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Super major index and Thrall’s problem

Sam Armon & Joshua P. Swanson
Dedicated to the memory of Adriano Garsia

Abstract Thrall’s problem asks for the Schur decomposition of the higher Lie modules Lλ,
which are defined using the free Lie algebra and decompose the tensor algebra as a general
linear group module. Although special cases have been solved, Thrall’s problem remains open
in general. We generalize Thrall’s problem to the free Lie superalgebra, and prove extensions
of three known results in this setting: Brandt’s formula, Klyachko’s identification of the Schur–
Weyl dual of Ln, and Kráskiewicz–Weyman’s formula for the Schur decomposition of Ln. The
latter involves a new version of the major index on super tableaux, which we show corresponds
to a q, t-hook formula of Macdonald.

1. Introduction
1.1. Super Thrall’s problem. Thrall [24] famously introduced a certain canonical
decomposition of the tensor algebra coming from free Lie algebras:
(1) T(V ) ∼=

⊕
λ

Lλ(V ).

Here V = CN , λ ranges over all integer partitions, the Lλ = Lλ(V ) are called Lie
modules, and the isomorphism is as GL(V )-modules. See Subsection 2.3 for details.
Thrall’s problem is to explicitly decompose the Lλ in terms of irreducible representa-
tions. Equivalently, we seek the Schur decomposition of the characters Ch(Lλ; x) in
the limit N → ∞, where x = x1, x2, . . .. Thrall’s problem remains open in gen-
eral, and has received significant attention in the literature since its formulation
[1, 4, 7, 9, 10, 12, 13, 20, 22]. See Vic Reiner’s lecture slides [17] for a lucid in-
troduction to Thrall’s problem and Adriano Garsia’s lecture notes [9] for a detailed
introduction to the theory of free Lie algebras and many of the results we extend.

We study a supersymmetric extension of Thrall’s problem. In Theorem 3.9, we
extend (1) to a canonical decomposition of the tensor superalgebra coming from free
Lie superalgebras:
(2) T̃(V ) ∼=

⊕
A

L̃A(V ).

Here V = V0 ⊕ V1 = CN ⊕ CM is a Z/2-graded vector space (a super vector space),
A ranges over all infinite Z⩾0-valued matrices A = (ai,j)i,j⩾0 with finite support and
a0,0 = 0, the L̃A = L̃A(V ) are called super Lie modules, and the isomorphism is as
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GL(CN ) ⊕ GL(CM )-modules. See Subsection 3.2 for details. We consider the problem
of explicitly decomposing L̃A into irreducible representations when N = M → ∞
under the diagonal action GL(CN ) ↪→ GL(CN ) ⊕ GL(CN ). Equivalently, we seek the
Schur decomposition of the characters Ch(L̃A; x, x). We recover the classical case as
L̃A = Lλ when ai,0 is the number of copies of i in λ, and ai,j = 0 for j > 0.

1.2. A key special case. The most important component of (1) is λ = (n), where
Ln = L(n) is the degree-n homogeneous component of the free Lie algebra of V in
T(V ). The decomposition of the higher Lie modules Lλ may be determined by Ch(Ln)
from the Littlewood–Richardson rule and plethysm.

In the super case, L̃n,m is the bidegree-(n, m) homogeneous component of the free
Lie superalgebra of V0 ⊕ V1 in T̃(V0 ⊕ V1). We have L̃n,0 = Ln and L̃n,m = L̃A where
an,m = 1 and ai,j = 0 otherwise. As before, the decomposition of the higher super Lie
modules L̃A may be determined by Ch(L̃n,m) from the Littlewood–Richardson rule
and plethysm.

Brandt’s formula [7] gives the decomposition of Ln in the power sum basis. We
prove the following generalization:

Theorem 1.1. The GL(CN )-character of L̃n,m is given by

(3) Ch(L̃n,m; xN ) = 1
n + m

∑
d|gcd(n,m)

(−1)m+ m
d µ(d)

(n+m
d
m
d

)
pd(xN )

n+m
d .

The m = 0 case of Theorem 1.1 reduces to Brandt’s formula. We also obtain the
dimension of L̃n,m, generalizing Witt’s formula [25] in the m = 0 case:

Corollary 1.2 ([16]). When V0 = V1 = CN and n + m > 0,

dim L̃n,m = 1
n + m

∑
d|gcd(n,m)

(−1)m+ m
d µ(d)

(n+m
d
m
d

)
N

n+m
d .

Klyachko [12] described the Schur–Weyl dual of Ln in terms of certain induced
representations. To state our generalization, we need some notation. Let Cn+m be the
cyclic subgroup of the symmetric group Sn+m generated by the long cycle πn+m =
(1 2 · · · n+m). Let χr : Cn+m → C be the character with χr(πn+m) = exp(2πir/(n+
m)). Finally, let χcyc be the character of the action where πn+m cyclically increments
m-element subsets of [n + m]. We prove the following:

Theorem 1.3. We have

(4) Ch(L̃n,m) =
{

FrobCh((χcyc ⊗ χ1) ↑Sn+m

Cn+m
) if m is odd

FrobCh((χcyc ⊗ χm/2+1) ↑Sn+m

Cn+m
) if m is even.

When m = 0, the χcyc factor may be omitted, recovering the Ln case.

1.3. Super Schur decompositions. Kraśkiewicz–Weyman determined the Schur
decomposition of Ln [13]. We generalize this result to L̃n,m. Our argument introduces
several super extensions of existing concepts in tableau combinatorics.

Let SYT±(λ) denote the set of standard Young tableaux of shape λ ⊢ n where
each cell is marked as positive or negative. For T ∈ SYT±(λ), let Neg(T ) ⊆ [n] be
the set of all i such that the box containing i in T is marked as negative. Write
neg(T ) := |Neg(T )|.

Definition 1.4. The (super) descent set of T ∈ SYT±(λ) is the set Des(T ) of all
i = 1, . . . , n − 1 such that either i + 1 ̸∈ Neg(T ) and i + 1 appears in a strictly lower

Algebraic Combinatorics, Vol. 8 #3 (2025) 796



Super major index and Thrall’s problem

row of T than i, or i ∈ Neg(T ) and i + 1 does not appear in a strictly lower row of T
than i. The (super) major index of T ∈ SYT±(λ) is

(5) maj(T ) =
∑

i∈Des(T )

i.

Here we use English notation, with the longest row on top, and Neg(T ) = ∅
recovers the usual descent set and major index.

Our super generalization of Kraśkiewicz–Weyman’s theorem is as follows. When
m = 0, we recover Kraśkiewicz–Weyman’s original result [13] in type A.

Theorem 1.5. The multiplicity of the Schur module V λ in L̃n,m is given by
(6) |{T ∈ SYT±(λ) : maj(T ) ≡n+m 1, neg(T ) = m}|.

Our proof of Theorem 1.5 involves super analogues of the theory of P -partitions and
symmetric function identities. For instance, we prove the following q, t-hook formula,
which was announced in [6, (6.1)]:

Theorem 1.6. For any λ ⊢ n,

(7)
∑

T ∈SYT±(λ)

qmaj(T )tneg(T ) = [n]q!
∏

(r,c)∈λ

qr−1 + tqc−1

[h(r, c)]q

where [n]q := 1 + q + · · · + qn−1 and [n]q! := [1]q[2]q · · · [n]q.

By contrast, Kraśkiewicz–Weyman’s proof uses a character computation to identify
Ln as isomorphic to a submodule of the classical coinvariant algebra. See [9, §8] for a
detailed discussion. The coinvariant algebra is very well-studied and intimately related
to geometry and topology. It would be interesting to extend this connection, which
we leave as an open problem.

