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Centraliser algebras of monomial
representations and applications in

combinatorics

Santiago Barrera Acevedo, Padraig Ó Catháin, Heiko
Dietrich & Ronan Egan

Abstract Centraliser algebras of monomial representations of finite groups may be constructed
and studied using methods similar to those employed in the study of permutation groups.
Guided by results of D. G. Higman and others, we give an explicit construction for a basis of
the centraliser algebra of a monomial representation. The character table of this algebra is then
constructed via character sums over double cosets. We locate the theory of group-developed
and cocyclic-developed Hadamard matrices within this framework. We apply Gröbner bases to
produce a new classification of highly symmetric complex Hadamard matrices.

1. Introduction
Let Ω be a finite set, k ą 0 an integer, and B a collection of k-subsets of Ω. A
permutation g P SympΩq acts on the set of all k-sets in the natural way: B Ď Ω
is mapped to Bg “ tbg | b P Bu. The automorphism group of B is the largest
subgroup G ď SympΩq that satisfies Bg P B for all B P B and g P G. Taking k “ 2,
one recovers the automorphism group of a graph, while the automorphism groups
of block designs and finite geometries arise by imposing suitable conditions on B.
The interplay between algebraic properties of the group G and structural properties
of the underlying combinatorial structure is one of the classical topics in algebraic
combinatorics. Graphs, designs, and geometries are described by t0, 1u-matrices, and
so it is natural to consider groups of automorphisms that are permutation groups.
Our work here can be seen as a generalisation of this theory to combinatorial objects
defined over larger alphabets.

To provide a coherent narrative throughout the paper we focus on nˆn (complex)
Hadamard matrices. These have complex entries of norm 1 and satisfy MM˚ “ nIn
where M˚ denotes the conjugate-transpose of M and In is the n ˆ n identity ma-
trix. Hadamard matrices find applications in combinatorics, signal processing, and
quantum information theory; see e.g. Horadam’s book [34]. In this paper, we combine
combinatorics, representation theory, and computational algebra to construct new
Hadamard matrices in the centraliser algebra of a suitable group representation.

A matrix is monomial if it contains a unique non-zero entry in each row and column.
The automorphism group of a Hadamard matrix M is defined to be the group G of all
pairs of monomial matrices pP,Qq such that PMQ˚ “ M . Since M is invertible, we
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see that P “ MQM´1, so the projections π1pP,Qq “ P and π2pP,Qq “ Q are equiv-
alent representations that satisfy π1pgqM “ Mπ2pgq for all g P G, and so M belongs
to the intertwiner of π1 and π2. In the special case that M satisfies πpgqM “ Mπpgq

for all g P G and a representation π, the matrix M belongs to the centraliser of π.
While an intertwiner carries the structure of a C-vector space, the centraliser is nat-
urally a C-algebra. We show how classical results on associative algebras, induced
representations, and character theory of finite groups can be combined to give de-
tailed information about a centraliser algebra, see Section 2.2 for further details. In
particular, the eigenvalues of a commutative centraliser algebra are expressed as char-
acter sums of G. Since Hadamard matrices are characterised by norm conditions on
their entries and eigenvalues, the property of acting by monomial automorphisms on a
Hadamard matrix can be reduced to the computation of character sums over certain
double cosets of G and the solution of a system of norm equations, see Sections 5
and 6 for details.

Our results do in fact generalise to other matrices that are determined by entry
and eigenvalue conditions, e.g. weighing matrices, equiangular lines, mutually unbi-
ased bases. The restriction to Hadamard matrices illustrates the complexities of the
generalisation from t0, 1u-matrices to general complex entries. Historically, the natu-
ral measures of complexity for Hadamard matrices were the size of the matrix and the
size of the set of entries: thus matrices with kth roots of unity as entries were stud-
ied extensively. In this paper we propose an alternative measure of complexity: the
dimension of a centraliser algebra containing the Hadamard matrix M . Our construc-
tions have locally determined entries: by Proposition 3.2, a fixed number of entries
in each row of M are related to any given entry by explicit scalar factors. Further-
more the eigenvalues of M are expressed as linear combinations of character sums,
see Proposition 5.1 and the subsequent discussion. While the computations required
are too extensive to carry out by hand except for the smallest cases, advances in com-
putational algebra make these methods practical for matrices with several hundred
rows.

1.1. Main Results. We outline the structure of this work and, at the same time,
highlight some main results. In Section 2, we introduce notation and discuss prelim-
inary results. In Section 3, we provide a description of the centraliser algebra of a
monomial representation that allows for effective computations.

Our results in Section 4.1 concern Hadamard matrices invariant under a group of
permutations that acts regularly. More precisely, let G be a group of order n and
let f : G Ñ C be a function. Relative to a fixed ordering of the elements of G, de-
fine the matrix Mf “ rfpgh´1qsg,hPG. Such a matrix is often called group-developed
or group-invariant in the literature. In Theorem 4.2 we show that a matrix M is
group-developed over a finite group G if and only if there exist monomial matrices
P,Q such that PMQ˚ is in the centraliser algebra of the right regular representa-
tion of G. Results of this type are well-known, and real Hadamard matrices that are
group-developed are equivalent to Menon difference sets, [5, 48]. Our main result in
Section 4.2 is to locate the cocyclic Hadamard matrices within a similar framework.
If ψ P Z2pG,Cˆq is a 2-cocycle then Mψ “ rψpg, hqsg,hPG is a (strictly) cocyclic-
developed matrix, [34, 16]. In Theorem 4.4 we show that a matrix is cocyclic-developed
over G if and only if the matrix belongs to the centraliser algebra of a monomial rep-
resentation associated with the central extension of G determined by ψ. One sees that
group-developed matrices are cocyclic-developed, and correspond to splitting exten-
sions. Group development involves permutation representations and linear combina-
tions of t0, 1u-matrices. Cocyclic development involves monomial matrices, though it
can be related to the group-developed case via group cohomology.
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One goal of this paper is to explain how complex Hadamard matrices with suitable
symmetry assumptions may be constructed in the centraliser algebra of a monomial
representation. Section 4 deals with regular representations, while Section 5 deals with
general representations. The eigenvalues of a matrix that is group-developed over an
abelian group are expressible in terms of its characters: continuing the notation of the
above paragraph, the matrix Mf can be decomposed as Mf “

