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A conjectural basis for the
(1, 2)-bosonic-fermionic coinvariant ring

John Lentfer

Abstract We give the first conjectural construction of a monomial basis for the coinvariant
ring R

(1,2)
n , for the symmetric group Sn acting on one set of bosonic (commuting) and two sets

of fermionic (anticommuting) variables. Our construction interpolates between the modified
Motzkin path basis for R

(0,2)
n of Kim–Rhoades (2022) and the super-Artin basis for R

(1,1)
n

conjectured by Sagan–Swanson (2024) and proven by Angarone et al. (2025). We prove that
our proposed basis has cardinality 2n−1n!, aligning with a conjecture of Zabrocki (2020) on the
dimension of R

(1,2)
n , and show how it gives a combinatorial expression for the Hilbert series.

We also conjecture a Frobenius series for R
(1,2)
n . We show that these proposed Hilbert and

Frobenius series are equivalent to conjectures of Iraci, Nadeau, and Vanden Wyngaerd (2024)
on R

(1,2)
n in terms of segmented Smirnov words, by exhibiting a weight-preserving bijection

between our proposed basis and their segmented permutations. We extend some of their results
on the sign character to hook characters, and give a formula for the mµ coefficients of the
conjectural Frobenius series. Finally, we conjecture a monomial basis for the analogous ring in
type Bn, and show that it has cardinality 4nn!.

1. Introduction
The classical coinvariant ring R

(1,0)
n = C[xn]/⟨C[xn]Sn

+ ⟩ is the quotient ring of a
polynomial ring in n variables xn = {x1, . . . , xn} by Sn-invariant polynomials with no
constant term. It is well-known (see for example [21, Section 1.5]) to have dimension n!,
Hilbert series [n]q!, and Frobenius series∑

λ⊢n

∑
T ∈SYT(λ)

qmaj(T )sλ.

The Artin basis {xα1
1 xα2

2 · · ·xαn
n | 0 ⩽ αi ⩽ i− 1} is an important basis of the classical

coinvariant ring.
In 1994, Haiman [21] introduced the diagonal coinvariant ring R(2,0)

n = C[xn,yn]/
⟨C[xn,yn]Sn

+ ⟩, which extends the classical coinvariant ring to two sets of n variables.
Here and throughout, Sn acts diagonally by permuting the indices of the variables.
Given a polynomial ring R, the notation ⟨RSn

+ ⟩ denotes the ideal generated by all
polynomials in R which are invariant under the diagonal action of Sn, with no constant
term. In 2002, Haiman [22] proved that R(2,0)

n has dimension (n + 1)n−1, Hilbert
series ⟨∇en, h

n
1 ⟩, and Frobenius series ∇en, using several deep results in algebraic

geometry. A combinatorial formula for its Hilbert series was conjectured by Haglund
and Loehr [17], and eventually was proven as a consequence of the more general shuffle

Manuscript received 9th August 2024, revised 19th February 2025, accepted 24th February 2025.
Keywords. Coinvariant rings, Artin basis, Frobenius series, Hilbert series, symmetric functions.

ISSN: 2589-5486 http://algebraic-combinatorics.org/

https://doi.org/10.5802/alco.424
http://algebraic-combinatorics.org/


John Lentfer

theorem, conjectured by Haglund, Haiman, Loehr, Remmel, and Ulyanov [16] and
proven by Carlsson and Mellit [7], which gives a combinatorial formula for ∇en. A
monomial basis was given by Carlsson and Oblomkov [8].

Recently, there has been interest (see [3–5,35]) in extending the setting to include
coinvariant rings with k sets of n commuting variables xn,yn, zn, . . . and j sets of n
anticommuting variables θn, ξn,ρn, . . .. We denote this by
(1) R(k,j)

n = C[xn,yn, zn, . . .︸ ︷︷ ︸
k

,θn, ξn,ρn, . . .︸ ︷︷ ︸
j

]/⟨C[xn,yn, zn, . . .︸ ︷︷ ︸
k

,θn, ξn,ρn, . . .︸ ︷︷ ︸
j

]Sn
+ ⟩.

Commuting variables commute with all variables. Anticommuting variables anticom-
mute with all anticommuting variables, that is, θiθj = −θjθi, which also implies
that θ2

i = 0.
We briefly overview some recent results on the special cases of R(k,j)

n for which there
has been significant progress. Kim and Rhoades [25] showed that the fermionic diagonal
coinvariant ring R(0,2)

n = C[θn, ξn]/⟨C[θn, ξn]Sn
+ ⟩ has dimension

(2n−1
n

)
, confirming a

conjecture of Zabrocki [35]. They gave a combinatorial formula for its Hilbert series:

(2) Hilb(R(0,2)
n ;u, v) =

∑
π∈Π(n)>0

udegθ(π)vdegξ(π),

where Π(n)>0 denotes the set of modified Motzkin paths(1) of length n. They also
gave a monomial basis for R(0,2)

n , and found its Frobenius series [25, Theorem 6.1]:

(3) Frob(R(0,2)
n ;u, v) =

∑
i+j<n

uivj(s(n−i,1i) ∗ s(n−j,1j)− s(n−i+1,1i−1) ∗ s(n−j+1,1j−1)),

where ∗ denotes the Kronecker product and s(n+1,1−1) is interpreted as 0.
The superspace coinvariant ring is R(1,1)

n = C[xn,θn]/⟨C[xn,θn]Sn
+ ⟩. Sagan and

Swanson [29] conjectured, and Rhoades and Wilson [28] proved, that its Hilbert series
is

(4) Hilb(R(1,1)
n ; q;u) =

n∑
k=1

un−k[k]q! Stirq(n, k),

where the q-Stirling number Stirq(n, k) is defined by the recurrence relation
Stirq(n, k) = [k]q Stirq(n − 1, k) + Stirq(n − 1, k − 1) with initial conditions
Stirq(0, k) = δk,0. This implies that the dimension of R(1,1)

n is the ordered Bell
number, which counts the number of ordered set partitions of {1, . . . , n}. Sagan and
Swanson [29] conjectured and Angarone, Commins, Karn, Murai, and Rhoades [2]
proved that a certain super-Artin set is a basis for R(1,1)

n . A Frobenius series has been
conjectured for R(1,1)

n [5, Equation 5.2]:

(5) Frob(R(1,1)
n ; q;u) =

n−1∑
k=0

∑
λ⊢n

∑
T ∈SYT(λ)

ukqmaj(T )−k des(T )+(k
2)

[
des(T )
k

]
q

sλ.

In general, much less is known about R(k,j)
n when k + j ⩾ 3. In 1994, Haiman [21]

conjectured that the dimension of R(3,0)
n is given by 2n(n+1)n−2, which is still open. A

partially-graded Frobenius series has been conjectured by Bergeron and Préville-Ratelle
(originally [6]; phrased as in [5]):

(6) Frob(R(3,0)
n ; q, t, 1) =

∑
α⪯β

qdist(α,β)Lβ(t),

(1)This and other undefined terms which are needed will be defined in the subsequent sections.
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where α ⪯ β are pairs of elements (Dyck paths) of the Tamari lattice, dist(α, β) is
the length of the longest chain from α to β, and Lβ(t) denotes the LLT polynomial
associated to the Dyck path β.

There is no conjecture for the dimension of R(0,3)
n .

Zabrocki [34] conjectured the following Frobenius series for R(2,1)
n :

(7) Frob(R(2,1)
n ; q, t;u) = ∆′

en−1+uen−2+···+un−1(en),

where ∆′
f is a Macdonald eigenoperator defined by

∆′
f H̃µ[X; q, t] = f [Bµ(q, t)− 1]H̃µ[X; q, t].(2)

Finally, its dimension is conjectured by Zabrocki [35] to be given by 1
2

∑n+1
k=0

(
n+1

k

)
kn

n+1
(see OEIS sequence A201595 [27]). Haglund, Rhoades, and Shimozono showed that
this implies the conjecture in equation (5) [20].

D’Adderio, Iraci, and Vanden Wyngaerd [10] introduced certain symmetric function
operators Θf , called Theta operators, where f is any symmetric function, in order
to extend Zabrocki’s conjecture on the Frobenius series of R(2,1)

n to a conjectural
Frobenius series for R(2,2)

n . They conjectured that

(8) Frob(R(2,2)
n ; q, t;u, v) =

∑
k,ℓ⩾0,
k+ℓ<n

ukvℓΘek
Θeℓ
∇en−k−ℓ,

which is known as the Theta conjecture. Since they showed that ∆′
n−k−1en =

Θek
∇en−k, Zabrocki’s conjecture is recovered by setting v = 0 (equivalently, ℓ = 0).

The ring R
(1,2)
n = C[xn,θn, ξn]/⟨C[xn,θn, ξn]Sn

+ ⟩ is the main object of study in
this paper. Zabrocki [35] conjectured that the dimension of R(1,2)

n is 2n−1n!, and an
ungraded Frobenius series was conjectured by Bergeron [3]:

(9) Frob(R(1,2)
n ; q;u, v)|q=u=v=1 = 1

2
∑
µ⊢n

2ℓ(µ)(−1)n−ℓ(µ)
(

ℓ(µ)
d1(µ), . . . , dn(µ)

)
pµ,

where ℓ(µ) denotes the length of the partition µ and di(µ) denotes the number of
parts of size i in µ. Another formulation of the conjecture was given in [5]:

(10) Frob(R(1,2)
n ; q;u, v)|q=u=v=1 =

∑
µ⊢n

eµ

∑
α∼µ

α1(2α2 − 1) · · · (2αℓ(α) − 1),

where the second sum is over all compositions α whose parts rearrange to the parti-
tion µ.

The Theta conjecture specialized at t = 0 immediately gives a conjectural Frobenius
series for R(1,2)

n , however, the specialization can only be done after applying both
of the Theta operators, so the resulting formula does not easily simplify. Recently,
Iraci, Nadeau, and Vanden Wyngaerd [23] have given a conjectural Hilbert series
(equation (17)) and conjectural Frobenius series (equation (16) and Proposition 5.4)
using the combinatorics of segmented Smirnov words. However, they did not propose
a monomial basis. Their results which will be used in this paper are surveyed in
Section 5.

Our first main contribution is a combinatorial construction of a set of monomials,
denoted by B

(1,2)
n (Definition 3.1), which we conjecture to give a basis of R(1,2)

n

(2)For definitions of the terms in this expression, see [18].
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(Conjecture 3.2). If the conjecture holds, it implies the following combinatorial Hilbert
series (Proposition 3.6):

(11) Hilb(R(1,2)
n ; q;u, v) =

∑
π∈Π(n)>0

udegθ(π)vdegξ(π) stairq(π).

In support of this conjecture, we show that the cardinality of B(1,2)
n is 2n−1n! (Theo-

rem 3.7). By establishing a weight-preserving bijection between B
(1,2)
n and the set of

segmented permutations SW(1n) (Theorem 6.2), we are able to show that our conjec-
tural Hilbert series is equivalent to the conjectural Hilbert series of Iraci, Nadeau, and
Vanden Wyngaerd [23] (Corollary 6.4).