Problem 1.7. Find an interpretation of Theorem 1.5 which directly relates super Lie
modules and coinvariant algebras.

1.4. Paper organization. The rest of the paper is organized as follows. In Section 2
we recall some necessary background on (super)symmetric functions and representa-
tion theory, and introduce the classical case of Thrall’s problem. In Section 3 we
define (free) Lie superalgebras and prove the super analogue of Brandt’s formula
(Theorem 1.1), before explicitly defining Thrall’s problem for free Lie superalgebras.
In Section 4 we determine the Schur–Weyl dual of L̃n,m, proving Theorem 1.3. In
Section 5 we develop some super tableau combinatorics and prove the q, t-hook for-
mula (Theorem 1.6), which is in turn used to prove Theorem 1.5 in Section 6. Further
directions are discussed in Section 7.

2. Background
2.1. Symmetric functions. We first review some background on tableau combi-
natorics and symmetric functions, and fix notation. For full details, see [21, Chap-
ter 7]. An integer partition λ is a weakly decreasing sequence of positive integers
λ = (λ1 ⩾ · · · ⩾ λk > 0), and we let Par denote the set of all integer partitions. If∑

i λi = n, then we denote this by λ ⊢ n. By a slight abuse of notation we identify λ
with its Ferrers diagram, which is the subset of Z>0×Z>0 consisting of λi left-justified
cells in row i. We draw our partitions using English notation, so that the longest row
appears at the top. The length of λ, denoted ℓ(λ), is the number of nonempty rows
in its Ferrers diagram. We sometimes will also use the notation λ = (1a12a2 · · · ) to
denote the partition with ai parts equal to i.
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Assume λ ⊢ n, and let [n] = {1, 2, . . . , n}. A standard tableau of shape λ is a
bijective map T : λ → [n] that is strictly increasing along the rows and columns
of λ. The set of all standard tableaux of shape λ will be denoted by SYT(λ). For
i = 1, . . . , n − 1, we say that i is a descent of T if i + 1 appears in a strictly lower row
of T than i. Let

Des(T ) := {i : i is a descent of T} ⊆ [n − 1].

Example 2.1. The standard tableau

T =
1 3 4 6
2 5
7

∈ SYT(4, 2, 1)

has Des(T ) = {1, 4, 6}.

Let x = (x1, x2, . . .). For n ⩾ 2 and D ⊆ [n − 1], the fundamental quasisymmetric
function Qn,D(x) is given by

Qn,D(x) =
∑

a1⩽a2⩽···⩽an,
ai=ai+1⇒i ̸∈D

xa1xa2 · · · xan .

The Schur function sλ(x) indexed by λ is written in terms of quasisymmetric
functions as follows:

sλ(x) =
∑

T ∈SYT(λ)

Qn,Des(T )(x).

Schur functions form a basis for the ring of symmetric functions Λ(x) ⊆ Z[[x1, x2, . . .]],
the subspace consisting of all power series of bounded degree which are unchanged
by permuting variable indices. Another important basis for the ring of symmetric
functions is formed by the power sum symmetric functions pλ(x), which are given by

pd(x) = xd
1 + xd

2 + · · · , pλ(x) = pλ1(x)pλ2(x) · · ·
for any d ⩾ 1 and any λ = (λ1 ⩾ λ2 ⩾ · · · > 0).

2.2. Representation theory of GL(CN ). We next provide some background
about the representation theory of the general linear group GL(CN ) of invertible
linear transformations of CN . We discuss its Schur–Weyl duality with the symmet-
ric group Sk — a complete exposition of which can be found, for instance, in [8]
— and then recount the relevant facts about its character theory and (bi)graded
representations.

Let N ⩾ 1. A GL(CN )-representation E is a C-vector space equipped with an action
of GL(CN ). All representations in this paper will be polynomial. The irreducible
representations of GL(CN ) are the Schur modules V λ, and are indexed by integer
partitions λ = (λ1 ⩾ · · · ⩾ λN ⩾ 0) with at most N non-zero parts.

By the Schur–Weyl duality between the representation theory of GL(CN ) and the
symmetric group Sk, the irreducible representations V λ may be constructed as follows.
The irreducible representations of Sk are the Specht modules Sλ, which are indexed
by partitions λ ⊢ k. The Frobenius characteristic map FrobCh is an isomorphism
between the space of class functions on Sk and the space of homogeneous degree k
symmetric functions, defined by FrobCh(Sλ) = sλ(x) for any λ ⊢ k. Letting V = CN ,
the space V ⊗k admits a natural GL(V ) × Sk-action, where GL(V ) acts diagonally
on V ⊗k on the left, and Sk acts on the right by permuting tensor factors. For any
Sk-module M , the Schur–Weyl dual of M is the GL(V )-module

E(M) = V ⊗k ⊗CSk
M.
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Then the irreducible representations of GL(V ) are given as the Schur–Weyl duals of
all Sλ for ℓ(λ) ⩽ N .

Upon fixing a basis for CN , we may identify GL(CN ) with the group of invert-
ible N × N matrices over C. The character of a GL(CN )-representation E is the
trace of the action of the diagonal matrix diag(x1, . . . , xN ) on E, denoted Ch(E; xN ).
The character Ch(E; xN ) is a polynomial in the variables xN = x1, . . . , xN , and the
character of the Schur module V λ is

Ch(V λ; xN ) = sλ(x1, . . . , xN , 0, 0, . . .) ∈ Z[x1, . . . , xN ],

the Schur polynomial in N variables. We then have that

lim
N→∞

Ch(V λ; xN ) = sλ(x) = FrobCh(Sλ),

so in practice we will often let N → ∞ and omit reference to the underlying vector
space. By the Z-linear independence of Schur functions, computing the irreducible
decomposition of a GL(V )- or Sk-module is equivalent to computing the expansion
of its character (resp. Frobenius characteristic) in the Schur basis.

A graded (resp. bigraded) GL(CN )-representation is a graded (resp. doubly graded)
C-vector space E =

⊕
n En (resp. F =

⊕
n,m Fn,m) equipped with a GL(CN )-action,

such that the graded pieces En (resp. Fn,m) are themselves GL(CN )-representations.
The graded characters GrCh(E; x; q) and GrCh(F ; x, q, t) of E and F (resp.) are
defined as

GrCh(E; xN , q) =
∑

n

Ch(En; xN )qn, GrCh(F ; xN , q, t) =
∑
n,m

Ch(Fn,m; xN )qntm.

We will later consider representations of GL(CN ) ⊕ GL(CM ). After fixing bases
for CN and CM , we may consider the action of diag(x1, . . . , xN , y1, . . . , yM ) on a
GL(CN ) ⊕ GL(CM )-representation E. As above, the character Ch(E; xN , yM ) of E
is the trace of this action on E, which is a polynomial in C[x1, . . . , xN ; y1, . . . , yM ],
symmetric in the x- and y-variables separately. If E =

⊕
n,m En,m is a bigraded

GL(CN ) ⊕ GL(CM )-representation, then its graded character is defined as

GrCh(E; xN , yM , q, t) =
∑
n,m

Ch(En,m; xN , yM )qntm.

2.3. The classical case of Thrall’s problem. We now define Thrall’s problem
and recall some of the progress that has been made on it. The tensor algebra decom-
position considered by Thrall is described in (8), and the higher Lie modules Lλ are
defined in Definition 2.2. We then outline the three results related to Thrall’s problem
which we seek to generalize: Klyachko’s identification of the Schur–Weyl dual of Ln

(Theorem 2.4), Brandt’s formula (Theorem 2.5), and Kraśkiewicz–Weyman’s Schur
decomposition of Ch(Ln; x) (Theorem 2.6).

