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Lattices of acyclic pipe dreams

Nantel Bergeron, Noémie Cartier, Cesar Ceballos
& Vincent Pilaud

Abstract We show that for any permutation ω, the increasing flip graph on acyclic pipe
dreams with exiting permutation ω is a lattice quotient of the interval [e, ω] of the weak order.
We then discuss conjectural generalizations of this result to acyclic facets of subword complexes
on arbitrary finite Coxeter groups.

1. Introduction
The weak order is the lattice on permutations of [n] whose cover relations correspond
to switching pairs of consecutive values in permutations. The Tamari lattice is the
lattice on binary trees with n internal nodes whose cover relations correspond to right
rotations in binary trees. The Tamari lattice is known to be the lattice quotient of
the weak order by the Sylvester congruence, defined as the equivalence relation on
permutations of [n] whose equivalence classes are the sets of linear extensions of binary
trees (labeled in inorder and oriented towards their leaves).

This paper develops a similar framework for acyclic pipe dreams. Pipe dreams were
introduced by N. Bergeron and S. Billey in [1] to compute Schubert polynomials and
later revisited in the context of Gröbner geometry by A. Knutson and E. Miller [13],
who coined the name pipe dreams. They have important connections and applications
to various areas related to Schubert calculus and Schubert varieties [14, 15]. A pipe
dream is an arrangement of pipes in the triangular shape, each entering along the
vertical side and exiting along the horizontal side (see Figure 1). They are grouped
according to their exiting permutation, given by the order in which the pipes appear
along the horizontal axis. The linear extensions of a pipe dream are the permutations
of its pipes such that for each contact, the northwest pipe appears before the southeast

Manuscript received 22nd December 2023, revised 19th February 2025, accepted 20th February 2025.
Keywords. lattices, lattice congruences, pipe dreams, subword complexes.
Acknowledgements. NB was supported by NSERC and York Research Chair in Applied Algebra.
CC was supported by the Austrian Science Fund FWF (Project P 33278). CC, NC & VP were sup-
ported by the Austrian – French project PAGCAP (ANR 21 CE48 0020 & FWF I 5788). NC & VP
were also supported by the French project CHARMS (ANR 19 CE40 0017). VP was also supported
by the Spanish project PID2022-137283NB-C21 of MCIN/AEI/10.13039/501100011033 / FEDER,
UE, by the Spanish–German project COMPOTE (AEI PCI2024-155081-2 & DFG 541393733), by the
Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&D (CEX2020-
001084-M), by the Departament de Recerca i Universitats de la Generalitat de Catalunya (2021 SGR
00697). VP was a CNRS researcher at École Polytechnique when this work was done.
Part of the material of this paper was announced in an extended abstract of the conference FP-
SAC’23 [4].

ISSN: 2589-5486 http://algebraic-combinatorics.org/

https://doi.org/10.5802/alco.423
http://algebraic-combinatorics.org/


N. Bergeron, N. Cartier, C. Ceballos & V. Pilaud

Figure 1. Two pipe dreams of Π(1365724) connected by an increas-
ing flip (exchanging a contact with the crossing on the two red pipes 4
and 5).

pipe in the permutation. The pipe dreams with at least one linear extension are called
acyclic and naturally appear in the study of brick polytopes [22]. A flip in a pipe dream
exchanges a contact with a crossing between two pipes (see Figure 1), and the flip is
increasing when the contact is southwest of the crossing involved in the flip. A brief
recollection on pipe dreams is given in Section 2.

In the core Section 3 of this paper, we show that for any permutation ω,
• the sets of linear extensions of the acyclic pipe dreams with exiting permuta-

tion ω form a partition of the interval [e, ω] of the weak order (Section 3.1),
• the equivalence relation defined by this partition is a lattice congruence

of [e, ω], that we call the pipe dream congruence (Section 3.2),
• the Hasse diagram of the corresponding lattice quotient is isomorphic to the

increasing flip graph on acyclic pipe dreams with exiting permutation ω (Sec-
tion 3.3).

In summary, we obtain the following statement, illustrated in Figure 3.

Theorem A. For any permutation ω, the Hasse diagram of the lattice quotient of the
interval [e, ω] of the weak order by the pipe dream congruence of ω is isomorphic to
the increasing flip graph on acyclic pipe dreams with exiting permutation ω.

We recover the connection between the weak order and the Tamari lattice by the
Sylvester congruence for a well-chosen exiting permutation ω. Note that Theorem A
is the correct generalization of the Tamari lattice, as neither the increasing flip poset
on all pipe dreams, nor its subposet induced by acyclic pipe dreams, are lattices
in general (see Remarks 2.2 and 3.17). Other conjectural lattice structures on pipe
dreams are considered in [28, Conj. 2.8].

We then explore in Section 4 some natural further topics on pipe dreams. We
first present two algorithms to compute the unique acyclic pipe dream whose linear
extensions contain a given permutation generalizing the binary tree insertion map on
permutations (Sections 4.1 and 4.2). We then describe the pipe dream congruence
as the transitive closure of a local rewriting rule generalizing that of the Sylvester
congruence (Section 4.3). We then present a natural commutative diagram of lattice
morphisms generalizing the connection between the recoil map and the binary tree
insertion map on permutations and the canopy on binary trees (Section 4.4). Finally,
we show that all pipe dreams with exiting permutation 0ω are acyclic whenever ω is
dominant. Therefore, Theorem A implies that the ν-Tamari lattice is a quotient of
the interval [e, ω] for a well-chosen dominant permutation ω (Section 4.5).

Finally, we discuss in Section 5 (partly conjectural) extensions of our results to
subword complexes in finite Coxeter groups [12]. Given a finite Coxeter group W
with simple reflections S, a word Q on S and an element ω of W , the subword
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complex SC(Q, ω) is a simplicial complex whose facets are the complements of the
reduced expressions of ω inside the word Q. Pipe dreams can be seen as facets of
subword complexes for special words Q on the simple transpositions of the symmetric
groups. In general, there is again a natural increasing flip graph on the facets of
a subword complex, which was studied in particular in [23]. An important tool to
understand this flip is the root function introduced in [6], which associates a root rI(i)
to each position i and each facet I, and the root configuration R(I) of a facet I, which
collects all roots rI(i) at positions i in I. A brief recollection on finite Coxeter systems
and subword complexes is given in Sections 5.1 and 5.2.

We consider the set L(I) of linear extensions of a facet I of SC(Q, ω), that is the
set of elements π of W such that R(I) ⊆ π(Φ+). We prove the following statement in
Section 5.4.

Theorem B. For any non-empty subword complex SC(Q, ω), the sets L(I) for all
facets I of SC(Q, ω) are order convex and form a partition of a lower set of the weak
order that contains the interval [e, ω].

In contrast to the case of pipe dreams, there are some subword complexes and
some facets for which the interval [e, ω] does not contain (even sometimes does not
intersect) the set of linear extensions L(I). However, there is a large family of subword
complexes for which this cannot happen. We say that Q is sorting if it contains a
reduced expression for ω◦.

Theorem C. If Q is sorting, then the sets L(I) for all facets I of SC(Q, ω) form a
partition of the interval [e, ω].

In the case when [e, ω] does not contain all sets of linear extensions, it is natu-
ral to consider the restriction of this partition to [e, ω] by the sets [e, ω] ∩ L(ω). This
defines an equivalence relation ≡Q,ω on [e, ω] that we call the subword complex equiv-
alence. As the sets of linear extensions are not always intervals of the weak order, this
equivalence relation is not always a lattice congruence. This seems to be fixed by an
additional assumption on Q. We say that Q is alternating when all non-commuting
pairs s, t ∈ S alternate within Q (this notion was already considered in [22, 6]).

Conjecture A. If Q is alternating, then the subword complex equivalence ≡Q,ω is a
lattice congruence of the interval [e, ω] of the weak order.

When Q is alternating, we can thus consider the quotient [e, ω]/≡Q,ω. In contrast
to the case of pipe dreams, the Hasse diagram of the quotient [e, ω]/≡Q,ω is not always
isomorphic to the increasing flip graph on acyclic facets of SC(Q, ω) for two reasons:

• First, not all acyclic facets of SC(Q, ω) appear as elements of [e, ω]/≡Q,ω (see
Remark 5.13). We say that a facet is strongly acyclic if [e, ω] ∩ L(ω) ̸= ∅.

• Second, not all flips between two strongly acyclic facets of SC(Q, ω) define
a cover relation of [e, ω]/≡Q,ω (see Example 5.21). We say that the flip of a
position i in a facet I is external if the root rI(i) directing the flip is a ray of
the root configuration R(I).

This leads us to the following conjecture.

Conjecture B. If Q is alternating, then the Hasse diagram of the quotient [e, ω]/≡Q,ω

is isomorphic to the graph of extremal increasing flips between strongly acyclic facets
of SC(Q, ω).

Combining the sorting and alternating conditions of Theorem B and Conjectures A
and B, we thus obtain the following conjecture, which can be seen as the natural
extension of Theorem A.
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Conjecture C. If Q is sorting and alternating, then the Hasse diagram of the quo-
tient [e, ω]/ ≡Q,ω is isomorphic to the graph of extremal increasing flips between
acyclic facets of SC(Q, ω).

This last conjecture has a strong connection to the geometry of subword com-
plexes given by brick polytopes [22, 24] and brick polyhedra [11]. Namely, the ex-
tremal increasing flips between acyclic facets of SC(Q, ω) are precisely the bounded
edges (meaning forgetting the unbounded rays) of the brick polyhedron Brick(Q, ω)
oriented by a natural linear functional. Conjecture C thus translates geometrically to
the following.

Conjecture D. If Q is sorting and alternating, then the bounded oriented graph of
the brick polyhedron Brick(Q, ω) is isomorphic to the Hasse diagram of the lattice
quotient [e, ω]/ ≡Q,ω.

In particular, when ω = ω◦, we obtain the following conjecture, extending results
from [20].

Conjecture E. If Q is sorting and alternating, then the oriented graph of the brick
polytope Brick(Q, ω◦) is isomorphic to the Hasse diagram of the lattice quotient of the
weak order by ≡Q,ω.

2. Preliminaries on pipe dreams
2.1. Pipe dreams. A pipe dream P is a filling of a triangular shape with crossings
and contacts so that all pipes entering on the left side exit on the top side. We
only consider reduced pipe dreams, where two pipes have at most one crossing. We
label the pipes with 1, 2, . . . , n in the order of their entry points from top to bottom.
We denote by ωP ∈ Sn the order of the exit points of the pipes of P from left to
right. In other words, the pipe entering at row i exits at column ω−1

P (i). For a fixed
permutation ω ∈ Sn, we denote by Π(ω) the set of reduced pipe dreams P such
that ωP = ω.

A contact c is flippable if the two pipes passing through contact c have a crossing x.
The flip exchanges the contact c with the crossing x. The flip is increasing if the
contact c is weakly southwest of the crossing x. For example, Figure 1 illustrates an
increasing flip from the left pipe dream to the right pipe dream. The increasing flip
graph is the graph of increasing flips on Π(ω). It is clearly a directed acyclic graph,
and it has a unique source and a unique sink [21], called the greedy and antigreedy
pipe dreams, and denoted P

←−gr and P
−→gr. The increasing flip poset is the reflexive and

transitive closure of the increasing flip graph on Π(ω).
The contact graph of a pipe dream P is the directed graph P # with one node for

each pipe of P and one arc for each contact of P connecting the northwest pipe to
the southeast pipe of the contact(1). We see equivalently the contact graph P # as a
(multi)graph on the pipes of P or on the integers [n]. We say that a pipe dream P is
acyclic if its contact graph P # has no oriented cycle. For an acyclic pipe dream P ,
we denote by ◁P the transitive closure of the contact graph of P . For ω ∈ Sn, we
denote by Σ(ω) the set of acyclic pipe dreams of Π(ω).

Example 2.1. We say that a pipe dream is reversing if it fixes the first and
last pipes and reverses the order of the remaining pipes. In this case, it is nat-
ural to label the pipes from 0 to n + 1, so that the permutation of the pipes
is ρn := [0, n, n− 1, . . . , 2, 1, n + 1]. As observed in [32, 21, 18, 29], the family of

(1)We have reversed the usual orientation conventions of [22, 21, 20] to suit better our purposes,
in particular in Section 4.2.
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reversing pipe dreams belong to the Catalan families, meaning that it is counted by
the famous Catalan numbers. Figure 2 illustrates explicit bijections between reversing
pipe dreams of Π(ρn), binary trees with n internal nodes, and the triangulations of
a convex (n + 2)-gon. More precisely, the map which sends a contact in row i and
column j of the triangular shape (indexed from 0 to n+1) to the diagonal [i, n+1−j]
of the (n + 2)-gon provides the following correspondence:

pipe dream P ∈ Ωn ←→ triangulation P ⋆ of the (n + 2)-gon,
pipe i of P ←→ triangle i⋆ of P ⋆ (with central vertex i),

contact between pipes i and j of P ←→ common side of triangles i⋆ and j⋆ of P ⋆,
crossing between pipes i and j of P ←→ common bisector of triangles i⋆ and j⋆ of P ⋆,

contact graph of P ←→ dual binary tree of P ⋆,
contact flips in P ←→ diagonal flips in P ⋆.