ř

gPG fpgqLg where
each Lg “ rδxy

´1

g sx,yPG; here δ is the usual Kronecker delta. With this definition,
ρ : g Ñ Lg is the left regular representation of G. Since G is finite, each Lg is diag-
onalisable over C; since G is abelian, all the matrices Lg commute, hence they are
simultaneously diagonalisable. It follows that Mf lies in the centraliser algebra of ρ
and that the eigenvalues of Mf are the Fourier coefficients of f , that is,

ř

gPG fpgqχpgq

where χ is a (linear) character χ of G. It is known that a complex n ˆ n matrix is
complex Hadamard if and only if all entries have unit norm and all eigenvalues have
complex norm

?
n, see Lemma 2.2. Thus, the matrix Mf is complex Hadamard if and

only if the function f : G Ñ C has all values of norm 1 and all of its Fourier coefficients
are of norm

?
n. As mentioned earlier, this case is considered further in Section 4.1. If

the group G is nonabelian, then in general one no longer obtains the eigenvalues of Mf

as explicit functions of the characters of G. However, if the monomial representation
is multiplicity-free, there exist explicit formulae for the eigenvalues of Mf in terms of
character sums over certain double cosets, see Proposition 5.1.

The construction of complex Hadamard matrices in the centraliser algebra of a
monomial group requires several computational steps. First, given a primitive permu-
tation group, we construct all (perfect) monomial groups supported on this group:
under suitable restrictions, this is solved by computing the Schur multiplier. Once we
have obtained a monomial group, we construct the character table of the centraliser
algebra using routines that will be described in Section 5. Finally, to construct com-
plex Hadamard matrices, we solve a linear system Tα “ λ, where T is the character
table of the centraliser algebra, α is a vector of unknowns (essentially the entries of
the resulting matrix) which must have norm 1, and λ is a vector of unknowns (the
eigenvalues of the matrix) which must have norm

?
n. In essence, this is a system of

quadratic equations. We use Gröbner basis routines to construct all solutions. Pur-
sued systematically, this allows us to classify all Hadamard matrices under appropriate
symmetry assumptions; we discuss the details in Section 6. To illustrate this approach,
the paper concludes in Section 7 with computer constructions of complex Hadamard
matrices that are invariant under a monomial cover of a primitive permutation group
of degree at most 15 and rank 3.

Related work. Centraliser algebras of induced representations are a well-studied
topic in group theory, and for background information we refer particularly to work of
Higman [31, 32, 30, 33], Müller [44], and the textbook of Curtis and Reiner [14]. The
theory of cocyclic development has been extensively surveyed; see the monographs of
Horadam and de Launey and Flannery, [34, 16]. A cohomological approach to some
of the results in this paper has been developed independently by Goldberger and
collaborators, see [24, 23, 4].

2. Preliminaries
Unless mentioned otherwise, all groups are finite.

2.1. Group actions. We refer to [17] for background reading on this section and
recall notation here. Let Ω be a finite set and denote by SympΩq the symmetric group
on Ω. A group G acts on Ω if there is a homomorphism π : G Ñ SympΩq; in this
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case π is called a permutation representation of G, and its image is a permutation
group on Ω. We denote the image of ω P Ω under πpgq by ω.g “ ω.πpgq. The stabiliser
of ω P Ω is Gω “ tg P G : ω.g “ ωu, and the G-orbit of ω P Ω is ω.G “ tω.g : g P Gu.

The action is faithful if kerπ is trivial. The G-orbits form a partition of Ω. If Ω
forms a single G-orbit then the action is transitive; it is n-transitive if the induced
action on n-tuples over Ω with pairwise distinct entries is transitive. The action is
semiregular (or free) if every stabiliser is trivial; and regular if it is semiregular and
transitive. Permutation actions of G on sets Ω1 and Ω2 are equivalent if there exists a
bijection ϕ : Ω1 Ñ Ω2 such that ϕpωq.g “ ϕpω.gq for all ω P Ω1 and g P G. There is a
bijection between equivalence classes of transitive G-actions and conjugacy classes of
subgroups of G. Specifically, a transitive G-action on Ω is equivalent to the G-action
on right-cosets of a point stabiliser Gω via right multiplication.

Let G be transitive on Ω, and let g P G act on Ω ˆ Ω by pα, βq.g “ pα.g, β.gq. An
orbital of G is a G-orbit on Ω ˆ Ω, and the rank of G is the number of orbitals. An
orbital O is self-paired if pα, βq P O whenever pβ, αq P O. Since G is transitive on Ω,
we can fix ω P Ω such that every pα, βq P ΩˆΩ can be written as pα, βq “ pω.g1, ω.g2q

for suitable g1, g2 P G. As a result, there is a bijection between the orbitals of G
and the orbits of Gω on Ω given by the map pω, ω.gq.G ÞÑ pω.gq.Gω. The Gω-orbits
on Ω are suborbits, and their cardinalities are the subdegrees of G; the latter are
independent of ω. In addition, there is a bijection between the orbitals of G and
the Gω-double cosets of G given by the maps pω.g1, ω.g2q.G ÞÑ Gωg2g

´1
1 Gω and

GωgGω ÞÑ pω, ω.gq.G; for details and proofs see [53, Chapter 3]. Let H “ Gω; the
orbital of G corresponding to HgH is denoted OHgH and has elements pω.k, ω.gkq for
k P G. For a set S, we define δSpxq to be 1 if x P S, and 0 otherwise; the Kronecker
delta δyx is 1 if x “ y, and 0 otherwise.

