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Numerical semigroups, polyhedra,
and posets IV: walking the faces

of the Kunz cone

Cole Brower, Joseph McDonough & Christopher O’Neill

Abstract A numerical semigroup is a cofinite subset of Z⩾0 containing 0 and closed under ad-
dition. Each numerical semigroup S with smallest positive element m corresponds to an integer
point in the Kunz cone Cm ⊆ Rm−1, and the face of Cm containing that integer point determines
certain algebraic properties of S. In this paper, we introduce the Kunz fan, a pure, polyhedral
cone complex comprised of a faithful projection of certain faces of Cm. We characterize several
aspects of the Kunz fan in terms of the combinatorics of Kunz nilsemigroups, which are known
to index the faces of Cm, and our results culminate in a method of “walking” the face lattice
of the Kunz cone in a manner analogous to that of a Gröbner walk. We apply our results in
several contexts, including a wealth of computational data obtained from the aforementioned
“walks” and a proof of a recent conjecture concerning which numerical semigroups achieve the
highest minimal presentation cardinality when one fixes the smallest positive element and the
number of generators.

1. Introduction
A numerical semigroup is a cofinite subset S ⊆ Z⩾0 containing 0 and closed under
addition; see [1] for a thorough intro. Each numerical semigroup with smallest positive
element m corresponds to an integer point in the Kunz cone Cm ⊆ Rm−1. Inspired
by a construction of Kunz [19], this family of polyhedral cones has been of significant
interest in the last decade. The original motivation for investigating these polyhedra
was enumerative in nature (e.g., utilizing lattice point methods to enumerate numer-
ical semigroups with a given number of gaps [27], or addressing some longstanding
asymptotic questions [17]).

Much of the recent interest in the Kunz cone, however, has focused on the faces
of Cm. In this time, numerical semigroups S and T corresponding to points in the
same face of Cm have been shown to share numerous algebraic properties, including
embedding dimension (i.e. the number of minimal generators), Cohen-Macaulay type,
and the symmetric property [5, 18]. The defining toric ideals of S and T have been
shown to possess similar minimal binomial generators [13], and were recently shown
to have identical Betti numbers up to reduction of graded degrees modulo m [4].
When S and T lie in certain popular families of numerical semigroups, such as those
that are complete intersection, generated by (generalized) arithmetic sequences, or
constructed via gluings, has also been shown to coincide [2].

At the heart of these shared properties is the Kunz nilsemigroup: a finite nilsemi-
group associated to each face F ⊆ Cm, derived from a portion of the divisibility poset
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of each numerical semigroup corresponding to a point in F [13, 18]. Kunz nilsemi-
groups provide a combinatorial framework for working with both the geometry of the
faces of the Kunz cone [3] and the algebra of the numerical semigroups therein [9].

One application of the Kunz cone is a computational method of enumerating nu-
merical semigroups with fixed m; this was utilized in [5] to make headway on Wilf’s
conjecture, one of the longest open problems in the numerical semigroups literature.
Unfortunately, the number of faces of Cm grows quickly in m, so computing the full
face lattice of Cm quickly becomes prohibitively difficult. If one is only interested in
numerical semigroups with a relatively small number of generators (as is often the
case), the relevant faces of Cm have small dimension and thus are far less numer-
ous. However, since the cone Cm is defined by hyperplanes, existing computational
methods make enumerating only lower-dimensional faces difficult.

The aim of the present manuscript is twofold: (i) to introduce a method of comput-
ing and enumerating, for fixed k, the faces of Cm in which the points corresponding
to k-generated numerical semigroups reside; and (ii) to further develop the theoreti-
cal framework linking Kunz nilsemigroups and the geometry of the faces of Cm they
index. To this end, we introduce the Kunz fan (Definition 3.1), a pure cone complex
comprised of a faithful projection of such faces. We characterize several aspects of
the Kunz fan, such as its boundary (Theorem 3.8 and Proposition 5.3), its chambers
(Corollary 3.9), an H-description of its faces (Theorem 4.8), and chamber incidence
(Theorem 5.5), in terms of the combinatorics of Kunz nilsemigroups.

On the computational front, our results yield a method of “walking” the face lattice
of the Kunz cone (Section 5) in a manner analogous to that of a Gröbner walk [16]
(this comparison is not just superficial; see Remark 5.7). Our algorithm represents a
marked improvement over prior methods of enumerating the faces of Cm: we computed
all faces of every Kunz fan with k = 3 and m ⩽ 42 on our personal machines in under
a day (we ran out of memory at m = 43), whereas computing the full face lattice for
m = 18 for [5] took a cluster 3 weeks. This data is of particularly high interest in
examining the relationship between a numerical semigroup’s multiplicity, embedding
dimension, and minimal presentation cardinality; indeed, these methods were utilized
to obtain much of the table given in the introduction of [9], and several of the con-
structions given thereafter were identified from the extremal examples produced by
those computations.

On the theoretical front, Section 6 includes several applications: we classify the
Kunz nilsemigroups of 3-generated numerical semigroups; we identify a family of
faces of Cm that yields an exponential lower bound on the number of rays of Cm;
we prove [9, Conjecture 7.3] concerning which numerical semigroups with fixed m
and k achieve the highest minimal presentation cardinality; and we prove a result
related to a longstanding open problem concerning Gröbner fans of toric ideals [30].
We also characterize the finite nilsemigroups that are Kunz (Theorem 4.9), answering
a question posed in [18].

2. Background
In this section, we recall some necessary background on semigroups, polyhedral geom-
etry, Kunz nilsemigroups, and the Kunz cone. For a more complete overview, see [1],
[32], [9, Section 2] and [13, Section 3], respectively.

For a commutative semigroup (N, +), an element ∞ ∈ N is nil if a + ∞ = ∞ for
all a ∈ N . We call an element a ∈ N nilpotent if na = ∞ for some n ∈ Z⩾1, and
partly cancellative if a + b = a + c ̸= ∞ implies b = c for all b, c ∈ N . We say N is a
nilsemigroup if N has an identity element and every non-identity element is nilpotent,
and that N is partly cancellative if every non-nil element of N is partly cancellative.
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Note that any nilsemigroup is reduced, meaning its only unit is the identity. We call
any element of N that cannot be written as the sum of two non-identity elements an
atom of N .

All semigroups N in this paper are assumed to be commutative, partly cancellative,
finitely generated, and reduced. Under these assumptions, the atoms n0, . . . , nk ∈ N
comprise the unique minimal generating set [25]; we denote this by N = ⟨n0, . . . , nk⟩.
A factorization of n ∈ N is an expression

n = z0n0 + · · · + zknk

where each zi ∈ Z⩾0. The set of factorizations of n ∈ N is the set

ZN (n) = {z ∈ Zk+1
⩾0 | n = z0n0 + · · · + zknk} ⊂ Zk+1

⩾0 .

The factorization homomorphism φN : Zk+1
⩾0 → N is the semigroup homomorphism

φN (z0, . . . , zk) = z0n0 + · · · zknk.

The kernel of φN is

ker φN =
{

(a, b) ∈ Zk+1
⩾0 × Zk+1

⩾0 | φN (a) = φN (b)
}

which induces a congruence relation ∼ on Zk+1
⩾0 , setting a ∼ b whenever (a, b) ∈ ker φN

(recall that a congruence is an equivalence relation such that a ∼ b implies a+c ∼ b+c

for any a, b, c ∈ Zk+1
⩾0 ). We call any such pair (a, b) or a ∼ b a trade of N . A set of

trades ρ is said to generate ∼ if ∼ is the smallest congruence on Zk+1
⩾0 containing ρ.

A presentation of N is a set ρ of trades obtained by taking a generating set for ∼ and
omitting any a ∼ b where φN (a) is nil. A presentation ρ of ∼ is minimal if no proper
subset of ρ is a presentation of ∼. It is known that any two minimal presentations of
a finitely generated, partly cancellative semigroup have the same cardinality [13, 25].