450 63 2 1
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4
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3
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0 6
4
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Figure 2. The bijection between reversing pipe dreams (left), bi-
nary trees (middle) and triangulations (right).

Hence, this map sends the increasing flip poset on reversing pipe dreams to the
Tamari lattice on binary trees. This lattice is defined as the transitive closure of
right rotations on binary trees, and is obtained as the quotient of the weak order by
the Sylvester congruence [30, 9]. An important point here is that all reversing pipe
dreams are acyclic, since their contact graphs are (oriented) binary trees.

Remark 2.2. In contrast to Example 2.1, the increasing flip poset on all pipe dreams
of Π(ω) is not always a lattice. The first counter-example happens for the exiting
permutation ω = 12543.

2.2. Crossing and contact properties. We now gather some elementary prop-
erties of crossings and contacts in pipe dreams that will be needed later to construct
pipe dreams from permutations. For a pipe dream P ∈ Π(ω), we call pipe j the pipe
which enters at row j and exits at column ω−1(j).

Lemma 2.3. For any pipe dream P ∈ Π(ω), the pipe j of P crosses precisely
• vertically the pipes i such that i < j while ω−1(i) > ω−1(j),
• horizontally the pipes k such that j < k while ω−1(j) > ω−1(k).

Proof. For i < j, if ω−1(i) > ω−1(j), then the pipes i and j have to cross exactly
once (and j must be the vertical pipe at that crossing), while if ω−1(i) < ω−1(j) the
pipes i and j cannot cross. The same argument applies for k > j. □

Lemma 2.4. For any pipe dream P ∈ Π(ω), the pipe j has precisely
• ninv(ω, j) many southeast elbows
• 1 + ninv(ω, j) many northwest elbows
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• j − 1− ninv(ω, j) vertical crossings
• ω−1(j)− 1− ninv(ω, j) horizontal crossings

where ninv(ω, j) := #
{

i ∈ [n]
∣∣ i < j and ω−1(i) < ω−1(j)

}
is the number of non-

inversions of j in ω.

Proof. Pipe j enters at row j and exits at column ω−1(j), so that it passes
through j + ω−1(j)− 1 grid points. By Lemma 2.3, it has

#
{

i ∈ [n]
∣∣ i < j and ω−1(i) > ω−1(j)

}
= j − 1− ninv(ω, j)

vertical crossings and
#

{
k ∈ [n]

∣∣ j < k and ω−1(j) > ω−1(k)
}

= ω−1(j)− 1− ninv(ω, j)
horizontal crossings. The 1 + 2 ninv(ω, j) remaining grid points along the pipe j are
thus alternating northwest elbows and southeast elbows. □

Lemma 2.5. A collection P of n pipes pairwise disjoint except at crossing and contacts
and such that for each j ∈ [n], the pipe j enters at row j, exits at column ω−1(j), and
has ninv(ω, j) southeast contacts is a pipe dream of Π(ω).

Proof. The argument is similar to the previous lemma. Observe first that the pipe j
must cross the paths i such that i < j and ω−1(i) > ω−1(j) and the paths k such
that j < k and ω−1(j) > ω−1(k). Moreover, it has ninv(ω, j) southeast elbows and
thus 1 + ninv(ω, j) northwest elbows. This already exhausts all j + ω−1(j) − 1 grid
points of j. Therefore, the pipe j can only cross at most once any other pipe. □

2.3. Contact graph properties. We now state a simple observation about the
poset ◁P , and two of its consequences, that will play essential roles in the proofs in
Section 3.

Lemma 2.6. Let P be a pipe dream and i, j be pipes of P . If there is an elbow of pipe i
weakly northwest of an elbow of pipe j, then i ◁P j.

Proof. Let x (resp. y) be the location of an elbow of pipe i (resp. j) such that x is
weakly northwest of y. We proceed by induction on the grid distance from x to y.
If they coincide, then pipes i and j share a contact, and i is northwest of j at this
contact by assumption, so that there is an edge from i to j in P #. Otherwise, let k
be the pipe of P with a southeast elbow at x (k is either the pipe i itself, or there
is an edge from i to k in P #) and ℓ be the pipe of P with a northwest elbow at y
(ℓ is either the pipe j itself, or there is an edge from ℓ to j in P #). Let R be the
axis-parallel rectangle with corners x and y. Since pipes k and ℓ cross at most once,
at least one of them has an additional elbow along the sides of R. Assume for instance
that k has an elbow at x′. Then x′ is still weakly northwest of y and x′, y are strictly
closer than x, y. By induction, there is a directed path from k to ℓ in P #, and thus a
path directed from i to j. □

Note that the reciprocal assertion of Lemma 2.6 is false. We conclude this section
by two consequences of Lemma 2.6.

Lemma 2.7. If i < j and ω−1(i) < ω−1(j), then i ◁P j for any P ∈ Π(ω).

Proof. If i < j and ω−1(i) < ω−1(j), then the pipes i and j do not cross. Consider an
elbow e of the pipe i. Since the pipe j passes southeast of e, it has an elbow southeast
of e. We conclude that i ◁P j by Lemma 2.6. □

Lemma 2.8. Let P be a pipe dream and let i, j, k be three pipes of P such that i < j < k
and ω−1(i) > ω−1(j) > ω−1(k). If i → k in P #, then either i ◁P j ▷P k
or i ▷P j ◁P k.
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Proof. Let c denote the contact of pipes i and k in P . Decompose the triangular shape
into three regions: the region A of all points located southwest of c, the region B of
all points located northwest or southeast of c, and the region C of all points located
northeast of c. Since i < j and ω−1(j) > ω−1(k), the pipe j starts in region A and
ends in region C. Hence, the pipe j has an elbow e in region B. We thus obtain
that i ◁P j ▷P k if this e is southeast of c, and that i ▷P j ◁P k if e is northwest
of c. □

3. Lattice of acyclic pipe dreams
As already mentioned, the increasing flip poset on reversing pipe dreams is isomorphic
to the Tamari lattice, which is a lattice quotient of the weak order. In this section, we
extend this result to any permutation ω by showing that the sets of linear extensions
of pipe dreams of Σ(ω) partition the interval [e, w] (Section 3.1), that this partition
actually defines a lattice congruence of the weak order on [e, w] (Section 3.2), and
that the Hasse diagram of the quotient by this congruence is the increasing flip graph
on acyclic pipe dreams of Σ(ω) (Section 3.3). This section goes straight to the proof
of this property, and leaves alternative perspectives on this quotient to Section 4.

3.1. Linear extensions of pipe dreams. The main characters in this section are
the following sets of permutations.

Definition 3.1. We say that a permutation π is a linear extension of a pipe
dream P ∈ Π(ω) if π−1(i) < π−1(j) for every arc i→ j in P # (we should say linear
extension of ◁P , but prefer to simplify notation). We denote by L(P ) the set of linear
extensions of P .

In this section, we prove the following structural property of L(P ), illustrated in
Figure 3.

Theorem 3.2. The set {L(P ) | P ∈ Σ(ω)} partitions the weak order interval [e, ω].

Example 3.3. Following Example 2.1, observe that the permutations
of {0, 1, . . . , n, n + 1} below ρn in weak order are precisely the permutations of
the form [0, π, n + 1] for some π ∈ Sn. It is well-known that any permutation π ∈ Sn

is a linear extension of a unique binary tree [30]. This binary tree can be obtained
by inserting π from right to left in a binary search tree [9]. Hence any permutation
of {0, 1, . . . , n, n + 1} below ρn is a linear extension of a unique reversing pipe dream
on n+2 pipes. For instance, the pipe dream of Figure 2 has linear extensions 0421356,
0423156, 0421536, 0423516, 0425136, 0425316, 0452136, 0452316.

We will see in Section 4 insertion algorithms to compute the pipe dream P ∈ Σ(ω)
such that π ∈ L(P ) for given permutations π ⩽ ω. These algorithms are however not
needed for the proof of Theorem 3.2, which we break into the following three lemmas.

Lemma 3.4. If π := UjiV covers π′ := UijV in weak order, and π ∈ L(P ) for
some P ∈ Σ(ω), then

• if P # has no arc j → i, then π′ ∈ L(P ),
• otherwise, π′ ∈ L(P ′) where P ′ denotes the pipe dream obtained from P by

flipping the furthest northeast contact between pipes i and j in P .

Proof. The first point is obvious. For the second point, observe that the flip of the
furthest contact just reverses all arcs j → i and exchanges i and j at some extremities
of the arcs of the contact graph. □

Lemma 3.5. If π ⩽ ω in weak order, then π is a linear extension of a unique pipe
dream P ∈ Σ(ω).
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Figure 3. The pipe dream congruence on the weak order inter-
val [12345, 31542] (left) and the increasing flip graph on acyclic pipe
dreams (right). The blue bubbles represent the classes of the pipe
dream congruence. The acyclic pipe dreams are represented with their
contact graphs.

Proof. Consider the greedy and antigreedy pipe dreams P
←−gr and P

−→gr of [21]. For any
contact between the pipes i and j in P

←−gr, with i < j, we have
• if the pipes i and j never cross, then ω−1(i) < ω−1(j),
• if the pipes i and j cross, then ω−1(i) > ω−1(j) and the contact in P

←−gr must
be from i to j (since all flips in P

←−gr are increasing by definition).
We conclude that e ∈ L(P←−gr). Conversely, if e ∈ L(P ), all arcs of P # are increas-
ing, so that all flips in P are increasing. We conclude that P

←−gr is the unique pipe
dream with e ∈ L(P←−gr). Similar arguments show that P

−→gr is the unique pipe dream
with ω ∈ L(P−→gr). The result thus follows from Lemma 3.4, since it shows that the
existence (resp. uniqueness) of a pipe dream P such that π ∈ L(P ) is preserved when
going down (resp. up) in weak order. □

Lemma 3.6. If π is a linear extension of a pipe dream P ∈ Σ(ω), then π ⩽ ω in weak
order.

Proof. For any i < j with ω−1(i) < ω−1(j), we have i ◁P j by Lemma 2.7,
thus π−1(i) < π−1(j) since π ∈ L(P ). In other words, any non-inversion of ω is a
non-inversion of π, so that π ⩽ ω. □

Proof of Theorem 3.2. This is a direct consequence of Lemmas 3.5 and 3.6. □

Notation 3.7. For π ∈ [e, ω], we denote by pd(π, ω) the pipe dream of Σ(ω) such
that π ∈ L(pd(π, ω)).
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3.2. Pipe dream congruence. A congruence of a lattice (L,⩽,∧,∨) is an equiv-
alence relation ≡ on L which respects meets and joins: x ≡ x′ and y ≡ y′ im-
plies x∧ y ≡ x′ ∧ y′ and x∨ y ≡ x′ ∨ y′. We will use the following classical character-
ization of lattice congruences, see [27].

Proposition 3.8. An equivalence relation ≡ on a lattice L is a congruence if and
only if

(i) every equivalence class of ≡ is an interval of L,
(ii) the projections π↓ : L → L and π↑ : L → L, which maps an element of L to

the minimal and maximal elements of its equivalence class respectively, are
order preserving.

We now focus on the following congruence, illustrated in Figure 3.

Definition 3.9. The pipe dream congruence is the equivalence relation ≡ω on
the weak order interval [e, ω] whose equivalence classes are the sets L(P ) of linear
extensions of the pipe dreams P of Σ(ω). In other words, π ≡ω π′ if and only
if pd(π, ω) = pd(π′, ω).

Note that the pipe dream congruence indeed defines an equivalence relation by
Theorem 3.2. In this section, we prove that it is a lattice congruence.

Theorem 3.10. The pipe dream congruence ≡ω is a congruence of the weak order
interval [e, ω].

Example 3.11. Following Examples 2.1 and 3.3, observe that the congruence ≡ρn on
the permutations of {0, 1, . . . , n, n + 1} below ρn corresponds to the Sylvester congru-
ence on Sn defined in [9]. The classes of this congruence are the sets of linear exten-
sions of the binary trees (considered as posets, labeled in inorder, and oriented towards
their roots). It can also be defined by the classical rewriting rule UjV ikW ≡ UjV kiW
where i < j < k are elements of [n] while U, V, W are (possibly empty) words on [n].

We will discuss in Section 4.3 rewriting rules for the pipe dream congruence ≡ω,
for any permutation ω. These rewriting rules are however not needed for the proof of
Theorem 3.10. We prove it by checking both conditions of Proposition 3.8. For the
first condition, we need the following classical characterization of weak order intervals,
see [3] or [8].

Proposition 3.12 ([3, Thm. 6.8]). The set L(◁) of linear extensions of a poset ◁
on [n] forms an interval I := [min(I), max(I)] of the weak order if and only if for
every i < j < k,

i ◁ k =⇒ i ◁ j or j ◁ k and i ▷ k =⇒ i ▷ j or j ▷ k.

Moreover, the inversions of min(I) are the pairs i, j ∈ [n] with i < j and i ▷ j, and
the non-inversions of max(I) are the pairs i, j ∈ [n] with i < j and i ◁ j.

Proposition 3.13. For any pipe dream P ∈ Σ(ω), the set L(P ) is an interval of the
weak order.