2.2. C-algebras and representation theory. Let MnpCq be the algebra of nˆn
matrices over C, and let A be a C–algebra. An n-dimensional representation of A
is an algebra homomorphism ρ : A Ñ MnpCq. The induced A-module structure on
the n–dimensional row space Cn is defined by v.a “ vρpaq for v P Cn and a P A.
A representation is reducible if there exists a nontrivial submodule, and irreducible
otherwise. If the associated A–module decomposes as a direct sum of irreducible
submodules, then the representation is completely reducible. The character of ρ is
the trace map χρ : A Ñ C, a ÞÑ Trpρpaqq; it is called irreducible if and only if ρ is
irreducible.

By Maschke’s Theorem [38, Theorem 1.9], the complex group algebra CrGs is com-
pletely reducible. If ρ “ ρ1`. . .`ρr is the sum of irreducible representations ρ1, . . . , ρr,
then each ρi is an irreducible constituent of ρ, and r is the rank of ρ. A group algebra
representation ρ : CrGs Ñ MnpCq restricts to a group homomorphism G Ñ GLnpCq

into the group of invertible complex nˆn matrices; this restriction is an n-dimensional
(complex) representation of G. The irreducible submodules of a representation of G
coincide with those of CrGs. The number of nonisomorphic irreducible representations
of G is equal to the number of conjugacy classes in G. The centraliser algebra Cpρq

of ρ is the subalgebra of MnpCq consisting of all matrices that commute with every
element of ρpGq. Schur’s Lemma [38, Lemma 1.5] states that the centraliser of an ir-
reducible representation consists of scalar matrices. A corollary of this is that Cpρq is
commutative if and only if each irreducible constituent of ρ occurs with multiplicity 1,
see [49, Theorem 1.7.8].

2.3. Monomial matrices. A matrix M P MnpCq is monomial if it has exactly one
nonzero element per row and column. A monomial matrix with entries in t0, 1u is a
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permutation matrix. A matrix M is monomial if and only if M “ PD for a permuta-
tion matrix P and diagonal matrix D. A permutation representation π : G Ñ SympΩq,
over a finite set Ω, yields a representation ρ : G Ñ GLnpCq of permutation matrices.
We also refer to ρ as a permutation representation; it can be extended to a group
algebra representation ρ : CrGs Ñ MnpCq. A representation ρ is monomial if each
ρpgq factorises as ρpgq “ PgDg for a permutation matrix Pg and diagonal matrix Dg.
The associated permutation representation is defined by πρpgq “ Pg. By abuse of no-
tation, we say a monomial representation has a permutation group property P (such
as transitive, primitive, etc) if the associated permutation representation has it.

The set of nˆn monomial matrices forms a group under matrix multiplication, and
the direct product of this group with itself acts on MnpCq via pP,Qq ¨ R “ PRQ˚.
Two matrices are equivalent if they lie in the same orbit, and the automorphism
group AutpRq of R P MnpCq is the stabiliser of R under this action. A subgroup
U ď AutpRq acts regularly (transitively) if the induced actions on rows and columns
are regular (transitive). The strong automorphism group SAutpRq is the subgroup of
all pP, P q P AutpRq.

2.4. Gröbner bases. By Hilbert’s Nullstellensatz [12, Section 4.1], there is a one-to-
one correspondence between ideals in a polynomial ring Crx1, x2, . . . , xns and algebraic
varieties in Cn. This correspondence is fundamental in algebraic geometry, as it allows
the translation of geometric questions into questions about sets of polynomials, for
which algorithmic methods are often available. Any serious discussion of these topics
would take us far afield from the subject of this paper, we refer the reader to standard
references such as Shafarevich [50] or Cox, Little & O’Shea [12]. A Gröbner basis for an
ideal is defined with respect to an ordering on the monomials of the polynomial ring,
and facilitates computation with the ideal. In particular, the irreducible components
of the ideal can generally be read from the Gröbner basis without difficulty. Methods
to compute Gröbner bases are provided by standard computational algebra systems,
such as GAP [25] and Magma [6]. We will be exclusively interested in ideals generated
by polynomials of degree 2 such that every indeterminate appears with degree at
most 1, corresponding to solutions of linear systems on which norm conditions are
imposed. The next example illustrates our use of Gröbner bases.

Example 2.1. Let

M “

¨

˚

˚

˝

α1 α2 α3 α4
α2 α1 α4 α3
α3 α4 α1 α2
α4 α3 α2 α1

˛

‹

‹

‚

and T “

¨

˚

˚

˝

1 1 1 1
1 ´1 1 ´1
1 1 ´1 ´1
1 ´1 ´1 1

˛

‹

‹

‚

,

and suppose we want to determine all complex Hadamard matrices of the form M
where α1, . . . , α4 are complex units. Note that the matrix M is group-invariant under
the Klein four-group C2

2 . Here we note without proof that T is the character table
of the associated centraliser algebra and the eigenvalues λ1, . . . , λ4 of M are given
by the linear system Tα “ λ, where α “ pα1, . . . , α4q⊺ and λ “ pλ1, . . . , λ4q⊺; the
latter is proved in Section 4.1. Up to Hadamard equivalence, α1 can be set to 1.
Lemma 2.2 shows that the set of tuples p1, α2, α3, α4q P C4 for which M is complex
Hadamard is defined by the norm equations αiα˚

i “ 1 for i “ 2, 3, 4 and λjλ˚
j “ 2 for

j “ 1, . . . , 4. Since complex conjugation is not C-linear, we introduce variables αic and
λjc denoting the complex conjugates of αi and λj respectively. Thus, the polynomials
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in R “ Qrα2, α2c, α3, α3c, α4, α4cs describing these conditions are