The support of a factorization z ∈ Zk+1
⩾0 is the set

supp(z) = {i | zi > 0}
of nonzero coordinates. For Z ⊆ Zk+1

⩾0 , define
supp(Z) = {i | zi > 0 for some z ∈ Z},

and the factorization graph ∇Z , whose vertices are elements of Z, and two factoriza-
tions z, z′ ∈ Z are connected by an edge if supp(z)∩supp(z′) ̸= ∅. For n ∈ N , we write
∇n for the factorization graph whose vertex set is ZN (n). For each i ∈ supp(Z), let

Z − ei = {z − ei | z ∈ Z, i ∈ supp(z)}.

Suppose N is a finite, partially cancellative nilsemigroup. An outer Betti element
of N is a subset B ⊆ ZN (∞) such that

(i) for each i ∈ supp(B), B − ei = ZN (p) for some p ∈ N ∖ {∞}, and
(ii) the graph ∇B is connected.

A numerical semigroup S is an additive subsemigroup of (Z⩾0, +) that is cofinite
and contains 0. Numerical semigroups have a unique minimal generating set, the size
of which we call the embedding dimension, and the smallest element of which we call
the multiplicity. Letting m be an element of S, the Apéry set of S is the set

Ap(S; m) = {n ∈ S | n − m /∈ S}
containing the smallest element of S in each equivalence class modulo m. Let ≈ de-
note the congruence on S setting a ≈ b whenever a = b or a, b /∈ Ap(S; m). The quo-
tient semigroup S/≈ is a nilsemigroup with one non-nil element for each element of
Ap(S; m). The Kunz nilsemigroup of S is given by N = Zm ∪ {∞} as sets, and is
obtained from S/≈ by replacing each non-nil element by its equivalence class in Zm.
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Figure 1. Kunz poset in Example 2.2 with outer Betti elements in red.

Theorem 2.1 ([13]). If ρ is a minimal presentation of a numerical semigroup S,
then |ρ| = |ρ′|+β, where ρ′ is any minimal presentation for the Kunz nilsemigroup N
of S, and β is the number of outer Betti elements of N .

We briefly illustrate Theorem 2.1 and the definition preceding it in the following
example. See [9, 13] for a more thorough introduction to outer Betti elements and
their relationship to minimal presentations of numerical semigroups.

Example 2.2. Let S = ⟨13, 53, 15, 35⟩. One can verify computationally [8] that
Ap(S; 13) = {0, 53, 15, 68, 30, 70, 45, 85, 60, 35, 75, 50, 90},

where the elements are listed in order of their equivalence classes modulo m = 13.
The partially ordered set (c) depicted in Figure 3 encodes the divisibility relations of
the non-nil elements of Kunz nilsemigroup N of S. For instance, 3 precedes 1 in the
diagram since 68 − 53 = 15 ∈ S, but 3 does not precede 5 since 70 − 68 = 2 /∈ S.
Moreover, N = ⟨1, 2, 9⟩, as these are the elements covering 0.

Write Ap(S; 13) = {0, a1, . . . , a12} with each ai ≡ i mod 13. One can check that
ZN (11) = {(0, 1, 1)} since a11 = 50 = 15 + 35 = a2 + a9, and in fact this is the only
factorization of a11. Additionally, (1, 2, 0) ∈ ZN (∞) since a1 + 2a2 = 83 > 70 = a4.

There are 6 outer Betti elements, each consisting of a single factorization from
among

(2, 0, 0), (1, 2, 0), (0, 7, 0), (1, 0, 1), (0, 2, 1), and (0, 0, 3),
and each can be seen as a factorization in ZN (∞) that is minimal under the
component-wise partial order. For instance,

ZN (11) = {(0, 1, 1)}, ZN (4) = {(0, 2, 0)}, and {(0, 2, 1)} ⊆ ZN (∞),
imply {(0, 2, 1)} is an outer Betti element of N .

A rational polyhedral cone C ⊆ Rd is the set of solutions to a finite set of linear
inequalities with rational coefficients, i.e.

C = {x ∈ Rd | Ax ⩾ 0}
for some rational matrix A. We say C is strongly convex (or pointed) if it does not
contain any positive dimension linear subspace of Rd, and the dimension of C is
the vector space dimension dim C = dimR spanR C. If none of the rows of A can be
omitted without changing C, we call A the H-description or facet description of C,
and refer to each inequality therein as a defining inequality or facet inequality of P .
If dim C = d, then the facet description is unique up to the reordering and scaling of
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rows. Given a facet inequality a1x1 + · · · + adxd ⩾ 0 of C, the intersection of C with
the hyperplane a1x1 + · · · + adxd = 0 is called a facet of C. Any intersection of facets
is called a face of C; note that the condition of strong convexity is equivalent to {0}
being a face of C. Given a face F ⊆ C, the relative interior of F , denoted F ◦, is the
set of points in F that do not lie in any proper faces of F . A finite collection F of
polyhedral cones is called a polyhedral fan if

(i) for any C ∈ F , every face of C is also in F , and
(ii) the intersection of any C, D ∈ F is a face of both and lies in F .

The elements of a fan F are often called its faces. A fan is pure if its maximal
faces (under containment) have the same dimension, and in this case, we refer to the
maximal faces as chambers.

For m ⩾ 2, the strongly convex cone Cm ⊆ Rm−1
⩾0 with facet inequalities

xi + xj ⩾ xi+j for i, j ∈ Zm ∖ {0} with i + j ̸= 0

is called the Kunz cone. A point z = (z1, . . . , zm−1) ∈ Cm ∩Zm−1 is an Apéry point if
each zi ≡ i mod m. The following is the culmination of results from [13, 18, 19].

Theorem 2.3. The Apéry points of Cm are in bijective correspondence with numerical
semigroups containing m; more specifically, this bijection is given by z 7→ S where
Ap(S; m) = {0, z1, . . . , zm−1}. Fix a face F ⊆ Cm, the set

H = {0} ∪ {i : xi = 0 for all x ∈ F} ⊆ Zm

is a subgroup of Zm (called the Kunz subgroup of F ). Define a binary operation ⊕
on N = (Zm/H) ∪ {∞} so that ∞ is nil, and for any nonzero a, b ∈ Zm,

a ⊕ b =
{

a + b if xa + xb = xa+b for all x ∈ F ;
∞ otherwise.

Under the above definition, (N, ⊕) is a partly cancellative nilsemigroup (called the
Kunz nilsemigroup of F ), and if the Apéry point of a numerical semigroup S lies in
F , then H = {0} and the Kunz nilsemigroup of S equals the Kunz nilsemigroup of F .

In view of the above theorem, we say a numerical semigroup S lies in the face
F ⊆ Cm, and write S ∈ F , if the Apéry point corresponding to S lies in F .

3. Kunz fans
Throughout this section, fix A = {p1, . . . , pk} ⊆ Zm ∖ {0} with gcd(A, m) = 1, and
let p : Rm−1 → Rk denote the linear map that projects each point in Rm−1 onto the
coordinates whose indices lie in A, i.e.,

p(y) = (yp1 , . . . , ypk
).

Definition 3.1. Let F(m; A) denote the set of faces F ⊆ Cm for which each atom
of the Kunz nilsemigroup N of F has a representative in A. The Kunz fan of A is
the set

G(m; A) = {p(F ) : F ∈ F(m; A)}
of cones in Rk (we prove in Theorem 3.8 that G(m; A) is indeed a fan). Note that
under this definition, |A| may exceed the number of atoms of N , but this allowance is
necessary to ensure G(m; A) is a fan; see Example 3.3 for a discussion of this subtlety.

One of the main results of this section is that G(m; A) is pure, and that the maximal
faces of G(m; A) with respect to containment are precisely those whose corresponding
nilsemigroup lies in the following family.
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Figure 2. Posets from the chambers of the Kunz fan G(20; 6, 11).

Definition 3.2. A finite, partly cancellative nilsemigroup N is a staircase nilsemi-
group if every non-nil element uniquely factors as a sum of atoms, and a numerical
semigroup S is called staircase if its Kunz nilsemigroup is staircase. As each outer
Betti element of a staircase nilsemigroup N consists of a single factorization of ∞,
when there can be no confusion we refer to each such factorization as an outer Betti
element of N .