Let V be a C-vector space with basis X = {x1, . . . , xN }, and let T(V ) =
⊕

n⩾0 V ⊗n

denote its tensor algebra, which is naturally a graded GL(CN )-module. The free Lie al-
gebra L(V ) is the Lie subalgebra of T(V ) generated by X. Then L(V ) =

⊕
n⩾1 Ln(V )

inherits a grading from T(V ), where Ln(V ) := L(V ) ∩ V ⊗n, endowing L(V ) with the
structure of a graded GL(CN )-module. See [19] for more background on the free Lie
algebra.

It is well-known that the universal enveloping algebra U(L(V )) of L(V ) is naturally
isomorphic to the tensor algebra T(V ). On the other hand, the Poincaré–Birkhoff–
Witt theorem gives U(L(V )) ∼= S(L(V )), where S(W ) =

⊕
m⩾0 Sm(W ) denotes

the symmetric algebra of a complex vector space W . Hence we have the following
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decomposition of T(V ) as a GL(CN )-module:

T(V ) ∼= U(L(V )) ∼= S(L(V )) ∼=
⊗

n⩾1
S(Ln(V )) =

⊗
n⩾1

( ⊕
m⩾0

Sm(Ln(V ))
)

∼=
⊕

λ=(1m1 2m2 ··· )
Sm1(L1(V )) ⊗ Sm2(L2(V )) ⊗ · · · .(8)

We more carefully derive an analogous decomposition of the tensor algebra T̃(V ) of
a super vector space in Theorem 3.9. The isomorphism in (8) motivates the following
definition.

Definition 2.2. For λ = (1m12m2 · · · ), the higher Lie module Lλ(V ) is:
Lλ(V ) = Sm1(L1(V )) ⊗ Sm2(L2(V )) ⊗ · · · .

Thus the higher Lie modules {Lλ(V ) : λ ∈ Par} yield a decomposition of T(V )
as a GL(CN )-module, and it is therefore natural to ask for their irreducible decom-
positions. This problem was originally posed by Thrall [24]. By taking characters, an
equivalent formulation of Thrall’s problem is as follows.

Problem 2.3 (Thrall’s problem). Determine the coefficients aµ ∈ Z⩾0 in the Schur
expansion of Ch(Lλ(V ); xN ):

Ch(Lλ(V ); xN ) =
∑

µ

aµsµ(xN ).

As noted above, we may take N → ∞ and work instead with symmetric functions;
in this case we will simply write Lλ for the higher Lie module, omitting the reference
to the underlying vector space.

By (8) and the Littlewood–Richardson rule, it would suffice to determine the irre-
ducible components of L(ab) = Sb(La) for the purposes of Thrall’s problem. On the
level of characters, we have

Ch(L(ab); xN ) = hb[Ch(La)],
where the right-hand side denotes the plethysm of hb with Ch(La) (see, for instance,
[21, Appendix 2]). Thrall’s problem remains open in general, although the single-row
case follows from work of Klyachko [12] and Kraśkiewicz–Weyman [13] by identifying
the Schur–Weyl dual of Ln.

Let πn = (12 · · · n) ∈ Sn, and let ωn denote a primitive n-th root of unity. Let Cn =
⟨πn⟩ ⩽ Sn denote the cyclic subgroup of order n generated by πn. The irreducible
characters χ1, . . . , χn of Cn are given by χk(πn) = ωk

n. Klyachko proved that the
Schur–Weyl dual of Ln is obtained by inducing the representation χ1 of Cn up to Sn:

Theorem 2.4 ([12]). For any n ⩾ 1, the Schur–Weyl dual of Ln is χ1 ↑Sn

Cn
; that is,

Ch(Ln; x) = FrobCh(χ1 ↑Sn

Cn
; x).

This result is equivalent to an expansion for Ch(Ln; x) in the power sum basis,
which was also found directly by Brandt:

Theorem 2.5 ([7]). For any n ⩾ 1,

Ch(Ln; x) = 1
n

∑
d|n

µ(d)pd(x) n
d ,

where µ(−) denotes the Möbius function.

Kraśkiewicz–Weyman leverage the above expansion to determine the expansion of
Ch(Ln; x) in the Schur basis.

Algebraic Combinatorics, Vol. 8 #3 (2025) 800



Super major index and Thrall’s problem

Theorem 2.6 ([13]). For any n ⩾ 1, we have

Ch(Ln; x) =
∑
µ⊢n

aµ,1sµ(x),

where aµ,1 = |{T ∈ SYT(µ) : maj(T ) ≡n 1}|.

Outside of the single-row case, the only other known case of Thrall’s problem is
when λ = (2b), in which case Ch(L(2b)) is given by a known plethystic identity:

Ch(L(2b)) = hb[e2] =
∑

µ

sµ,

where the sum is over all µ ⊢ 2b whose columns all have even length (see e.g. [15,
Ex. I.8.6(b)]).

3. Super Thrall’s problem
We now wish to extend Thrall’s problem to the setting of free Lie superalgebras. In
Subsection 3.1 we recall some facts about (free) Lie superalgebras, and then obtain a
super generalization of Brandt’s formula, Theorem 1.1. In Subsection 3.2 we identify
the analogue of the higher Lie modules for the free Lie superalgebra, and state the
super generalization of Thrall’s problem in Theorem 3.9.

3.1. Free Lie superalgebras. Here we state the necessary background on Lie
superalgebras, and then describe the structure of the free Lie superalgebra L̃(V )
as a bigraded GL(CN ) ⊕ GL(CM )-module. A result of Petrogradsky (Theorem 3.4)
determines the GL(CN ) ⊕ GL(CM )-character of L̃(V ), and we use this to obtain a
character formula for the bigraded components of L̃(V ) in Theorem 3.5, from which
we obtain a proof of Theorem 1.1. We work over C throughout.

A superalgebra Ã is a Z/2-graded vector space Ã = Ã0 ⊕ Ã1 with an associative,
bilinear multiplication with a unit and satisfying ÃiÃj ⊂ Ãi+j , where the indices are
taken modulo 2. For x ∈ Ãi, write |x| = i. The super commutator on Ã is defined by
extending

[x, y] := xy − (−1)|x||y|yx

bilinearly. It satisfies
S1. [x, y] = −(−1)|x||y|[y, x],
S2. (−1)|x||z|[x, [y, z]] + (−1)|z||y|[z, [x, y]] + (−1)|y||x|[y, [z, x]] = 0.

Example 3.1. The tensor superalgebra of V = V0 ⊕ V1 = CN ⊕ CM is

T̃(V ) :=
∞⊕

d=0
(V0 ⊕ V1)⊗d

with the natural concatenation product. It has a bigrading where T̃n,m(V ) is spanned
by tensors with n factors from V0 and m factors from V1. The Z/2-grading is given
by

T̃0(V ) =
⊕

n,m⩾0
T̃n,2m(V ) and T̃1(V ) =

⊕
n,m⩾0

T̃n,2m+1(V ).

Both gradings respect the natural GL(CN ) ⊕ GL(CM )-action.