P2 “ α2α2c ´ 1 P3 “ α3α3c ´ 1 P4 “ α4α4c ´ 1
Q1 “ p1 ` α2 ` α3 ` α4qp1 ` α2c ` α3c ` α4cq ´ 2
Q2 “ p1 ´ α2 ` α3 ´ α4qp1 ´ α2c ` α3c ´ α4cq ´ 2
Q3 “ p1 ` α2 ´ α3 ´ α4qp1 ` α2c ´ α3c ´ α4cq ´ 2
Q4 “ p1 ´ α2 ´ α3 ` α4qp1 ´ α2c ´ α3c ` α4cq ´ 2

These polynomials generate an ideal I of R. A Gröbner basis for this ideal consists
of a collection of ideals, each describing one irreducible component of the variety
of I. In this case, there are 6 irreducible components, one of them being the ideal J
generated by tα2 ´ 1, α2c ´ 1, α3 ` α4, α3c ` α4c, α4α4c ´ 1u. Geometrically, J is a
circle, in which α4 can be any complex unit, α3 “ ´α4, and α1 “ α2 “ 1. Every point
on this circle corresponds to a complex Hadamard matrix when substituted into M .
The remainder of the Gröbner basis consists of five similar ideals obtained by freely
permuting α2, α3, α4.

We conclude the preliminaries with a lemma relating the entries and eigenvalues of
a complex Hadamard matrix, which is an immediate consequence of the Hadamard
Inequality.

Lemma 2.2. A complex n ˆ n matrix M is a complex Hadamard matrix if and only
if every entry of M has complex norm 1 and every eigenvalue of M has complex
norm

?
n.

Proof. If M is a complex Hadamard matrix, then its entries have norm 1 by defi-
nition, and it follows from MM˚ “ nIn that every eigenvalue of M has norm

?
n.

Conversely, suppose M is an nˆ n matrix with the stated properties. Since M has n
complex eigenvalues of norm

?
n, its determinant meets the Hadamard bound, that

is, | detpMq| “ nn{2. It follows that MM˚ is positive definite with diagonal entries of
norm n and determinant nn. A fundamental inequality for positive definite matrices
D “ rdijs

n
i,j“1 is that | detpDq| ď

śn
i“1 dii, with equality if and only if D is diagonal,

see [8, Theorem 1] and the discussion afterwards. Thus, MM˚ is diagonal. Since every
entry of M has unit norm, M is a complex Hadamard matrix. □

3. Centralisers of monomial representations
In this section, we develop ideas of Higman [31, 33] to give an explicit construction for
a basis of the centraliser algebra of a monomial representation. This is closely related
to the transfer homomorphism of finite group theory, see [29, Chapter 14]. Most of
our results here follow from the existing literature.

In the following, let G be a finite group with subgroup H ď G of index n. Let T
be a right transversal to H in G, that is, every g P G admits a factorisation as

g “ hgtg

for uniquely determined hg P H and tg P T . We define the maps H : G Ñ H and
T : G Ñ T by Hpgq “ hg and Tpgq “ tg. We let G act on T by setting t ¨ g “ Tptgq

for t P T ; this defines a group action.
Let χ : H Ñ Cˆ be a 1-dimensional representation of H (commonly referred to in

the literature as a linear character), and extend χ from H to G by

χ`pgq “

#

χpgq if g P H,

0 if g R H.
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We write χHpgq “ χpHpgqq for the χ-value of the H-part of g; note that χH is usually
not a homomorphism.

The next proposition gives the construction of the representation of G induced
from χ. It is known that every n-dimensional transitive monomial representation of G
is induced from some 1-dimensional representation of a subgroup H of index n, see [15,
Section 43, Exercise 1]. To write explicit matrices in the induced representation it is
convenient to fix an ordering on T “ tt1, . . . , tnu where t1 “ 1 represents the coset H.

Proposition 3.1. With the previous notation, the monomial representation induced
from χ is the n-dimensional representation ρχ “ χÒGH that maps g P G to the matrix

ρχpgq “
“

χ`ptigt
´1
k q

‰

i,k
.(1)

Proof. Let g1, g2 P G. The entry in row i and column k in ρχpg1qρχpg2q is
řn
j“1 χ

`ptig1t
´1
j qχ`ptjg2t

´1
k q. It is nonzero if and only if Tptig1q “ tj and Tptjg2q “

tk. Thus, there is a unique nonzero entry in row i, namely, χ`ptig1t
´1
j qχ`ptjg2t

´1
k q “

χptig1g2t
´1
k q in column k where tk “ TpTptig1qg2q. This coincides with the entry

in ρχpg1g2q in row i and column k, which shows that ρχ is a homomorphism defining
a monomial representation. □

Recall that g P G acts on T ˆ T via pt, sq ¨ g “ pTptgq,Tpsgqq. If M is a matrix
whose rows and columns are labelled by the ordered set T “ tt1, . . . , tnu, then we
denote by mpti, tjq the entry in M in row ti and column tj . The next proposition
shows that a matrix M lies in the centraliser algebra Cpρq if and only if for every
G-orbital O the elements in M labelled by O satisfy certain relations.

Proposition 3.2. With the previous notation, a matrix M with rows and columns
labelled by the transversal T , is in the centraliser algebra Cpρq if and only if for all
g P G and t P T we have

(2) mpTpgq,Tptgqq “ mp1, tqχHpgq´1χHptgq.

Proof. Since tigt´1
j P H if and only if tj “ Tptigq and tigt

´1
j “ Hptigq, we observe

ρpgqM “

”

ÿn

j“1
χ`ptigt

´1
j qmptj , tkq

ı

i,k
“ rχHptigqmpTptigq, tkqsi,k .

Similarly, tjgt´1
k “ h P H if and only if h´1tj “ tkg

´1, if and only if tj “ Tptkg
´1q

and h “ Hptkg
´1q´1, and so

Mρpgq “

”

ÿn

j“1
mpti, tjqχ

`ptjgt
´1
k q

ı

i,k
“

“

mpti,Tptkg
´1qqχHptkg

´1q´1‰

i,k
.