Proof. We just need to show that the poset ◁P satisfies the conditions of Proposi-
tion 3.12. Consider i < j < k such that i ◁P k. If ω−1(i) < ω−1(j), then i ◁P j by
Lemma 2.7. Similarly, if ω−1(j) < ω−1(k), then j ◁P k by Lemma 2.7. We can thus
assume that ω−1(i) > ω−1(j) > ω−1(k). Decompose the triangular shape into three
regions: the region A of all points located northeast of the last elbow of the pipe j
of P , the region B of all points located northwest or southeast of an elbow of the
pipe j of P , and the region C of all points located southwest of the first elbow of the
pipe j of P . Since i ◁P k, there is a path π from the exiting point of the pipe i of P
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to the entering point of the pipe j of P which travels along the pipes of P , possibly
jumping from the northwest pipe to the southeast pipe of a contact it encounters.
Since i < j and ω−1(j) > ω−1(k), the path π starts in region A and ends in region C,
so that it necessarily passes from region A to region C. Since the southwest corner
of A is located northeast of the northeast corner of C, this forces an elbow e of π to
lie in region B. Lemma 2.6 then ensures that either i ◁P j (if e is north of pipe j),
or j ◁P k (if e is south of pipe j). The proof is similar if i ▷P k. □

Proposition 3.14. Let σ, σ′ be two permutations of [e, ω] and C, C ′ denote their
≡ω-congruence classes. Then σ⩽σ′ implies min(C)⩽min(C ′) and max(C)⩽max(C ′)
in weak order.

Proof. We prove the statement for the maximums, the proof for the minimums is
symmetrical. Observe first that we can assume that σ is covered by σ′ in weak or-
der, so that we write σ′ = σsp for some simple transposition sp := (p p + 1). The
proof now works by induction on the weak order distance between σ and max(C).
If σ = max(C), the result is immediate as max(C) = σ < σ′ ⩽ max(C ′). Otherwise,
σ is covered by a permutation τ in the class C, and we write τ = σsq for some simple
transposition sq := (q q+1). Let P, P ′ ∈ Σ(ω) be such that C = L(P ) and C ′ = L(P ′).
We now distinguish five cases, according to the relative positions of p and q:

(1) If p > q + 1, then σ = UijV kℓW , σ′ = UijV ℓkW and τ = UjiV kℓW
for some i < j and k < ℓ. Define τ ′ := σspsq = σsqsp = UjiV ℓkW . By
Lemma 3.4, there is no arc i → j in P # (since σ and τ both belong to C),
and P # and P ′# can only differ by arcs incident to k or ℓ. Hence, there is no
arc i→ j in P ′#. We thus obtain again by Lemma 3.4 that τ ′ ∈ L(P ′) = C ′.

(2) If p = q+1, then σ = UijkV , σ′ = UikjV and τ = UjikV for some i < j < k.
Define τ ′ := σspsqsp = σsqspsq = UkjiV . Since σ ∈ L(P ), we have i ̸▷P j
and j ̸▷P k, so that there is no arc i→ k in P # by Lemma 2.8. By Lemma 3.4,
there is no arc i→ j in P #, and P # and P ′# can only differ by arcs incident
to j or k. We thus obtain that there is no arc i→ j nor i→ k in P ′#. Conse-
quently, again by Lemma 3.4, both σ′sq and τ ′ = σ′sqsp belong to L(P ′) = C ′.

(3) If p = q, then σ′ = τ is in C, so that C = C ′ and there is nothing to prove.
(4) If p = q − 1, we proceed similarly as in Situation (2).
(5) If p < q − 1, we proceed similarly as in Situation (1).

In all cases, we found τ ′ > τ with τ ′ ∈ C ′. Since τ < τ ′ with τ ∈ C and τ ′ ∈ C ′, and
since τ is closer to max(C) than σ, we obtain that max(C) < max(C ′) by induction
hypothesis. □

Proof of Theorem 3.10. Follows from Proposition 3.8, whose conditions are guaran-
teed by Propositions 3.13 and 3.14. □

3.3. Pipe dream quotient. For a congruence ≡ of a lattice L, the lattice quo-
tient L/≡ is the lattice on the classes of ≡ where for any two congruence classes X
and Y ,

• X ⩽ Y in L/≡ if and only if there exist representatives x ∈ X and y ∈ Y
such that x ⩽ y in L, or equivalently min(X) ⩽ min(Y ), or equivalently
max(X) ⩽ max(Y ),

• X∧Y (resp. X∨Y ) is the congruence class of x∧y (resp. of x∨y) for arbitrary
representatives x ∈ X and y ∈ Y .

In this section, we aim at the following statement, illustrated in Figure 3.
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Theorem 3.15. The Hasse diagram of the lattice quotient [e, ω]/≡ω is isomorphic to
the increasing flip graph on Σ(ω). Hence, the transitive closure of the increasing flip
graph on Σ(ω) is a lattice.

Example 3.16. Following Examples 2.1, 3.3 and 3.11, observe that the increasing
flip poset on reversing pipe dreams is isomorphic to the Tamari lattice, which is the
quotient of the weak order by the Sylvester congruence.

Remark 3.17. The increasing flip poset on Π(ω) is the transitive closure of the in-
creasing flip graph on Π(ω). Observe that the two natural ways to restrict to the
acyclic pipe dreams of Σ(ω) (restrict either the flip graph or the flip poset) do not
coincide in general. Namely, the transitive closure of the subgraph of the increasing
flip graph induced by Σ(ω) may have strictly less relations than the subposet of the
increasing flip poset induced by Σ(ω). Figure 4 illustrates two acyclic pipe dreams
of Σ(126543) connected by a sequence of increasing flips in Π(126543) but by no se-
quence of increasing flips in Σ(126543). In fact, the subposet of the increasing flip
poset induced by Σ(126543) is not even a lattice, as illustrated in Figure 5. This
example is minimal.
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Figure 4. Two acyclic pipe dreams in Σ(126543) connected by a
sequence of increasing flips in Π(126543) but by no sequence of in-
creasing flips in Σ(126543).

To prove Theorem 3.15, we need the following auxiliary statement.

Lemma 3.18. Consider two acyclic pipe dreams P, P ′ ∈ Σ(ω) connected by the flip of
a contact between their pipes i and j. Then any directed path in P # or P ′# between i
and j is an arc.

Proof. Say that i < j while ω−1(i) > ω−1(j) and that i → j is an arc of P #

while j → i is an arc of P ′#. Since P # is acyclic, there is no path from j to i in P #.
Assume by means of contradiction that there is a path i→ k1 → · · · → kp → j in P #

with p ⩾ 1. Since the arcs of P ′# are the arcs of P # where only extremities i and j can
be changed, P ′# contains the path k1 → · · · → kp and at least one of the arcs i→ k1
or j → k1, and at least one of the arcs kp → j or kp → i. Consequently, since P ′# con-
tains the arc j → i and is acyclic, it must contain the path j → k1 → · · · → kp → i.
We thus obtained that i ◁P k1 ◁P j while i ▷P ′ k1 ▷P ′ j, and k1 has a contact
with i in P that becomes a contact with j in P ′.

Consider now the contact c of P which is a crossing in P ′ and the contact c′

of P ′ which is a crossing of P . Let R the rectangle with corners c and c′.
Since k1 has a contact with i in P and with j in P ′, it must pass inside R.
Since i ◁P k1 ◁P j and i ▷P ′ k1 ▷P ′ j, the pipe k has no elbow located north-
west or southeast of c or c′, hence no elbow located north, south, west or east
of R. We thus obtain that k must be straight before it reaches R, and after it
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Figure 5. Some acyclic pipe dreams of Σ(126543), connected by
some strong arrows representing increasing flips, and by a dotted
arrow representing the relation of Figure 4. The subposet of the in-
creasing flip poset on Π(126543) induced by Σ(126543) contains the
dotted arrow and is thus not a lattice (the two bottom elements of
the picture have no join while the two top elements of the picture
have no meet). In contrast, the transitive closure of the increasing
flip graph on Σ(126543) does not contain the dotted arrow and is a
lattice (Theorem 3.15).

leaves R. Hence k1 < i < j and ω−1(k1) < ω−1(j) < ω−1(i). By Lemma 2.7, this
contradicts i ◁P k1 and k1 ▷P ′ j. □

Proof of Theorem 3.15. We need to prove that the following conditions are equivalent
for two distinct pipe dreams P, P ′ ∈ Σ(ω):

(i) there is an increasing flip from P to P ′,
(ii) there exist linear extensions π of P and π′ of P ′ such that π′ covers π in weak

order.
Lemma 3.4 and Theorem 3.2 directly imply that (ii) ⇒ (i). For (i) ⇒ (ii), let i < j
be the two pipes involved in the flip between P and P ′. Hence, i→ j is an arc of P #

while j → i is an arc of P ′#. By Lemma 3.18, there is no directed path from i to j
in P # besides the arcs i→ j (there might be more than one such arc). Hence, there
exists a linear extension π of P where i and j are consecutive. Write π := UijV and
define π′ := UjiV . Since i → j is an arc of P #, π′ is not a linear extension of P .
Hence, by Lemma 3.4, π′ is a linear extension of P ′. □

Let us conclude by providing more equivalent characterizations of the increasing
flip lattice on Σ(ω).
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Proposition 3.19. For any pipe dreams P, P ′ ∈ Σ(ω), the following assertions are
equivalent:

(i) there is a path from P to P ′ in the increasing flip graph on Σ(ω),
(ii) there exist linear extensions π of P and π′ of P ′ such that π < π′ in weak

order,
(iii) the minimal (resp. max) linear extensions π of P and π′ of P ′ satisfy π < π′

in weak order.
(iv) there is no i < j such that i ▷P j and i ◁P ′ j,
(v) for all i < j, if i ▷P j, then i ▷P ′ j,
(vi) for all i < j, if i ◁P ′ j, then i ◁P j.

Proof. We already proved the equivalence (i)⇔ (ii) in Theorem 3.15. The equivalence
(ii) ⇔ (iii) is valid for any lattice quotient. The equivalences (iii) ⇔ (iv) ⇔ (v) ⇔ (vi)
follow from the descriptions of Proposition 3.12 of the inversions of the minimum and
the non-inversions of the maximum of a weak order interval. □

4. Further topics on pipe dreams
In this section, we discuss five further topics on the pipe dream congruence. We first
present two algorithms to construct the pipe dream pd(π, ω) of Σ(ω) of which a given
permutation π is a linear extension (Sections 4.1 and 4.2). We then describe the pipe
dream congruence ≡ω as the transitive closure of a rewriting rule on permutations
of [e, ω] (Section 4.3). We then present the natural coarsening of the pipe dream
congruence ≡ω by the recoil congruence ∼=ω (Section 4.4). Finally, we discuss a specific
family of pipe dreams in connection to the ν-Tamari lattices (Section 4.5).

4.1. Sweeping algorithm. Our first algorithm to construct pd(π, ω) is a sweeping
algorithm, inspired by the algorithm to compute greedy pipe dreams [21, 23]. An
extension of this algorithm to subword complexes will be discussed in Section 5.6,
and a related algorithm appeared independently in [11]. We say that an order on the
boxes of the triangular shape is northeast compatible if each box b is before all boxes
which are located weakly northeast of b.

Proposition 4.1. For any permutations π, ω ∈ Sn such that π ⩽ ω in weak order,
the unique pipe dream P ∈ Σ(ω) such that π ∈ L(P ) can be constructed by sweeping
the triangular shape in any northeast compatible order and placing a crossing when
sweeping a vertex v of the grid where pipe i arrives horizontally and pipe j arrives
vertically if and only if

• i < j and ω−1(i) > ω−1(j), and
• π−1(i) > π−1(j) or vertex v lies in column ω−1(j).

See Figures 6 and 7.

Example 4.2. Figures 6 and 7 illustrate the sweeping algorithm for the exiting per-
mutation ω = 561324 and the input permutations π = 513264 and π = 512364 re-
spectively. The algorithm has 15 steps, but we have grouped together steps 2 to 9
(second arrow) and steps 12 to 13 (fifth arrow) as they have the same justification.
For π = 513264 in Figure 6, we place

• contacts at steps 1, 10, 12, 13 and 15 since ω−1(i) < ω−1(j), and at step 14
since i > j,

• crossings at steps 2 to 9 since i < j, ω−1(i) > ω−1(j) and we are in the col-
umn ω−1(j), and at step 11 since i < j, ω−1(i) > ω−1(j) and π−1(i) > π−1(j).

For π = 512364 in Figure 7, we make the same choices, except that we place
• a contact at step 11 since π−1(i) < π−1(j) and we are not in column ω−1(j),
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Figure 6. Sweeping algorithm for the permutations π = 513264
and ω = 561324.
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Figure 7. Sweeping algorithm for the permutations π = 512364
and ω = 561324.

• a crossing at step 14 since i < j, ω−1(i) > ω−1(j) and we are in the col-
umn ω−1(j).

Proof of Proposition 4.1. When we sweep vertex v where pipe i arrives horizontally
and pipe j arrives vertically,

• we have no choice but imposing a contact at v if i > j (since pipes i and j
already crossed before) or ω−1(i) < ω−1(j) (since pipes i and j do not cross
at all),

• if i < j and ω−1(i) > ω−1(j), then
– if π−1(i) > π−1(j) then pipes i and j cannot touch (otherwise π would

not be a linear extension of P ), so that we have no choice but imposing
a crossing at v,

– if π−1(p) < π−1(q) then
∗ if v lies in column ω−1(j), then pipe j needs to go straight north,

and we have no choice but imposing a crossing at v,
∗ otherwise, we have no choice but imposing a contact at v (otherwise

Lemma 2.6 ensures that j ◁P i, so that π would not be a linear
extension of P ). □

4.2. Insertion algorithm. Our second algorithm to construct pd(π, ω) is an in-
sertion algorithm inspired from [20] and similar to the insertion in binary search
trees.