A numerical semigroup S is staircase if and only if every element of Ap(S; m) factors
uniquely. In this case, S is said to have Apéry set of unique expression; such semigroups
have been studied in the literature [24] and were central to the constructions in [9].

The examples in this section examine two Kunz fans in detail, and reference results
in this section and subsequent sections. We encourage the reader to peek ahead at
these results while reading these examples, as they put the landscape of Sections 3,
4, and 5 in perspective.

Example 3.3. Let m = 20 and A = {6, 11}. The Kunz fan G(m; A) is depicted in
Figure 2 alongside the staircase Kunz nilsemigroups corresponding to its chambers,
with outer Betti elements depicted in red. Let N denote the Kunz nilsemigroup corre-
sponding to chamber (b). As we will see in Proposition 3.4 below, any point (x6, x11)
in the interior of chamber (b) must satisfy 7x6 > 2x11, as 7 · 6 ≡ 2 mod 20 and
2 · 11 ≡ 2 mod 20, but (0, 2) ∈ ZN (2) while {(7, 0)} is an outer Betti element of N .

Let us examine the facets on the boundary of the fan G(m; A), as these each identify
subtleties in Definition 3.1. One is defined by x6 ⩽ 6x11, which must be satisfied by
every point in a face of G(m; A) by Proposition 3.4 since for any point y ∈ Cm that
projects to a point (x6, x11) in a face of G(m; A), each coordinate yi is a non-negative
integral combination of x6 and x11. Note that the Kunz nilsemigroup N of this facet
has N = ⟨11⟩, since x6 = 6x11 implies 6 is a multiple of 11 in N ; this is why we do
not require N to possess an atom for each element of A in Definition 3.1.

The other facet is defined by x6 ⩾ 0; since gcd(6, 20) > 1 and gcd(6, 11, 20) = 1,
for each x11 > 0 one can locate points (x6, x11) in the interior of chamber (a) wherein
x6 is arbitrarily small. The Kunz subgroup H of this facet is nontrivial since x6 = 0
for every point therein; this is why we only require each atom of the Kunz poset N
to have a representative in A in Definition 3.1, rather than requiring A to equal the
set of atoms of N .

Consider the piecewise linear map q : Rk
⩾0 → Rm−1

⩾0 given by q(x) = y, where

yi = min{c · x | c ∈ Zk
⩾0 with c1p1 + · · · + ckpk ≡ i mod m}.
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Proposition 3.4. Fix a face F ∈ F(m; A) with Kunz nilsemigroup N and Kunz
subgroup H. The map p is injective on F , and if x ∈ p(F ), then y = q(x) satisfies

yi = z1x1 + · · · + zkxk

for any factorization z ∈ ZN (i). In particular, q restricts to a linear map on p(F ),
and q(p(y)) = y for every y ∈ F .

Proof. For each nonzero i ∈ Zm, Theorem 2.3 implies one of the following must hold:
(i) i ∈ H and yi = 0; (ii) i ∈ a + H for some a ∈ A and yi = ya; or (iii) for any
factorization z ∈ ZN (i), we have

yi = z1yp1 + · · · + zkypk

for all y ∈ F . As such, for any y, y′ ∈ F , if p(y) = p(y′), then ya = y′
a for all a ∈ A,

and thus y = y′. This proves p is injective on F .
Next, suppose p(y) = x, and let y′ = q(x). Fix i, and suppose that c ∈ Zk

⩾0 satisfies
y′

i = c · x. We claim c ∈ ZN (i). Indeed, if i = 0, then yi = 0, and if i ∈ a + H for some
a ∈ A, then yi = ya. For all other cases, fix j with cj > 0. This means i + H covers
(i−pj)+H in N , and by minimality of c ·x, (c−ej) ·x = y′

i−pj
. By induction, we may

assume c−ej ∈ ZN (j), and so we have c = (c−ej)+ej ∈ ZN (i) since y′
i−pj

+ypj
= y′

i.
This proves the claim. By the preceding paragraph, we now have y′ = y, and the
remaining claims all immediately follow. □

It is not hard to show that q(Rk
⩾0) ⊆ Cm, although the injectivity in Proposition 3.4

is lost if one considers input outside of the faces in G(m; A).

Remarks 3.5. Given a point x ∈ Rk
⩾0, one may compute q(x) using the circle of lights

algorithm [31], which is used to compute the Apéry set of a numerical semigroup from
a given generating set. The version of the algorithm in [18, Algorithm 7.1] is faster,
and as a byproduct computes the set of factorizations of each element of the Kunz
nilsemigroup corresponding to the face of Cm containing q(x).

We next consider the cone

C(m; A) = {x ∈ Rk
⩾0 : xi ⩽ c · x for all c ∈ Zk

⩾0 with c1p1 + · · · + ckpk ≡ pi mod m}.

Despite the fact that C(m; A) is defined using an infinite collection of inequalities,
only finitely many are necessary. Indeed, if c ∈ Zk

⩾0 has some cj ⩾ m, then

c · x ⩾ (c − mej) · x for all x ∈ Rk
⩾0,

so in the definition of C(m; A) one may restrict to c with coordinates in [0, m − 1].
In particular, this means C(m; A) is a rational polyhedral cone.

Example 3.6. Let m = 13 and A = {1, 2, 9}. The Kunz fan G(m; A) has five 3-
dimensional chambers, the cross sections of which are depicted in Figure 3 alongside
the Kunz nilsemigroups corresponding to each chamber. Any point in the interior of
a chamber of G(m; A) must satisfy

x1 < 3x9, x1 < 7x2, x2 < 2x1, and x9 < x1 + 4x2,

which arise from the “minimal” ways of expressing 1, 2, or 9 in Z13 as a sum of the
other two and comprise the facets of C(m; A).

Lemma 3.7. For each x ∈ C(m; A)◦, the image y = q(x) lies in a face F ⊆ Cm with
trivial Kunz subgroup, and the Kunz nilsemigroup N of F has atom set A.
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Figure 3. Posets from the chambers of the Kunz fan G(13; 1, 2, 9).

Proof. Since C(m; A) ⊂ Rk
⩾0, each xi is positive, so x has all positive coordinates as

well. This ensures F has trivial Kunz subgroup. Moreover, the definition of q ensures
N has atom set contained in A, but if some pi ∈ A were not an atom of N , then for
any z ∈ ZN (pi), we would have

xi ⩾ ypi = z1yp1 + · · · + zi−1ypi−1 + zi+1ypi+1 + · · · + zkypk

= z1x1 + · · · + zi−1xi−1 + zi+1xi+1 + · · · + zkxk,

violating the assumption that x lies in the interior of C(m; A). □

Theorem 3.8. The cones in G(m; A) form a polyhedral fan that is pure, and the union
of the cones in G(m; A) equals C(m; A).

Proof. Cleary, if a face F ⊆ Cm lies in F(m; A), then all faces of F must as well, so ev-
ery face of a cone in G(m; A) is a cone in G(m; A). Moreover, for any F, F ′ ∈ F(m; A),
Proposition 3.4 implies p(F ) ∩ p(F ′) = p(F ∩ F ′), so the intersection of any two cones
in G(m; A) is a cone in G(m; A). This verifies G(m; A) is a polyhedral fan.

Next, by Lemma 3.7, for each x ∈ C(m; A)◦, y = q(x) lies in a face F ∈ F(m; A).
As such, p(y) = x by Proposition 3.4, which lies in p(F ) ∈ G(m; A). This means the
union of the cones in G(m; A) contains C(m; A)◦, and since rational polyhedral cones
are topologically closed, the union must equal C(m; A).

The final claim to prove is that every maximal cone in G(m; A) has dimension k.
Indeed, since G(m; A) contains only finitely many cones, and their union equals the
k-dimensional cone C(m; A), the union of the k-dimensional cones in G(m; A) must
also equal C(m; A). This means every cone in G(m; A) is contained in a k-dimenisional
cone in G(m; A). □

Corollary 3.9. A face F ∈ F(m; A) is a chamber if and only if its Kunz nilsemigroup
is staircase.