Now ρpgqM “ Mρpgq holds for all g P G if and only if for all g P G and i, k P t1, . . . , nu

we have
mpTptigq, tkq “ mpti,Tptkg

´1qqχHptigq´1χHptkg
´1q´1.

Let t P T such that Htk “ Htg, say tk “ htg. This means that Hptkg
´1q “ h “

Hptgq´1, Tptgq “ tk, and Tptkg
´1q “ t, which shows that M P Cpρq if and only if for

all g P G and i P t1, . . . , nu we have

(3) mpTptigq,Tptgqq “ mpti, tqχHptigq´1χHptgq

This defines mpTptigq,Tptgqq in terms of mpti, tq; for i “ 1, we obtain (2). □

Note that (2) is well-defined if and only if χHpgq´1χHptgq “ χHpkq´1χHptkq

whenever g, k P G satisfy pTpgq,Tptgqq “ pu, vq “ pTpkq,Tptkqq, and the latter equa-
tion holds if and only if g, k P HuXt´1Hv. This is captured by the following definition.
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Definition 3.3. Let G be a group with subgroup H. Let ρ “ ρχ be the monomial
representation of G induced from a linear character χ of H. Let T be a set of right
coset representatives of H. The orbital O associated with p1, tq is orientable if and
only if for all pu, vq P O and g, k P HuX t´1Hv we have

χHpgq´1χHptgq “ χHpkq´1χHptkq.(4)
Otherwise, O is non-orientable.

It follows that a matrix M in the centraliser algebra must have zero entries at
all positions of non-orientable orbitals or, in other words, M must be supported on
orientable orbitals. In particular, two matrices supported on the same orbital are
linearly dependent, whereas two orbital matrices corresponding to distinct orbitals
are linearly independent. In conclusion, the next result follows.

Theorem 3.4. With the previous notation, the centraliser algebra Cpρq has a C-basis
spanned by the orientable orbital matrices.

Example 3.5. Let G “ Symn with n ě 4 be the symmetric group of degree n, acting
on the set of unordered pairs of elements in t1, 2, . . . , nu. The point stabiliser H of
t1, 2u is isomorphic to Symn´2 ˆ Sym2, with transversal

T “ t1G, p1, 2, iq, p2, 1, iq, p1, jqp2, kq | 3 ď i ď n, 3 ď j ă k ď nu .

The action has rank 3 with orbitals O1 “ tt1, 2uu, O2 “ tt1, xu, t2, xu | x ‰ 1, 2u,
O3 “ ttx, yu | x, y ‰ 1, 2u. Since the commutator subgroup of H has index 4 in H,
it follows that H has three nontrivial linear characters, [38, (2.23)]. We choose χ
to be the character which has kernel Symn´2, so χpxq is nontrivial if and only if
the projection onto the direct factor Sym2 is nontrivial. We claim that O3 is non-
orientable. To see this, pick u “ 1G and t “ v “ p1, 3qp2, 4q, so that Hu X t´1Hv is
a subgroup of Symn isomorphic to Sym2 ˆ Sym2 ˆ Symn´4, fixing t1, 2u and t3, 4u

setwise. Since p1, 2q P HuX t´1Hv, non-orientability is witnessed by
χHpuq´1χHptuq “ 1 ‰ ´1 “ χHpp1, 2qq´1χHptp1, 2qq;

indeed, we have χHpp1, 2qq´1χHptp1, 2qq “ χpp1, 2qq´1χpp3, 4qq “ ´1 since tp1, 2q “

p1, 3, 2, 4q “ p3, 4qp1, 3qp2, 4q, and χHpuq´1χHptuq “ 1 holds by definition.

We conclude this section with a convenient test for orientability of orbitals. Given
an orbital O “ p1, tq¨G, the next proposition shows that instead of verifying (4) for all
pu, vq P O and g, h P HuX t´1Hv, it suffices to only consider elements in H X t´1Ht
as explained below.

Proposition 3.6. Let H ď G, let T be a right transversal of H in G, and let χ be
a linear character of H. The orbital O containing p1, tq is orientable if and only if
χptht´1h´1q “ 1 for all h P H X t´1Ht.

Proof. Note that H X t´1Ht is the stabiliser of p1, tq in G. Let g, k P G such that
p1, tq ¨ g “ p1, tq ¨ k “ pu, vq. Then g “ h1u, tg “ h2v, k “ h3u and tk “ h4v for some
h1, . . . , h4 P H. It follows that gk´1 “ h1h

´1
3 and tgk´1t´1 “ h2h

´1
4 . Now suppose

that O is orientable. Since g, k P Hu X t´1Hv, the orientability assumption implies
that χHpgq´1χHptgq “ χHpkq´1χHptkq. Using that χ is a homomorphism on H, this
can be rephrased as follows:

χHpgq´1χHptgq “ χHpkq´1χHptkq

ðñ χHph1uq´1χHph2vq “ χHph3uq´1χHph4vq

ðñ χph2h
´1
4 q “ χph1h

´1
3 q

ðñ χptgk´1t´1q “ χpgk´1q.
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The stabiliser of p1, tq in G is generated by all gk´1 where g, k P G which satisfy
p1, tq ¨ g “ p1, tq ¨ k, see [17, Theorem 3.6A]. Thus, the last equation in the above
equivalences implies that χptht´1q “ χphq for all h P H X tHt´1.

In the other direction, assume that χphq “ χptht´1q for all h P HXt´1Ht. Suppose
that p1, tq¨g “ p1, tq¨k and proceed as before: we can write g “ h1u, tg “ h2v, k “ h3u
and tk “ h4v for suitable hi P H, and now the argument follows from the implications
above. □

4. Locating group-developed and cocyclic matrices in
centraliser algebras

The main results of this section are characterisations of group-developed and cocyclic
matrices; we recall the definitions below. In Theorem 4.2 we see that a matrix is
group-developed over a finite group G if and only if there exists an equivalent matrix
in the centraliser algebra of the right regular representation of G. While this result is
well-known, the reader is encouraged to compare this with Theorem 4.4, which shows
that a matrix is cocyclic over G if and only if there exists an equivalent matrix in the
centraliser algebra of a certain monomial cover of G.

