφ. We set |xiD| =
ℓ. Then the rank of eMℓ(C)e = 1 and so eMℓ(C)e = Ce. Thus

eφCCeφ ⊂ eφMX(C)eφ
∼=


 a11e . . . a1me

. . .
am1e . . . amme

 ∣∣∣∣∣ aij ∈ C (1 ⩽ i, j ⩽ m)


∼= Mm(C) ∼= MX/D(C).

This defines an injective algebra homomorphism Γ : eφCCeφ → MX/D(C).
We will choose representatives of cD.

Lemma 4.1. Suppose eφAceφ ̸= 0. Then, for c′ ∈ C with cD = c′D, there exists µ ∈ C
such that eφAc′eφ = µeφAceφ.

Proof. Write

Ac =

 (Ac)11 . . . (Ac)1m

. . .
(Ac)m1 . . . (Ac)mm

 , Ac′ =

 (Ac′)11 . . . (Ac′)1m

. . .
(Ac′)m1 . . . (Ac′)mm

 .

Then we can write

eφAceφ =

 e(Ac)11e . . . e(Ac)1me
. . .

e(Ac)m1e . . . e(Ac)mme

 =

 a11e . . . a1me
. . .

am1e . . . amme

 ,
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eφAc′eφ =

 e(Ac′)11e . . . e(Ac′)1me
. . .

e(Ac′)m1e . . . e(Ac′)mme

 =

 b11e . . . b1me
. . .

bm1e . . . bmme


for some aij , bij ∈ C. Suppose ast ̸= 0. Set L = a−1

st bsteφAceφ − eφAc′eφ. Then the
(s, t)-part of L is 0. We remark that

(xiD, xjd) ∈ cD ⇐⇒ (Ac)ij ̸= 0,

(xiD, xjd) ̸∈ cD =⇒ e(Ac)ije = 0, aij = 0.

We put U = {c1 ∈ C | cD
1 = cD}. Since L ∈ CC, we can write L =

∑
c1∈U µ(c1)Ac1

for some µ(c1) ∈ C. By the definition of cD, every Ac1 (c1 ∈ U) has non-zero entries in
the (s, t)-part, and thus µ(c1) = 0 for all c1 ∈ U . Now eφAc′eφ = a−1

st bsteφAceφ. □

Choose cλ ∈ C (λ ∈ Λ) such that C//D = {cD
λ | λ ∈ Λ}, cD

λ ̸= cD
λ′ if λ ̸= λ′, and

eφAcλ
eφ ̸= 0 if such cλ exists. Then {eφAcλ

eφ | λ ∈ Λ, eφAcλ
eφ ̸= 0} is a basis of

eφCCeφ. We put
W =

∑
λ∈Λ

Γ(eφAcλ
eφ)

and show that W is a weight on (X/D, C//D). We remark that cλ is not unique to
cD

λ , but Γ(eφAcλ
eφ) is unique up to scalar multiple by Lemma 4.1 and thus W is

unique up to equivalence of weights.

Theorem 4.2. Let X = (X, C) be a homogeneous coherent configuration, and D
a closed subset of C. Let φ be an irreducible character of D of multiplicity one.
Then W defined above is a weight on the factor homogeneous coherent configuration
(X/D, C//D) and CW (C//D) ∼= eφCCeφ.

Proof. It is easy to see that spt(W ) =
⋃

c cD, where c runs over {c ∈ C | eφAceφ ̸= 0}.
Suppose cD ⊂ spt(W ). We may assume eφAceφ ̸= 0. We remark that e is hermitian,
because e is essentially a central primitive idempotent corresponding to a linear char-
acter of a finite group. Thus eφ is also hermitian. We have eφAc∗eφ = (eφAceφ)∗ ̸= 0,
and so (cD)∗ ⊂ spt(W ). The condition (W1) holds.

(W2) is clear. (W3) is also clear since CW (C//D) is the image of the algebra
homomorphism Γ. □

Remark 4.3. In the above definition of W , we may suppose the representatives {cλ}
are closed under the transposition. Then, by eφAc∗eφ = (eφAceφ)∗, W is hermitian.
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