Proof. A maximal face of F(m; A) has dimension k by Theorem 3.8, and since the
number of atoms of its Kunz nilsemigroup N is also k, [13, Theorem 4.3] implies N
has no inner trades and therefore must be staircase. □

4. Outer Betti elements and facets
Throughout this section, let A = {p1, . . . , pk} ⊂ Zm ∖ {0} with gcd(A, m) = 1, and
let N be a partly cancellative nilsemigroup with atom set A.
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The main results of this section are Theorem 4.8, which gives an H-description of
each face F ⊆ Cm in terms of its corresponding Kunz nilsemigroup, and Theorem 4.9,
which characterizes the finite, partly cancellative nilsemigroups that are Kunz.

Definition 4.1. A modular(1) nilsemigroup is a finite, partly cancellative nilsemi-
group N together with a bijection f : Zm → N ∖ {∞} such that for any a, b ∈ Zm,
either f(a)+f(b) = f(a+b) or f(a)+f(b) = ∞. For convenience, we write a ∈ Zm in
place of f(a) ∈ N , effectively viewing N = Zm∪{∞} as sets. If N = ⟨f(p1), . . . , f(pk)⟩
and z ∈ Zk

⩾0, we write z = f(z1p1 + · · ·+zkpk), so if z ∈ ZN (i) for i ̸= ∞, then z = i.
A Betti equality of a modular nilsemigroup N is an equation of the form

c · x = c1x1 + · · · + ckxk = c′
1x1 + · · · c′

kxk = c′ · x

where c, c′ ∈ ZN (p) for some p ∈ N ∖{∞}. Let HN equal to subspace of Rk satisfying
all such equalities for a given N (this coincides with the nullspace of the presentation
matrix defined in [13, Section 4]). A Betti inequality of N is an inequality of the form

z · x = z1x1 + · · · + zkxk ⩾ a1x1 + · · · + akxk = a · x

where z ∈ ZN (∞) is an outer Betti factorization and a ∈ ZN (z). Let FN ⊆ HN be the
rational polyhedral cone containing points x ∈ HN that satisfy all Betti inequalities.

Let us see some examples of these definitions.

Example 4.2. Consider the Kunz nilsemigroup N depicted on the left in Figure 4.
The trades e1 + e3 ∼ 2e2 and e7 + 38 ∼ 2e3, occurring at 4, 6 ∈ N respectively, yield

(1, −2, 1, 0, 0) · x = 0 and (0, 0, −2, 1, 1) · x = 0
as Betti equalities, so HN ⊆ R5 has dim HN = 3. Each factorization b from among

(1, 0, 0, 0, 1), (0, 1, 0, 1, 0), (−1, 1, 0, 0, 1), (−1, 0, 1, 1, 0), (2, −1, 0, 0, 0),
(0, −1, 1, 0, 1), (1, 1, −1, 0, 0), (0, −1, −1, 2, 0), (0, 0, 0, −1, 2), (1, 0, 0, 1, −1)

yields a Betti inequality b · x ⩾ 0, together defining a 3-dimensional cone FN ⊆ HN .

Example 4.3. Resume notation from Example 3.3. The interior of chamber (b) is
defined by the inequalities 7x6 > 2x11 and 4x11 > 4x6, which can be seen as
consequences of the outer Betti elements {(7, 0)} and {(0, 4)}, respectively. Note
that N does have a third outer Betti element, namely {(3, 2)}, but the inequal-
ity 3x6 + 2x11 ⩾ 0 does not define a facet of chamber (b).

Example 4.4. The modular nilsemigroup N depicted in the middle in Figure 4 is
not Kunz. Indeed, N has no inner Betti elements, so if it were Kunz, FN would be
a full dimensional cone inside HN = R4 by Theorem 4.8. For a point x ∈ FN , the
inequalities

(−1, −1, 1, 1) · x ⩾ 0, (1, −1, −1, 1) · x ⩾ 0, and (0, 2, 0, −2) · x ⩾ 0,

together imply (0, 2, 0, −2) · x = 0. In other words, every point x ∈ FN lies in the
hyperplane x2 = x4, i.e. FN is not full dimensional in HN .

In what follows, let
Z = {z ∈ ZN (∞) | z − ei /∈ ZN (∞) for each i ∈ supp(z)}

denote the set of minimal elements of ZN (∞) under the component-wise partial order.

Lemma 4.5. Suppose N is a modular nilsemigroup and fix x ∈ F ◦
N and y ∈ ZN (∞).

There exist b, c ∈ Zk
⩾0 such that b is a factorization of an outer Betti element of N ,

y · x = (b + c) · x, and y = b + c.

(1)no relation to modular lattices
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Figure 4. Kunz posets from Examples 4.2, 4.4, and 4.7

Proof. Choose z ∈ Z so that y = z + ℓ for some ℓ ∈ Zk
⩾0. If z lies in an outer Betti

element of N , then choosing b = z and c = ℓ completes the proof. Otherwise, there
exists y′ ∈ ZN (∞) ∖ Z such that y′ ∼ z. Choose z′ ∈ Z so that y′ = z′ + ℓ′ for some
ℓ′ ∈ Zk

⩾0 ∖ {0}. If z′ is a factorization of an outer Betti element of N , then choosing
b = z′ and c = ℓ′ + ℓ completes the proof, since y′ ∼ z ensures

(b + c) · x = (y′ + ℓ) · x = (z + ℓ) · x = y · x and b + c = y′ + ℓ = z + ℓ = y.

Otherwise, we may again repeat this process to obtain z′′ ∈ Z. Notice that

(z · x) − (z′ · x) = (y′ · x) − (z′ · x) = ℓ′ · x ⩾ min{x1, . . . , xk},

so this process must eventually terminate in a suitable choice of b and c. □

Proposition 4.6. Suppose N is modular, fix p ∈ Zm ∖ {∞}, and fix x ∈ FN that
satisfies all Betti inequalities strictly. If z ∈ ZN (p) and z′ ∈ Zk

⩾0 with z′ = p, then

z′ · x ⩾ z · x,

with equality if and only if z′ ∈ ZN (p).

Proof. If z′ ∈ ZN (p), then the definition of FN ensures z · x = z′ · x, so it suffices to
show that if z′ ∈ ZN (∞) with z′ = p, we have z′ · x > z · x. By Lemma 4.5, there is a
factorization b of an outer Betti element and c ∈ Zk

⩾0 such that

z′ · x = (b + c) · x and b + c = p.

Fixing a ∈ ZN (b), the Betti inequality z′ · x > (a + c) · x must hold. If a + c ∈ ZN (p),
then (a+c) ·x = z ·x and we are done. Otherwise, (a+c) ∈ ZN (∞), and we can again
apply Lemma 4.5 to obtain a factorization b′ of an outer Betti element, c′ ∈ Zk

⩾0, and
a′ ∈ ZN (b1) such that

z′ · x > (a + c) · x = (b′ + c′) · x > (a′ + c′) · x and a + c = a′ + c′ = p.

As in the proof of Lemma 4.5, repeating this process eventually terminates in a
factorization a′′ +c′′ ∈ ZN (p), at which point we obtain z′ ·x > (a′′ +c′′) ·x = z ·x. □

Example 4.7. The condition that x satisfies all Betti inequalities strictly cannot be
omitted from Proposition 4.6. Indeed, consider the modular nilsemigroup N with
m = 9 and atom set A = {1, 3, 4, 6, 7} depicted on the right in Figure 4. The outer
Betti elements of N have factorizations

e1 + e3, e4 + e3, e7 + e3, e1 + e6, e4 + e6, e7 + e6,

2e1, 2e4, 2e7, 2e3, 2e6, e3 + e6, and e1 + e4 + e7.

One can check the point (x1, x3, x4, x6, x7) = (1, 3, 1, 4, 1) satisfies all Betti inequali-
ties, but z = e6 ∈ ZN (1) and z′ = 2e1 + e4 ∈ ZN (∞) have z · x = 4 > 3 = z′ · x.