We call staircase of length k a sequence e1, . . . , ek of southeast elbows such that ei

is located strictly southwest of ei+1 for each i ∈ [k− 1]. In other words, r1 > · · · > rk

and c1 < · · · < ck where ei is located in row ri and column ci. For j ∈ [n] such
that j > r1 and ck < ω−1(j), we can uniquely define a pipe which enters at row j, exits
at column ω−1(j), and whose northeast elbows are precisely covering the southeast
elbows e1, . . . , ek. Namely, it has a northeast elbow at row ri and column ci for
each i ∈ [k], and a southeast elbow at row ri−1 and column ci for each i ∈ [k + 1],
where by convention r0 := j and ck+1 := ω−1(j).

Proposition 4.3. For any permutations π, ω ∈ Sn such that π ⩽ ω in weak order,
the unique pipe dream P ∈ Σ(ω) such that π ∈ L(P ) can be constructed starting from
the empty triangular shape and inserting the pipes π(1), . . . , π(n) one by one in the
order of the permutation π as northwest as possible. More precisely, at step t, we
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Figure 8. Insertion algorithm for the permutations π = 513264
and ω = 561324.
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Figure 9. Insertion algorithm for the permutations π = 512364
and ω = 561324.

insert a pipe starting at row π(t), ending at column ω−1(π(t)), and whose northwest
elbows are precisely covering the staircase of currently free southeast elbows in the
rectangle [π(t)]× [ω−1(π(t))]. See Figures 8 and 9.

Example 4.4. Figures 8 and 9 illustrate the insertion algorithm for the exiting per-
mutation ω = 561324 and the input permutations π = 513264 and π = 512364 respec-
tively. For instance, when inserting the (green) pipe 4 in the last step, the currently
free southeast elbows are the first southeast elbow of the (blue) pipe 3 and the two
southeast elbows of the (purple) pipe 2.

We need to argue that this algorithm indeed creates a pipe dream of Π(ω). To
see it, we observe that the following two invariants are maintained throughout the
algorithm. We call hook of a southeast elbow e the union of the horizontal segment
west of e and the vertical segment north of e.

Lemma 4.5. At any time during the insertion algorithm, the support of the pipes
already inserted is precisely the union of the hooks of the currently free southeast
elbows.

Proof. Immediate by induction, as the support of a pipe is precisely the union of the
hooks of its southeast elbows minus the union of the pipes of its northeast elbows. □

Corollary 4.6. The pipes constructed by the insertion algorithm are disjoint, except
at crossings and contacts.

Lemma 4.7. For any t, r, c ∈ [n], the free southeast elbows in the rectangle [r]× [c] just
before step t of the insertion algorithm form a staircase whose length is the maximum
of 0 and
#

{
s < t

∣∣ π(s) ⩽ r and ω−1(π(s)) ⩽ c
}
−#

{
s < t

∣∣ π(s) > r and ω−1(π(s)) > c
}

.

Proof. Denote by R the rectangle [r]× [c]. The proof works by induction on t. Before
step 1, there is no southeast elbow in R. Assume now that just before step t, the
free southeast elbows in R form a staircase e1, . . . , ek with k given by the formula of
the statement. At step t, we insert a new pipe π(t) which enters at π(t) and exits
at ω−1(π(t)).

Assume first that the new pipe π(t) intersects the rectangle R. Let 0 ⩽ i < j ⩽ k + 1
be such that ei+1, . . . , ej−1 are the northwest elbows of pipe π(t) in R, and let e′1, . . . , e′ℓ
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be the southeast elbows of pipe π(t) in R. Hence, the free southeast elbows in R
after step t form the sequence e1, . . . , ei, e′1, . . . , e′ℓ, ej , . . . , ek. We thus just need to
see that ei is southwest of e′1 and e′ℓ is southwest of ej , and that

ℓ =


j − i if π(s) ⩽ r and ω−1(π(s)) ⩽ c,

j − i− 2 if π(s) > r and ω−1(π(s)) > c,

j − i− 1 otherwise.

Since the northwest and southeast elbows alternate along pipe π(t), this follows from
the fact that the pipe π(t) enters R with an horizontal step if π(t) ⩽ r and with a
vertical step if π(s) > r, and exits R with a vertical step if ω−1(π(t)) ⩽ c and with
an horizontal step if ω−1(π(s)) > c.

Finally, assume that the new pipe π(t) does not intersect the rectangle R. This
implies that π(t) > r and ω−1(π(t)) > c, and there are no free southeast elbows in R
just before step t. Moreover, there is no s > t such that π(s) ⩽ r and ω−1(π(s)) ⩽ c
(since any inversion of π is an inversion of ω), and there are no free southeast elbows
in R at any step after t. We conclude that the formula still holds in this case. □

We now derive two properties of the insertion algorithm from Lemma 4.7. Recall
that we denote by ninv(ω, j) := #

{
i ∈ [n]

∣∣ i < j and ω−1(i) < ω−1(j)
}

the number
of non-inversions of j in a permutation ω.

Corollary 4.8. For any t ∈ [n], the free southeast elbows in the rectangle [π(t)] ×
[ω−1(π(t))] just before step t of the insertion algorithm form a staircase of
length ninv(ω, π(t)).

Proof. Observe first that if there is r < s such that π(r) > π(s)
and ω−1(π(r)) > ω−1(π(s)), then setting i := π(s) and j := π(r), we have i < j
and π−1(i) > π−1(j) while ω−1(i) < ω−1(j), which contradicts our assumption
that π ⩽ ω. This implies that

#
{

s < t
∣∣ π(s) < π(t) and ω−1(π(s)) < ω−1(π(t))

}
= ninv(ω, π(t))

and #
{

s < t
∣∣ π(s) > π(t) and ω−1(π(s)) > ω−1(π(t))

}
= 0.

Hence, the result follows from Lemma 4.7 applied to the parameters t, π(t), ω−1(π(t)).
□

Corollary 4.9. All pipes constructed by the insertion algorithm remain in the tri-
angular shape.

Proof. Let 1 ⩽ i ⩽ j ⩽ n. Note that

j − ninv(ω, j) = #
{

i ∈ [n]
∣∣ i < j and ω−1(i) > ω−1(j)

}
+ 1 ⩽ n− ω−1(j) + 1,

so that ω−1(j) − ninv(ω, j) + j ⩾ n + 1. By Lemma 4.7, the pipe j has ninv(ω, j)
southeast elbows in total, at most j − i − 1 of which are strictly south of row i, so
that at least ninv(ω, j)− j + i of which are strictly north of row i. Hence, the eastmost
point of pipe j in row i is at most in column ω−1(j)− ninv(ω, j) + j − i ⩽ n− i + 1.
We conclude that pipe j indeed remains in the triangular shape. □

Proof of Proposition 4.3. The insertion algorithm constructs a collection P of n pipes
in the triangular shape (by Corollary 4.9), which are pairwise disjoint except at cross-
ings and contacts (by Corollary 4.6). For each t ∈ [n], the pipe π(t) enters at row π(t),
exits at column ω−1(π(t)), and has ninv(ω, π(t)) many southeast contacts (by Corol-
lary 4.8). We thus conclude that P is a pipe dream of Π(ω) by a direct application of
Lemma 2.5.

Algebraic Combinatorics, Vol. 8 #3 (2025) 832



By construction, all southeast contacts of the pipe π(t) inserted at step t are in
contact with northwest contacts of pipes π(s) inserted at steps s < t. In other words,
all edges in the contact graph of pd(π, ω) are of the form π(s)→ π(t) for some s < t.
It follows that the permutation π is a linear extension of the pipe dream P . □

4.3. Rewriting rule. Recall from Example 3.11 that the Sylvester congruence can
be defined as the transitive closure of the classical rewriting rule UjV ikW ≡ UjV kiW
where i < j < k are elements of [n] while U, V, W are (possibly empty) words on [n]
(as usual, we write the permutations of Sn as words in one-line notation). We now
describe a similar rewriting rule for the pipe dream congruence ≡ω.

Proposition 4.10. On the interval [e, ω] of the weak order, the pipe dream congru-
ence ≡ω coincides with the transitive closure of the rewriting rule UijV ≡ω UjiV
where 1 ⩽ i < j ⩽ n are elements of [n] while U, V are (possibly empty) words on [n]
such that

# {k ∈ U | k > i} ⩾ #
{

k ∈ U
∣∣ ω−1(k) < ω−1(j)

}
.

Proof. As they are linear extensions of posets, the congruence classes of ≡ω are con-
nected by simple transpositions. We thus just need to show that any two permuta-
tions π := UijV and π′ := UjiV of [e, ω] which differ by the inversion of two consecutive
values are equivalent for ≡ω if and only if

# {k ∈ U | k > i} ⩾ #
{

k ∈ U
∣∣ ω−1(k) < ω−1(j)

}
.

Moreover, by Proposition 4.3, π ≡ω π′ if and only if they are sent to the same pipe
dream by the insertion algorithm. Let t := π−1(i) = π′−1(j). Before step t of the inser-
tion algorithm, we insert the word U both for π and for π′. The insertion of i and j then
commute if and only if there is no currently free elbow in the rectangle [i]× [ω−1(j)].
By Lemma 4.7 applied to the parameters t, i, ω−1(j), this is equivalent to

#
{

s < t
∣∣ π(s) ⩽ i and ω−1(π(s)) ⩽ ω−1(j)

}
⩽ #

{
s < t

∣∣ π(s) > i and ω−1(π(s)) > ω−1(j)
}

.

or written differently,
#

{
k ∈ U

∣∣ k < i and ω−1(k) < ω−1(j)
}
⩽ #

{
k ∈ U

∣∣ k > i and ω−1(k) > ω−1(j)
}

.

(note that to replace large by strict inequalities in the first set, we used
that k ̸= i and ω−1(k) ̸= ω−1(j) since i, j /∈ U while k ∈ U). Finally, observe that
adding #

{
k ∈ U

∣∣ k > i and ω−1(k) < ω−1(j)
}

from both side, we obtain the
equivalent condition

#
{

k ∈ U
∣∣ ω−1(k) < ω−1(j)

}
⩽ # {k ∈ U | k > i} . □

Remark 4.11. Observe from the proof that the condition of Proposition 4.10 is equiv-
alent to
#

{
k ∈ U

∣∣ k < i and ω−1(k) < ω−1(j)
}
⩽ #

{
k ∈ U

∣∣ k > i and ω−1(k) > ω−1(j)
}

.

Observe moreover that since π ⩽ ω and i < j, we have{
k ∈ U

∣∣ k < i and ω−1(k) < ω−1(j)
}

=
{

k ∈ [i]
∣∣ ω−1(k) < ω−1(j)

}
and{

k ∈ U
∣∣ k > i and ω−1(k) > ω−1(j)

}
=

{
k ∈ [n]

∣∣ i < k < j and ω−1(i) > ω−1(k) > ω−1(j)
}

.

We close this section by two immediate consequences of Proposition 4.10 and Re-
mark 4.11.
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Corollary 4.12. A permutation is minimal (resp. maximal) in its pipe dream congru-
ence class if and only if it avoids the patterns k1 − · · · − kp − ji
(resp. k1 − · · · − kp − ij) where kq > i and ω−1(kq) > ω−1(j) for q ∈ [p]
and p = #

{
k ∈ [i]

∣∣ ω−1(k) < ω−1(j)
}

.

Proof. This is an immediate consequence of Proposition 4.10: a permutation π is
minimal (resp. maximal) in its ≡ω-congruence class if and only if it contains no
consecutive exchangeable entries ji (resp. ij) with i < j. □

Corollary 4.13. If 1 ⩽ i < j ⩽ n and j − i ⩽ #
{

k ∈ [i]
∣∣ ω−1(k) < ω−1(j)

}
, then

the pipes i and j are comparable for ◁P in any acyclic pipe dream P ∈ Σ(ω).

Proof. If pipes i and j were incomparable in ◁P , there would be two permuta-
tions UijV ≡ω UjiV . However, j − i ⩽ #

{
k ∈ [i]

∣∣ ω−1(k) < ω−1(j)
}

implies that
the condition of Proposition 4.10 cannot hold, by Remark 4.11 □

4.4. Recoils and canopy. We now generalize the notion of recoils of permutations
and of canopy of a binary trees to show a natural commutative diagram of lattice
homomorphisms. We start with the easy generalization of recoils of a permutation.
See Example 4.18 for an illustration.

Definition 4.14. Consider the graph G(ω) with vertex set [n] and edge set{
ij

∣∣ i < j and j − i, ω−1(i) > ω−1(j) ⩽ #
{

k < i
∣∣ ω−1(k) < ω−1(j)

}}
.

Let Ω(ω) denote the set of acyclic orientations of G(ω). The ω-recoils of a permu-
tation π ∈ [e, ω] is the acyclic orientation rec(π, ω) ∈ Ω(ω) such that π is a linear
extension of rec(π, ω).