Throughout, let G be a finite group and let A be a finite (hence cyclic) subgroup
of Cˆ.

4.1. Group-development and permutation representations. All matrices in
this section will have rows and columns labelled by the elements of G with respect to
some fixed ordering. A matrix M with entries in A is called strictly group-developed
over G if there exists a map f : G Ñ A such that M “ rfpghqsg,hPG, and strictly group-
invariant if M “ rfpgh´1qsg,hPG, see [34, Definition 2.17] and [16, Definition 10.2.1].
These definitions differ by a permutation of columns, hence M is strictly group-
invariant if it is A-equivalent to a strictly group-developed matrix, and vice versa.
It is convenient to define M to be group-developed if it is A-equivalent to a strictly
group-developed matrix.

The right regular representation of G is defined by Rpgq “ rδxgy sx,yPG for g P G,
where δba is the usual Kronecker delta. Similarly, the left regular representation is
defined by Lpgq “ rδg

´1x
y sx,yPG. A direct calculation confirms N “ rδxy´1 sx,yPG satisfies

N2 “ In and NRpgqN “ Lpgq “ Lpg´1q⊺ pg P Gq,(5)

which shows Lpgq “ NRpgqN˚ “ NRpgqN for all g P G, so R and L are conjugate.

Lemma 4.1. With the previous notation, a complex nˆ n matrix M is strictly group-
developed over G if and only if RpgqMLpgq⊺ “ M for all g P G.

Proof. Recall that for x, y P G we denote by mpx, yq the entry in M in row x and
column y. If M is strictly group-developed over G with map f : G Ñ C, then mpx, yq “

fpxyq; if g P G, then Lpgq⊺ “ Lpg´1q implies

RpgqMLpg´1q “

«

ÿ

x,y

δwgx fpxyqδgyz

ff

w,zPG

“
“

f
`

pwgqpg´1zq
˘‰

w,zPG
“ M.

Conversely, if M “ rmpx, yqsx,yPG satisfies M “ RpgqMLpgq⊺ “ RpgqMLpg´1q for all
g P G, then a calculation similar to the one before shows that rmpxg, g´1yqsx,yPG “

rmpx, yqsx,yPG for all g P G. By choosing g “ x´1 we find that mpx, yq “ mp1, xyq for
all y, and so M “ rfpxyqsx,yPG where f : G Ñ C is defined by fpgq “ mp1, gq. □

The next theorem characterises the existence of group-developed matrices.
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Theorem 4.2. A matrix with entries in a finite group A ď Cˆ is group-developed
over G if and only if there exists an A-equivalent matrix in CpRq, where R is the
right regular representation of G.

Proof. Any group-developed matrix is A-equivalent to a strictly group-developed ma-
trix, so we can assume that M is a strictly group-developed matrix over G. Lemma 4.1
shows that RpgqMLpgq⊺ “ M for all g P G. Thus, RpgqM “ MLpg´1q⊺, and (5) im-
plies that RpgqMN “ MNRpgq, hence MN P CpRq.

Conversely, let M P CpRq. Then RpgqM “ MRpgq for all g P G, and using
Rpgq “ NLpgqN , we obtain RpgqM “ MNLpgqN . Since Lpgq´1 “ Lpgq⊺, see (5),
this is equivalent to RpgqMNLpgq⊺ “ MN . Now Lemma 4.1 shows that M is group-
developed over G, as claimed. □

4.2. Cocyclic development and monomial representations. Having dis-
cussed the relation between group-developed matrices and permutation representa-
tions in the previous section, we now locate cocyclic development in the theory of
monomial representations. As described by Goldberger and collaborators [23], these
ideas lead to a more general theory of cohomology development of matrices.

As before, let G be a finite group and let A ď Cˆ be a finite subgroup; note that A
is a cyclic group, which we consider a G-module with trivial action. Let Γ be a central
extension of G by A. By standard theory of group extensions, Γ is isomorphic to a
group with underlying set A ˆG and multiplication

pa, gqpb, hq “ pabψpg, hq, ghq(6)

where ψ : G ˆ G Ñ A is a (normalised) 2-cocycle, that is, a function satisfying
ψpg, 1q “ ψp1, gq “ 1 and ψpg, hqψpgh, kq “ ψpg, hkqψph, kq for all g, h, k P G; we
refer to [29, Chapter 15] or [16, Chapter 12] for further details. In the following we
write Γ “ pG,A, ψq to record these data about the group extension.

A matrix M with entries in A is called strictly cocyclic over G if there exists a
cocycle ψ : GˆG Ñ A and a function ϕ : G Ñ A such that

M “ rψpx, yqϕpxyqsx,yPG ,

where the rows and columns are indexed by the elements of G in a fixed ordering.
As for the group-developed case, it is often convenient to consider A-equivalence: the
matrix M is cocyclic over G if it is A-equivalent to a strictly cocyclic matrix.

Motivated by the right and left regular representations of G, we define the following
monomial representations R and L of Γ: if pa, gq is an element of the extension Γ,
then

Rpa, gq “ a
“

ψpx, gqδxgy
‰

x,yPG
and Lpa, gq “ a

“

ψpg, g´1xqδxgy
‰

x,yPG
.(7)

That R is a homomorphism follows from the cocycle identity and a short calculation:

Rpa, gqRpb, hq “ ab
”

ÿ

yPG
ψpx, gqδxgy ψpy, hqδyhz

ı

x,zPG

“ ab
“

ψpx, gqψpxg, hqδxghz

‰

x,zPG

“ ab
“

ψpx, ghqψpg, hqδxghz

‰

x,zPG

“ abψpg, hq
“

ψpx, ghqδxghz

‰

x,zPG

“ Rpabψpg, hq, ghq .