Example 3.2. The symmetric superalgebra of V = V0 ⊕ V1 = CN ⊕ CM is
S̃(V ) := S(V0) ⊗

∧
(V1)

where S(W ) is the symmetric algebra and
∧

(W ) is the exterior algebra of the vector
space W . As with T̃(V ), it is a bigraded and Z/2-graded GL(CN )⊕GL(CM )-module.
The super commutator is identically zero.
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A Lie superalgebra g̃ is a Z/2-graded vector space g̃ = g̃0 ⊕ g̃1 with a bilinear
operation [−, −] satisfying (S1) and (S2) with [g̃i, g̃j ] ⊂ g̃i+j . As with all superal-
gebras, the tensor superalgebra T̃(V ) and the symmetric superalgebra S̃(V ) are Lie
superalgebras under the super commutator.

Example 3.3. The free Lie superalgebra generated by V = V0 ⊕ V1 = CN ⊕CM is the
Lie superalgebra L̃(V ) in T̃(V ) generated by V . As with T̃(V ), it is a bigraded and
Z/2-graded GL(CN ) ⊕ GL(CM )-module. Concretely, L̃(V ) ⊂ T̃(V ) is given by

L̃n,m(V ) := span of iterated bracketings with n terms from V0, m terms from V1

L̃0(V ) := span of iterated bracketings with evenly many terms from V1

L̃1(V ) := span of iterated bracketings with oddly many terms from V1.

Note that L̃0,0(V ) = 0, L̃1,0(V ) = V0, and L̃0,1(V ) = V1.

Petrogradsky [16] found the doubly graded Hilbert series of L̃(V ), generalizing
what is known in the classical case as Witt’s formula, which in turn yields a formula
for the graded character of L̃(V ) as a GL(CN ) ⊕ GL(CM )-module.

Theorem 3.4 ([16]). The bihomogeneous GL(CN ) ⊕ GL(CM )-character of L̃(V ) is

GrCh(L̃(V ); xN , yM , q, t) = −
∞∑

d=1

µ(d)
d

ln(1 − (qdpd(xN ) − tdpd(−yM ))).

The above result of Petrogradsky allows us to determine a character formula for
the doubly graded pieces L̃n,m(V ) of L̃(V ).

Theorem 3.5. For (n, m) ̸= (0, 0), the GL(CN ) ⊕ GL(CM )-character of L̃n,m(V ) is

Ch(L̃n,m(V ); xN , yM ) = 1
n + m

∑
d|gcd(m,n)

(−1) m
d µ(d)

(n+m
d
m
d

)
pd(xN ) n

d pd(−yM ) m
d .

Proof. We have

GrCh(L̃(V );xN , yM , q, t) = −
∞∑

d=1

µ(d)
d

ln(1 − (qdpd(xN ) − tdpd(−yM )))

=
∞∑

d=1

µ(d)
d

∞∑
s=1

(qdpd(xN ) − tdpd(−yM ))s

s

=
∞∑

d=1

µ(d)
d

∞∑
s=1

1
s

s∑
k=0

(
s

k

)
(qdpd(xN ))k(−tdpd(−yM ))s−k

=
∞∑

d=1

∑
0⩽k⩽s<∞,
(k,s) ̸=(0,0)

µ(d)
d

1
s

(
s

k

)
(qdpd(xN ))k(−tdpd(−yM ))s−k

=
∞∑

d=1

∑
n:d|n,

m:d|m,
(n,m)̸=(0,0)

µ(d)
n + m

(n+m
d
m
d

)
pd(xN ) n

d (−pd(−yM )) m
d qntm.

As Ch(L̃n,m(V ); xN , yM ) = [qntm]GrCh(L̃(V ); xN , yM , q, t), the result follows. □

As a corollary to Theorem 3.5, we obtain the super generalization of Brandt’s
formula, Theorem 1.1. Recall that we set N = M and use the diagonal action here.
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Proof (of Theorem 1.1). By Theorem 3.5, we have

Ch(L̃n,m(V ); xN ) = 1
n + m

∑
d|gcd(m,n)

(−1) m
d µ(d)

(n+m
d
m
d

)
pd(xN ) n

d pd(−xN ) m
d

= 1
n + m

∑
d|gcd(n,m)

(−1)m+ m
d µ(d)

(n+m
d
m
d

)
pd(xN )

n+m
d . □

3.2. Thrall’s problem for free Lie superalgebras. We now define the super
higher Lie modules (see Definition 3.8) which form a GL(CN ) ⊕ GL(CM ) decomposi-
tion of the tensor algebra of a super vector space described in Theorem 3.9. We then
state the super generalization of Thrall’s problem.

The universal enveloping superalgebra of a Lie superalgebra g̃ is intuitively the
smallest superalgebra Ũ(g̃) which g̃ embeds into as a Lie superalgebra. Formally,
Ũ(g̃) is a superalgebra with a map of Lie superalgebras ι : g̃ → Ũ(g̃) satisfying the
following universal property. For any superalgebra Ã, composition with ι induces a
bijection

HomSuperLie(g̃, Ã) ∼= HomSuperAlg(Ũ(g̃), Ã).

This leads to a natural construction of Ũ(g̃) as a quotient of T̃(g̃), which results in
a filtration Ũ(g̃) =

⋃
d⩾0 Ũ⩽d(g̃). The associated graded superalgebra is gr Ũ(g̃) :=⊕

d⩾0 Ũ⩽d(g̃)/Ũ⩽d−1(g̃) where Ũ⩽−1(g̃) := 0. Note that Ũ(g̃) ∼= gr Ũ(g̃) as vector
spaces.

Example 3.6. The universal enveloping superalgebra of the free Lie superalgebra
L̃(V ) is T̃(V ). Indeed, if Ã is a superalgebra, X is a basis for V0, and Y is a basis for
V1, we have natural identifications

HomSuperAlg(Ũ(L̃(V )), Ã) ∼= HomSuperLie(L̃(V ), Ã)
∼= HomSuperSet(X ⊔ Y, Ã0 ⊔ Ã1)
∼= HomSuperVec(V0 ⊕ V1, Ã0 ⊕ Ã1)
∼= HomSuperAlg(T̃(V ), Ã).

Hence HomSuperAlg(Ũ(L̃(V )), −) ∼= HomSuperAlg(T̃(V ), −), so by Yoneda’s lemma,

Ũ(L̃(V )) ∼= T̃(V ).

The Poincaré–Birkhoff–Witt theorem for Lie superalgebras reads as follows. A
standard consequence is that the map ι is an embedding, though we will only apply
the result when g̃ = L̃(V ), in which case injectivity is obvious by Example 3.6.

Theorem 3.7 (Super PBW). Let g̃ be a Lie superalgebra. Then there is a natural
isomorphism of superalgebras

S̃(g̃) ∼= gr Ũ(g̃).

We are nearly ready to state the super analogue of Thrall’s decomposition of the
tensor algebra. We first define analogues of Lie modules, which will arise naturally in
the upcoming proof.

Definition 3.8. For a vector space W and j ∈ Z⩾0, let

Γj(W ) =
{

S(W ) if j is even∧
(W ) if j is odd.
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Given a Z⩾0-valued matrix A = (ai,j)i,j⩾0 with finite support and a0,0 = 0, the super
Lie module L̃A is:

(9) L̃A =
⊗

i,j⩾0
Γai,j

j (L̃i,j).

Note that for j odd, the exterior power Γa
j (W ) is zero unless a ⩽ dim W .

Theorem 3.9 (Super Thrall decomposition). Let V = V0 ⊕ V1 = CN ⊕ CM . Then

T̃(V ) =
⊕
A

L̃A

as GL(CN ) ⊕ GL(CM )-modules, where the sum is over Z⩾0-valued matrices A =
(ai,j)i,j⩾0 with finite support and a0,0 = 0.