We now generalize the canopy of a binary tree. Recall that the canopy of a bi-
nary tree T with n internal nodes is the sign sequence can(T ) ∈ {−, +}n−1 defined
by can(T )i = − if the (i+1)-th leaf of T is a left leaf and can(T )i = + if the (i+1)-th
leaf of T is a right leaf. Equivalently, can(T )i = − if the node i of T is above the
node i+1 of T and can(T )i = + otherwise. This map was already used by J.-L. Loday
in [17, 16], but the name “canopy” was coined by X. Viennot [31]. We now define a
generalization of the canopy map for pipe dreams in Σ(ω), using Corollary 4.13. See
Example 4.18 for an illustration.

Definition 4.15. The canopy of a pipe dream P ∈ Σ(ω) is the orientation denoted
can(P ) ∈ Ω(ω) where each edge ij is oriented i→ j if i ◁P j and j → i if j ◁P i.

Proposition 4.16. The maps rec(·, ω), pd(·, ω), and can(·) define the following com-
mutative diagram of surjective lattice homomorphisms:

[e, ω] Ω(ω)

Σ(ω)

rec(·, ω)

pd(·, ω) can(·)

Proof. Consider a permutation π and let i < j ∈ [n] be such that
j− i ⩽ #

{
k < i

∣∣ ω−1(k) < ω−1(j)
}

. Assume that the edge ij is oriented from i to j.
Then π−1(i) < π−1(j), thus the pipe i is inserted before the pipe j in pd(π, ω), so
that i ◁pd(π,ω) j and there is also an arc from i to j in can(pd(π, ω)). □

Example 4.17. For the permutation ω = 1n · · · 2, the graph G(ω) has an isolated
vertex 1 and a path 2− 3− · · · − n. The orientations of this path can be seen as sign
sequences, corresponding to the recoils of permutations or the canopies of binary trees.
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Figure 10. The pipe dream congruence (blue bubbles) and the
31542-recoil congruence (red bubbles) on the weak order inter-
val [12345, 31542] (left) and the canopy congruence (red bubbles) on
the increasing flip graph on acyclic pipe dreams (right). Each blue
bubble is contained in a red bubble.

More generally, for the permutation ω = 1 · · · kn . . . (k + 1), the graph G(ω) consist
of all edges ij for k + 1 ⩽ i < j ⩽ n such that |i − j| ⩽ k, and the ω-recoil map on
permutations and canopy on acyclic pipe dreams were already considered in [20].

Example 4.18. For ω = 31542, the graph G(ω) has a single edge 4 − 5. We have
grouped the permutations of [e, ω] according to their ω-recoils, and the pipe dreams
of Σ(ω) according to their canopy in Figure 10.

4.5. The acyclic property for ν-Tamari lattices. We close this section with a
theorem that relates our results to the ν-Tamari lattices introduced by L.-F. Préville-
Ratelle and X. Viennot in [25]. These posets are indexed by a lattice path ν consisting
of a finite number of north (N) and east (E) steps, and coincide with the classical
Tamari lattices when ν = (NE)n.

In [7], it was shown that the ν-Tamari lattice can be obtained as the increasing flip
poset on pipe dreams Π(0ων) for an explicit permutation ων associated with ν. The
permutations of the form ων can be easily characterized as follows. We refer to [7] for
details.

The Rothe diagram of a permutation ω is the set {(ω(j), i) | i < j and ω(i) > ω(j)}
in matrix notation. A permutation ω is called dominant if its Rothe diagram is
the Ferrers diagram of a partition located at the top left corner (1, 1). Equiva-
lently, a permutation ω is dominant if and only if it is 132-avoiding. For a permuta-
tion ω = ω1 . . . ωn ∈ Sn, we denote by 0ω the permutation 0ω1 . . . ωn of {0, 1, . . . , n},
and we consider here pipe dreams with pipes indexed by 0, 1, . . . , n. The ν-Tamari
lattice is the increasing flip poset on pipe dreams Π(0ων) for some dominant permu-
tation ων determined by ν, see [7].
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The main example is when ω := n . . . 21 is the reverse permutation, see Example 2.1
and Figure 2. In this case, the increasing flip poset on Π(0ω) is the classical Tamari
lattice. Removing vertex 0 from the contact graph of a pipe dream P ∈ Π(0ω) returns
the binary tree corresponding to P (with the leaves removed and the internal nodes
labeled in inorder from 1 to n). The edges of the binary tree are oriented going away
from the root of the tree. In particular, all pipe dreams of Π(0ω) are acyclic. This
extends to all dominant permutations as follows.

Theorem 4.19. All pipe dreams of Π(0ω) are acyclic if and only if ω is a dominant
permutation.

To prove this result, we will need the following observation. Note that throughout
the proof, all pipes, rows, and columns are indexed by indices ranging from 0 to n.

Lemma 4.20. For a pipe dream P ∈ Π(0ω) with a crossing x between two pipes i < j,
if i has an elbow southwest of x and j has an elbow northeast of x, then ω is not
dominant.

Proof. Let r be the row and c be the column of the crossing x. Since i has an elbow
southwest of x, we have r ⩽ i − 1. Since j has an elbow northeast of x, there are at
most r − 1 ⩽ i− 2 pipes that cross north of x in column c. Hence, at least two pipes
smaller than i reach the northern border weakly before column c. Excluding the pipe 0,
there is at least one pipe h > 0 such that h < i < j and ω−1(h) < ω−1(j) < ω−1(i).
This is a 132 pattern in the permutation ω, therefore ω is not dominant. □

Proof of Theorem 4.19. For the forward implication, assume that ω is not dominant,
and consider i, j, k ∈ [n] such that i < j < k while ω−1(i) < ω−1(k) < ω−1(j), and
such that k is maximal for this property. Consider any pipe dream P ∈ Π(0ω) obtained
by capping any pipe dream of Π(ω) by a top row of contacts. Because of this top row
of contacts, ω−1(u) < ω−1(v) implies u ◁P v. We now consider the eastmost point x
of pipe k along row i, and let ℓ denote the other pipe at this point. We distinguish
two cases:

(i) Assume first that k and ℓ cross at x. Note that k is vertical while ℓ is horizontal
at x. Hence, ω−1(k) < ω−1(ℓ), so that k ◁P ℓ. Moreover, ℓ ̸= i (since i and k
do not cross), so that ℓ must have an elbow west of x along row i. As k must
have an elbow south of x, we obtain that ℓ ◁P k by Lemma 2.6. Hence, we
have both k ◁P ℓ and ℓ ◁P k, so that P is cyclic.

(ii) Assume now that k and ℓ touch at x. Hence k ◁P ℓ. If ℓ < k, then k and ℓ must
cross at y before x. Flipping x to y, we obtain a pipe dream P ′ with ℓ ◁P ′ k
(because of the contact y) and k ◁P ′ ℓ (because of the last row of elbows which
is still in P ′), so that P ′ would be cyclic. If ω−1(ℓ) < ω−1(k), then ℓ ◁P k, so
that P is again cyclic. Hence, we can assume that k < ℓ and ω−1(k) < ω−1(ℓ).
By maximality of k, we obtain that j and ℓ do not cross, and thus that j must
have an elbow northwest of x. Since x contains an elbow for k, Lemma 2.6
yields j ◁P k. Since ω−1(k) < ω−1(j), we also have k ◁P j, so P is cyclic.

For the backward implication, we introduce a local notation. We write i → j if
there is an elbow of pipe i weakly northwest of an elbow of pipe j. Note that i → j
implies i ◁P j by Lemma 2.6. The reverse direction does not necessarily holds, but
clearly holds for cover relations of ◁P (as in this case, there is an elbow of i in contact
with an elbow of j). Assume now that there is a cyclic pipe dream P ∈ Π(0ω). We
can thus find a cycle C = (i1, . . . , im) with i1 → · · · → im → i1. We can moreover
assume that C is reduced in the sense that no subsequence of C forms a cycle for →.

If m = 2, then the pipes i1 and i2 must cross at some point x. Without loss of
generality, we can assume i1 < i2. The fact i1 → i2 implies that i1 has an elbow
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southwest of x, while the fact that i2 → i1 implies that i2 has an elbow northeast
of x, so that ω is not dominant by Lemma 4.20.

We now show that if C is reduced then the case m ⩾ 3 is impossible. Assume
that m ⩾ 3. Assume moreover that i1 < iℓ for all ℓ ∈ [m] (if not, rotate the indices).
Since im → i1, there is an elbow e of im weakly northwest of an elbow e′ of i1.
Since i1 → i2, there is an elbow f of i1 weakly northwest of an elbow f ′ of i2. We
now distinguish four cases:

(i) If e is weakly northwest of f , thus of f ′, then im → i2, contradicting the
minimality of C.

(ii) If e is northeast of f , since i1 < im, the pipe im starts southwest of f and ends
northeast of f , so that it has an elbow either southeast of f so that i1 → im,
or northwest of f thus of f ′ so that im → i2. In both cases, this contradicts
the minimality of C.

(iii) If e is southwest of f , as i1 passes trough e′ and f , and i2 starts south of i1
(since i1 < i2) and passes south of f , we obtain that i2 must pass south of e
(otherwise i2 would cross i1 twice), so that im → i2, which contradicts the
minimality of C.

(iv) If e is weakly southeast of f , then e′ is southeast of f , which is impossible as
i1 has to pass through both e′ and f . □

Applying our Theorem 3.15, and using the isomorphism [0e, 0ων ] ∼= [e, ων ], we get
the following consequence.

Corollary 4.21. The ν-Tamari lattice is a lattice quotient of the interval [e, ων ].

5. Subword complexes
The objective of this section is to partially extend our results about the lattice struc-
ture of acyclic pipe dreams (Section 3) to the wider context of subword complexes in
finite Coxeter groups. We start with some basic preliminaries on finite Coxeter groups
(Section 5.1) and subword complexes (Section 5.2). We then define linear extensions
of facets of subword complexes (Section 5.3) and present two theorems (Section 5.4)
and five conjectures (Section 5.5) about them. To conclude, we present a sweeping
algorithm to construct the facet with a given linear extension (Section 5.6)

5.1. Finite coxeter groups. We refer to [2, 10] for detailed references on Cox-
eter groups. We consider a finite root system Φ with positive roots Φ+, negative
roots Φ−, and simple roots ∆ ⊆ Φ+. The reflections along the hyperplanes orthog-
onal to the roots in Φ generate a finite Coxeter group W . We denote by sα ∈ W
the reflection orthogonal to a root α ∈ Φ, and by αs ∈ Φ+ the positive root or-
thogonal to a reflection s ∈ W . The group W is actually generated by the simple
reflections S = {sα | α ∈ ∆}, and the pair (W, S) is a finite Coxeter system. Finite
root systems and finite Coxeter systems are classified in terms of Dynkin diagrams,
see [10].

The inversion set Inv(ω) and the non-inversion set Ninv(ω) of an element ω ∈W
are

Inv(ω) := Φ+ ∩ ω(Φ−) and Ninv(ω) := Φ+ ∩ ω(Φ+).
Note that

Φ+ = Inv(ω) ⊔Ninv(ω) and ω(Φ+) = − Inv(ω) ⊔Ninv(ω).

A reduced expression of ω is a product s1s2 . . . sℓ = ω of simple reflections si ∈ S
such that ℓ is minimal. This minimal ℓ is the length ℓ(ω) of ω. The length of ω
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coincides with the size of its inversion set Inv(ω) since

Inv(ω) := {αs1 , s1(αs2), s1s2(αs3), . . . , s1s2 . . . sℓ−1(αsℓ
)}.

The weak order on W is the partial order ⩽ defined by σ ⩽ ω if there exists τ ∈W
such that στ = ω and ℓ(σ)+ℓ(τ) = ℓ(ω). In other words, the element ω has a reduced
expression with a prefix which is a reduced expression of σ. Equivalently, the weak
order corresponds to the inclusion order on inversion sets, that is σ ⩽ ω if and only
if Inv(σ) ⊆ Inv(ω). This order defines a lattice structure on the elements of W . The
minimal element is the identity e ∈W and the maximal element is the unique longest
element ω◦ of W . Note that Inv(e) = ∅ = Ninv(ω◦) and Ninv(e) = Φ+ = Inv(ω◦),
so that ℓ(e) = 0 while ℓ(ω◦) = |Φ+|.

Example 5.1. The Coxeter system of type An−1 is the symmetric group W = Sn with
generators S = {τi | i ∈ [n− 1]}, where τi is the simple transposition τi = (i i + 1). It
naturally acts on Rn by permutations of coordinates. Denoting by (ei)i∈[n] the canon-
ical basis of Rn, the type An−1 roots are all ri,j := ei − ej for distinct i, j ∈ [n], with
positive roots ri,j for 1 ⩽ i < j ⩽ n and simple roots ri,i+1 for i ∈ [n−1]. The inversion
set of π ∈ Sn is the set of roots ei − ej for the inversions (i, j) of the permutation π.
The longest element is the reversed permutation [n, n−1, . . . , 2, 1] (written in one line
notation), and it admits the reduced expression τ1 · · · τn−1τ1 · · · τn−2 · · · τ1τ2τ1.

5.2. Subword complexes. Motivated by their study of Gröbner geometry of Schu-
bert varieties [13], A. Knutson and E. Miller introduced in [12] the following remark-
able family of simplicial complexes in the context of Coxeter groups.