Theorem 4.8. If F ⊆ Cm is a face with Kunz nilsemigroup N , then p(F ) = FN .
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Proof. Proposition 3.4 implies p(F ) ⊆ FN . Conversely, fix x ∈ FN . Since p(F ) ⊆ FN

and both are rational polyhedral cones, it suffices to assume x ∈ F ◦
N . Fix nonzero

p, q ∈ Zm so that p + q ̸= 0, and fix factorizations z1 ∈ ZN (p) and z2 ∈ ZN (q).
We must show for any z ∈ ZN (p+q), we have (z1 +z2) ·x ⩾ z ·x. If z1 +z2 ∈ ZN (p+q),
then (z1 + z2) · x = z · x. Otherwise, z1 + z2 ∈ ZN (∞), so (z1 + z2) · x ⩾ z · x by
Lemma 4.6. Thus x ∈ p(F ), thereby completing the proof. □

Theorem 4.9. A modular nilsemigroup N is Kunz if and only if there is a point
x ∈ FN satisfying all Betti inequalities strictly.

Proof. If N is a Kunz nilsemigroup, then there is some corresponding face F ∈ Cm, and
by Theorem 4.8, p(F ) = FN . Since dim p(F ) = dim F by Proposition 3.4, p(F ◦) = F ◦

N ,
so p(x) satisfies all Betti inequalities strictly for any x ∈ F ◦.

Conversely, suppose N is modular and there is some point x that satisfies all Betti
inequalities of N strictly. By Proposition 4.6, x · ei < z · x for any z ∈ ZN (∞)
with z = pi, so x ∈ C(m; A)◦. Since the interiors of the cones of G(m; A) partition
C(m; A)◦ by Theorem 3.8, x lies in the interior of p(F ) for some face F ⊆ Cm whose
Kunz nilsemigroup M has atom set A. From this, we can conclude N = M since they
have the same atom set and ZN (p) = ZM (p) for any p ∈ Zm by Proposition 4.6. □

Example 4.10. Consider the nilsemigroup N from Example 4.4. Even though N is
not Kunz, we have FN ∈ G(8; 1, 2, 5, 6). Indeed, letting M denote the modular nilsemi-
group obtained from N by adding e5 + e6 as a factorization of 3, then M is Kunz by
Theorem 4.9, and one can check via computation that FN = FM .

Alternatively, if N is the nilsemigroup from Example 4.7 and A = {1, 3, 4, 6, 7},
then one can verify FN /∈ G(9; A) computationally. Indeed, G(9; A) has 6 chambers,
all of which share a 3-dimensional face that is properly contained in FN .

5. Walking the Kunz fan
Throughout this section, let A = {p1, . . . , pk} ⊆ Zm ∖ {0} with gcd(A, m) = 1, and
let N be a Kunz nilsemigroup with atom set A.

The goal of this section is to give an algorithm, outlined below, for computing the
faces of Cm with atom set A by “walking” the chambers of G(m; A). Using results in
this section, every step can be completed combinatorially (i.e., in terms of nilsemi-
groups, without relying on polyhedral computations) with the exception of step (3).

(1) Locate a point x ∈ Rk
⩾0 so that the face FN ∈ G(m; A) with x ∈ FN has N

staircase. This can be done by applying q to small random perturbation of
the all-1’s vector, since the all-1’s vector is guaranteed to lie in some face of
G(m; A), and in any open k-dimensional ball centered there, the set of points
contained in non-maximal faces of G(m; A) has measure 0. Recall that N ,
along with its outer Betti elements, can be computed from x via the circle-
of-lights algorithm, as in Remark 3.5.

(2) Use Theorem 4.8 to obtain an H-description of FN with one inequality per
outer Betti elements of N .

(3) Obtain an irredundant H-description of FN by identifying which outer Betti
elements of N yield supporting inequalities of FN . We were not able to accom-
plish this without the use of a polyhedral computation (e.g. Normaliz [6]);
Proposition 5.2 and Remark 5.6 identify sufficient and necessary conditions,
respectively, but fall short of a full characterization.

(4) Determine which facets of FN lie on the boundary of C(m; A); we identify a
combinatorial method for doing so in Proposition 5.3.
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(5) For each remaining outer Betti element, determine the Kunz nilsemigroup N ′

for which FN ′ shares a facet with FN ; we identify a combinatorial method for
doing so in Theorem 5.5.

(6) Using a graph traversal algorithm (e.g., depth-first search or breadth-first
search), repeat steps (2) through (5) to compute all of the faces of G(m; A).

Prior efforts to enumerate the faces of Cm relied on computing the entire face
lattice, or faces up to a particular codimension [5]. The above allows one to compute
the faces containing numerical semigroup of small embedding dimension, which are
of bounded dimension. For instance, when verifying [9, Conjecture 7.1], we computed
all faces of every Kunz fan with k = 3 and m ⩽ 42 on our personal machines in under
a day (we ran out of memory at m = 43), whereas computing the full face lattice
for m = 18 for [5] took a cluster 3 weeks. The above is also prime for parallelization,
since if one fixes m and k, each atom set A can be run independently.

The above algorithm turns out to coincide with the notion of a Gröbner walk [12];
Remark 5.7 makes this connection explicit.

Definition 5.1. Fix a staircase Kunz nilsemigroup N . We say an outer Betti element
z ∈ ZN (∞) is irredundant if its Betti inequality z · x ⩾ a · x defines a facet of FN ,
where a ∈ ZN (z).

We briefly identify some redundant outer Betti elements, for use in Section 6.

Proposition 5.2. Let N be a staircase Kunz nilsemigroup.
(a) Any two outer Betti elements b, b′ ∈ ZN (∞) with b = b

′ have disjoint support.
(b) If b ∈ ZN (∞) is an outer Betti element and b = 0, then b is irredundant if

and only if supp(b) = {i} and a1, . . . , ak are distinct modulo gcd(i, m).
(c) There is at most one outer Betti element of N with full support, and such an

outer Betti element is redundant if |A| > 1.

Proof. Suppose bi > 0 and b′
i > 0 for some i. Since b and b′ are outer Betti elements,

we have b − ei, b′ − ei ∈ ZN (b − pi), and since N is staircase, b − ei = b′ − ei so b = b′.
Next, if bi > 0 and bj > 0, then b is redundant by the Farkas lemma, as its

Betti inequality follows from xi ⩾ 0 and xj ⩾ 0. As such, suppose bi is the only
nonzero entry of b. Writing d = gcd(i, m) for the order of i ∈ Zm, [18, Corollary 3.7]
and Proposition 3.4 imply C(m; A) ∩ {x ∈ Rd : xi = 0} projects faithfully onto
C(d; A∖{0}), where A ⊆ Zd is the set of residue classes of a1, . . . , ak in Zd. This cone
has dimension k − 1 if and only if a1, . . . , ak are distinct modulo d, thereby proving
the second claim.

Lastly, the final claim immediately follows from the first and second. □

Proposition 5.3. Suppose N is a staircase Kunz nilsemigroup and b ∈ ZN (∞) is an
irredundant outer Betti element. The facet of FN supported by the Betti inequality
for b lies on the boundary of C(m; A) if and only if either (i) b ∈ A, or (ii) b = 0.

Proof. By definition, a facet inequality of C(m; A) is either of the form xi ⩾ c ·x with
c1p1 + · · · + ckpk ≡ pi mod m,

or of the form xi ⩾ 0. As such, an outer Betti element whose Betti inequality is one
of these two forms must fall into the claimed case (i) or (ii), respectively. □

Example 5.4. Resume notation from Example 3.3. The boundaries between neigh-
boring chambers are labeled in Figure 2 by an equality defining the linear subspace
of R2 they lie in. By Theorem 5.5, each such equality induces a single trade in the
Kunz nilsemigroup corresponding to that codimension 1 face. For instance, the ray
between chambers (a) and (b) has corresponding Kunz nilsemigroup with the trade
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(7, 0) ∼ (0, 2), since every point on that ray must satisfy 7x6 ⩾ 2x11 from cham-
ber (b) and 7x6 ⩽ 2x11 from chamber (a). Additionally, the ray between chambers (b)
and (c) has Kunz nilsemigroup with the trade (4, 0) ∼ (0, 4), and thus no numerical
semigroups lie on that ray by [3, Corollary 3.16].