Our second main contribution is a simple combinatorial formula for the conjectural
Frobenius series of R(1,2)

n (Conjecture 4.1):

(12) Frob(R(1,2)
n ; q;u, v) =

∑
b∈B

(1,2)
n

udegθ(b)vdegξ(b)qdegx(b)QAsc(b),n,

where QS,n denotes the fundamental quasisymmetric function. We show that this is
equivalent to the conjectural Frobenius series of Iraci, Nadeau, and Vanden Wyngaerd
(Theorem 6.6). A benefit of using B(1,2)

n instead of segmented permutations is that
determining Asc(b) and degx(b) for b ∈ B(1,2)

n is typically more direct than determining
Split(σ) and sminv(σ) for σ ∈ SW(1n), which fulfill analogous roles.

In Section 7, we give a formula for the mµ coefficient of our conjectural Frobenius
series. In Section 8, we extend some results of Iraci, Nadeau, and Vanden Wyngaerd
on the sign character to hook shapes. Specifically, we give two formulas, one in terms
of the proposed basis (Theorem 8.1) and one in terms of q-binomial coefficients
(Theorem 8.4):

⟨Frob(R(1,2)
n ; q;u, v), s(d+1,1n−d−1)⟩

=
∑

k+ℓ<n

ukvℓq(
n−d−k−ℓ

2 )
[
n− 1− d

ℓ

]
q

[
n− 1− k

d

]
q

[
n− 1− ℓ

k

]
q

.

In Section 9, we consider some of the same questions in type B. Let

(13) R
(k,j)
Bn

= C[xn,yn, zn, . . .︸ ︷︷ ︸
k

,θn, ξn,ρn, . . .︸ ︷︷ ︸
j

]/⟨C[xn,yn, zn, . . .︸ ︷︷ ︸
k

,θn, ξn,ρn, . . .︸ ︷︷ ︸
j

]Bn
+ ⟩,

where Bn denotes the Weyl group of type B and rank n acting diagonally, that is, by
permuting variables with sign.

The Hilbert series for R(1,0)
Bn

is well-known to be [2n]q!!, and unknown in general
for R(2,0)

Bn
, although Gordon [15] constructed a notable singly-graded Bn-quotient

module of R(2,0)
Bn

with dimension (2n+ 1)n, as conjectured by Haiman [21]. Gordon’s
construction shows that dimR

(2,0)
Bn

⩾ (2n + 1)n. Equality holds only for n = 2, 3;
for n ⩾ 4, Haiman [21] conjectured and Ajila and Griffeth [1] proved that dimR

(2,0)
Bn

>

(2n+ 1)n.
The Hilbert series for R(0,2)

Bn
was found by Kim and Rhoades (in fact, their results

were type-independent). The Hilbert series for R(1,1)
Bn

was conjectured by Sagan and
Swanson [29] to be:

(14) Hilb(R(1,1)
Bn

; q;u) =
n∑

k=1
un−k[2k]q!! StirB

q (n, k),

Algebraic Combinatorics, Vol. 8 #3 (2025) 714



The (1, 2)-bosonic-fermionic coinvariant ring

where the type B q-Stirling number StirB
q (n, k) is defined by the recurrence relation

StirB
q (n, k) = [2k + 1]q StirB

q (n − 1, k) + StirB
q (n − 1, k − 1) with initial conditions

StirB
q (0, k) = δk,0.

We interpolate between the work of Kim–Rhoades and Sagan–Swanson to give a
combinatorial construction of a set of monomials, denoted by B(1,2)

Bn
(Definition 9.5),

which we conjecture to be a basis of R(1,2)
Bn

(Conjecture 9.6). If the conjecture holds,
this implies the following combinatorial Hilbert series:

(15) Hilb(R(1,2)
Bn

; q;u) =
∑

π∈Π⩾0(n)

udegθ(π)vdegξ(π) stairB
q (π).

We also conjecture that dimR
(1,2)
Bn

= 4nn! (Conjecture 9.8), and conclude by showing
that the cardinality of B(1,2)

Bn
agrees with this conjecture (Theorem 9.10).

2. Background
In this section, we describe the Kim–Rhoades basis for R(0,2)

n [25] and the super-Artin
basis for R(1,1)

n conjectured by Sagan–Swanson [29] and proven by Angarone, Commins,
Karn, Murai, and Rhoades [2].

Define the set of modified Motzkin paths of length n, Π(n)>0, to be the set of all
paths π = (p1, . . . , pn) in Z2 such that each step pi is one of:

(a) an up-step (1, 1),
(b) a horizontal step (1, 0) with decoration θi,
(c) a horizontal step (1, 0) with decoration ξi,
(d) or a down-step (1,−1) with decoration θiξi,

where the first step must be an up-step, and subsequently, the path never goes below
the horizontal line y = 1.(3)

Define the weight wt(pi) of a step pi of a modified Motzkin path to be its decoration,
or 1 if it does not have a decoration. Then define the weight wt(π) of a modified
Motzkin path π ∈ Π(n)>0 to be the product of the weights of each step pi, that is,

wt(π) :=
∏

pi∈(p1,...,pn) = π

wt(pi).

Definition 2.1 ([25]). The Kim–Rhoades basis B(0,2)
n is the set of all weights of the

modified Motzkin paths π ∈ Π(n)>0, that is,
B(0,2)

n := {wt(π) |π ∈ Π(n)>0}.

For an example, see Figure 1. We are justified in calling it a basis because of the
following result of Kim and Rhoades.

Theorem 2.2 ([25]). The Kim–Rhoades basis B(0,2)
n is a basis for R(0,2)

n .
Next, we recall the super-Artin basis, defined by Sagan and Swanson. Let χ(P )

be 1 if the proposition P is true, and 0 if the proposition P is false. Let θT denote the
ordered product θt1 · · · θtk

for any subset T = {t1 < · · · < tk} ⊆ {1, . . . , n}. For any
T ⊆ {2, . . . , n}, define the α-sequence α(T ) = (α1(T ), . . . , αn(T )) recursively by the
initial condition α1(T ) = 0 and for 2 ⩽ i ⩽ n,

αi(T ) = αi−1(T ) + χ(i ̸∈ T ).

(3)Kim and Rhoades defined the modified Motzkin paths in a slightly different manner, where there
are no decorations on the down-steps, but they still contribute θiξi to the weight. Furthermore, they
defined the decorations to be just θ or ξ instead of θi and ξi. Converting between these conventions
is straightforward.

Algebraic Combinatorics, Vol. 8 #3 (2025) 715
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1

θ2

θ2

ξ2

ξ2

θ3

θ3

ξ3

ξ3

θ2 θ3

θ2θ3

θ3ξ3

θ3ξ3

ξ2 θ3

ξ2θ3

θ2 ξ3

θ2ξ3

ξ2 ξ3

ξ2ξ3

Figure 1. The basis B(0,2)
3 . Each modified Motzkin path is labeled

with its corresponding monomial.

Let xα denote xα1
1 · · ·xαn

n for a sequence α = (α1, . . . , αn).
Definition 2.3 ([29]). The super-Artin set is

B(1,1)
n := {xαθT |T ⊆ {2, . . . , n} and α ⩽ α(T ) componentwise}.

See Figure 2 for an example. The following result was conjectured by Sagan and
Swanson, and was proven by Angarone, Commins, Karn, Murai, and Rhoades.

Theorem 2.4 ([2]). The super-Artin set B(1,1)
n is a basis for R(1,1)

n .

1 x3 x2 x2x3 x2
3

x2x
2
3

θ2

x3θ3 x2x3θ3θ3 x2θ3

x3θ2 θ2θ3

Figure 2. The basis B(1,1)
3 . The α-sequence is shown as the outline

of all boxes, and those xi used for a particular basis element are
shaded in gray.

In this paper, we assume familiarity with the basics of symmetric function theory
(see for example [26, Chapter I] or [30, Chapter 7]). Let mλ, eλ, hλ, pλ, and sλ denote

Algebraic Combinatorics, Vol. 8 #3 (2025) 716
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respectively the monomial, elementary, complete homogeneous, power-sum, and Schur
symmetric functions in infinitely many variables.

Finally, we record the definitions of the multigraded Hilbert and Frobenius series of
R

(k,j)
n (see for example [3]). Fix integers k, j ⩾ 0. R(k,j)

n decomposes as a direct sum
of multihomogenous components, which are Sn-modules:

R(k,j)
n =

⊕
r1,...,rk,s1,...,sj⩾0

(R(k,j)
n )r1,...,rk,s1,...,sj

.

We denote the multigraded Hilbert series by
Hilb(R(k,j)

n ; q1, . . . , qk;u1, . . . , uj)

:=
∑

r1,...,rk,s1,...,sj⩾0
dim

(
(R(k,j)

n )r1,...,rk,s1,...,sj

)
qr1

1 · · · q
rk

k us1
1 · · ·u

sj

j ,

and the multigraded Frobenius series by
Frob(R(k,j)

n ; q1, . . . , qk;u1, . . . , uj)

:=
∑

r1,...,rk,s1,...,sj⩾0
F char

(
(R(k,j)

n )r1,...,rk,s1,...,sj

)
qr1

1 · · · q
rk

k us1
1 · · ·u

sj

j ,

where F denotes the Frobenius characteristic map and char denotes the character. For
simplicity, if k ⩽ 2, we will use q, t for q1, q2 and if j ⩽ 2, we will use u, v for u1, u2. Re-
call that ⟨Frob(R(k,j)

n ; q1, . . . , qk;u1, . . . , uj), hn
1 ⟩ = Hilb(R(k,j)

n ; q1, . . . , qk;u1, . . . , uj).

3. The conjectural monomial basis
The goal of this section is to interpolate between the Kim–Rhoades basis and the
super-Artin basis to construct a new set B(1,2)

n , which we conjecture to be a basis
for R(1,2)

n .
We generalize the α-sequence as follows. Let ξS denote the ordered product ξs1 · · · ξsk

for any subset S = {s1 < · · · < sk} ⊆ {1, . . . , n}. For any T, S ⊆ {2, . . . , n}, define the
generalized α-sequence α(T, S) = (α1(T, S), . . . , αn(T, S)) recursively by the initial
condition α1(T, S) = 0 and for 2 ⩽ i ⩽ n,

αi(T, S) = αi−1(T, S)− 1 + χ(i ̸∈ T ) + χ(i ̸∈ S).

Definition 3.1. We let
B(1,2)

n := {xαθT ξS | θT ξS ∈ B(0,2)
n and 0 ⩽ αi ⩽ αi(T, S) for all i ∈ {1, . . . , n}}.

See Figure 3 for an example of B(1,2)
n at n = 3.

Conjecture 3.2. The set B(1,2)
n is a basis for R(1,2)

n .

Remark 3.3. The conjecture has been verified for n ⩽ 4.