Proof. By Example 3.6, T̃(V ) = Ũ(L̃(V )). Hence gr Ũ(L̃(V )) = Ũ(L̃(V )). The super
PBW theorem and routine properties now gives

T̃(V ) = Ũ(L̃(V )) = gr Ũ(L̃(V )) = S̃(L̃(V )) = S(L̃(V )0) ⊗
∧

(L̃(V )1)

= S

(⊕
n,m

L̃n,2m

)
⊗
∧(⊕

n,m
L̃n,2m+1

)
=
⊗
n,m

S
(

L̃n,2m

)
⊗
⊗
n,m

∧(
L̃n,2m+1

)
=
⊗
i,j

Γj

(
L̃i,j

)
=
⊗
i,j

( ⊕
ai,j⩾0

Γai,j

j

(
L̃i,j

))
=

⊕
A=(ai,j⩾0)

⊗
i,j

Γai,j

j

(
L̃i,j

)
=

⊕
A=(ai,j⩾0)

L̃A. □

Now, if N = M , then L̃ inherits the structure of a GL(CN )-module under the
diagonal inclusion GL(CN ) ↪→ GL(CN ) × GL(CN ). Then Thrall’s problem may be
generalized to the free Lie superalgebra as follows.

Problem 3.10 (Super Thrall’s problem). For A = (ai,j ⩾ 0)i,j and λ ∈ Par, what
is the multiplicity of the Schur module V λ in the super higher Lie module L̃A where
N = M → ∞?

As in the classical case, it would be sufficient to determine these multiplicities
for the modules Sa(L̃n,2m) and

∧b(L̃n,2m+1) for general a, b, n, m ∈ Z⩾0, by the
Littlewood–Richardson rule. As a result, the corresponding problem for the modules
L̃n,m is of particular importance.

4. Schur–Weyl duals as induced characters
In this section we prove Theorem 1.3, which identifies the Schur–Weyl dual of L̃n,m.
We first describe a certain representation of Cn+m and then prove that, upon induc-
ing up to Sn+m, the Frobenius character of the resulting representation agrees with
Ch(L̃n,m).

Recall from above that Cr ⩽ Sr is the cyclic group of order r, generated by the cycle
πr = (12 · · · r) ∈ Sr, and ωr denotes a primitive r-th root of unity. The irreducible
characters of Cr are χ1, . . . , χr, given by χd(πr) = ωd

r for 1 ⩽ d ⩽ r.
The group Cr acts naturally on [r] by cyclic rotation. Fixing n, m ⩾ 0 with (n, m) ̸=

(0, 0), let
([n+m]

m

)
= {S ⊆ [n + m] : |S| = m}. Then the action of Cn+m on [n + m]

extends naturally to an action on
([n+m]

m

)
:

πk
n+m · {i1, . . . , im} = {i1 + k (mod n + m), . . . , im + k (mod n + m)}
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for any k ⩾ 1. Let χcyc : Cn+m → C denote the character of this latter action, so that

χcyc(πk
n+m) = |{S ∈

(
[n + m]

m

)
: πk

n+m · S = S}|.

Lemma 4.1. For any n, m ⩾ 0 with (n, m) ̸= 0 and 1 ⩽ k ⩽ n+m, let d = n+m
gcd(k,n+m) .

Then

χcyc(πk
n+m) =

{(n+m
d
m
d

)
if d | m

0 if d ∤ m.

Proof. Note that πk
n+m is a product of gcd(k, n + m) = n+m

d disjoint cycles, each
of length d. Let [n + m] = C1 ⊔ · · · ⊔ C n+m

d
denote the partition of [n + m] given

by the decomposition of πk
n+m into disjoint cycles. Now, consider the action of πk

n+m

on
([n+m]

m

)
. A set S ⊆ [n + m] is fixed by πk

n+m if and only if, for each 1 ⩽ j ⩽
gcd(k, n + m), either S ∩ Cj = Cj or S ∩ Cj = ∅. Thus the m-subsets of [n + m]
fixed by πk

n+m may be constructed by choosing m
d of the sets C1, . . . , C n+m

d
. This is

impossible if d ∤ m, and the result follows. □

For any subgroup H ⩽ Sr and χ a representation of H, the Frobenius characteristic
of χ ↑Sr

H may be easily expressed in the power sum basis (see e.g. [23, Theorem 13]).
Here the cycle type of πk

n+m depends only on gcd(k, n + m), giving:

Lemma 4.2. For any representation χ of Cr, the Frobenius characteristic of χ ↑Sr

Cr
is

given by:

FrobCh(χ ↑Sr

Cr
) = 1

r

∑
d|r

∑
k:gcd(k,r)= r

d

χ(πk
r )pd(x) r

d .

We now proceed to the proof of Theorem 1.3.

Proof (of Theorem 1.3). Throughout, let π = πn+m and ω = ωn+m.
First assume m is odd, so that for any d | m, m + m

d is always even. Then by
Lemma 4.2, we have:

FrobCh((χcyc ⊗ χ1) ↑Sn+m

Cn+m
) = 1

n + m

∑
d|n+m

∑
k

gcd(k,n+m)= n+m
d

χcyc(πk)χ1(πk)pd(x)
n+m

d ,

which by Lemma 4.1 simplifies to:

FrobCh((χcyc ⊗ χ1) ↑Sn+m

Cn+m
) = 1

n + m

∑
d|n+m,

d|m

(n+m
d
m
d

) ∑
k

gcd(k,n+m)= n+m
d

χ1(πk)pd(x)
n+m

d

Note that d | n + m and d | m if and only if d | gcd(n, m). Furthermore, if gcd(k, n +
m) = n+m

d , then χ1(πk) = ωk is a primitive d-th root of unity, and all primitive d-th
roots of unity are obtained in this way. The Möbius function µ(d) is given as the sum
of the primitive d-th roots of unity. Thus

FrobCh((χcyc ⊗ χ1) ↑Sn+m

Cn+m
) = 1

n + m

∑
d|gcd(n,m)

(n+m
d
m
d

)
µ(d)pd(x)

n+m
d = Ch(L̃n,m),

where the last equality follows from Theorem 1.1.
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Now assume m is even. Again applying Lemma 4.1 and Lemma 4.2, we have

FrobCh((χcyc ⊗ χ
m
2 +1) ↑Sn+m

Cn+m
)

= 1
n + m

∑
d|gcd(n,m)

(n+m
d
m
d

) ∑
k:gcd(k,n+m)= n+m

d

χ
m
2 +1(πk)pd(x)

n+m
d .

Observe for any d | m that m
d is even if and only if d | m

2 , and recall from above that
if gcd(k, n + m) = n+m

d , then ωk is a primitive d-th root of unity. Thus in the case
that m

d is even, we have (ωk) m
2 = 1 since d | m

2 , which equals (−1)m+ m
d since m and

m
d are even. On the other hand, if m

d is odd, then d must necessarily be even since m
is, so that

(ωk) m
2 = ((ωk) d

2 ) m
d = (−1) m

d = (−1)m+ m
d = −1.

Hence
χ

m
2 +1(πk) = (ωk) m

2 ωk = (−1)m+ m
d ωk.