Let (W, S) be a finite Coxeter system, Q = (q1, . . . , qm) be a word in the simple
reflections S, and ω ∈ W be an element of the group. For J ⊆ [m], we denote
by QJ the subword of Q consisting of the letters with positions in J . The subword
complex SC(Q, ω) is the simplicial complex whose facets are subsets I ⊆ [m] such
that Q[m]∖I is a reduced expression for ω. We denote by F(Q, ω) the set of facets
of SC(Q, ω).

It is known that SC(Q, ω) is either a ball or a sphere, in particular it is a pseudo-
manifold (with or without boundary). The flip graph of SC(Q, ω) is the graph whose
vertices are the facets of SC(Q, ω) and whose edges are the ridges of SC(Q, ω). In
other words, two facets I, J ∈ F(Q, ω) are connected by a flip if they differ one ele-
ment: I ∖ {i} = J ∖ {j} for some i ∈ I and j ∈ J with i ̸= j. The flip from I to J
is called increasing if i < j, and decreasing otherwise. The increasing flip graph on
the facets of the subword complex is an acyclic graph which has a unique source and
a unique sink [19, 23]. These two special facets are called the greedy facet I

←−gr and
the antigreedy facet I

−→gr. They are the lexicographically smallest and largest facets
of SC(Q, π). The increasing flip poset is the transitive closure of the increasing flip
graph.

An important tool to study subword complexes are the root functions introduced
in [6]. For a facet I of SC(Q, ω), the root function rI(·) : [m]→ Φ sends a position k
in the word Q to the root rI(k) defined by

rI(k) :=
∏

Q[k−1]∖I(αqk
),

where
∏

Q[k−1]∖I is the product of the letters qi for i ∈ [k − 1] ∖ I computed in the
natural order. The root configuration is the set R(I) = {rI(i) | i ∈ I}. The facet I is
called acyclic if cone R(I) is a pointed cone. We denote by F•(Q, ω) the set of acyclic
facets of the subword complex SC(Q, ω). We will use the following statement that
enables to perform flips using the root function.
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Lemma 5.2 ([6, 12]). Let I be a facet of the subword complex SC(Q, ω). Then
(1) i ∈ I is flippable if and only if ±rI(i) ∈ Inv(ω).
(2) If i ∈ I is flippable, it can be flipped to the unique j ∈ [m] ∖ I such

that rI(j) = ±rI(i). The flip is increasing (i < j) when rI(i) ∈ Φ+ and
decreasing (i > j) when rI(i) ∈ Φ−.

(3) If I and J are two facets related by a flip, with I ∖ {i} = J ∖ {j} and i < j,
then

rJ(k) =
{

sβ(rI(k)), for i < k ⩽ j

rI(k), otherwise
where β := rI(i) and sβ ∈W is the reflection orthogonal to the root β.

(4) i ∈ I is not flippable if and only if rI(i) ∈ Ninv(ω).

Example 5.3. Continuing Example 5.1, we consider the type An−1 Coxeter
system, the word Q := τn−1 · · · τ1τn−1 · · · τ2 · · · τn−1τn−2τn−1, and a permuta-
tion ω ∈ Sn = An−1. The word Q naturally fits on an n × n triangular grid
(place τk in all boxes with row i and column j such that i + j = k + 1). Moreover,
each facet I of the subword complex SC(Q, ω) corresponds to a pipe dream PI

of Π(ω) (replace each position in I by a contact in PI , and the other positions by
crossings in PI). The root function is given rI(i) = rp,q := eq − ep where p is the
pipe arriving from the west and q is the pipe arriving from the south at the box
of PI corresponding to position i of Q. Hence, the root configuration is the incidence
configuration R(I) =

{
rp,q | (p, q) ∈ P #

I

}
of the contact graph of PI . In particular,

the acyclic facets of SC(Q, ω) correspond to the acyclic pipe dreams of Σ(ω).
For a specific illustration, consider the word

Q := τ6τ5τ4τ3τ2τ1τ6τ5τ4τ3τ2τ6τ5τ4τ3τ6τ5τ4τ6τ5τ6

of A6 = S7 and the permutation π := 1365724. Then Q fits in the triangle
of Figure 1. Moreover, the facets I := {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 21}
and I ′ := {1, 2, 4, 5, 6, 7, 8, 9, 10, 12, 16, 17, 21} of SC(Q, π) give the pipe dreams of
Figure 1. The roots rI(3) = αq3 = α4 = e5 − e4 and rI′(17) = q3q11q13q14q15(αq17) =
τ4τ2τ5τ4τ3(α5) = −α4 = e4−e5 correspond to the pipes 4 and 5 at the corresponding
crossings.

Example 5.4. More generally, for the type An Coxeter system, the word Q can be
represented by a sorting network N , a facet I of the subword complex SC(Q, w)
can be represented by a pseudoline arrangement PI on the network N , and the root
configuration R(I) is again the incidence configuration of the contact graph of PI . We
refer to [21, 22, 24] for details of this representation and use it in Figures 12 to 16.

Example 5.5. For any finite Coxeter group W and any Coxeter element c ∈ W (a
product of all generators of S in a given arbitrary order), let ω◦(c) denote the c-sorting
word of ω◦ (the lexicographically minimal reduced expression for ω◦ in c∞, see [26]
for details), and consider the concatenation cω◦(c). Extending the observation of Ex-
ample 2.1, it was shown in [6] that the subword complex SC(cω◦(c), ω◦) is isomorphic
to the cluster complex of type W . In particular, the increasing flip graph is the Hasse
diagram of the c-Cambrian lattice of [26]. See Figure 11 (left) and Figure 14 for an
example with c = τ2τ1τ3 in type A3.

Example 5.6. In contrast to the previous example, we have already seen in Re-
marks 2.2 and 3.17 that neither the increasing flip poset on all facets, nor its subposet
induced by the acyclic facets, are lattices in general, even in type A and even for pipe
dreams. Here is another example in type A, but in a case where all facets are ac-
tually acyclic. Consider the word Q = τ1τ2τ3τ2τ1τ2τ3τ2τ1 on the simple generators
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{1, 2, 3}

{1, 3, 9} {2, 3, 4} {1, 2, 8}

{3, 4, 5} {2, 4, 6}

{3, 5, 9} {1, 8, 9} {4, 5, 6} {2, 6, 8}

{5, 6, 7}

{5, 7, 9} {6, 7, 8}

{7, 8, 9}

{1, 2, 3}

{2, 3, 6} {1, 3, 4} {1, 2, 9}

{3, 4, 6} {1, 4, 8} {2, 6, 9}

{4, 6, 7} {1, 8, 9}

{4, 7, 8} {6, 7, 9}

{7, 8, 9}

Figure 11. The increasing flip poset on SC(Q, ω◦) where
Q = τ2τ1τ3τ2τ1τ3τ2τ1τ3 (left) and Q = τ1τ2τ3τ2τ1τ2τ3τ2τ1 (right) in
type A3. The left one is the τ2τ1τ3-Cambrian lattice, while the right
one is not a lattice (the two facets highlighted in blue have no join
while the two facets highlighted in red have no meet). In both exam-
ples, all facets are acyclic.

of the symmetric group S4 and the subword complex SC(Q, ω◦). The increasing flip
lattice of this subword complex is represented in Figure 11 (right) and Figure 16. In
Figure 11 (right), we have highlighted two blue facets which have no join and two red
facets which have no meet, proving that it is not a lattice (this was observed in [24,
Rem. 5.12]).

5.3. Linear extensions of facets. We now introduce the analogue of Defini-
tion 3.1 for subword complexes.

Definition 5.7. Let SC(Q, ω) be a non-empty subword complex and I ∈ SC(Q, ω) be
a facet. A linear extension of I is an element π ∈ W such that R(I) ⊆ π(Φ+). We
denote by L(I) the set of linear extensions of I, and by

L(Q, ω) :=
⋃

I∈F(Q,ω)
L(I)

the set of linear extensions of all facets of SC(Q, ω).

Example 5.8. In the situation of Examples 5.1 and 5.3, the linear extensions of a
facet I of SC(Q, ω) are precisely the linear extensions of the pipe dream PI of Π(ω).

Lemma 5.9. A facet I is acyclic if and only if L(I) ̸= ∅.

Proof. A classical result for finite root systems states that for any generic linear
halfspace H+ the intersection Φ ∩ H+ is of the form π(Φ+) for some π ∈ W . Since
any pointed cone is contained in some generic linear halfspace, we obtain

I is acyclic ←→ cone R(I) is pointed
←→ cone R(I) ⊆ π(Φ+) for some π ∈W
←→ R(I) ⊆ π(Φ+) for some π ∈W
←→ L(I) ̸= ∅ □
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The following lemma regards linear extensions of the greedy and antigreedy facets.

Lemma 5.10. Let I
←−gr and I

−→gr be the greedy and antigreedy facets of SC(Q, ω), respec-
tively. Then

(1) e ∈ L(I←−gr).
(2) ω ∈ L(I−→gr).
(3) If e ∈ L(I) then I = I

←−gr.

Proof. The greedy facet I
←−gr is the unique facet for which every flip (if any) is

increasing. By Lemma 5.2 (2), this implies that I
←−gr is the unique facet I such

that R(I) ⊆ Φ+ = e(Φ+). This proves parts (1) and (3) of the Lemma.
For part (2) we need to analyze the possibilities for the set R(I−→gr). By

Lemma 5.2 (2), if i ∈ I
−→gr is flippable then rI

−→gr (i) ∈ − Inv(ω). Furthermore,
if i ∈ I

−→gr is not flippable then rI
−→gr (i) ∈ Ninv(ω). Therefore, R(I−→gr) ⊆ ω(Φ+) =

− Inv(ω) ⊔Ninv(ω). □

5.4. Two theorems on linear extensions of facets. In this section, we present
our two main results about linear extensions for subword complexes (Theorems 5.11
and 5.16), extending the results of Section 3.1.

A subset R of the weak order is
• a lower set if σ < τ and τ ∈ R implies σ ∈ R,
• order convex if σ < τ < ρ and σ, ρ ∈ R implies τ ∈ R.

Theorem 5.11. Let SC(Q, ω) be a non-empty subword complex. Then
(1) For any facet I of SC(Q, ω) set L(I) is order convex. (convex)
(2) L(Q, ω) is a lower set of the weak order. (lower set)
(3) [e, ω] ⊆ L(Q, ω). (cover)
(4) If I1 ̸= I2 then L(I1) ∩ L(I2) = ∅. (partition)

Example 5.12. We have represented five examples in Figures 12 to 16. The last three
use ω = ω◦ and are spherical subword complexes (their brick polytopes are represented
in Figures 18 to 20), while the first two do not. We use the representation of the facets
as pseudoline arrangements on sorting networks, see Example 5.4.

Remark 5.13. Before proving it, we would like to make the following remarks about
theorem.

(1) While the sets L(I) are order convex, they may not be intervals. See Figures 12
and 15 (the example of Figure 15 is borrowed from [24, Figure 9]).

(2) The lower set L(Q, ω) may have more than one maximal element, and ω is
not necessarily maximal in L(Q, ω). See Figure 13.

(3) Some of the sets L(I) may not be included in, nor even meet [e, ω]. See
Figure 13.

Remark 5.14. We note that the set L(Q, ω) of linear extensions has been considered
independently in the work on brick polyhedra by D. Jahn and C. Stump in [11]. In
particular, L(Q, ω) is completely characterized using Bruhat cones in [11, Prop. 4.12],
and the convex property (1) is equivalent to [11, Lem. 4.13]. The other three proper-
ties also follow from their characterization, see [11, Sect. 4.2]. Since we found these
results independently, and the techniques we use to prove them are rather different,
we believe that it is relevant to keep our contributions here. Moreover, this leads
to further perspectives and conjectures in connection to brick polyhedra which we
present in Section 5.5.

We will now prove the four points of Theorem 5.11 one by one.
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Figure 12. The subword complex equivalence (left) and the acyclic
increasing flip graph (right) for Q = τ2τ3τ1τ3τ2τ1τ2τ3τ1 and
w = τ2τ3τ1τ2τ3 = 3421 in type A3. Note that the sets L(I) (blue bub-
bles) are not always intervals.

Proof of Theorem 5.11 (1). Let σ < τ < ρ be such that σ, ρ ∈ L(I). By definition of
linear extensions, we have

R(I) ⊆ σ(Φ+) = − Inv(σ) ⊔Ninv(σ) and R(I) ⊆ ρ(Φ+) = − Inv(ρ) ⊔Ninv(ρ).

Restricting to the set of negative and positive roots, respectively, we deduce

R(I) ∩ Φ− ⊆ − Inv(σ) ⊆ − Inv(τ) R(I) ∩ Φ+ ⊆ Ninv(ρ) ⊆ Ninv(τ)

since σ < τ < ρ. Therefore

R(I) ⊆ − Inv(τ) ⊔Ninv(τ) = τ(Φ+)

and so τ ∈ L(I). □

Proof of Theorem 5.11 (2). Let π ∈ L(I) for some facet I. We need to show
that if π′ < π then there exist another facet I ′ such that π′ ∈ L(I ′). It is
enough to show this when π = π′s for some descent s of π (i.e. some s ∈ S
such that ℓ(π′) < ℓ(π)). Define β = π′(αs) and observe that sβ preserves the
set π′(Φ+) ∖ {β} = π(Φ+) ∖ {−β} = π(Φ+) ∩ π′(Φ+).