Remark 3.4.B(1,2)
n specializes to the super-Artin basis B(1,1)

n by setting all ξi = 0.
Then the Kim–Rhoades basis elements permitted in the definition will always have
S = ∅, so that condition becomes just T ⊆ {2, . . . , n}. Thus α(T, S) = α(T,∅) = α(T ).

Remark 3.5.B(1,2)
n specializes to the Kim–Rhoades basis B(0,2)

n by setting all xi = 0.

Next, we consider the implications of Conjecture 3.2 on the Hilbert series of R(1,2)
n .

To do so, define
stairq(π) :=

∏
k∈α(T (π),S(π))

[k + 1]q,

where T (π) and S(π) are determined by which elements in {2, . . . , n} appear as indices
for θi and ξi respectively in the weight of the modified Motzkin path π.

Algebraic Combinatorics, Vol. 8 #3 (2025) 717
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1 x3 x2 x2x3

x2
3 x2x

2
3

θ3

θ3

θ3

x3θ3

θ3

x2θ3

θ3

x2x3θ3

ξ3

ξ3

ξ3

x3ξ3

ξ3

x2ξ3

ξ3

x2x3ξ3

θ3ξ3

θ3ξ3

θ3ξ3

x2θ3ξ3

θ2

θ2

θ2

x3θ2

ξ2

ξ2

ξ2

x3ξ2

θ2 θ3

θ2θ3

θ2 ξ3

θ2ξ3

ξ2 θ3

ξ2θ3

ξ2 ξ3

ξ2ξ3

Figure 3. The basis B(1,2)
3 . Below each modified Motzkin path is

the outline of the generalized α-sequence, and those xi used for a
particular basis element are shaded in gray. Note that the outline of
the generalized α-sequence can be determined by the following rule:
in each position i, the column of boxes extends up until its right side
is one unit below the path above it.

For a modified Motzkin path π, let degθ(π) = |T (π)| and let degξ(π) = |S(π)|.
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Proposition 3.6. Assuming Conjecture 3.2, it follows that the Hilbert series of R(1,2)
n

is
Hilb(R(1,2)

n ; q;u, v) =
∑

π∈Π(n)>0

udegθ(π)vdegξ(π) stairq(π).

Proof. The number of θi weights contributes to the u-degree and the number of ξi

weights contributes to the v-degree. Then regarding the q-degree, for each index
i ∈ {1, . . . , n}, let k = αi(T, S). Then there will be k+ 1 choices for the exponent of xi

in the monomial, from 0 to k. So the contribution of xi to the Hilbert series is [k+ 1]q,
and across all indices i, it contributes stairq(π). Summing over the contributions of all
elements π ∈ Π(n)>0 gives the result. □

Finally, we show that the proposed basis B(1,2)
n has Zabrocki’s conjectured dimension.

Theorem 3.7. The cardinality of B(1,2)
n is 2n−1n!.

Proof. Let P (n, r) denote the subset of elements of B(1,2)
n corresponding to modified

Motzkin paths π ∈ Π(n)>0 which end at height r. We claim that p(n, r) := |P (n, r)| =
n!

(
n−1

r

)
, which we show by induction on n. The base cases consist of

p(0, r) =
{

1 if r = n,

0 otherwise.

Assume the claim holds for arbitrary, fixed n− 1 (for all r), and we wish to show it
holds for n (for all r). Note that p(n, r) = 0 whenever r < 0 or r > n.

If the final step of π is an up-step, then for each element in P (n − 1, r − 1), we
can multiply it by one of the r + 1 choices 1, xn, x

2
n, . . . , x

r
n to get such an element

in P (n, r).
If the final step of π is a horizontal step, then for each element in P (n− 1, r), we

can multiply it by one of the r + 1 choices 1, xn, x
2
n, . . . , x

r
n, and by one of the two

weights θn, ξn, depending on the decoration, to get such an element in P (n, r).
If the final step of π is a down-step, then for each element in P (n− 1, r + 1), we

can multiply it by one of the r + 1 choices 1, xn, x
2
n, . . . , x

r
n, along with θnξn, to get

such an element in P (n, r).
Thus

p(n, r) = (r + 1)p(n− 1, r − 1) + 2(r + 1)p(n− 1, r) + (r + 1)p(n− 1, r + 1)

= (r + 1)
(

(n− 1)!
(
n− 2
r − 1

)
+ 2(n− 1)!

(
n− 2
r

)
+ (n− 1)!

(
n− 2
r + 1

))
= (r + 1)(n− 1)!

(
n

r + 1

)
= n!

(
n− 1
r

)
,

where we used the inductive hypothesis and some binomial coefficient identities.
Finally, sum over all possible heights r to get that |B(1,2)

n | =
∑

r n!
(

n−1
r

)
= 2n−1n!, as

desired. □

Remark 3.8. The argument in this enumeration is adapted from a similar argument of
Corteel–Nunge [9, Lemma 17] on marked Laguerre histories, which also are enumerated
by 2n−1n!.
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4. A conjectural Frobenius series
The goal of this section is to demonstrate how the conjectural basis can be used to
propose a Frobenius series for R(1,2)

n .
Recall that the fundamental quasisymmetric function QS,n is defined by

QS,n =
∑

a1⩽a2⩽···⩽an,
ai<ai+1 if i∈S

za1za2 · · · zan
,

for any subset S ⊆ {1, . . . , n− 1}. Note that the fundamental quasisymmetric function
can also be indexed by a composition α ⊨ n, which we denote by Fα. To convert
between the two, use co(S) := (s1, s2 − s1, s3 − s2, . . . , sk − sk−1, n − sk) for α if
S = {s1 < s2 < · · · < sk}. For the other direction, if α = (α1, α2, . . . , αℓ), then use
Set(α) := (α1, α1 +α2, . . . , α1 + · · ·+αℓ−1) for S (see for example [30, Chapter 7.19]).

We will also need the following definitions, which are motivated by related definitions
of Iraci, Nadeau, and Vanden Wyngaerd on segmented permutations. We will recall
their definitions in Section 5 and see the relationship between their definitions and the
present ones in Proposition 6.5. For any b ∈ B(1,2)

n , we may write

b = ±
n∏

i=1
xαi

i θβi

i ξ
γi

i ,

for some exponents αi ∈ Z⩾0 and βi, γi ∈ {0, 1}. Since this is an ordered product,
reordering the factors may change the sign, however, for our purposes the sign does
not matter. Then define i to be an ascent of b if and only if one of the following occurs:

• βi < βi+1;
• βi = βi+1 = 1 and αi ⩾ αi+1 + γi+1; or
• βi = βi+1 = 0 and αi < αi+1 + γi+1.

For b ∈ B(1,2)
n , we say that

Asc(b) := {i ∈ {1, . . . , n− 1} | i is an ascent of b}.

Now we can state a conjectural Frobenius series for R(1,2)
n in terms of the set B(1,2)

n .

Conjecture 4.1.
Frob(R(1,2)

n ; q;u, v) =
∑

b∈B
(1,2)
n

udegθ(b)vdegξ(b)qdegx(b)QAsc(b),n.

This conjecture has been verified for n ⩽ 6. We will see further evidence for this
conjecture with Theorem 6.6.

5. Background on segmented Smirnov words
The goal of this section is to provide the necessary background on the theory of
segmented Smirnov words, recently advanced by Iraci, Nadeau, and Vanden Wyn-
gaerd [23], so that we can discuss the relationship between their work and the present
work in Section 6.

We recall the following definitions from [23, Section 1]. A Smirnov word of length n
is a word w ∈ Zn

⩾0 such that wi ≠ wi+1 for all i ∈ {1, . . . , n−1}. A segmented Smirnov
word of shape α = (α1, . . . , αs) ⊨ n is a word w ∈ Zn

⩾0 such that w = w(1) · · ·w(s) is a
concatenation of s Smirnov words, where each subword w(i), called a block, is a Smirnov
word of length αi. We write segmented Smirnov words with a vertical bar between each
block. For example, 121|13 is a segmented Smirnov word of shape (3, 2). Let SW(n)
denote the set of segmented Smirnov words of length n. Let µ ⊨0 n denote that µ is
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a weak composition of n, i.e., µ = (µ1, µ2, . . .), where µi ∈ Z⩾0 and
∑

i∈Z⩾0
µi = n.

Given µ ⊨0 n, let SW(µ) denote the set of segmented Smirnov words with content µ,
i.e., there are µ1 many 1’s, µ2 many 2’s, etc.

An ascent(4) of a Smirnov word w is an index i such that wi < wi+1 and a descent
of a Smirnov word w is an index i such that wi > wi+1. For segmented Smirnov words,
ascents and descents are those that occur strictly within its blocks. Let SW(n, k, ℓ)
denote the set of segmented Smirnov words of length n with exactly k ascents and ℓ
descents. Since each index i ∈ {1, . . . , n} is exactly one of: the index of an ascent, the
index of a descent, or the last index in a block, we have that the number of blocks
is n− k − ℓ. Finally, for µ ⊨0 n, let SW(µ, k, ℓ) := SW(µ) ∩ SW(n, k, ℓ).

Definition 5.1 ([23, Definition 1.7]). For a segmented Smirnov word w, the ordered
pair (i, j) with 1 ⩽ i < j ⩽ n is a sminversion (short for Smirnov inversion) if wi > wj

and one of the following conditions holds:
(1) wj is the first letter of its block;
(2) wj−1 > wi;
(3) i ̸= j − 1, wj−1 = wi, and wj−1 is the first letter of its block; or
(4) i ̸= j − 1 and wj−2 > wj−1 = wi.

Denote SF(n, k, ℓ) := (Θek
Θeℓ
∇en−k−ℓ)|t=0.(5) Define the statistic sminv(w) on a

segmented Smirnov word to be the number of sminversions of w. Denote

SWz;q(n, k, ℓ) :=
∑

w∈SW(n,k,ℓ)

qsminv(w)zw.

Now we can state one of the main results of [23].

Theorem 5.2 ([23, Theorem 3.1]). For any 0 ⩽ k + ℓ < n,
SF(n, k, ℓ) = SWz;q(n, k, ℓ).

By summing over all possible k, ℓ, we get their conjectural Frobenius series for R(1,2)
n :

(16)
∑

k+ℓ<n

ukvℓ(Θek
Θeℓ
∇en−k−ℓ)|t=0 =

∑
k+ℓ<n

ukvℓ
∑

w∈SW(n,k,ℓ)

qsminv(w)zw.

By taking the inner product of this conjectural Frobenius series with hn
1 , Iraci,

Nadeau, and Vanden Wyngaerd are able to derive the following recursive formula for
the conjectural Hilbert series of R(1,2)

n . When µ = (1n), we call the corresponding
segmented Smirnov words segmented permutations, since they have each of {1, . . . , n}
appearing exactly once. They also note that when we restrict to the case of seg-
mented permutations, only conditions (1) and (2) in the definition of sminversion
(Definition 5.1) will apply. Let

SWq(µ, k, ℓ) :=
∑

w∈SW(µ,k,ℓ)

qsminv(w).