It then follows that

FrobCh((χcyc ⊗ χ
m
2 +1) ↑Sn+m

Cn+m
)

= 1
n + m

∑
d|gcd(n,m)

(−1)m+ m
d µ(d)

(n+m
d
m
d

)
pd(x)

n+m
d = Ch(L̃n,m). □

5. Super tableau combinatorics
In this section we prove Theorem 1.6, which is the key ingredient in our proof of
Theorem 1.5. We first recall some preliminaries on supersymmetric functions in Sub-
section 5.1. In Subsection 5.2, we define a new major index statistic on super tableaux
and then prove Proposition 5.9 and Theorem 5.11, which exhibit how the principal
specializations of the super quasisymmetric and super Schur functions admit elegant
formulae in terms of this new statistic. Theorem 1.6 then follows as an easy conse-
quence.

5.1. Supersymmetric functions. We begin by recalling some facts about super-
symmetric and super quasisymmetric functions, following the presentation in [11].
Let y = (y1, y2, . . .). A power series f(x; y) ∈ Λ(x) ⊗Z Λ(y) is supersymmetric if
performing the substitution x1 = t, y1 = −t into f results in an expression which
is independent of t. Schur functions and power sums both admit supersymmetric
analogs. The super power sum symmetric function p̃λ(x; y) indexed by λ is:

p̃λ(x; y) =
ℓ(λ)∏
j=1

(pλj
(x) + (−1)λj+1pλj

(y)).

The super Schur functions were originally introduced by Berele–Regev [2] in their
study of the general linear Lie superalgebra, and they may be defined as follows. Let
A+ = {1, 2, . . .} and A− = {1, 2, . . .}. Endow the alphabet A = A+ ⊔ A− with the
following total order:

A = {1 < 1 < 2 < 2 < · · · }.

We define a projection A → A+ by i 7→ i and i 7→ i for all i ⩾ 1. Note that if
a1 ⩽ · · · ⩽ an is a weakly increasing sequence in A and aj 7→ bj under this projection,
then bj ⩽ aj for all j and b1 ⩽ · · · ⩽ bn.
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Definition 5.1 ([11], Eq. (23)). For n ⩾ 2 and D ⊆ [n−1], the super quasisymmetric
function Q̃n,D(x; y) is given by

Q̃n,D(x; y) =
∑

a1⩽a2⩽···⩽an,
ai=ai+1∈A+⇒i̸∈D,
ai=ai+1∈A−⇒i∈D

za1za2 · · · zan
,

where a1 ⩽ · · · ⩽ an is a weakly increasing sequence in A, and za = xa for a ∈
A+, zb = yb for b ∈ A−.

As in the classical case, the super Schur function s̃λ(x; y) is given as a sum of super
quasisymmetric functions:

Definition 5.2 ([11], Prop. 2.4.2). The super Schur function s̃λ(x; y) is given in
terms of super quasisymmetric functions by

s̃λ(x; y) =
∑

T ∈SYT(λ)

Q̃|λ|,Des(T )(x; y).

Schur functions and power sum symmetric functions are related via the Cauchy
identity, which extends to the supersymmetric setting as follows.

Theorem 5.3 ([3], Cor. 10(a)). For all n ⩾ 1,∑
λ⊢n

sλ(x)s̃λ(x; y) =
∑
λ⊢n

1
zλ

pλ(x)p̃λ(x; y),

where if λ = (1a12a2 · · · ), then zλ := 1a12a2 · · · a1!a2! · · · .

5.2. A major index statistic on super tableaux. We now define a new major
index statistic in Definition 5.7 on objects called standard super tableaux, and show
how particular specializations of super quasisymmetric and super Schur functions may
be written in terms of this statistic in Proposition 5.9 and Theorem 5.11.

Definition 5.4. A standard super tableau of shape λ ⊢ n is a map T : λ → A
that is strictly increasing along the rows and columns of λ, and contains exactly one
of i or i for each i = 1, 2, . . . , n. Let SYT±(λ) denote the set of standard super
tableaux of shape λ, so that |SYT±(λ)| = 2n|SYT(λ)|. For T ∈ SYT±(λ), we let
Neg(T ) := {i ∈ A+ : i ∈ T } and neg(T ) := |Neg(T )|.

Example 5.5. The standard super tableau

T =
1 3 4 6
2 5
7

∈ SYT±(4, 2, 1)

has Neg(T ) = {2, 3, 7} and neg(T ) = 3.

Using this notion, we now define an appropriate generalization of the descent set
for SYT±(λ).

Definition 5.6. For λ ⊢ n and T ∈ SYT±(λ), let T+ ∈ SYT(λ) denote the image
of T under the projection A → A+. For i = 1, . . . , n − 1, we say that i is a super
descent of T if either

i ∈ Des(T+) and i + 1 ̸∈ Neg(T ), or i ̸∈ Des(T+) and i ∈ Neg(T ).

Define
Des(T ) = {i : i is a super descent of T } ⊆ [n − 1].
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Note that if Neg(T ) = ∅, then the super descents of T are precisely the usual
descents defined in Section 2.1.

Definition 5.7. For D ⊆ [n − 1] and S ⊆ [n], define the relative major index and the
relative comajor index respectively by

maj(D, S) :=
∑

1⩽i⩽n−1,
i∈D,i+1 ̸∈S
or i̸∈D,i∈S

i, comaj(D, S) :=
∑

1⩽i⩽n−1,
i∈D,i+1 ̸∈S
or i ̸∈D,i∈S

(n − i).

For T ∈ SYT±(λ), we define the relative (co)major index by

maj(T ) :=
∑

i∈Des(T )

i, comaj(T ) :=
∑

i∈Des(T )

(n − i).

It follows from the above definition that
maj(T ) = maj(Des(T+), Neg(T )), comaj(T ) = comaj(Des(T+), Neg(T )).

Note also that setting S = ∅ recovers the classical notions of major and comajor
index on standard tableaux.

Example 5.8. If

T =
1 3 4 6
2 5
7

∈ SYT±(4, 2, 1) then T+ =
1 3 4 6
2 5
7

∈ SYT(4, 2, 1),

so Des(T+) = {1, 4, 6} and Neg(T ) = {2, 3, 7}. Therefore Des(T ) = {2, 3, 4} and
maj(T ) = 2 + 3 + 4 = 9.

Proposition 5.9. For any n ⩾ 2 and D ⊆ [n − 1], the specialization of Q̃n,D given
by setting xi = qi−1, yi = tqi−1 is

Q̃n,D(1, q, q2, . . . ; t, tq, tq2, . . .) = 1
(q; q)n

∑
S⊆[n]

qcomaj(D,S)t|S|,

where (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1) denotes the q-Pochhammer symbol.

Proof. Given a sequence a = (a1 ⩽ a2 ⩽ · · · ⩽ an) from the alphabet A which
satisfies:
(10) ai = ai+1 ∈ A+ ⇒ i ̸∈ D, ai = ai+1 ∈ A− ⇒ i ∈ D,

write b1 ⩽ b2 ⩽ · · · ⩽ bn for the image under projection to A+, and let Sa = {i :
ai ∈ A−}. This sequence contributes the term za1za2 · · · zan to Q̃n,D(x; y), so upon
specializing, this term becomes qb1+b2+···+bn−nt|Sa|.

We claim that (10) is equivalent to the condition that:
(11) bi < bi+1 whenever i ∈ D, i + 1 ̸∈ Sa, or i ̸∈ D, i ∈ Sa.

Suppose that (10) holds. First assume that i ∈ D and i+1 ̸∈ Sa, so that ai+1 ∈ A+.
Then we must have either ai < ai+1 or ai = ai+1 ∈ A+. The latter possibility is not
allowed by (10), so we must have ai < ai+1. Thus bi ⩽ ai < ai+1 = bi+1, so bi < bi+1.
Now assume that i ̸∈ D and i ∈ Sa. Then bi < ai < ai+1, so bi < bi+1. Thus (11)
holds.