By definition, π ∈ L(I) if and only if R(I) ⊆ π(Φ+). We now define a new
facet I ′ such that π′ ∈ L(I ′). We distinguish two cases, depending on whether or
not −β ∈ R(I).

Case 1: −β /∈ R(I).
In this case, R(I) ⊆ π(Φ+) ∖ {−β} ⊆ π′(Φ+). Taking I ′ = I, we have π′ ∈ L(I ′)

as wanted.
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Figure 13. The subword complex equivalence (left) and the
acyclic increasing flip graph (right) for Q = τ3τ4τ1τ3τ2τ4τ1τ2 and
w = τ3τ4τ1τ2 = 24153 in type A4. Note that the sets L(I) (blue bub-
bles) are not always subsets of, and may even not meet [e, ω] (green
bubble).

Case 2: −β ∈ R(I).
In this case, we need to remove −β from the root configuration. We will achieve

this by flipping the position of the last −β in I to create a new facet I ′. This position
is indeed flippable as we will argue now.

Given a facet I of a subword complex SC(Q, ω) and a positive root β ∈ Φ+, the
restriction of the list of roots

rI(1), rI(2), . . . , rI(m).

to the set {β,−β} is of the form

β, . . . , β ,−β, . . . , −β.
i j

The sequence of −β’s could in principle be empty and so does the sequence of β’s.
But if there is a −β in this list, then there should be at least one β preceding it. The
position i of the last β is used in the reduced expression of ω in the complement of I,
that is i /∈ I. The positions of the other β’s and −β’s all belong to I, and can all be
flipped to i (see Lemma 5.2 (2)). In particular, the position j of the last −β belongs
to I, and it can be flipped to i creating a new facet I ′ = I ∖ {j} ∩ {i}.

Now, since β /∈ π(Φ+). There must be only one β in the list. Otherwise, there
would be at least one β whose position belongs to the facet I. This would imply
that β ∈ R(I) and π would not be a linear extension of I, which is a contradiction.
So, our restricted list corresponding to I looks like

β ,−β, . . . , −β.
i j
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By Lemma 5.2 (3), we obtain that flipping j to i creates the new facet I ′ = I∖{j}∩{i}
whose corresponding restricted list looks like

β , β, . . . , β.
i j

Moreover, since the reflection sβ preserves the set
π′(Φ+) ∖ {β} = π(Φ+) ∖ {−β} = π(Φ+) ∩ π′(Φ+).

then R(I ′) ⊆ π′(Φ+). Thus, π′ ∈ L(I ′) as desired. □

Proof of Theorem 5.11 (3). By part (2), the union of all linear extensions of facets
is a lower set. So, we just need to show that ω belongs to this set. This follows
from ω ∈ L(I−→gr), which was proven in Lemma 5.10. □

Proof of Theorem 5.11 (4). We show that if there is two facets I1, I2 of SC(Q, ω) and
an element π ∈ W such that π ∈ L(I1) ∩ L(I2) then I1 = I2. The proof works by
induction on the length ℓ(π) of π. We already showed this for π = e in Lemma 5.10.

Let I1, I2 be two facets such that e ̸= π ∈ L(I1) ∩ L(I2). As in the proof of
part (2), let π′ = πs for some s ∈ S such that ℓ(π′) < ℓ(π), and let I ′1, I ′2 be the
corresponding facets obtained using the same steps of the proof. These new facets
satisfy π′ ∈ L(I ′1) ∩ L(I ′2), so that I ′1 = I ′2 by induction.

We now claim that it implies that I1 = I2. We analyze the two cases if the proof of
part (2). Note that in Case 1, the resulting facet I ′ obtained from I satisfies β /∈ R(I ′),
while in Case 2 we have β ∈ R(I ′). As I ′1 = I ′2, this shows that I1 and I2 fall either
both into Case 1 or both into Case 2. If both fall into Case 1, then I ′1 = I1 and I ′2 = I2
and so I1 = I2 as desired. If both fall into Case 2, then we just need to flip back the
performed flip to obtain I1 = I2. □

Since L(I) ̸= ∅ if and only if I ∈ F•(Q, ω) (i.e. I is an acyclic facet) by Lemma 5.9,
and also L(I) ̸= L(J) for I ̸= J by Theorem 5.11 (4), we have the following straight-
forward corollary.

Corollary 5.15. For any word Q and element ω,

L(Q, ω) =
⊔

I∈F•(Q,ω)

L(I).

As pointed out in Remark 5.13, there are subword complexes for
which [e, ω] ̸= L(Q, ω). Our second fundamental theorem describes a large fam-
ily of cases where equality holds. We say that a word Q is sorting if it contains a
reduced expression of ω◦. Equivalently Q contains a reduced expression for any ele-
ment w ∈W . Still equivalently, Dem(Q) = ω◦ where Dem(Q) denotes the Demazure
product of Q, defined by Dem(ε) = e and Dem(Qs) = max(Dem(Q), Dem(Q)s)
(where the max is in weak order).

Theorem 5.16. If the word Q is sorting, then the linear extensions of acyclic facets
of SC(Q, ω) form a partition of the interval [e, ω], that is

[e, ω] =
⊔

I∈F•(Q,ω)

L(I).

The proof is based on the following statement, which follows from [11, Thm. 3.1 &
Coro. 3.3].

Proposition 5.17 ([11]). If the word Q is sorting, then( ⋂
I∈F(Q,ω)

cone R(I)
)
∩ Φ+ = Ninv(ω).
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Proof. We include a short proof here for self containment. We refer to [11] for the
description of the notation C+(ω, ·). By [11, Theorem 3.1] we have⋂

I∈F(Q,π)
cone R(I) = C+(ω, Dem(Q)).

The word Q contains a reduced expression of ω◦ if and only if Dem(Q) = ω◦. Fur-
thermore, by [11, Corollary 3.3] we have

C+(ω, ω◦) ∩ Φ+ = Inv(ωω◦) = Ninv(ω). □

Proof of Theorem 5.16. If π ∈ L(I) for some facet I of SC(Q, ω), then by Proposi-
tion 5.17 we have

Ninv(ω) ⊆ cone R(I) ∩ Φ+ ⊆ cone π(Φ+) ∩ Φ+ = Ninv(π).

Thus π ⩽ ω as desired. □

5.5. Five conjectures on linear extensions of facets. In this section, we
present conjectural generalizations of the results of Sections 3.2 and 3.3. By Corol-
lary 5.15, we have

L(Q, ω) =
⊔

I∈F•(Q,ω)

L(I)

which naturally defines an equivalence relation on L(Q, ω). However, this equivalence
relation is in general not a lattice congruence for two obvious reasons:

(i) while L(Q, ω) is a lower set of the weak order containing [e, ω] by Theo-
rem 5.11, it does not always coincides with [e, ω] by Remark 5.13, and in fact
it does not necessarily have a maximal element, hence it is not necessarily a
lattice,

(ii) while the sets L(I) are always order convex in the weak order by Theo-
rem 5.11 (1), they are not necessarily intervals in the weak order by Re-
mark 5.13.

To bypass Issue (i), we could restrict our attention to the situation when the word Q
is sorting by Theorem 5.16 (we will do that in Conjecture 5.23). Here, we want to
be slightly more general, so we will instead consider general words Q, but restrict
our attention to the interval [e, ω] as follows. For a facet I of SC(Q, ω), we de-
fine L⋆(I) :=L(I) ∩ [e, ω]. We say that I is strongly acyclic if L⋆(I) ̸= ∅, and we
denote by F⋆(Q, ω) the set of strongly acyclic facets of SC(Q, ω). Note that by The-
orem 5.11 (4), we have

[e, ω] =
⊔

I∈F⋆(Q,ω)

L⋆(I).

We can thus now define the analogue of the pipe dream congruence of Definition 3.9
for subword complexes as follows.

Definition 5.18. For a non-empty subword complex SC(Q, ω), the subword com-
plex equivalence is the equivalence relation ≡Q,ω on the interval [e, ω] whose equiva-
lence classes are the sets L⋆(I) for all strongly acyclic facets I of F⋆(Q, ω). In other
words, π ≡Q,ω π′ if and only if π and π′ are linear extensions of the same facet.

Example 5.19. Observe for instance that:
• the subword complex equivalence is a lattice congruence of the weak order in

Figure 14 but not in Figures 15 and 16,
• the increasing flip poset is a lattice in Figures 14 and 15 but not in Figure 16.
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The subword complex equivalence is not always a congruence because of Issue (ii)
above. To fix it, we now assume that the word Q is alternating, meaning that all non-
commuting pairs s, t ∈ S alternate within Q (this notion was already considered in [22,
6]). This enables us to state our first conjecture, intended to extend Theorem 3.10.

Conjecture 5.20. For a non-empty subword complex SC(Q, ω) where Q is alternat-
ing, the subword complex equivalence ≡Q,ω is a lattice congruence of the interval [e, ω]
of the weak order.

We now intend to understand the quotient [e, ω]/ ≡Q,ω. First, its elements
correspond to the congruence classes of ≡Q,ω, hence to the strongly acyclic facets
in F⋆(Q, ω). The cover relations are certain increasing flips between the facets
in F⋆(Q, ω). However, in contrast to Theorem 3.15, not all increasing flips between
two facets in F⋆(Q, ω) yields a cover relation of F⋆(Q, ω), as illustrated by the
following example.

Example 5.21. Consider the type A2 Coxeter system, the word Q = τ1τ2τ1τ2τ1τ2
and the longest element ω◦ = τ1τ2τ1 = τ2τ1τ2. The subword complex SC(Q, ω◦) has
eight facets, six of which are acyclic. All the fibers of ≡Q,ω◦ are singletons and the
lattice quotient [e, ω◦]/ ≡Q,ω◦ coincides with the weak order of type A2. Note that the
two acyclic facets {1, 3, 4} and {3, 4, 6} are connected by a flip but the corresponding
classes do not form a cover relation in [e, ω◦]/ ≡Q,ω◦ .

{1, 2, 3}

{1, 3, 4} {1, 2, 6}

{2, 3, 6}{1, 4, 5}

{1, 5, 6} {3, 4, 6}

{4, 5, 6}

{1, 2, 3}

{1, 3, 4}

{2, 3, 6}{1, 4, 5}

{3, 4, 6}

{4, 5, 6}

{1, 2, 3}

{1, 3, 4}

{2, 3, 6}{1, 4, 5}

{3, 4, 6}

{4, 5, 6}

Figure 17. The increasing flip graph on SC(Q, ω◦) (left), its re-
striction to acyclic facets (middle) and the Hasse diagram of the
quotient [e, ω◦]/ ≡Q,ω◦ where each class is labeled by its correspond-
ing facet of SC(Q, ω◦) (right), for the subword complex SC(Q, ω◦)
where Q = τ1τ2τ1τ2τ1τ2 and ω◦ = τ1τ2τ1 = τ2τ1τ2. Note that
the increasing flip {1, 3, 4} → {3, 4, 6} is not a cover relation
of [e, ω◦]/ ≡Q,ω◦ .

We say that a flip between two facets I, J ∈ F⋆(Q, ω) with I ∖ {i} = J ∖ {j} is
extremal if the root rI(i) is a ray of the root configuration R(I) (or equivalently, rJ(j)
is a ray R(J)). This enables us to state our second conjecture, intended to extend The-
orem 3.15.

Conjecture 5.22. For a non-empty subword complex SC(Q, ω) where Q is alternat-
ing, the Hasse diagram of the lattice quotient [e, ω]/ ≡Q,ω is isomorphic to the graph
of extremal increasing flips between strongly acyclic facets of F⋆(Q, ω).

We now specialize Conjectures 5.20 and 5.22 to the case of sorting and alternating
words. In this case, all acyclic facets are strongly acyclic by Theorem 5.16. Note that
this is precisely the situation we had in Section 3.
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Conjecture 5.23. If Q is sorting and alternating, then the Hasse diagram of the
lattice quotient [e, ω]/ ≡Q,ω is isomorphic to the graph of extremal increasing flips
between acyclic facets of F•(Q, ω).

Moreover, there is a close connection with the brick polyhedra introduced in [11] as
generalizations of the brick polytopes of [22, 24]. We refer to the original papers [22,
24, 11] for a definition of these polyhedra. We just need to know here that the brick
polyhedron Brick(Q, ω) has

• a vertex for each acyclic facet of F•(Q, ω), and
• an edge for each extremal flip between two acyclic facets,

and that the graph of extremal increasing flips on acyclic facets is isomorphic to
the bounded graph (meaning forgetting the unbounded rays) of the brick polyhe-
dron Brick(Q, ω) oriented in a suitable direction δ. This can be derived from [11,
Thm. 4.4]. Conjecture 5.23 can thus be translated geometrically as follows.

Conjecture 5.24. If Q is sorting and alternating, then the bounded oriented graph
of the brick polyhedron Brick(Q, ω) is isomorphic to the Hasse diagram of the lattice
quotient [e, ω]/ ≡Q,ω.

In particular, specializing this conjecture to the brick polytopes [22, 24] for
which ω = ω◦, we obtain our last conjecture, intended to extend the results of [20].