Proposition 5.3 ( [23, Proposition 3.2]). For any k + ℓ < n, the polynomials
SWq(1n, k, ℓ) ∈ Z[q] satisfy the recursion

SWq(1n, k, ℓ) = [n− k − ℓ]q
(

SWq(1n−1, k, ℓ) + SWq(1n−1, k, ℓ− 1)
+ SWq(1n−1, k − 1, ℓ) + SWq(1n−1, k − 1, ℓ− 1)

)
,

(4)It should be clear from the context whether we are referring to the ascents of a (segmented)
Smirnov word, or the ascents of an element b ∈ B

(1,2)
n , which are different.

(5)In [23], SF(n, k, ℓ) is first defined by (Θek Θeℓ H̃n−k−ℓ)|t=0, where H̃n−k−ℓ is the modified
Macdonald polynomial. These two definitions are equivalent by [24, Lemma 3.6].
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with initial conditions SWq(∅, k, ℓ) = δk,0δℓ,0. Furthermore, ⟨SF(n, k, ℓ), hn
1 ⟩ =

SWq(1n, k, ℓ).

To obtain a conjectural Hilbert series of R(1,2)
n , take the sum

(17)
∑

k+ℓ<n

⟨SF(n, k, ℓ), hn
1 ⟩ukvℓ =

∑
k+ℓ<n

SWq(1n, k, ℓ)ukvℓ.

We recall some additional definitions from [23, Section 5]. Given a segmented
Smirnov word w, for each index i ∈ {1, . . . , n}, we say:

• i is thick if i is initial (in a block) or wi−1 > wi;
• i is thin if i is not initial and wi−1 < wi.

Note that i is thick is equivalent to i is initial or i is the end of a descent. Also i is
thin is equivalent to i is not initial and i is the end of an ascent. Let σ be a segmented
permutation of length n, σi < n, and let j be defined by σj = σi + 1. If any of the
following hold, we say that σi is splitting for σ:

(a) i is thick and j is thin;
(b) i and j are both thin and i < j;
(c) i and j are both thick and j < i.

Define Split(σ) = {m ∈ {1, . . . , n− 1} | m is splitting for σ}. Then Split can be used
to give the following quasisymmetric expansion.

Proposition 5.4 ([23, Proposition 5.3]).

SWz;q(n, k, ℓ) =
∑

σ∈SW(1n,k,ℓ)

qsminv(σ)QSplit(σ),n.

6. The proposed basis and segmented permutations
In this section, we establish a bijection between our proposed basis B(1,2)

n and the set
of segmented permutations SW(1n) which is q, u, v-weight preserving. This implies
the equivalence of two conjectural Hilbert series for R(1,2)

n (equations (11) and (17)).
Define a map ψ : B(1,2)

n −→ SW(1n) as follows. For any b ∈ B(1,2)
n , we can write it

as

b = ±
n∏

i=1
xαi

i θβi

i ξ
γi

i ,

for some αi ∈ Z⩾0 and βi, γi ∈ {0, 1}. Each b ∈ B(1,2)
n is associated with a modified

Motzkin path π. Each π starts with an up-step: this implies that α1 = β1 = γ1 = 0, so
we start by writing the corresponding segmented permutation as 1. Then, as i ranges
from 2 up through n, do exactly one of the following for each i:

(a) if βi = γi = 0 (this corresponds to an up-step): insert “|i” or “i|” in such a
way as to create a new block consisting of only i at position αi + 1 from the
rightmost block in the permutation (indexing starting at 1);

(b) if βi = 1 and γi = 0 (this corresponds to a horizontal step with decoration θi):
insert i as the last element of an existing block, at position αi + 1 from the
rightmost block in the permutation;

(c) if βi = 0 and γi = 1 (this corresponds to a horizontal step with decoration ξi):
insert i as the first element of an existing block, at position αi + 1 from the
rightmost block in the permutation;

(d) if βi = γi = 1 (this corresponds to a down-step with decoration θiξi): insert i
to replace a “|” and thus merge two adjacent blocks into one block, which is
now at position αi + 1 from the rightmost block in the permutation.
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Upon completion of this process, observe that the output is some segmented permuta-
tion σ in SW(1n). Also, note that the height of the path is equal to the number of
blocks in the corresponding segmented permutation.

Example 6.1. Consider b = x3θ3θ4ξ4ξ5 ∈ B
(1,2)
5 . We rewrite this as b =

±
∏n

i=1 x
αi
i θβi

i ξ
γi

i , with (α1, β1, γ1) = (0, 0, 0), (α2, β2, γ2) = (0, 0, 0), (α3, β3, γ3) =
(1, 1, 0), (α4, β4, γ4) = (0, 1, 1), (α5, β5, γ5) = (0, 0, 1). We start building the segmented
permutation by writing 1. Then, for i = 2, we are in case (a) and insert |2 to get 1|2
so that the new block is in position 1 from the right. Next, for i = 3, we are in case (b)
and insert 3 as the last element in the existing block in position 2 from the right,
yielding 13|2. Next, for i = 4, we are in case (d) and insert 4 to replace the “|” to
merge the two blocks to create just one block in position 1 from the right, yielding
1342. Finally, for i = 5, we are in case (c) and insert 5 as the first element in the
existing block in position 1 from the right, yielding 51342.

For more examples, see the tables in Appendix A.

Theorem 6.2. The map ψ : B(1,2)
n −→ SW(1n) is a q, u, v-weight preserving bijection.

Proof. First, we can check that ψ is an injection by exhibiting a left inverse. In other
words, we will show that B(1,2)

n is in bijection with a subset of SW(1n). Consider
any σ ∈ ψ(B(1,2)

n ) ⊆ SW(1n). We will algorithmically construct a b ∈ B
(1,2)
n such

that ψ(b) = σ. Initialize the value of b at 1. Each iteration of the algorithm will update
the values of σ and b; the values of b and σ which satisfy ψ(b) = σ will be the initial
value of σ and the final value of b. Take i to be the highest number present in the
segmented word σ (i will first be n and then decrease by 1 for each iteration of the
algorithm). We determine how i must have been inserted when σ was constructed
from an element of B(1,2)

n :
(a) if i occurs alone in a block, then βi = γi = 0, and αi is determined by the block

which consists of i being αi + 1 from the rightmost block in the permutation
(indexing starting at 1);

(b) if i occurs as the last element of a block with at least two elements, then
βi = 1, γi = 0, and αi is determined by the block which contains i being αi + 1
from the rightmost block in the permutation;

(c) if i occurs as the first element of a block with at least two elements, then
βi = 0, γi = 1, and αi is determined by the block which contains i being αi + 1
from the rightmost block in the permutation;

(d) if i occurs within a block with at least one element to the right and to the left,
then βi = γi = 1, and αi is determined by the block which contains i being
αi + 1 from the rightmost block in the permutation.

Having found the values of αi, βi, γi, multiply the current value of b by xαi
i θβi

i ξ
γi

i ,
updating it with the new value. Then update σ by undoing the insertion of i according
to the same cases:

(a) delete i and if two | become adjacent, delete one of them;
(b) delete i;
(c) delete i;
(d) replace i with a |.

Then the highest value in σ is now i − 1. Repeat this process until the segmented
word σ becomes 1, and then b is fully constructed.

By Theorem 3.7, the cardinality of B(1,2)
n is 2n−1n!. To enumerate the segmented

permutations σ ∈ SW(1n), consider that there are n! permutations and n− 1 binary
choices for whether or not there is a vertical bar between any two adjacent letters.
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Thus the cardinality of SW(1n) is also 2n−1n!, and ψ is a bijection, and the left inverse
just described is an inverse function.

It only remains to check that ψ is weight-preserving. We show that the θ-degree
and the ξ-degree is preserved. Consider the four cases used in the construction of a
segmented permutation under ψ from b ∈ B(1,2)

n :
(a) no ascents or descents are created, so the θ-degree and the ξ-degree are

unchanged;
(b) one ascent is created (which ends with i) and no descents are created, so the

θ-degree increases by 1 and the ξ-degree is unchanged;
(c) no ascents are created and one descent is created (which begins with i), so

the θ-degree is unchanged and the ξ-degree increases by 1;
(d) one ascent is created and one descent is created (the ascent ends with i and the

descent begins with i, as i is the highest number in the segmented permutation
at this point), so the θ-degree increases by 1 and the ξ-degree increases by 1.

In each case, the number of ascents remains the same as the θ-degree and the number of
descents remains the same as the ξ-degree. Regarding the x-degree, when i is inserted
in the construction, it creates a sminversion with exactly all initial elements of blocks
to its right, which corresponds exactly to the increase in x-degree by αi (cf. [10, proof
of Proposition 3.2]). □

We record an important consequence of this bijection, which follows since q-weights
are preserved.

Corollary 6.3. Let b ∈ B(1,2)
n . Then degx(b) = sminv(ψ(b)).

As another consequence of this bijection, we are able to conclude that the conjectural
Hilbert series of Iraci, Nadeau, and Vanden Wyngaerd is equal to ours.

Corollary 6.4.∑
k+ℓ<n

ukvℓ
∑

w∈SW(1n,k,ℓ)

qsminv(w) =
∑

π∈Π(n)>0

udegθ(π)vdegξ(π) stairq(π).

This result can also be shown directly, by showing that∑
π∈Π(n)>0

udegθ(π)vdegξ(π) stairq(π)

satisfies the recurrence relation given in Proposition 5.3.
With the bijection ψ : B(1,2)

n −→ SW(1n) in hand, the following result relates Asc(b)
with Split(σ).

Proposition 6.5. For any b ∈ B(1,2)
n ,

Asc(b) = Split(ψ(b)).

Proof. We wish to relate Asc(b) for elements b ∈ B(1,2)
n with Split(σ) for ψ(b) = σ ∈

SW(1n). Both definitions reduce to determining which indices m are ascents of b or
splitting for σ, respectively. For σ, this depends on whether indices are thick or thin,
so we wish to determine the analogous conditions on b. Consider each of the four
ways to insert m into a segmented permutation in SW(1m−1) to yield one in SW(1m),
and how each affects the modified Motzkin path used to construct the proposed basis
elements:

(a) (“|m” or “m|” is inserted to create a new block ←→ append up-step): this will
be thick since it is the beginning of a block;
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(b) (m is inserted as the last element of an existing block ←→ append horizontal
step with decoration θm): this will be thin since it is preceded by a smaller
number;

(c) (m is inserted as the first element of an existing block ←→ append horizontal
step with decoration ξm): this will be thick since it is the beginning of a block
(and note that the next index remains thick since it was previously the first
element in a block and is now the end of a descent);

(d) (m is inserted to replace a “|” ←→ append down-step with decoration θmξm):
this will be thin, as it is the end of an ascent, as the number which precedes
it must be smaller (and note that the next index remains thick since it was
previously the first element in a block and is now the end of a descent).