Now assume that (11) holds. Suppose ai = ai+1 ∈ A+, so that bi = bi+1 and
i + 1 ̸∈ Sa. Then by assumption, we must have i ̸∈ D, as required by (10). On the
other hand, if ai = ai+1 ∈ A−, then again we have bi = bi+1 and i ∈ Sa, which forces
i ∈ D. Therefore (10) and (11) are equivalent.
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Now, for each 1 ⩽ j ⩽ n, set

rj = bj − 1 − |{i < j : i ∈ D, i + 1 ̸∈ Sa or i ̸∈ D, i ∈ Sa}|.

Then 0 ⩽ r1 ⩽ · · · ⩽ rn and

b1 + · · · + bn − n = r1 + · · · + rn + comaj(D, Sa),

so that

Q̃n,D(1, q, q2, . . . ; t, tq, tq2, . . .) =
∑

a=(a1⩽···⩽an)
s.t. (10) holds

qb1+b2+···+bn−nt|Sa|

=
∑

S⊆[n]

t|S|
∑

a=(a1⩽···⩽an)
s.t. (10) holds and Sa=S

qb1+b2+···+bn−n

=
∑

S⊆[n]

t|S|qcomaj(D,S)
∑

0⩽r1⩽···⩽rn

qr1+···+rn

= 1
(q; q)n

∑
S⊆[n]

qcomaj(D,S)t|S|. □

The analogous specialization for the super Schur functions s̃λ(x; y) is given by
Macdonald in terms of the hook lengths h(r, c) of the cells (r, c) ∈ λ. See also [14] for
a bijective proof of the following identity.

Theorem 5.10 ([15, p. 27, Ex. 5 and p. 45, Ex. 3]). The specialization of s̃λ(x; y)
given by setting xi = qi−1, yi = tqi−1 is given by

s̃λ(1, q, q2, . . . ; t, tq, tq2, . . .) =
∏

(r,c)∈λ

qr−1 + tqc−1

1 − qh(r,c) .

In fact, (a renormalization of) the principal specialization of s̃λ(x; y) may also be
written as the q, t-generating function of the statistics (co)maj and neg:

Theorem 5.11. For λ ⊢ n, we have

s̃λ(1, q, q2, . . . ; t, tq, tq2, . . .) = 1
(q; q)n

∑
T ∈SYT±(λ)

qcomaj(T )tneg(T )

= 1
(q; q)n

∑
T ∈SYT±(λ)

qmaj(T )tneg(T ).

Proof. We begin by proving the first equality. We have by definition that s̃λ(x; y) =∑
T ∈SYT(λ) Q̃n,Des(T )(x; y), so

s̃λ(1, q, q2, . . . ; t, tq, tq2, . . .) =
∑

T ∈SYT(λ)

Q̃n,Des(T )(1, q, q2, . . . ; t, tq, tq2, . . .)

= 1
(q; q)n

∑
T ∈SYT(λ)

∑
S⊆[n]

qcomaj(Des(T ),S)t|S|

by Proposition 5.9. Note that a standard super tableau T is determined by a standard
tableau T = T+ and a set of negative entries S = Neg(T ). We then have comaj(T ) =
comaj(Des(T ), S), so the first equality follows.

Now, for any D ⊆ [n − 1] and S ⊆ [n], let

D∗ = {n − i : i ∈ D} and S∗ = {n + 1 − i : i ∈ S}
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denote the reverse of D and S, respectively. It follows from [21, Prop. 7.19.2] that

|{T ∈ SYT(λ) : Des(T ) = D}| = |{T ∈ SYT(λ) : Des(T ) = D∗}|.

Note furthermore that for any T ∈ SYT(λ), its transpose T ′ ∈ SYT(λ′) satisfies
Des(T ′) = [n − 1]\Des(T ). Therefore, there exists a bijection φ : SYT(λ) → SYT(λ′)
such that

Des(φ(T )) = [n − 1]\Des(T )∗

for any T ∈ SYT(λ), which first reverses the descent set of T and then transposes.
Then φ lifts to a bijection φ̃ : SYT±(λ) → SYT±(λ′) which satisfies

Des(φ(T )+) = [n − 1]\Des(T+)∗ and Neg(φ(T )) = [n]\Neg(T )∗

for any T ∈ SYT±(λ), given by performing φ on T+ and then reverse complementing
the set of negative entries. From this, we obtain

comaj(Des(φ(T )+), Neg(φ(T ))) = maj(Des(T+), Neg(T ))
neg(φ(T )) = n − neg(T ).

It follows from Theorem 5.10 that

s̃λ′(1, q, q2, . . . ; t, tq, tq2, . . .) =
∏

(r,c)∈λ

qc−1 + tqr−1

1 − qh(r,c) ,

so that

s̃λ(1, q, q2, . . . ; t, tq, tq2, . . .) = tns̃λ′(1, q, q2, . . . ; t−1, t−1q, t−1q2, . . .)

= tn
∑

T ′∈SYT(λ′)

Q̃n,Des(T ′)(1, q, q2, . . . ; t−1, t−1q, t−1q2, . . .)

= tn

(q; q)n

∑
T ′∈SYT(λ′)

∑
S⊆[n]

qcomaj(Des(T ′),S)t−|S|

= tn

(q; q)n

∑
T ∈SYT(λ)

∑
S⊆[n]

qmaj(Des(T ),S)t|S|−n

= 1
(q; q)n

∑
T ∈SYT(λ)

∑
S⊆[n]

qmaj(Des(T ),S)t|S|

= 1
(q; q)n

∑
T ∈SYT±(λ)

qmaj(T )tneg(T ). □

Remark 5.12. We are not aware of an explicit description of the map φ in the proof
of Theorem 5.11. See [5, §4] for a description of the unique T ∈ SYT(λ) with minimal
and maximal major index.

Theorem 1.6 now follows easily from Theorem 5.11.
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Proof (of Theorem 1.6). By Theorem 5.11,∑
T ∈SYT±(λ)

qmaj(T )tneg(T ) = (q; q)ns̃λ(1, q, q2, . . . ; t, tq, tq2, . . .)

= (1 − q) · · · (1 − qn)
∏

(r,c)∈λ

qr−1 + tqc−1

1 − qh(r,c)

= 1 − q

1 − q
· · · 1 − qn

1 − q

∏
(r,c)∈λ

(qr−1 + tqc−1)(1 − q)
1 − qh(r,c)

= [n]q!
∏

(r,c)∈λ

qr−1 + tqc−1

[h(r, c)]q
. □

6. Irreducible decomposition of L̃n,m

We now prove Theorem 1.5, generalizing Kráskiewicz–Weyman’s result (Theorem 2.6)
in the classical case. Our proof is predominantly algebraic. By manipulating the q, t-
hook formula (Theorem 1.6), the Schur expansion of Ch(L̃n,m) is obtained using the
generalized Cauchy identity (Theorem 5.3), along with the following technical results.

Let Λt(x) denote the ring of symmetric functions in x with coefficients in C(t). For
any r ⩾ 1 define an operator Ωr

1 : Λt(x)[[q]] → Λt(x) by:

Ωr
1f(x; q, t) = 1

r

∑
ζr=1

ζ−1f(x; ζ, t),

summing over all r-th roots of unity ζ. Then Ωr
1 extracts the terms from f(x; q, t)

whose q-exponents are congruent to 1 modulo r; that is,

Ωr
1f(x; q, t) =

∑
ℓ∈Z

[q1+ℓr]f(x; q, t).