Conjecture 5.25. If Q is sorting and alternating, then the oriented graph of the
brick polytope Brick(Q, ω◦) is isomorphic to the Hasse diagram of a lattice quotient of
the weak order.

Remark 5.26. Conjectures 5.20 and 5.22 to 5.25 holds in type An: our specific proof
of Theorems 3.10 and 3.15 can be extended to arbitrary alternating words in type An

as shown in [5]. They are also supported by computer experiments: we verified Con-
jectures 5.20 and 5.22 for all alternating words of length at most ℓ(ω◦) (hence Con-
jectures 5.23 to 5.25 for all alternating reduced expressions of ω◦) in types B2, B3, D4
and H3.

Example 5.27. We have illustrated in Figures 18 to 20 the brick polytopes of the
subword complexes represented in Figures 14 to 16. Note that the oriented graph
(from bottom to top) defines a lattice in Figures 18 and 19 but not in Figure 20.

5.6. Sweeping algorithm. We now extend the sweeping algorithm of Section 4.1
to construct, from a linear extension π ∈ L(Q, ω), the unique acyclic facet I such
that π ∈ L(I). We note that this algorithm is related to an algorithm that was
independently described in [11], see Remark 5.29.

We start from a subword complex SC(Q, ω) and any element π ∈W . The sweeping
algorithm outcomes a facet for every element π ∈ W , and this will be the desired
facet for each π ∈ L(Q, ω).

It starts by setting I0 = ∅ to be the empty set. It then scans the
word Q = (q1, . . . , qm) from left to right. At position j ∈ [m] it produces a new
set Ij obtained from the previous one Ij−1 by either adding j or not, according to
certain rules. Roughly speaking, the goal of the algorithm is to insert a reduced ex-
pression of ω in Q by sweeping the word from left to right, while deciding whether we
use a letter or not by looking at the root β = rIj (j) that it produces. If β ∈ Ninv(ω)
then it cannot be used (Case 1), otherwise we would not have a reduced expression
for ω. If β ∈ Inv(ω) then it takes it when β ∈ Inv(π) (Case 2), or delays it as much
as possible when β ∈ Ninv(π) (Case 3). If β ∈ − Inv(ω) it can simply not take
it (Case 4).
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Figure 18. The brick polytope of SC(Q, ω◦) where
Q = τ2τ1τ3τ2τ1τ3τ2τ1τ3 in type A3. Its graph, oriented from
bottom to top is the Hasse diagram of the lattice of Figure 11 (left)
and Figure 14. This is actually the c-associahedron and the c-
Cambrian lattice for the Coxeter element c = τ2τ1τ3 of type A3.

Figure 19. The brick polytope of SC(Q, ω◦) where
Q = τ2τ3τ1τ3τ2τ1τ2τ3τ1 in type A3. Its graph, oriented from
bottom to top is the Hasse diagram of the lattice of Figure 15, but
it is not obtained as a lattice quotient of the weak order.

More precisely, let Qj = Q[j]∖Ij and denote by

rIj (k) =
∏

Q[k−1]∖Ij (αqk
).

the partial root function for k ⩽ j. The rules are the following:
Case 1: If rIj (j) ∈ Ninv(ω) then Ij = Ij−1 ∪ {j}.
Case 2: If rIj (j) ∈ Inv(ω) ∩ Inv(π) then Ij = Ij−1.
Case 3: If rIj (j) ∈ Inv(ω) ∩Ninv(π) then we consider two cases:

(a) If Q[m]∖Ij−1∖{j} contains a reduced expression of ω with prefix Qj−1

then Ij = Ij−1 ∪ {j}.
(b) Otherwise Ij = Ij−1.

Case 4: If rIj (j) ∈ − Inv(ω) then Ij = Ij−1 ∪ {j}.
We denote by sweep(Q, ω, π) the resulting set Im obtained at the last step of the

algorithm. The objective of this section is the following statement.
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•

•

•
•

Figure 20. The brick polytope of SC(Q, ω◦) where
Q = τ1τ2τ3τ2τ1τ2τ3τ2τ1 in type A3. Its graph, oriented from
bottom to top is the Hasse diagram of the poset of Figure 11 (right)
and Figure 16, which is not a lattice (the two blue vertices have no
join while the two red vertices have no meet).

Proposition 5.28. Let SC(Q, ω) be a non-empty subword complex. Then, for
every π ∈W ,

(1) the set sweep(Q, ω, π) is a facet of SC(Q, ω),
(2) if π ∈ L(I) for some facet I ∈ SC(Q, ω), then sweep(Q, ω, π) = I.

Remark 5.29. In [11, Sect. 3.3], D. Jahn and C. Stump describe an algorithm to
compute the f -antigreedy facet of a subword complex SC(Q, ω) associated to a linear
functional f . The output of our algorithm coincides with the output of their algorithm
whenever f is positive on π(Φ+) and negative on π(Φ−), see [11, Prop. 4.12]. Also,
compare Proposition 5.28 (1) with [11, Thm. 3.17 (a)], and Proposition 5.28 (2) with
the second part of [11, Prop. 4.12].

Although the algorithm presented in [11] is more general, we highlight that our
sweeping algorithm is conceptually simpler, since we skip the step of translating the
conditions on the sign of f(rIj (j)) in the algorithm of [11]. We remark that these two
algorithms were developed independently, while approaching different problems. This
shows that the sweeping algorithm has a significant importance in the combinatorial
and geometric understanding of subword complexes.

In order to prove Proposition 5.28, we first need to argue that the algorithm ter-
minates, that is, that any position j falls into one of the four cases above.

Lemma 5.30. At step j of the sweeping algorithm, the root rIj (j) belongs to exactly
one of the sets

Ninv(ω), Inv(ω) ∩ Inv(π), Inv(ω) ∩Ninv(π) or − Inv(ω).

Proof. The root rIj (j) belongs to Φ+ ⊔ Φ− and we know that
Φ+ = Inv(ω) ⊔Ninv(ω) Φ− = − Inv(ω) ⊔ −Ninv(ω)

Since we are inserting a reduced expression of ω in Q, the case −Ninv(ω) never
occurs. □

We now observe the main invariant of the sweeping algorithm.

Lemma 5.31. At any step j of the algorithm, Qj is a reduced expression which is the
prefix of a reduced expression of ω in Q[m]∖Ij .
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Proof. The proof works by induction on j.
For j = 0, Q0 is the empty word which is reduced by definition. Furthermore,

Q[m]∖I0 = Q contains a reduced expression of ω because the subword complex is
non-empty. The empty word is a prefix of this reduced expression.

We assume now that the claim holds for j − 1 and we prove it for j. Note that

Qj =
{

Qj−1, if Ij = Ij−1 ∪ {j},
Qj−1qj , if Ij = Ij−1.

We analyze the different cases of the sweeping algorithm.
(1) If rIj (j) ∈ Ninv(ω) then Qj = Qj−1, which is reduced by induction hy-

pothesis. Moreover, it is a prefix of a reduced expression of ω in Q[m]∖Ij−1 .
Since rIj (j) ∈ Ninv(ω), this reduced expression cannot use the letter qj ; so,
it is a reduced expression of ω in Q[m]∖Ij as desired.

(2) If rIj (j) ∈ Inv(ω)∩Inv(π) then Qj = Qj−1◦(qj), which is a reduced expression
because Qj−1 is reduced and rIj (j) ∈ Inv(ω).

Now let Q̃ be a subword of Q[m]∖Ij−1 = Q[m]∖Ij which is a reduced ex-
pression of ω with prefix Qj−1, and let Ĩ be the corresponding facet.

If j /∈ Ĩ, then qj is used in Q̃ and we are done because Q̃ has Qj as a prefix.
If j ∈ Ĩ, then we can flip it to a position j′ > j (by Lemma 5.2 (2)),

creating a new reduced expression Q̃′ of ω which uses qj , and thus has Qj as
a prefix.

(3)(a) If rIj (j) ∈ Inv(ω)∩Ninv(π) and Q[m]∖Ij−1∖{j} contains a reduced expression
of ω with prefix Qj−1, then Qj = Qj−1. Therefore, Qj is reduced and it is a
prefix of a reduced expression of ω in Q[m]∖Ij−1∖{j} = Q[m]∖Ij .

(3)(b) In this case, rIj (j) ∈ Inv(ω) ∩ Ninv(π) but Qj = Qj−1 ◦ (qj). The proof is
similar to the proof of (2).

(4) If rIj (j) ∈ − Inv(ω) then Qj = Qj−1. The argument is similar to that of
Case (1). □

Finally, we need the following technical statement.

Lemma 5.32. Let I1, I2 ∈ SC(Q, ω) be two different facets, and j ∈ [m] be the first
position where they differ. Without loss of generality assume

I2 ∩ [j] = I1 ∩ [j] ∖ {j}

with j ∈ I1. Let β = rI1(j) = rI2(j), then

−β ∈ cone R(I2).

In the proof of Lemma 5.32, let us write ⩽B the strong Bruhat order, defined
by x ⩽B y if and only if a reduced expression of y has a reduced expression of x
as a subword, and x ≺B y the covers of this order. We note that for any word Q
and any x ∈ W , we can find a reduced expression of x as a subword of Q if and
only if x ⩽B Dem(Q) the Demazure product of Q. We will use [11, Proposition 3.14],
reformulated as follows.

Proposition 5.33 ([11]). Let SC(Q, w) be a non-empty subword complex. Then for
any facet I ∈ SC(Q, w) and for any simple root α such that w ≺B sαw ⩽B Dem(Q),
we have α ∈ R(I).

Proof of Lemma 5.32. Let us write w = uv with u the prefix of w defined by I1 and I2
on Q until index j − 1 and v the suffix of w defined by the same facets from index j
and onward. Let us also write s the jth letter of Q and α the simple root associated
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with s. We note that β = rI1(j) = u(α), and that since j /∈ I2, we know that sv ≺B v
(this is also a cover of the left weak order).

Let us call Q′ the suffix of Q starting at index j + 1, and I ′1, I ′2 the restrictions
of I1 and I2 to Q′. The subwords induced by I ′1 and I ′2 on Q′ are suffixes of re-
duced subwords of Q, so they are also reduced. Moreover, since j ∈ I1, we know
that I ′1 is a facet of SC(Q′, v); this means that this subword complex is not empty and
that v ⩽B Dem(Q′). Similarly, since j /∈ I2, we know that I ′2 is a facet of SC(Q′, sv).
By combining the previous statements, we know that sv ≺B v ⩽B Dem(Q′) (or
equivalently and with v′ = sv, that v′ ≺B sv′ ⩽B Dem(Q′)). We can thus apply
Proposition 5.33 to obtain that α ∈ R(I ′2).

Going back to our facets on Q, we know that the prefix of w written by I2 on Q∩[j]
is us, and thus us(R(I ′2)) ⊆ R(I2). Therefore, we have us(α) = u(−α) = −u(α) =
−β ∈ R(I2), thus concluding the proof. □

Proof of Proposition 5.28. Since the sweeping algorithm terminates by Lemma 5.30,
Point (1) follows directly from the invariant of the sweeping algorithm of Lemma 5.31
applied when j = m.

For Point (2), assume π ∈ L(I) and let Ij = I ∩ [j]. We will show that the partial
root function rIj (·) agrees with the decisions taken in the sweeping algorithm. Indeed,
we will see that those decisions are forced.

Recall that

π ∈ L(I) ←→ R(I) ⊆ π(Φ+)
←→ cone R(I) ⊆ π(Φ+)

and
π(Φ+) = − Inv(π) ⊔Ninv(π).

We analyze the possible cases in the sweeping algorithm.
(1) If rIj (j) ∈ Ninv(ω) then clearly j ∈ I is forced. Otherwise Q[m]∖I would not

be a reduced expression of ω.
(2) If rIj (j) ∈ Inv(ω) ∩ Inv(π) then j /∈ I is forced. Otherwise we would have an

inversion of π in the root configuration, which contradicts π ∈ L(I).
(3)(a) If rIj (j) ∈ Inv(ω)∩Ninv(π) and Q[m]∖Ij−1∖{j} contains a reduced expression

of ω with prefix Qj−1 then j ∈ Ij is forced.
We argue this by contradiction. Assume j /∈ Ij (j /∈ I). Let I1 =

sweep(Q, ω, π) and I2 = I. Applying Lemma 5.32, we deduce that
β = rIj (j) = rI(j) satisfies

−β ∈ cone R(I).

But β ∈ Ninv(π). This contradicts π ∈ L(I).
(3)(b) If rIj (j) ∈ Inv(ω) ∩ Ninv(π) and Q[m]∖Ij−1∖{j} does not contain a reduced

expression of ω with prefix Qj−1 then j /∈ Ij is forced. Otherwise, the com-
plement of I would not be a reduced expression of ω.

(4) If rIj (j) ∈ − Inv(ω) then j ∈ Ij is clearly forced. Otherwise, the complement
of I would not be a reduced expression. □

Remark 5.34. Although the sweeping algorithm produces a facet I = sweep(Q, ω, π)
for every ω ∈W , in some cases we have π /∈ L(I). This happens because of Case 1,
when a non-inversion β ∈ Ninv(ω) of ω is added to the root configuration R(I), such
that β /∈ Ninv(π). This is only potentially possible when π /∈ [e, ω].
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