From this discussion, we conclude that thin indices m in a segmented permutation σ

correspond exactly to the weights θσm
which appear as factors in b ∈ B(1,2)

n .
Now we desire a specific classification for when m = σi is splitting. Let j be defined

by σj = σi + 1. We have that:
• if θm ̸∈ b (i thick) and θm+1 ∈ b (j thin), then m is splitting for σ;
• if θm, θm+1 ∈ b (i, j thin) and i < j, then m is splitting for σ;
• if θm, θm+1 ̸∈ b (i, j thick) and i > j, then m is splitting for σ;

and otherwise, m is not splitting for σ. However, we have not yet described what i and j
are without appealing to the segmented permutation. But we only need the relative
position of i and j for this purpose, which we can deduce directly from b ∈ B(1,2)

n ,
which we write as

b = ±
n∏

m=1
xαm

m θβm
m ξγm

m ,

for some αm ∈ Z⩾0 and βm, γm ∈ {0, 1}.
Each αm indicates that when building up the corresponding segmented permutation,

just after m has been inserted, it is in block αm + 1 from the right. If step m in the
path associated to b is:

(a) an up-step: if αm ⩾ αm+1, then i < j, else i > j;
(b) a horizontal step with decoration θm: if αm ⩾ αm+1, then i < j, else i > j;
(c) a horizontal step with decoration ξm: if αm > αm+1, then i < j, else i > j;
(d) a down-step with decoration θmξm: if αm > αm+1, then i < j, else i > j.

We determined whether the condition αm ⩾ αm+1 or αm > αm+1 is used in each case
depending on how the insertion affects the relative order of m and m+ 1.

Recall that for b ∈ B(1,2)
n , Asc(b) = {m ∈ {1, . . . , n− 1} | m is an ascent of b}. At

this point, we have that m is splitting for σ if and only if one of the following occurs:
• if θm ∤ b and θm+1 | b;
• if θm, θm+1 | b and

– if b has an up-step or horizontal step with decoration θm in position m,
we have αm ⩾ αm+1, or

– if b has a horizontal step with decoration ξm or a down-step with decora-
tion θmξm in position m, we have αm > αm+1;

• if θm, θm+1 ∤ b and
– if b has an up-step or horizontal step with decoration θm, we have αm <
αm+1, or

– if b has a horizontal step with decoration ξm or a down-step with decora-
tion θmξm, we have αm ⩽ αm+1.

Finally, we can convert this to a criteria on only the exponents of b. That is, m is
splitting for σ if and only if one of the following occurs:
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• βm < βm+1;
• βm = βm+1 = 1 and αm ⩾ αm+1 + γm+1; or
• βm = βm+1 = 0 and αm < αm+1 + γm+1,

which is exactly the definition of when m is an ascent of b, as desired. □

Now, we are able to establish the equivalence of our conjectural Frobenius series
(Conjecture 4.1) with that of Iraci, Nadeau, and Vanden Wyngaerd (equation (16)).

Theorem 6.6.∑
b∈B

(1,2)
n

udegθ(b)vdegξ(b)qdegx(b)QAsc(b),n =
∑

k+ℓ<n

ukvℓ
∑

σ∈SW(1n,k,ℓ)

qsminv(σ)QSplit(σ),n.

Proof. This follows from Theorem 6.2, establishing that ψ : B(1,2)
n −→ SW(1n) is a

bijection, along with Corollary 6.3 and Proposition 6.5, which state, respectively, that
if ψ(b) = σ, then degx(b) = sminv(σ) and Asc(b) = Split(σ). □

We conclude this section with the discussion of some specializations. Iraci, Rhoades,
and Romero [24, Theorem 1.3] showed that

Frob(R(0,2)
n ;u, v) =

∑
k+ℓ<n

ukvℓΘek
Θeℓ
∇en−k−ℓ|q=t=0.

As discussed in [23, Section 6.3], the conjectural Frobenius for R(1,2)
n in equation (16)

recovers the Frobenius series for R(0,2)
n (equation (3)) by further specialization of the

Theta conjecture at q = 0. This implies by Theorem 6.6 that Conjecture 4.1 also
specializes to the Frobenius series for R(0,2)

n .
The conjecture in equation (5) can be recovered from Conjecture 4.1. The Theta

conjecture (equation (8)) can be specialized at v = 0 to Zabrocki’s conjecture (equa-
tion (7)), which can be further specialized at t = 0 to equation (5). That is,∑

k+ℓ<n

ukvℓΘek
Θeℓ
∇en−k−ℓ|v=0,t=0(18)

=
n−1∑
k=0

∑
λ⊢n

∑
T ∈SYT(λ)

ukqmaj(T )−k des(T )+(k
2)

[
des(T )
k

]
q

sλ.

On the other hand, starting with the Theta conjecture and specializing at t = 0 gives
Conjecture 4.1; upon further specialization at v = 0, since the order of specialization
commutes, implies that equation (18) is also equal to∑

b∈B
(1,2)
n

udegθ(b)vdegξ(b)qdegx(b)QAsc(b),n|v=0 =
∑

b∈B
(1,1)
n

udegθ(b)qdegx(b)QAsc(b),n|v=0,

where Asc(b) for b ∈ B(1,1)
n is determined in the same way as for b ∈ B(1,2)

n .
It would be interesting to see if the conjectures in equations (9) or (10), can be

recovered by specializing from either form of the conjectural Frobenius series given in
Theorem 6.6. It would also be interesting to have direct combinatorial proofs of the
two specializations just discussed.

7. Refining the fundamental quasisymmetric function
In this section, we establish a formula for ⟨SF(n, k, ℓ), hµ⟩ = [mµ] SF(n, k, ℓ). Recall
from Section 4 that Set(µ) = {µ1, µ1 + µ2, . . . , µ1 + · · ·+ µℓ(µ)−1}, where ℓ(µ) is the
length of the partition µ.
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Theorem 7.1. Let µ ⊢ n. For any fixed k, ℓ, we have that

⟨SF(n, k, ℓ), hµ⟩ =
∑

b∈B(1,2)
n ,

degθ(b)=k,
degξ(b)=ℓ,

Asc(b)⊆Set(µ)

qdegx(b).

We make use of the following lemma, which is a modification of [19, Lemma 6.14],
a similar result on (non-segmented) permutations, and is proven in the same manner.
Lemma 7.2. Let µ ⊢ n. If f is a symmetric function, then for any family of constants
c(b), and any set B such that elements b ∈ B have a function Asc : B −→ {1, . . . , n−1},

(19) f =
∑
b∈B

c(b)QAsc(b),n

if and only if

(20) ⟨f, hµ⟩ =
∑
b∈B,

Asc(b)⊆Set(µ)

c(b).

Proof of Theorem 7.1. Fix k and ℓ. Let c(b) = qdegx(b). Then we can use

f =
∑

b∈B(1,2)
n ,

degθ(b)=k,
degξ(b)=ℓ

QAsc(b),n

in Lemma 7.2. It follows that
⟨f, hµ⟩ =

∑
b∈B(1,2)

n ,
degθ(b)=k,
degξ(b)=ℓ,

Asc(b)⊆Set(µ)

qdegx(b).

Proposition 5.4 and Theorem 5.2 imply SF(n, k, ℓ) =
∑

σ∈SW(1n,k,ℓ) q
sminv(σ)QSplit(σ),n.

We can restrict the bijection ψ from Theorem 6.2 to a bijection between the sets
{b ∈ B(1,2)

n | degθ(b) = k and degξ(b) = ℓ} and SW(1n, k, ℓ) since it is q, u, v-weight
preserving. Corollary 6.3 tells us that degx(b) = sminv(ψ(b)) and Proposition 6.5 tells
us that Asc(b) = Split(ψ(b)), so f = SF(n, k, ℓ), and the claim follows. □

In the special case where µ = (d+ 1, 1n−d−1) is a hook shape, we have the following
result. Denote by B

(1,2)
n |(d+1)−up the subset of b ∈ B(1,2)

n where the corresponding
modified Motzkin path begins with d+ 1 up-steps, with no x-degree contribution from
those steps. Equivalently, if b = ±

∏n
m=1 x

αm
m θβm

m ξγm
m , then αm = βm = γm = 0 for all

m ∈ {1, . . . , d+ 1}.
Corollary 7.3.

⟨SF(n, k, ℓ), h(d+1,1n−d−1)⟩ =
∑

b∈B(1,2)
n |(d+1)−up,

degθ(b)=k,
degξ(b)=ℓ.

qdegx(b).

Proof. From Theorem 7.1 specialized to hook shapes, we have that

⟨SF(n, k, ℓ), h(d+1,1n−d−1)⟩ =
∑

b∈B(1,2)
n ,

degθ(b)=k,
degξ(b)=ℓ,

Asc(b)⊆{d+1,...,n−1}

qdegx(b).
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It only remains to show that for any b ∈ B(1,2)
n , the condition b ∈ B(1,2)

n |(d+1)−up is
equivalent to Asc(b) ⊆ {d+ 1, . . . , n− 1}.

First suppose that Asc(b) ⊆ {d + 1, . . . , n − 1}, so then m is not an ascent of b
for all m ∈ {1, . . . , d}. Every modified Motzkin path must start with an up-step, so
α1 = β1 = γ1 = 0. Then for 1 to not be an ascent, β2 ̸= 1, so β2 = 0. Furthermore,
since β1 = β2 = 0, then for 1 to not be an ascent, we must have α1 ⩾ α2 + γ2.
Since α2, γ2 are both nonnegative, this implies that α2 = γ2 = 0. This means that
the second step must be an up-step with no x-degree contribution. Repeating this
argument proves this direction.

On the other hand, suppose that b ∈ B(1,2)
n |(d+1)−up. Then it follows that αm =

βm = γm = 0 for all m ∈ {1, . . . , d+ 1}, so Asc(b) ⊆ {d+ 1, . . . , n− 1}. □

8. Characters for hook shapes
In this section, we derive a formula for ⟨SF(n, k, ℓ), sλ⟩, when λ is a hook shape
(d+ 1, 1n−d−1) ⊢ n for 0 ⩽ d ⩽ n− 1.

First, we prove the following proposition, which extends [23, Proposition 5.7] for
column shapes (at d = 0) to hook shapes.

Theorem 8.1.

⟨SF(n, k, ℓ), s(d+1,1n−d−1)⟩ =
∑

σ∈SW(1n,k,ℓ),
Split(σ)={d+1,...,n−1}

qsminv(σ) =
∑

b∈B(1,2)
n ,

degθ(b)=k,
degξ(b)=ℓ,

Asc(b)={d+1,...,n−1}

qdegx(b).