Theorem 5.5. Suppose dim FN = k − 1 and FN is not on the boundary of C(m; A).
(a) There is a unique inner Betti element p ∈ N , and ZN (p) = {z, z′}.
(b) For any non-nil q ∈ N , there exist unique factorizations w, w′ ∈ ZN (q) such

that z ̸⪯ w and z′ ̸⪯ w′, where ⪯ denotes the component-wise partial order
on Zk

⩾0. Moreover, w ̸= w′ if and only if p ⪯ q in N .
(c) For a staircase Kunz nilsemigroup N ′ with FN ⊆ FN ′ , either (i) z ̸⪯ w for

all q ∈ N ′ and w ∈ ZN ′(q), or (ii) z′ ̸⪯ w for all q ∈ N ′ and w ∈ ZN ′(q).

Proof. Fix c ∈ Zk with gcd(c) = 1 and HN = {x ∈ Rk : c · x = 0}. Write c = c+ − c−

where c+, c− ∈ Zk
⩾0 have disjoint support, and let d ∈ Z⩾1 be minimal with dc+ =

dc−. For any Betti element p ∈ N and factorizations z, z′ ∈ ZN (p), we have z−z′ ∈ Zc.
As such, |ZN (p)| = 2, as only one factorization of p can avoid the positive (or negative)
support of c. In particular, ZN (p) = {z, z′} such that z ∈ dZ⩾1c+ and z′ ∈ dZ⩾1c−.
To prove (a), it suffices to show dc+ is a Betti element of N . However, this follows
from Proposition 3.4 and the fact that dc+ = dc− ̸= 0 by Propositions 5.2(c) and 5.3
since FN is not on the boundary of C(m; A).

Having proven part (a), let p ∈ N denote the unique inner Betti element and write
ZN (p) = {z, z′}. Part (b) then follows from part (a), since any two factorizations of a
given non-nil element q ∈ N differ by an integer multiple of z−z′, and Proposition 3.4
ensures that if a factorization is preceded by z or z′, then performing the trade z ∼ z′

or z′ ∼ z, respectively, results in another factorization of q. Lastly, for any x ∈ F ◦
N ′ ,

the factorizations of any non-nil q ∈ N are totally ordered by their dot product with x
(in fact, they form an arithmetic sequence with step size (z − z′) · x), so since N ′ is
staircase it must be as prescribed in part (c). □

Remarks 5.6. Theorem 5.5 identifies a necessary condition for an outer Betti ele-
ment z of N to be irredundant. Indeed, one may naïvely apply steps (4) and (5) for z
to obtain hypothetical factorizations of each element of Zm. If these do not form a
staircase (e.g., some non-nil p ∈ N and z′ ∈ ZN (p) has z′ − ei /∈ ZN (p − ai) for
some z′

i > 0), then z must be redundant. For example, in Example 3.6, the Kunz
nilsemigroup N corresponding to the face in chamber (e) has outer Betti element
z = (1, 2, 0) with z = 5, but applying Theorem 5.5 would move 5, 6, 7, and 8 to new
locations in the Kunz poset, leave 6 “dangling” over the outer Betti element (2, 0, 0).
Geometrically, this amounts to crossing the hyperplane x1 + 2x2 = 2x9 without first
entering chamber (d).

Note that the condition identified in the previous paragraph is not sufficient. In-
deed, consider the Kunz nilsemigroup N in Example 4.4, and let N ′ denote the nilsemi-
group obtained from N by replacing ZN ′(3) = {(0, 0, 1, 1)}. One may readily check
that N is Kunz and has an outer Betti element z above 1 and 2 with z = 3, but
applying Theorem 5.5 to z yields the modular nilsemigroup N , which is not Kunz.

Remarks 5.7. Under a different viewpoint, one may realize the fan G(m; A) as a
portion of the Gröbner fan of a certain lattice ideal. We defer the reader to [29] for
definitions of Gröbner bases and Gröbner fans, and [20] for definition of lattices and
lattice ideals.

Given m and A, consider the lattice ideal

IL = ⟨xa − xb : a − b ∈ L⟩ ⊆ k[x1, . . . , xk]
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for the rank k, index m lattice

L = {(z1, . . . , zk) ∈ Zk : a1z1 + · · · + akzk ∈ mZ}.

Each face in G(m; A) is a face of the Gröbner fan of IL. Indeed, by [20, Corollary 7.29]
and the discussion preceding it, the initial ideal corresponding to each chamber F of
the Gröbner fan of IL contains precisely the monomials whose exponent vectors are
not “optimal” with respect to a vector x ∈ F ◦; upon unraveling definitions, this result
is encoded in Proposition 3.4.

Gröbner walks, as they are called [12], allow one to compute the Gröbner fan of
a given polynomial ideal in a similar fashion to the algorithm at the start of this
section. The manuscript [11] discusses a Gröbner walk for a general ideal I, and [16]
concerns the special case where I is toric (i.e., I is the lattice ideal of a saturated
lattice). Note that the lattice ideal IL above is not toric, so the results in [16] cannot
be directly applied in our setting, though some of our results have analogs in [16]. For
instance, the necessary condition in Remark 5.6 is reminiscent of [16, Theorem 3.6].
Additionally, the lattice L defined above has the added property that each coset of L
in Zk naturally corresponds to an element of Zm, which provides the foundation of
the nilsemigroup viewpoint used throughout this paper.

6. Examples and applications
6.1. Applications to open problems. We begin with a proof of [9, Conjec-
ture 7.3]. Following the notation from [9], given a numerical semigroup S, we write
η(S) = |ρ|, where ρ is any minimal presentation of S.

Definition 6.1. Suppose N and N ′ are Kunz nilsemigroups. We say N is a refinement
of N ′ if for each non-nil i ∈ N , we have ZN ′(i) ⊆ ZN (i).

Theorem 6.2. Any Kunz nilsemigroup N is a refinement of some staircase Kunz
nilsemigroup N ′ with identical atom set. Moreover, if N and N ′ have β and β′ outer
Betti elements, respectively, and N has minimal presentation ρ, then |ρ| + β ⩽ β′.
In particular, if S and S′ are numerical semigroups whose Kunz nilsemigroups are N
and N ′, respectively, then η(S) ⩽ η(S′).

Proof. Let m = |N |, and let F ⊆ Cm denote the face whose Kunz nilsemigroup is N .
By Theorem 3.8, G(m; A) is pure, so there exists F ′ ⊆ Cm with F ⊆ F ′ whose Kunz
nilsemigroup N ′ is staircase. This means N is a refinement of N ′, and moreover, if
we write ZN ′(i) = {z}, then for any y ∈ (F ′)◦, z is the element of ZN (i) whose dot
product with p(y) is minimal.

Now, let B be an outer Betti element of N . Fix y ∈ (F ′)◦, and let z ∈ B denote
the element of B minimizing z · p(y). We claim {z} is an outer Betti element of N ′.
Indeed, for each i ∈ supp(z), we have (z − ei) ∈ B − ei = ZN (p) for some p ∈ N .
By the minimality of z, z − ei has minimal dot product with p(y) among elements of
ZN (p), so ZN ′(p) = {z − ei}. This proves the claim.

Next, fix a Betti element i ∈ N . Let ZN ′(i) = {z}, and let Z ⊆ ZN (i) denote
a connected component of ∇i not containing z. By an identical argument to the
preceding paragraph, {z′} is an outer Betti element of N ′ for some z′ ∈ Z. Moreover,
z′ cannot lie in any outer Betti element of N since it lies in ZN (i).

We now conclude the desired inequalities hold by Theorem 2.1. □

Remarks 6.3. It remains an interesting open question to bound η(S) in terms of m(S)
and e(S). This was posed in [9, Conjecture 7.2], and recent progress and a survey can
be found in [7, 22, 21]. Theorem 6.2 provides an avenue for further headway.
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A numerical semigroup S with 4 generators can have η(S) arbitrarily large; see [28]
for examples and references. As such, if k = 3, there is no upper bound to the
number of outer Betti elements a staircase Kunz nilsemigroup N can have. However,
as Corollary 6.5 indicates, FN can have at most 6 facets in this case.