In applications it will be necessary to consider L˚ instead of L. The following property
holds for L˚, which also shows that L is a homomorphism; recall that A is a finite
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subgroup of Cˆ, so a˚ “ a´1 for a P A:

Lpa, gq˚Lpb, hq˚ “ a´1b´1
”

ÿ

yPG
ψpg, g´1yq´1δgxy ψph, h´1zq´1δhyz

ı

x,zPG

“ a´1b´1 “

ψpg, xq´1ψph, gxq´1δhgxz

‰

x,zPG

“ a´1b´1 “

ψph, gq´1ψphg, xq´1δhgxz

‰

x,zPG

“ a´1b´1ψph, gq´1 “

ψphg, g´1h´1zq´1δhgxz

‰

x,zPG

“ Lpbaψph, gq, hgq˚ .

As in the group-developed case, the representations R and L are conjugate. To see
this, we define N “ rψpx, x´1qδxy´1 sx,yPG and use the cocycle identity to deduce that

Rpa, gqNLpa, gq˚ “ aa´1
”

ÿ

x,y
ψpw, gqδwgx ψpx, x´1qδxy´1ψpg, g´1zq´1δgyz

ı

w,z

“

”

ÿ

y
ψpw, gqψpwg, g´1w´1qδwg

y´1ψpg, g´1zq´1δgyz

ı

w,z

“
“

ψpw, gqψpwg, g´1w´1qψpg, g´1w´1q´1δwz´1

‰

w,z

“ rψpw,w´1qδwz´1 sw,zPG “ N.

Thus, if pa, gq P Γ, then
Lpa, gq “ N˚Rpa, gqN.(8)

Lemma 4.3. With the previous notation, let Γ “ pG,A, ψq be a central group ex-
tension and ϕ : G Ñ A a map. Then M “ rψpx, yqϕpxyqsx,yPG if and only if
Rpa, gqMLpa, gq˚ “ M for all pa, gq P Γ.

Proof. First, assume that M “ rψpx, yqϕpxyqsx,yPG is cocyclic. It follows from the
cocycle identity that

Rpa, gqMLpa, gq˚ “ aa´1
”

ÿ

x,y
ψpw, gqδwgx ψpx, yqϕpxyqψpg, g´1zq´1δgyz

ı

w,z

“
“

ψpw, gqψpwg, g´1zqψpg, g´1zq´1ϕpwzq
‰

w,z

“ rψpw, zqϕpwzqsw,z “ M.

Conversely, assume that M “ rmpx, yqsx,yPG satisfies Rpa, gqMLpa, gq˚ “ M for all
pa, gq P Γ. The chain of equations

Rpa, gqMLpa, gq˚ “ a
“

ψpx, gqδxgy
‰

x,yPG
rmpy, zqsy,zPG a

´1 “

ψpg, g´1wqδwgz
‰

z,wPG

“
“

ψpx, gqmpxg, g´1wqψpg, g1wq´1‰

x,wPG

shows that ψpx, gqmpxg, g´1wqψpg, g´1wq´1 “ mpx,wq. Choose g “ w, recall that
ψpg, 1q “ 1; then ψpx,wqmpxw, 1q “ mpx,wq. Thus, M “ rψpx,wqfpxwqsx,wPG where
f : G Ñ C is defined by fpgq “ mpg, 1q, which shows that M is cocyclic. □

The main result of this section is the following.

Theorem 4.4. Let M be a square matrix with entries in the finite subgroup A ď Cˆ

and with rows and columns labelled by a finite group G. Then M is cocyclic over G
if and only if there exists an A-equivalent matrix in CpRq, where R is the monomial
representation (7) of an extension Γ “ ΓpG,A, ψq of G.

Proof. Any cocyclic matrix is A-equivalent to a strictly cocyclic matrix, so suppose
that M is strictly cocyclic over G, with extension group Γ “ pG,A, ψq. Lemma 4.3
shows that Rpa, gqMLpa, gq˚ “ M for all pa, gq P Γ. Together with (8), it follows that

Rpa, gqMN˚ “ MN˚Rpa, gq,
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and therefore MN˚ P CpRq. Conversely, let M P CpRq for an extension Γ and
representation R as in the statement. By definition, Rpa, gqM “ MRpa, gq for all
pa, gq P Γ, and using Rpa, gq “ NLpa, gqN˚, we obtain Rpa, gqM “ MNLpa, gqN˚,
hence Rpa, gqMNLpa, gq˚ “ MN . □

Group-developed matrices have constant row and column sums, since each row and
each column is a permutation of the first. If H is a group-developed nˆn Hadamard
matrix with row and column sum s, then HJn “ sJn and H⊺Jn “ sJn for the nˆ n
all-1s matrix Jn. Thus, multiplying nIn “ HH⊺ from the right by Jn yields

nJn “ HH⊺Jn “ sHJn “ s2Jn

which forces that n “ s2 is a perfect square. This well-known observation restricts
the orders at which group-developed Hadamard matrices exist. (Recall that the or-
der of an n ˆ n Hadamard matrix refers to the dimension n.) There are no known
restrictions on the orders of cocyclic Hadamard matrices: indeed, it has been conjec-
tured by Horadam [34, Research Problem 38] that there exists a cocyclic Hadamard
matrix of order 4n for all n. This conjecture has been verified for all 4n ă 188. Many
constructions of Hadamard matrices are known to be cocyclic, including Sylvester
and Paley matrices, [46, 19]. Some families of cocyclic real and complex Hadamard
matrices have also been classified computationally, [3, 18].