Proof. Since SF(n, k, ℓ) is a symmetric function, its expansion into fundamental
quasisymmetric functions SF(n, k, ℓ) =

∑
α⊨n cαFα determines its Schur expansion

SF(n, k, ℓ) =
∑

α⊨n cαsα (see for example [13, 14]). Note that the Schur function sα is
indexed by a composition, and it may be simplified to a Schur function indexed by a
partition or 0, using the “slinky rule” (see [12]), which we describe briefly here. Draw
a compositional Young diagram for α in French notation, and fix all left endpoints of
each row, so they can never move. Then let each row fall down as far as possible, such
that each row remains a ribbon (hence the term “slinky”). If this forms a partition
Young diagram λ, then sα = ±sλ, but if not, then sα = 0. (See Figure 4 for examples.)

Since S = Split(σ) = {d+1, . . . , n−1}, then α = (d+1, 1n−d−1). We claim that the
only composition α such that sα = ±s(d+1,1n−d−1) is α = (d+ 1, 1n−d−1). Indexing the
positions of the boxes in the compositional Young diagram with Cartesian coordinates
starting from (0, 0) in the lower left corner. When applying the slinky rule to any
other α with a row longer than 1 except for the bottom row would fall in such a way
that a box would be either created in position (1, 1), and λ would not be a hook shape,
or would not fall all the way to (1, 1), and not be a partition Young diagram so the
resulting Schur function would be 0.

Consider the coefficient of s(d+1,1n−d−1) in SF(n, k, ℓ). We write:

⟨SF(n, k, ℓ), s(d+1,1n−d−1)⟩ =
〈∑

α⊨n

cαFα, s(d+1,1n−d−1)

〉

=
〈∑

α⊨n

cαsα, s(d+1,1n−d−1)

〉
= c(d+1,1n−d−1).

Algebraic Combinatorics, Vol. 8 #3 (2025) 728



The (1, 2)-bosonic-fermionic coinvariant ring

Let [Fα]X denote the coefficient of Fα in X. From the discussion on the slinky rule,
we have that

c(d+1,1n−d−1) = [F(d+1,1n−d−1)] SF(n, k, ℓ)
= [F(d+1,1n−d−1)] SWz;q(n, k, ℓ)

= [Q{d+1,...,n−1},n]
∑

σ∈SW(1n,k,ℓ)

qsminv(σ)QSplit(σ),n

=
∑

σ∈SW(1n,k,ℓ),
Split(σ)={d+1,...,n−1}

qsminv(σ),

where we used Theorem 5.2 and Proposition 5.4.
Finally, to convert into the formula in terms of B(1,2)

n , we can restrict the bijec-
tion ψ from Theorem 6.2 to one on {b ∈ B

(1,2)
n | degθ(b) = k and degξ(b) = ℓ}

and SW(1n, k, ℓ) since it is q, u, v-weight preserving. Then the result follows from
Proposition 6.5. □

×
×
×
×

−→

×
×
×
×

(a) s(5,1,1,4) = ±s(2,2,3,4).

×
×
×
×

−→

×
×
×
×

(b) s(3,1,1,4) = 0.

Figure 4. Examples of applying the slinky rule.

We can characterize when Asc(b) = {d+ 1, . . . , n+ 1}. Via the weight-preserving
bijection between B(1,2)

n and SW(1n), this generalizes a characterization in the special
case of d = 0 [23, Proposition 5.8].

Proposition 8.2. An element b ∈ B(1,2)
n satisfies Asc(b) = {d+ 1, . . . , n− 1} if and

only if when b is written as

b = ±
n∏

m=1
xαm

m θβm
m ξγm

m ,

for some αm ∈ Z⩾0 and βm, γm ∈ {0, 1}, we have that for some a ∈ {d+ 1, . . . , n},
(a) αm = βm = γm = 0 for all m ∈ {1, . . . , d+ 1};
(b) βm = 0 and αm−1 < αm + γm for all m ∈ {d+ 2, . . . , a};
(c) βa = 0 and βa+1 = 1; and
(d) βm = 1 and αm−1 ⩾ αm + γm for all m ∈ {a+ 2, . . . , n}.

Note that if a = d+ 1, then criterion (b) is skipped. If a = n, then criterion (c) is
skipped. If a = n− 1 or a = n, then criterion (d) is skipped.
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Proof. First of all, observe that if b satisfies all of the given criteria, then
Asc(b) = {d+ 1, . . . , n− 1}, by applying the definition of an ascent of b.

On the other hand, suppose that Asc(b) = {d+ 1, . . . , n− 1}. From the characteri-
zation of Asc(b) ⊆ {d+ 1, . . . , n−1} given in the proof of Corollary 7.3, criterion (a) is
satisfied for all m ∈ {1, . . . , d+ 1}. Next, since d+ 1 is an ascent, either βd+2 = 0 with
αd+1 < αd+2 + γd+2 (satisfying criterion (b) for m = d+ 2), or βd+2 = 1 (satisfying
criterion (c) for a = d+ 1). In the former case, we can continue satisfying criterion (b)
for m in an interval {d+ 1, . . . , a}. Eventually, if we have not reached the end already,
we will hit criterion (c) when some βa+1 = 1. At no point once we have reached any
βi = 1 will we be able to return to any βj = 0 for j > i, as an immediate consequence of
the definition of an ascent of b. This implies that if we have not reached the end, since
we continue to have ascents, we will continue to have βm = 1 and αm−1 ⩾ αm + γm

for the remaining m, satisfying criterion (d). □

As a consequence of [11, Theorem 8.2], the following explicit formula was given by
Iraci, Nadeau, and Vanden Wyngaerd for λ = (1n), which indexes the sign character.

Theorem 8.3 ([23, Theorem 5.6]).

⟨SF(n, k, ℓ), s(1n)⟩ = q(
n−k−ℓ

2 )
[
n− 1
k + ℓ

]
q

[
k + ℓ

k

]
q

.

Using the characterization given in Proposition 8.2, we give the following general-
ization to hook shapes.

Theorem 8.4. For 0 ⩽ d ⩽ n− 1,

⟨SF(n, k, ℓ), s(d+1,1n−d−1)⟩ = q(
n−d−k−ℓ

2 )
[
n− 1− d

ℓ

]
q

[
n− 1− k

d

]
q

[
n− 1− ℓ

k

]
q

.

To prove the theorem, we will make use of the following lemma, which is an
immediate consequence of the q-Chu-Vandermonde identity.

Lemma 8.5. For any positive integer n and nonnegative integers k, ℓ < n− d,

q(
n−d−k−ℓ

2 )
[
n− d− 1

ℓ

]
q

=
ℓ∑

f=0
q(

n−d−k−f
2 )+(ℓ−f

2 )
[
n− d− 1− k

f

]
q

[
k

ℓ− f

]
q

.

Proof. Recall the q-Chu-Vandermonde identity (see for example [23, Proposition 2.4]
or [31, Chapter 1, Solution to Exercise 100]):[

j

a

]
q

=
a∑

i=0
q(r−i)(a−i)

[
r

i

]
q

[
j − r
a− i

]
q

.

Substituting i 7→ f , a 7→ ℓ, j 7→ n− d− 1, and r 7→ n− d− 1− k gives[
n− d− 1

ℓ

]
q

=
ℓ∑

f=0
q(n−d−1−k−f)(ℓ−f)

[
n− d− 1− k

f

]
q

[
k

ℓ− f

]
q

,

and the result follows from
(

n−d−k−f
2

)
+

(
ℓ−f

2
)
−

(
n−d−k−ℓ

2
)

= (ℓ−f)(n−d−1−k−f). □

Proof of Theorem 8.4. By Theorem 8.1, it remains to show that∑
b∈B(1,2)

n ,
degθ(b)=k,
degξ(b)=ℓ,

Asc(b)={d+1,...,n−1}

qdegx(b) = q(
n−d−k−ℓ

2 )
[
n− 1− d

ℓ

]
q

[
n− 1− k

d

]
q

[
n− 1− ℓ

k

]
q

.
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Recall the characterization of when Asc(b) = {d+ 1, . . . , n− 1} from Proposition 8.2.
Throughout the proof, we refer to Figure 5 for a guiding example of what such a b will
look like. We record some facts on such a b. Region 0 will consist of only up-steps with

ξ6

ξ8

θ10
θ11ξ11

θ12
θ13ξ13

θ14ξ14

T1 T2

d+ 1
Region 0

n− d− 1− k
Region 1

k

Region 2

Figure 5. A diagram showing the three regions for some b with
Asc(b) = {d+ 1, . . . , n− 1}. The boxes shaded in crosshatch indicate
where there is a minimal structure of boxes which must be filled in,
and then above the minimal structure, boxes may be filled in, subject
to certain increasing/decreasing conditions.

no contribution to the x-degree. This corresponds to condition (a) of Proposition 8.2.
Region 0 cannot be empty, as d+ 1 ⩾ 1.

At line T1, we change to Region 1. This corresponds to condition (b) of Propo-
sition 8.2. The path in this region can be any sequence of up-steps or horizontal
steps with decoration ξi. Region 1 may be empty. Throughout Region 1, when there
is a horizontal step with decoration ξi, the part of the staircase that is filled in
must weakly increase, and when there is an up-step, it must strictly increase. This
implies that there exists some part of the staircase that must always be filled in,
which we call the minimal structure for Region 1 and encode as a vector of col-
umn heights: MS(1) = (MS(1)1, . . . ,MS(1)n−d−1−k). We determine MS(1) recursively:
for 1 ⩽ i ⩽ n− d− 1− k,

MS(1)i =
{

MS(1)i−1 + 1 if pd+1+i is an up-step,
MS(1)i−1 if pd+1+i is a horizontal step with decoration ξd+1+i,

where we use the initial condition MS(1)0 = 0, although that is not considered part of
the minimal structure. Recall that pd+1+i denotes the (d+ 1 + i)-th step in the path,
which is the i-th step in Region 1.

Changing from Region 1 to Region 2 at line T2 corresponds to condition (c) of
Proposition 8.2, and then the rest of Region 2 corresponds to condition (d). The path
in this region can be any sequence of horizontal steps with decoration θi or down-steps
with decoration θiξi. Region 2 may be empty. Throughout Region 2, when there is a
horizontal step with decoration θi, the part of the staircase that is filled must weakly
decrease, and when there is a down-step with decoration θiξi, it must strictly decrease.
Again, this implies that there exists some part of the staircase that must always be
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filled in, which we call the minimal structure for Region 2 and encode as a vector
of column heights: MS(2) = (MS(2)1, . . . ,MS(2)k). We determine MS(2) recursively:
for k − 1 ⩾ i ⩾ 1,

MS(2)i =
{

MS(2)i+1 if pn−k+i is a horizontal step with decoration ξn−k+i,
MS(2)i+1 + 1 if pn−k+i is a down-step with decoration θn−k+iξn−k+i,

with initial condition MS(2)k = 0. Recall that pn−k+i denotes the (n− k + i)-th step
in the path, which is the i-th step in Region 2.