We will also require the following lemma, which can be found, for instance, in [19].
Lemma 6.1 ([19], Lemma 8.11). For λ ⊢ n, let

πλ(q) = (q; q)n

(1 − qλ1) · · · (1 − qλℓ(λ))
.

If d | n and ω is a primitive d-th root of unity, then

πλ(ω) =
{

0 if λ ̸= (dn/d),
zλ if λ = (dn/d).

We now proceed with the proof.

Proof (of Theorem 1.5). Let

fλ(x; q, t) =
∑

λ⊢n+m

sλ(x)
∑

T ∈SYT±(λ)

qmaj(T )tneg(T ).

Then it suffices to show that
Ch(L̃n,m; x) = [tm]Ωn+m

1 fλ(x; q, t).
By Theorem 5.11 and Theorem 5.3, we have

fλ(x; q, t) = (q; q)n

∑
λ⊢n+m

sλ(x)s̃λ(1, q, q2, . . . ; t, tq, tq2, . . .)

= (q; q)n

∑
λ⊢n+m

pλ(x)
zλ

p̃λ(1, q, q2, . . . ; t, tq, tq2, . . .).
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Note that

p̃λ(1, q, q2, . . . ; t, tq, tq2, . . .) =
ℓ(λ)∏
j=1

(pλj
(1, q, q2, . . .) + (−1)λj+1pλj

(t, tq, tq2, . . .))

=
ℓ(λ)∏
j=1

(
1

1 − qλj
+ (−1)λj+1 tλj

1 − qλj

)
,

so that
fλ(x; q, t) =

∑
λ⊢n+m

pλ(x)
zλ

πλ(q)
∑

J⊆[ℓ(λ)]

∏
j∈J

(−1)λj+1tλj .

Now, for any (n + m)-th root of unity ζ, we have by Lemma 6.1 that πλ(ζ) = 0 unless
λ = (d n+m

d ) and ζ is a primitive d-th root of unity, in which case πλ(ζ) = zλ. Thus

Ωn+m
1 fλ(x; q, t) = 1

n + m

∑
ζn+m=1

ζ−1fλ(x, ζ, t)

= 1
n + m

∑
ζn+m=1

ζ−1
∑

λ⊢n+m

pλ(x)
zλ

πλ(ζ)
∑

J⊆[ℓ(λ)]

∏
j∈J

(−1)λj+1tλj

= 1
n + m

∑
d|n+m

∑
ζ a primitive

d-th root of unity

ζ−1pd(x)
n+m

d

∑
J⊆[ n+m

d ]

(−1)d|J|+|J|td|J|

= 1
n + m

∑
d|n+m

µ(d)pd(x)
n+m

d

∑
J⊆[ n+m

d ]

(−1)d|J|+|J|td|J|.

When we extract the coefficient of tm, we may restrict the first sum to all d | n + m
such that also d | m, so that d | gcd(n, m). Therefore

[tm]Ωn+m
1 fλ(q, t) = 1

n + m

∑
d|gcd(n,m)

µ(d)pd(x)
n+m

d

∑
J⊆[ n+m

d ],
|J|= m

d

(−1)m+ m
d

= 1
n + m

∑
d|gcd(n,m)

µ(d)pd(x)
n+m

d (−1)m+ m
d

(n+m
d
m
d

)
= Ch(L̃n,m; x),

where the last equality follows from Theorem 1.1. □

7. Further directions
7.1. Idempotents. Klyachko [12] introduced a remarkable idempotent

Kn = 1
n

∑
σ∈Sn

ωmaj(σ)σ

where ω is a primitive nth root of unity. He showed V ⊗nKn = Ln(V ). See [9, §4] for
a combinatorial approach. Separately, Reutenauer noted

T(V ) = S(L(V )) =
∞⊕

d=0
L(V )(d)

where L(V )(d) is spanned by dth powers of elements of L(V ) [18, §2]. Reutenauer
gave orthogonal idempotents ρ

(d)
n ∈ QSn projecting V ⊗n onto L(V )(d) for 1 ⩽ d ⩽ n.

See also [9, Thm. 7.3] and the surrounding discussion. It would be interesting to
investigate super versions of these idempotents, which we leave as an open problem.
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Problem 7.1. Find super analogues of the Klyachko idempotent Kn and the
Reutenauer idempotents ρ

(d)
n .

7.2. Combinatorial symmetry. A slight variation on the Kráskiewicz–Weyman
formula shows that the multiplicity of Sλ in χr ↑Sn

Cn
is #{T ∈ SYT(λ) : maj(T ) ≡n r}.

Since the isomorphism type of χr ↑Sn

Cn
depends only on n and gcd(r, n), we have the

following enumerative corollary. If gcd(r, n) = gcd(s, n), then

(12) #{T ∈ SYT(λ) : maj(T ) ≡n r} = #{T ∈ SYT(λ) : maj(T ) ≡n s}.

A combinatorial proof of (12) is currently unknown. See [1] for further discussion of
this problem.

Similarly, we find the multiplicity of Sλ in (χcyc ⊗ χm//2+r) ↑Sn+m

Cn+m
where

m//2 :=
{

m/2 if m is even
0 if m is odd

is

(13) #{T ∈ SYT±(λ) : maj(T ) ≡n+m r, neg(T ) = m}.

The isomorphism type in this case depends only on n + m, gcd(r + m//2, n + m), and(
n+m

m

)
. In particular, if gcd(r + m//2, n + m) = gcd(s + m//2, n + m), then

#{T ∈ SYT±(λ) : maj(T ) ≡n+m r, neg(T ) = m}
= #{T ∈ SYT±(λ) : maj(T ) ≡n+m s, neg(T ) = m}.

(14)

and, if n, m are odd,
#{T ∈ SYT±(λ) : maj(T ) ≡n+m r, neg(T ) = m}

= #{T ∈ SYT±(λ) : maj(T ) ≡n+m r, neg(T ) = n}.
(15)

Problem 7.2. Find a combinatorial proof of (12), (14), or (15).

7.3. The degree two case. We conclude by discussing the extension of the only
other known case of Thrall’s problem to the super setting. Recall that

Ch(L(2d)) = hd[e2] =
∑

µ

sµ,

where the sum is over all partitions of 2d with even column lengths. We have L(2d) =
Sd(L2), so a natural extension of this case to the free Lie superalgebra would consist
in determining the Schur expansion of the characters of the super higher Lie modules

L̃A = Sd(L̃2,0), L̃B =
d∧

(L̃1,1), and L̃C = Sd(L̃0,2),

where the matrices A, B, and C are given by a2,0 = b1,1 = c0,2 = d for any d ⩾ 2
and ai,j = bi,j = ci,j = 0 for all other pairs i, j. The case of L̃A is classical, and the
character of L̃C can be computed similarly by a known plethystic identity, which can
also be found in [15, Ex. I.8.6(a)]:

Ch(L̃C) = hd[Ch(L̃0,2)] = hd[h2] =
∑

ν

sν ,

where the sum is over all partition ν ⊢ 2d with even parts.
Finally, the character of L̃B can be written as follows:

Ch(L̃B) = ed[h2 + e2] =
d∑

k=0
ek[h2]ed−k[e2].
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The Schur expansions of ek[h2] and ek[e2] for arbitrary k are given in [15,
Ex. I.8.6(c,d)], so that the Schur expansion of Ch(L̃B) can be determined via
the Littlewood–Richardson rule. However, to our knowledge there is no explicit
combinatorial description of the coefficients in this expansion.

Acknowledgements. The authors would like to thank Sheila Sundaram for the question
which led to the present paper.
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