Theorem 6.4. If N is a staircase Kunz nilsemigroup, k = 3, and z, z′ ∈ Z3
⩾0 are outer

Betti elements of N with supp(z) = supp(z′) = {1, 2}, then z or z′ is redundant.

Proof. Let z = (z1, z2, 0), z′ = (z′
1, z′

2, 0), (0, 0, z3) ∈ ZN (z), and (0, 0, z′
3) ∈ ZN (z′).

After relabeling as necessary, we may assume
z1 > z′

1, z2 < z′
2, and z3 > z′

3.

We will show that z′ is redundant. Let w = (z1, z2, −z3), w′ = (z′
1, z′

2, −z′
3), and

v = w′ − w = (z′
1 − z1, z′

2 − z2, z3 − z′
3).

By the previous inequalities, we can decompose v = v+ − v− where
v+ = (0, z′

2 − z2, z3 − z′
3) ∈ Z3

⩾0 and v− = (z1 − z′
1, 0, 0) ∈ Z3

⩾0.

Now, since z is a factorization of a non-nil element of N , so is z1e1, and thus
ZN (v+) = {v−} and v+ ∈ ZN (∞)

since v+ = v−. This means v+ = b + ℓ, where b is an outer Betti element and
ℓ ∈ Z3

⩾0. Clearly supp(b) ⊆ {2, 3}, and since v+
2 e2 and v+

3 e3 are factorizations of
non-nil elements of N , we in fact have supp(b) = {2, 3}. As such, ZN (b) = {b1e1} for
some b1 ⩾ 0. Thus,

w′ = w + v+ − v− = w + (−b1, b2, b3) + ℓ + (b1e1 − v−).
If b1e1 − v− ∈ Z3

⩾0, then we are done by the Farkas lemma since FN ⊆ R3
⩾0. As such,

suppose z1 − z′
1 − b1 > 0. Computing equivalence classes modulo m, we have

(z1 − z1 − b1)p1 = v− − b = v+ − b = ℓ,

and since (z1 − z1 − b1)e1 is a factorization of a non-nil element of N , we have
ℓ ∈ ZN (∞). Proceeding as above, write ℓ = b′ + ℓ′, where b′ is an outer Betti element
and ℓ′ ∈ Z3

⩾0. By the same argument, supp(b′) = {2, 3} and ZN (b′) = {b′
1e1}, so

w′ = w + (−b1, b2, b3) + (−b′
1, b′

2, b′
3) + ℓ′ + (b1e1 + b′

1e1 − v−).
We can continue applying this argument until the rightmost parenthetical lies in Z3

⩾0,
and this process will indeed terminate since b2, b3, b′

2, b′
3, . . . > 0. □

Corollary 6.5. If k = 3, then no two irredundant outer Betti elements of a staircase
Kunz nilsemigroup N have identical support. In particular, FN has at most 6 facets.

Proof. Any outer Betti element b of N has nonempty support. If supp(b) = {1, 2, 3}
then b is redundant by Proposition 5.2. Additionally, there are exactly three outer
Betti elements of N with singleton support, none of which coincide, and the remaining
cases are handled by Theorem 6.4 after appropriate permutation of indices. □

Remarks 6.6. Resuming notation and terminology from Remark 5.7, if L ⊆ Z3 is any
lattice with Z3/L ∼= Zm, then Corollary 6.5 implies each chamber of the Gröbner fan
of the lattice ideal IL has at most 6 facets. Indeed, choosing (v1, v2, v3) ∈ Z3 whose
image generates Z3/L, we have

L = {(x1, x2, x3) ∈ Z3 : v1x1 + v2x2 + v3x3 ∈ mZ}.

As such, each chamber F of the Gröbner fan of IL, there are two possibilities:
• F ∈ G(m; v1, v2, v3), and thus has at most 6 facets by Corollary 6.5; or
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• the initial ideal of IL corresponding to F contains a variable, and thus has
at most 4 minimal generators, since its staircase has at most one minimal
generator with non-singleton support by Proposition 5.2.

According to [30, Conjecture 6.1], if L is a saturated d-dimensional lattice, then there
exists a bound, in terms of d, on the number of facets of any chamber of the Gröbner
fan of the toric ideal IL. Though some progress has been made on this conjecture [15],
a proof remains elusive, even in the case d = 3. Given the above conclusions, we pose
the following generalization of this question.

Question 6.7. Does there exist a function ϕ : Z → Z such that for any d-dimensional
lattice L, each chamber of the Gröbner fan of IL has at most ϕ(d) facets?

We state the following conjecture, which has been verified computations for m ⩽ 42,
albeit with some reservation: [30, Conjecture 6.2] claimed the same was true for the
chambers in the Gröbner fan of any toric ideal defined by a 3-dimensional lattice, but
a counterexample was located soon thereafter [14].

Conjecture 6.8. If k = 3 and N is staircase and Kunz, then FN has at most 4
facets.

6.2. Embedding Dimension 3. Throughout this subsection, let k = 2. In what
follows, we characterize the faces of Cm containing embedding dimension 3 numerical
semigroups by classifying the possible “shapes” of the Kunz nilsemigroup N of such a
face. Any embedding dimension 3 numerical semigroup is either complete intersection
with 2 minimal trades, or not complete intersection with 3 minimal trades; for more
on this dichotomy, see [26, Chapter 10]. As we will show, the Kunz nilsemigroup N
comes in 3 varieties; 2 in the former category, and 1 in the latter category.

We begin with the case where N is staircase. By Proposition 5.2, N has either 2
or 3 outer Betti elements since at most one can have full support. As such, the Kunz
poset of N can have one of two staircase “shapes”.

• If N has 2 outer Betti elements (a, 0) and (0, c), then m = ac and its Kunz
poset forms an a × c diamond. In this case, the shape of N is (a, c) ∈ Z2

⩾2.
Numerical semigroups with Kunz nilsemigroup N are complete intersection.

• If N has 3 outer Betti elements, then its Kunz poset forms a “V” with full
support outer Betti element (a, c), and its other two outer Betti elements
have the form (a + b, 0) and (0, c + d). In this case, we say N has shape
(a, b, c, d) ∈ Z4

⩾1, and

m = (a + b)(c + d) − bd.

Numerical semigroups with Kunz nilsemigroup N are not complete intersec-
tion, but are uniquely presented and possess 3 minimal trades [26, Chapter 10].

Example 6.9. The three posets from Figure 2 are all staircase posets, and their shapes
are (2, 0, 10, 0), (2, 2, 3, 4) and (2, 4, 3, 1), respectively.

The following result implies that there exists a Kunz nilsemigroup N with a given
staircase shape if and only if there exists a “filling” with the elements of Zm. This
amounts to choosing p1, p2 ∈ Zm so as to “fill” the given staircase shape. One could
even visualize the staircase of N as a Young tableaux, wherein each box (i, j) is filled
with p ∈ Zm if ZN (p) = {(i, j)}.

Proposition 6.10. Any modular staircase nilsemigroup N with 2 atoms is Kunz.

Proof. If N has shape (a, c), then p1 has order a or p2 has order c, as otherwise
Bézout’s identity yields a full support outer Betti element. Up to symmetry, assume
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p2 has order c. The Betti inequalities thus have the form

ax1 ⩾ kx2 and cx2 ⩾ 0

where ZN (ap1) = {(0, k)}. The point (x1, x2) = (c, a) satisfies both strictly.
If N has shape (a, b, c, d), then the irredundant outer Betti inequalities are

(a + b)x1 > k2x2, and (c + d)x2 > k1x2,

for some k2 < c + d and k1 < a + b, and the point (x1, x2) = (c + d, a + b) satisfies
both strictly. In either case, Theorem 4.9 completes the proof. □

For any (a, c) ∈ Z⩾2, there exists a Kunz nilsemigroup with shape (a, c); one may
choose, for instance, p1 = 1 and p2 = a, as then each coset of the subgroup ⟨a⟩ ⊆ Zm

forms a “row” of the staircase. More generally, up to symmetry, a choice of p1 and p2
fills the staircase shape if and only if p2 with order c and p1 generates Zm/⟨a⟩.