Now we are ready to prove the claimed q-enumeration. First, note that since k, ℓ, d, n
are all fixed, the location of the lines T1 and T2, and thus the regions, are fixed. It
only remains to count the possible paths and fillings in Regions 1 and 2. Let f denote
the number of horizontal steps with decoration ξi, all of which occur in Region 1. Note
that there are

(
n−d−1−k

f

)
ways to pick which of the steps in Region 1 will be horizontal

steps with decoration ξi.
For MS(1): there is a classical staircase shape with heights (1, 2, 3, . . . , n−d−1−k−f)

(corresponding to the up-steps) which is interleaved with f additional components
(corresponding to the horizontal steps with decoration ξi) which are equal in height
to whatever immediately precedes them. So the contribution to the q-enumeration
is q(

n−d−k−f
2 ) by the classical staircase and

[
n−d−1−k

f

]
q

by the additional interleaving
components. See Figure 6 for an example.

Similarly, consider MS(2): there is a reversed classical staircase shape with heights
(ℓ− f − 1, . . . , 2, 1, 0) (corresponding to the down-steps with decoration θiξi) which
is interleaved with ℓ − f additional components (corresponding to the horizontal
steps with decoration θi) which are equal in height to whatever immediately precedes
them (or height ℓ − f if nothing in Region 2 precedes it). So the contribution to
the q-enumeration is q(

ℓ−f
2 ) by the classical staircase and

[
k

ℓ−f

]
q

by the additional
interleaving components.

By Lemma 8.5, by summing over all possible values for f , we get that the
contribution of the minimal structures MS(1) and MS(2) to the q-enumeration is
q(

n−d−k−ℓ
2 )[

n−d−1
ℓ

]
q
.

All that remains is to consider how we can fill in the region above the minimal
structure. First, observe that by construction, the boxes for which we have choice to
fill in are equinumerous within each column in Region 1 (there are d boxes) and within
Region 2 (there are n− k − ℓ− 1). There is one more choice for filling a column than
the number of boxes, since it is possible to leave all empty. In Region 1, the criteria
that:

• when there is a horizontal step with decoration ξi, the part of the staircase
that is filled must weakly increase, and when there is an up-step, it must
strictly increase

upon deletion of the minimal structure MS(1), and letting the remaining boxes fall by
gravity becomes:

• the part of the staircase that is filled must weakly increase.
See Figure 7. Then this is counted by the number of length n− d− 1− k sequences
on d+ 1 letters, which is

((
d+1

n−d−1−k

))
=

(
n−1−k

d

)
.(6) Keeping track of the effect of the

fillings on the q-weights gives
[

n−1−k
d

]
q
.

Following similar analysis for Region 2, where we delete the minimal structure
MS(2), we find what we need to count is the number of length k sequences on n−k− ℓ

(6)((a
b

))
denotes the multiset coefficient (see for example [31, Chapter 1.2]).
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ξ6 ξ7 ξ8 ξ9 ξ6 ξ7 ξ8 ξ6 ξ7

ξ9

ξ6

ξ8 ξ9

ξ7 ξ8 ξ9

ξ6 ξ7 ξ6

ξ8 ξ7 ξ8

ξ6

ξ9

ξ7

ξ9 ξ8 ξ9

ξ6

ξ7

ξ8

ξ9

Figure 6. All possible paths for Region 1, when d + 1 = 5 and
n− d− 1− k = 4, along with each path’s minimal structure shaded
in crosshatch. The contribution of f = 4 is q(

1
2)[4

4
]

q
= 1, of f = 3 is

q(
2
2)[4

3
]

q
= q+q2 +q3 +q4, of f = 2 is q(

3
2)[4

2
]

q
= q3 +q4 +2q5 +q6 +q7,

of f = 1 is q(
4
2)[4

1
]

q
= q6 + q7 + q8 + q9, and of f = 0 is q(

5
2)[4

0
]

q
= q10.
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ξ6

ξ8

−→

Figure 7. A demonstration of deleting the minimal structure from
the maximal staircase, and letting the remaining boxes fall by gravity.
This will always result in a rectangular shape.

letters, which is
((

n−k−ℓ
k

))
=

(
n−1−ℓ

k

)
. Keeping track of the effect of the fillings on the

q-weights gives
[

n−1−ℓ
k

]
q
.

Finally, multiplying q(
n−d−k−ℓ

2 )[
n−d−1

ℓ

]
q

by
[

n−1−k
d

]
q

and
[

n−1−ℓ
k

]
q

proves the theo-
rem. □

9. The conjectural basis in type B
In this section, we describe analogous results and conjectures where the Weyl group of
type Bn replaces the symmetric group Sn. We denote the ring in question by R(1,2)

Bn
.

We describe the Kim–Rhoades basis for R(0,2)
Bn

and Sagan–Swanson’s conjectural
super-Artin basis for R(1,1)

Bn
.

Define the set of (type B) modified Motzkin paths of length n, Π(n)⩾0,(7) to be the
set of all paths π = (p1, . . . , pn) in Z2 such that each step pi is one of:

(a) an up-step (1, 1),
(b) a horizontal step (1, 0) with decoration θi,
(c) a horizontal step (1, 0) with decoration ξi,
(d) or a down-step (1,−1) with decoration θiξi,

where the path never goes below the horizontal line y = 0. The weight of π ∈ Π(n)⩾0
is defined in the same way as in Section 2.

Definition 9.1 ([25]). The type B Kim–Rhoades basis B(0,2)
Bn

is the set of all weights
of the modified Motzkin paths π ∈ Π(n)⩾0, that is,

B
(0,2)
Bn

:= {wt(π) |π ∈ Π(n)⩾0}.

We are justified in calling it a basis because of the following result, which is a
special case of a more general, type-independent result of Kim and Rhoades.

Theorem 9.2 ([25]). The type B Kim–Rhoades basis B(0,2)
Bn

is a basis for R(0,2)
Bn

.

Next, we recall the conjectural type B super-Artin basis, due to Sagan and Swanson.
Recall that χ(P ) is 1 if the proposition P is true, and 0 if the proposition P is false.

(7)Note the difference in notation between this and in Section 2. The difference between the
definitions is that paths either must not go below y = 0 in Π(n)⩾0, or y = 1 after the first step
in Π(n)>0.
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For any T ⊆ {1, . . . , n}, define the β-sequence β(T ) = (β1(T ), . . . , βn(T )) recursively
by the initial condition β1(T ) = χ(1 ̸∈ T ) and for 2 ⩽ i ⩽ n,

βi(T ) = βi−1(T ) + χ(i ̸∈ T ) + χ(i− 1 ̸∈ T ).

Definition 9.3 ([29]). The type B super-Artin set is

B
(1,1)
Bn

:= {xβθT |T ⊆ {1, . . . , n} and β ⩽ β(T ) componentwise}.

Conjecture 9.4 ([29]). The type B super-Artin set B(1,1)
Bn

is a basis for R(1,1)
Bn

.

We generalize the β-sequence as follows. For any T, S ⊆ {1, . . . , n}, define the
generalized β-sequence by β(T, S) = (β1(T, S), . . . , βn(T, S)) recursively by the initial
condition β1(T, S) = −1 + χ(1 ̸∈ T ) + χ(1 ̸∈ S) and for 2 ⩽ i ⩽ n,

βi(T, S) = βi−1(T, S)− 2 + χ(i ̸∈ T ) + χ(i− 1 ̸∈ T ) + χ(i ̸∈ S) + χ(i− 1 ̸∈ S).

Definition 9.5. We let
B

(1,2)
Bn

:= {xβθT ξS | θT ξS ∈ B(0,2)
Bn

and 0 ⩽ βi ⩽ βi(T, S) for all i ∈ {1, . . . , n}}.

For example, consider B(1,2)
B6

. To construct this set, we start with B
(0,2)
B6

. One such
element in B

(0,2)
B6

is θ{3,4}ξ{3,6} = θ3θ4ξ3ξ6. We compute the generalized β-sequence
β({3, 4}, {3, 6}) = (1, 3, 3, 2, 3, 4). Then to construct the elements in B

(1,2)
B6

associated
to θ3θ4ξ3ξ6, multiply by xβ , where β satisfies 0 ⩽ βi ⩽ βi({3, 4}, {3, 6}). See Figure 8
for one of the 2 · 4 · 4 · 3 · 4 · 5, elements associated to the modified Motzkin path, and
observe that in type B, the maximal staircase given by β(T, S) in general does not fit
underneath the modified Motzkin path.

θ3ξ3
θ4

ξ6

·

Figure 8. An element x1x
3
2x

2
5x6θ3θ4ξ3ξ6 in B(1,2)

B6
, represented by a

type B modified Motzkin path and partially filled-in staircase.

Conjecture 9.6. The set B(1,2)
Bn

is a basis for R(1,2)
Bn

.

Define
stairB

q (π) :=
∏

k∈β(T (π),S(π))

[k + 1]q,

where T (π) and S(π) are determined by which elements in {1, . . . , n} appear as indices
for θi and ξi respectively in the weight of the modified Motzkin path π. As before,
degθ(π) = |T (π)| and degξ(π) = |S(π)|. The following result follows from a similar
argument as that used to show Proposition 3.6.

Proposition 9.7. Assuming Conjecture 9.6, it follows that the Hilbert series of R(1,2)
Bn

is ∑
π∈Π⩾0(n)

udegθ(π)vdegξ(π) stairB
q (π).
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Based on computations for n ⩽ 5, we make the following conjecture on the dimension
of R(1,2)

Bn
, which to our knowledge, has not previously appeared.

Conjecture 9.8. The dimension of R(1,2)
Bn

is 4nn!.

Remark 9.9. Note that the conjectural dimension of R(1,2)
n and R(1,2)

Bn
are both given

by 2r|W |, where r is the rank of W . It would be interesting to know for which finite
Coxeter groups this holds, and for which it fails. Type-independent work in the case
of one set of bosonic and one set of fermionic variables has been advanced by Swanson
and Wallach [32,33].

Theorem 9.10. The cardinality of B(1,2)
Bn

is 4nn!.

Proof. Let PB(n, r) denote the subset of elements of B(1,2)
Bn

which have maximal
staircase ending at height r.(8)

Since in type B, both the current step and the previous step in π affect the shape
of the maximal staircase at the current position, it will be convenient to introduce
the following notation. Let PE(n, r) denote the subset of PB(n, r) whose current
step (that is, step n) of the corresponding path is a horizontal step. Let PU (n, r)
denote the subset of PB(n, r) whose current step is an up-step. Let PD(n, r) denote
the subset of PB(n, r) whose current step is a down-step. It follows that PB(n, r) =
PE(n, r)⊔PU (n, r)⊔PD(n, r). Also denote pB(n, r) := |PB(n, r)|, pE(n, r) := |PE(n, r)|,
pU (n, r) := |PU (n, r)|, and pD(n, r) := |PD(n, r)|. Thus pB(n, r) = pE(n, r)+pU (n, r)+
pD(n, r).