Given a staircase shape (a, b, c, d), it follows from [10, Section 4] that a choice of
p1 and p2 fills the staircase if and only the following 4 conditions hold:

(a + b)p1 ≡ dp2 mod m, (1)
(c + d)p2 ≡ bp1 mod m, (2)
ap1 + cp2 ≡ 0 mod m, (3)

gcd(p1, p2, m) = 1. (4)

They cite the first author’s PhD dissertation for a proof that such p1, p2 exist if and
only if gcd(a, b, c, d) = 1. We were not able to find a readable version of this, so we’ve
elected to include a short proof for completeness.

Theorem 6.11. There exists a Kunz nilsemigroup with 3 outer Betti elements and
shape (a, b, c, d) if and only if gcd(a, b, c, d) = 1.

Proof. Suppose that gcd(a, b, c, d) = 1, and let f : Z2
m → Z2

m be the group homomor-
phism given by the matrix (

a + b −d
a c

)
.

We claim that ker(f) ∼= Zm, and that any generator (p1, p2) of ker(f) satisfies (1)−(4).
To see that ker(f) ∼= Zm, we use the fact that ker(f) ∼= ker(A), where

A =
(

1 0
0 m

)
is the Smith normal form [23] of f since gcd(a, a+b, −d, c) = 1 and (a+b)c+ad = m.
Clearly ker(A) is generated by (0, 1), and thus isomorphic to Zm.

Now, suppose (p1, p2) generate ker(f). By construction, both (1) and (3) are sat-
isfied, and subtracting (1) from (3) yields (2). If h1 = gcd(p1, m) or h2 = gcd(p2, m)
equal 1, then (4) is satisfied and we are done. Otherwise, suppose both h1, h2 > 1, and
set h = gcd(h1, h2). Notice m

h1
p1 = m

h2
p2 = 0, but this means that m

h (p1, p2) = (0, 0).
Since (p1, p2) generate ker(f), we must have h = 1, as desired.

Conversely, if gcd(a, b, c, d) = g > 1, then the Smith normal form of f is(
g 0
0 m

)
,

so ker(f) ∼= Zm/g and thus for any (p1, p2) ∈ ker f , we have m
g (p1, p2) = 0. This means

that p1, p2 fail to satisfy condition (4). □
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Figure 5. Cup poset for d = 4, alongside the posets of three of its rays.

This leaves the case where N is not staircase, i.e., dim FN = 1. By Theorem 3.8,
this occurs when FN is a ray on the shared boundary of two faces of G(m; A) of
the form FN ′ with N ′ staircase. Corollary 6.12 below records all such rays, at which
point Theorem 5.5 identifies the structure of N . Any numerical semigroup with Kunz
nilsemigroup N is complete intersection since there is a trade involving 2 generators.

Corollary 6.12. If N is staircase and has shape (a, c) and p2 = a, then FN has rays

r⃗1 = (1, 0) and r⃗2 = (k, c),

where ZN (ap1) = {(0, k)}. If N has shape (a, b, c, d), then FN has rays

r⃗1 = (d, a + b) and r⃗2 = (c + d, b).

Proof. Apply Theorem 4.8 and the proofs of Proposition 6.10 and Theorem 6.11. □

The rays of the face F ⊆ Cm with p(F ) = FN in the latter case of Corollary 6.12 are

r⃗1 = (dx1 + (a + b)y1, . . . , dxm−1 + (a + b)ym−1)
r⃗2 = ((c + d)x1 + by1, . . . , (c + d)xm−1 + bym−1)

where (xp, yp) is the unique factorization for each nonzero non-nil p ∈ N . A similar
construction can be done in the former case in Corollary 6.12, though this case is also
addressed in [2, Theorem 4.6].

6.3. Cup Posets. In [5], the authors compute the number of rays of Cm up to m = 21.
This data suggests the number of rays of Cm grows exponentially in m. In this section,
we explicitly construct a family of faces whose number of rays is exponential in m.

For this subsection, fix d ⩾ 3, let m = 3(d − 1), and consider the modular nilsemi-
group N with A = {1, d, d + 1, . . . m − d, m − 1} whose divisibility poset of non-nil
elements has

1 ⋖ 2 ⋖ · · · ⋖ d − 1 and m − 1 ⋖ m − 2 ⋖ · · · ⋖ m − (d − 1)

as its cover relations (we call this a cup poset; d = 4 is depicted on the left in
Figure 5). It is not hard to show dim FN = d and the point (1, d−1, . . . , d−1, 1) ∈ F ◦

N

satisfies all Betti inequalities of N strictly. In particular, N is a Kunz nilsemigroup
by Theorem 4.9.

Proposition 6.13. We have x ∈ FN if and only if y = q(x) satisfies

dy1 ⩾ yd, dym−1 ⩾ ym−d, y1 + yk ⩾ yk+1, and ym−1 + yk ⩾ yk−1

for d ⩽ k ⩽ m − d.

Proof. Each inequality above is a Betti inequality of N , so by Theorem 4.8 it suffices
to show the remaining outer Betti inequalities are redundant. Each such outer Betti
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inequality has the form yi + yj ⩾ yi+j , where d ⩽ i ⩽ j ⩽ m − d and i + j ̸= 0. Notice

yi + yj = yi + yj + (i − (d − 1))ym−1 − (i − (d − 1))ym−1

⩾ (d − 1)y1 + yj − (i − (d − 1))ym−1

⩾
(
(d − 1) − (2(d − 1) − j)

)
y1 + (d − 1)ym−1 − (i − (d − 1))ym−1

= (j − (d − 1))y1 + (2(d − 1) − i)ym−1

and

yi+j =
{

(3(d − 1) − (i + j))ym−1 if i + j > m − d;
(i + j − 3(d − 1))y1 if i + j < d.

In either case the corresponding coefficient in (j − (d − 1))y1 + (2(d − 1) − i)ym−1 is
larger than yi,j , which means that yi + yj ⩾ yi+j . □

Proposition 6.14. There is an invertible linear transformation H that sends FN to
the cone over a (d − 1)-cube.

Proof. For x ∈ FN , the inequalities in Proposition 6.13 are

dx1 − x2 ⩾ 0, −(d − 1)x1 + x2 + xd ⩾ 0,

x1 + xk − xk+1 ⩾ 0, −xk + xk+1 + xd ⩾ 0,

x1 + xd−1 − (d − 1)xd ⩾ 0, −xd−1 + dxd ⩾ 0,

where k ∈ {2, . . . d − 2}. Let H1, H2 ∈ R(d−1)×d denote the matrices corresponding
to the first and second columns of inequalities, respectively. Every row of the matrix
J = H1 + H2 equals j = e1 + ed. Recall that the matrix defining the cone over the
standard (d − 1)-cube is (

Id−1 0
−Id−1 1

)
,

where 1 is the column vector of all 1’s. Letting H =
(

H1
j

)
, one readily checks

(
Id−1 0

−Id−1 1

)
H =

(
H1

−H1 + J

)
=

(
H1
H2

)
,

which completes the proof. □

Remarks 6.15. The Kunz posets of the rays of FN have an interesting combinato-
rial structure. Picking a vertex of a cube (and thus a ray of FN ) is equivalent to
making a binary choice for each pair of opposite faces [32, Chapter 7]. Following the
map H from Proposition 6.14, each pair of opposing faces correspond to choosing
either xi + x1 = xi+1 or xi = xi+1 +xm−1 for each i = d−1, . . . , 2(d−1)−1, yielding
the Kunz poset relation i ≺ i + 1 or i + 1 ≺ i for each i. Three examples are depicted
in Figure 5; we call these mountain range posets.

One may use the gluing constructions in [2, Section 6] to construct faces of Cm

whose cross sections are simplicial. This raises the following.

Question 6.16. Is there a family of faces of Cm whose cross sections are cones over
cross polytopes?
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