Consider π ∈ PE(n, r): since step n is a horizontal step, it does not affect the height
of the maximal staircase. But whether step n− 1 in π is either a horizontal step, an
up-step, or a down-step does affect the height of the maximal staircase: specifically,
we get pE(n− 1, r) + pU (n− 1, r − 1) + pD(n− 1, r + 1) as the possibilities, and then
we multiply by 2(r + 1) to account for the two choices of weight on n, either θn or ξn,
along with the r + 1 choices for the exponent of xn. This implies that

pE(n, r) = 2(r + 1) (pE(n− 1, r) + pU (n− 1, r − 1) + pD(n− 1, r + 1)) .

Similarly, we find that

pU (n, r) = (r + 1) (pE(n− 1, r − 1) + pU (n− 1, r − 2) + pD(n− 1, r)) ,

and

pD(n, r) = (r + 1) (pE(n− 1, r + 1) + pU (n− 1, r) + pD(n− 1, r + 2)) .

The initial conditions are given by: pE(0, r) = δ0,r, pU (0, r) = 0, and pD(0, r) = 0. It
follows that pE(n, 2r + 1) = 0, pU (n, 2r) = 0, and pD(n, 2r) = 0 for any nonnegative
integers r.

Next, we claim that for n ⩾ 1,

pE(n, 2r) = (n− 1)!2n

(
n− 1
r

)
(2r + 1),

pU (n, 2r + 1) = (n− 1)!2n

(
n− 1
r

)
(r + 1),

pD(n, 2r + 1) = (n− 1)!2n

(
n− 1
r

)
(n− r − 1).

(8)Unlike in the case of B
(1,2)
n , as in the proof of Theorem 3.7, here the height of the modified

Motzkin path does not in general correspond to the height of the maximal staircase.

Algebraic Combinatorics, Vol. 8 #3 (2025) 736



The (1, 2)-bosonic-fermionic coinvariant ring

We show these by induction on n. For the base case of n = 1,

pE(1, 2r) =
{

2 if r = 0,
0 otherwise,

since there are two elements in B
(1,2)
B1

with maximal staircase of height 0: θ1 and ξ1,
and none with maximal staircase of height greater than 0. Similarly, we check that

pU (1, 2r + 1) =
{

2 if r = 0,
0 otherwise,

since there are two elements in B(1,2)
B1

, 1 and x1, each with maximal staircase of height 1,
and none with maximal staircase of height greater than 1. Finally, pU (1, 2r + 1) = 0,
as there are no paths which begin with a down-step.

Now assume that the claim holds for fixed n ⩾ 1. Using the previously established
recurrence relations, we have that
pE(n+ 1, 2r)

= 2(2r + 1)
[
(n− 1)!2n

((
n− 1
r

)
(2r + 1) +

(
n− 1
r − 1

)
r +

(
n− 1
r

)
(n− r − 1)

)]
= (2r + 1)(n− 1)!2n+1

[
n

(
n− 1
r

)
+ r

((
n− 1
r

)
+

(
n− 1
r − 1

))]
= n!2n+1

(
n

r

)
(2r + 1).

Similarly, we have
pU (n+ 1, 2r + 1)

= 2(r + 1)
[
(n− 1)!2n

((
n− 1
r

)
(2r + 1) +

(
n− 1
r − 1

)
r +

(
n− 1
r

)
(n− r − 1)

)]
= (r + 1)(n− 1)!2n+1

[
n

(
n− 1
r

)
+ r

((
n− 1
r

)
+

(
n− 1
r − 1

))]
= n!2n+1

(
n

r

)
(r + 1),

and
pD(n+ 1, 2r + 1)

= 2(r + 1)

·
[
(n− 1)!2n

((
n− 1
r + 1

)
(2r + 3) +

(
n− 1
r

)
(r + 1) +

(
n− 1
r + 1

)
(n− r − 2)

)]
= (r + 1)(n− 1)!2n+1

[
n

(
n− 1
r + 1

)
+ (r + 1)

((
n− 1
r + 1

)
+

(
n− 1
r

))]
= n!2n+1

(
n

r + 1

)
(r + 1)

= n!2n+1
(
n

r

)
(n− r).

This completes our induction.
Considering pB(n, s), depending on the parity of s, we get that

pB(n, 2r) = pE(n, 2r) = (n− 1)!2n

(
n− 1
r

)
(2r + 1),
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and
pB(n, 2r + 1) = pU (n, 2r + 1) + pD(n, 2r + 1) = n!2n

(
n− 1
r

)
.

Putting everything together, we have that
2n+1∑
s=0

pB(n, s) =
n∑

r=0
pB(n, 2r) +

n∑
r=0

pB(n, 2r + 1)

=
n∑

r=0
(n− 1)!2n

(
n− 1
r

)
(2r + 1) +

n∑
r=0

n!2n

(
n− 1
r

)

= (n− 1)!2n
n∑

r=0

(
n− 1
r

)
(2r + 1 + n)

= 4nn!,

where the last line follows from the identity n2n =
∑n

r=0
(

n−1
r

)
(2r+ 1 + n), which can

be shown by induction. □
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Appendix A. The bases B(1,2)
n and SW(1n) for n = 1, 2, 3

This appendix consists of tables which show the bijection between segmented permu-
tations σ ∈ SW(1n) and basis elements b ∈ B(1,2)

n . In each segmented permutation,
the thin indices are underlined.

Segmented
Permutation σ

Basis
Element b

Path
Model

k(σ) =
degθ(b)

ℓ(σ) =
degξ(b)

sminv(σ) =
degx(b) sdinv(σ)(9) Split(σ) =

Asc(b)
1 1 0 0 0 0 ∅

Table 1. Conversion between B
(1,2)
1 and SW(1) with statistics.

Segmented
Permutation σ

Basis
Element b

Path
Model

k(σ) =
degθ(b)

ℓ(σ) =
degξ(b)

sminv(σ) =
degx(b) sdinv(σ) Split(σ) =

Asc(b)

12 θ2
θ2 1 0 0 0 {1}

21 ξ2
ξ2 0 1 0 0 {1}

1|2 1 0 0 0 0 ∅

2|1 x2 0 0 1 1 {1}

Table 2. Conversion between B
(1,2)
2 and SW(12) with statistics.

(9)We do not define sdinv in this paper because we do not otherwise use it. It is equidistributed
with sminv and is defined in [23, Section 4.3].
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Segmented
Permutation σ

Basis
Element b

Path
Model

k(σ) =
degθ(b)

ℓ(σ) =
degξ(b)

sminv(σ) =
degx(b) sdinv(σ) Split(σ) =

Asc(b)

123 θ2θ3
θ2 θ3 2 0 0 0 {1, 2}

132 θ3ξ3

θ3ξ3

1 1 0 0 {2}

213 ξ2θ3
ξ2 θ3 1 1 0 0 {1, 2}

231 x2θ3ξ3

θ3ξ3

1 1 1 1 {1, 2}

312 θ2ξ3
θ2 ξ3 1 1 0 0 {1}

321 ξ2ξ3
ξ2 ξ3 0 2 0 0 {1, 2}

1|23 θ3

θ3

1 0 0 1 {2}

1|32 ξ3

ξ3

0 1 0 0 {2}

2|13 x2θ3

θ3

1 0 1 2 {1, 2}

2|31 x2ξ3

ξ3

0 1 1 1 {1}

3|12 x3θ2
θ2 1 0 1 1 {1}

3|21 x3ξ2
ξ2 0 1 1 1 {1, 2}

Table 3. Conversion between B(1,2)
3 and SW(13) with statistics (first

half).
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Segmented
Permutation σ

Basis
Element b

Path
Model

k(σ) =
degθ(b)

ℓ(σ) =
degξ(b)

sminv(σ) =
degx(b) sdinv(σ) Split(σ) =

Asc(b)

12|3 θ2
θ2 1 0 0 0 {1}

13|2 x3θ3

θ3

1 0 1 0 {2}

21|3 ξ2
ξ2 0 1 0 0 {1}

23|1 x2x3θ3

θ3

1 0 2 1 {1, 2}

31|2 x3ξ3

ξ3

0 1 1 1 {2}

32|1 x2x3ξ3

ξ3

0 1 2 2 {1, 2}

1|2|3 1 0 0 0 0 ∅

1|3|2 x3 0 0 1 1 {2}

2|1|3 x2 0 0 1 1 {1}

2|3|1 x2x3 0 0 2 2 {1}

3|1|2 x2
3 0 0 2 2 {2}

3|2|1 x2x
2
3 0 0 3 3 {1, 2}

Table 4. Conversion between B
(1,2)
3 and SW(13) with statistics

(second half).
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Appendix B. Examples of Frobenius and Hilbert series

Frob(R(1,2)
1 ; q;u, v) = s1

Hilb(R(1,2)
1 ; q;u, v) = 1

Frob(R(1,2)
2 ; q;u, v) = (q + u+ v)s11 + s2

Hilb(R(1,2)
2 ; q;u, v) = q + u+ v + 1

Frob(R(1,2)
3 ; q;u, v) =

(
q3 + (q2 + q)u+ (q2 + q)v + u2 + (q + 1)uv + v2

)
s111

+
(

(q2 + q) + (q + 1)u+ (q + 1)v + uv
)
s21 + s3

Hilb(R(1,2)
3 ; q;u, v) = (q3 + 2q2 + 2q + 1) + (q2 + 3q + 2)u+ (q2 + 3q + 2)v + u2

+ (q + 3)uv + v2

Frob(R(1,2)
4 ; q; u, v) =

(
q6 + (q5 + q4 + q3)u + (q5 + q4 + q3)v + (q3 + q2 + q)u2

+ (q4 + 2q3 + 2q2 + q)uv + (q3 + q2 + q)v2 + (q2 + q + 1)u2v

+ (q2 + q + 1)uv2 + u3 + v3
)

s1111

+
(

(q5 + q4 + q3) + (q4 + 2q3 + 2q2 + q)u + (q4 + 2q3 + 2q2 + q)v

+ (q2 + q + 1)u2 + (q3 + 3q2 + 3q + 1)uv + (q2 + q + 1)v2

+ (q + 1)u2v + (q + 1)uv2
)

s211

+
(

(q4 + q2) + (q3 + q2 + q)u + (q3 + q2 + q)v + (q2 + 2q + 1)uv

+ qu2 + qv2 + u2v + uv2
)

s22

+
(

(q3 + q2 + q) + (q2 + q + 1)u + (q + 1)uv + (q2 + q + 1)v
)

s31

+ s4

Hilb(R(1,2)
4 ; q;u, v) = (q6 + 3q5 + 5q4 + 6q3 + 5q2 + 3q + 1)

+ (q5 + 4q4 + 9q3 + 11q2 + 8q + 3)u
+ (q5 + 4q4 + 9q3 + 11q2 + 8q + 3)v + (q3 + 4q2 + 6q + 3)u2

+ (q4 + 5q3 + 13q2 + 17q + 8)uv + (q3 + 4q2 + 6q + 3)v2

+ (q2 + 4q + 6)u2v + (q2 + 4q + 6)uv2 + u3 + v3
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