5. Character tables of centraliser algebras
Recall from Lemma 2.2 that a complex Hadamard matrix is characterised by norm
conditions on its entries and eigenvalues. Theorem 4.4 explains that the existence of
a complex Hadamard matrix that is cocyclic with respect to some indexing group can
be verified by studying a suitable centraliser algebra of a monomial representation.
Theorem 3.4 and Proposition 3.6 allow us to determine a basis of a centraliser algebra.
Thus, to locate complex cocyclic Hadamard matrices, it remains to consider linear
combinations of the basis elements of the centraliser algebra and verify the norm
conditions. For this the so-called character table of the centraliser algebra will be
useful. We discuss this character table here, and focus on the construction of complex
Hadamard matrices in Sections 6 and 7.

The representation theory of finite groups is closely related to the representation
theory of associative algebras applied to the group algebra CrGs. Several accessible
expositions of this theory are available, including the books [1, 38, 39]. We recall that
a finite dimensional associative algebra over C is semisimple if its Jacobson radical is
trivial, in which case the algebra is a direct sum of simple algebras.

Let A be a finite dimensional semisimple C-algebra. It is well-known that A is a
direct sum of matrix algebras, such that the number r of matrix algebras occurring
in this direct sum is equal to the number of isomorphism types of simple A-modules;
see [1, Lemma 13.14 and Theorem 13.16] and the details given in the proofs thereof.
Since the centre of each matrix algebra consists of the scalar matrices, it also follows
that r is the dimension of the centre of A. We denote by tM1, . . . ,Mru a basis of the
centre of A and let χ1, . . . , χr be the irreducible characters of A. The character table
of A is defined to be the r ˆ r matrix

CTpAq “ rχipMjqsi,j .

For a representation ρ of a finite group G induced from a linear character χ of a
subgroup H, the character table of the centraliser algebra Cpρq may be constructed
from the character table of G, together with some additional data about double cosets
of H in G. Let tt1, . . . , tru be a set of representatives of the H-double cosets in G.
For i “ 1, . . . r, let Hi “ H X t´1

i Hti ď H and ki “ |H : Hi|. Let MG,H be the matrix
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that contains the rows of the character table of G corresponding to the irreducible
constituents of ρ. Let L be a matrix whose rows are indexed by t1, . . . , tr, whose
columns are indexed by conjugacy classes of G, and whose entry ℓpti, Cq is defined as

ℓpti, Cq “
ÿ

hPH

δCphtiqχph´1q

where δC is the Kronecker delta for the conjugacy class C. While not especially
well-known, the following result has appeared in the literature multiple times. A
complete proof of the next result is given by Müller; closely related results were
obtained previously by Tamaschke [52], by Higman [31] and by Curtis–Fossum [13].

Proposition 5.1 (Proposition 3.20, [43]). Let ρ be the monomial representation of G
induced from a linear character χ of a subgroup H ď G. Provided that the centraliser
algebra Cpρq is commutative, its character table is

CTpCpρqq “
1

|H|
¨MG,H ¨ L⊺ ¨ diagpk1, . . . , krq ,

with the notation adopted previously.

The computations required by Proposition 5.1 are practical for reasonably sized
groups. While non-commutative centraliser algebras are not much more difficult to
treat, we restrict to the commutative case in the remainder of this paper. It is well
known that Cpρq is commutative if and only if ρ is multiplicity-free, see e.g. [49,
Theorem 1.7.8]. The semisimplicity of Cpρq implies that M1, . . . ,Mr are simultane-
ously diagonalisable, with r common eigenspaces, denoted V1, . . . , Vr. Write λi,j for
the eigenvalue of Mj on the eigenspace Vi. In this case the character table may be
described as

CTpCpρqq “ rλi,jsi,j .(9)

Every M P Cpρq can be written as M “
řr
i“1 αiMi for complex coefficients α1, . . . , αr.

The eigenvalue of M on the eigenspace Vi is given given by the ith entry of the
vector Tα where α “ pα1, . . . , αrq

⊺. It follows from Lemma 2.2 that M is a complex
Hadamard matrix if each entry in α has norm 1 and each entry in Tα has norm

?
n.

In other words, there exists a complex Hadamard matrix, say M , in Cpρq if and only
if there is a solution of the system Tα “ λ where the entries of α (the entries of M)
have norm 1 and the entries of λ (the eigenvalues of M) have norm

?
n. As discussed

in Section 2.4, this yields a system of linear equations and norm equations over a
subfield of the complex numbers. While norm equations are not polynomial over C,
the system of equations can be rewritten as a real system of quadratic equations in
twice as many variables. The next two examples illustrate the construction of complex
Hadamard matrices in the centraliser algebra of a permutation group.

Example 5.2. Let G ď Sym16 be the group G “ xσ, τy where

σ “ p1, 2qp3, 4qp5, 6qp7, 8qp9, 10qp11, 12qp13, 14qp15, 16q,

τ “ p2, 3, 5, 9, 16qp4, 7, 13, 8, 15qp6, 11, 12, 10, 14q.

The group G is a Frobenius group of order 80, with an elementary abelian subgroup
of order 16 and a point stabiliser H “ xτy of order 5. Let ρ be the permutation
representation induced by the trivial character χ of H. As a list of H-double coset
representatives in G, we choose the identity, σ, σ´1τ´1στ , and σ´1τ´2στ2. We denote
by M1, . . . ,M4 the corresponding orbital matrices; these form a basis for the (com-
mutative) centraliser algebra. We note that M1 is the identity matrix and M2, . . . ,M4
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have constant row sum 5. Using Proposition 5.1, the character table of the centraliser
algebra is

T “

M1 M2 M3 M4
¨

˚

˝

˛

‹

‚

1 5 5 5
1 ´3 1 1
1 1 ´3 1
1 1 1 ´3

The eigenvalues of the matrix M “ M1 ` M2 ´ M3 ´ M4 with entries t˘1u are ´4
and 4, so M is a 16ˆ16 Hadamard matrix by Lemma 2.2. More generally, all solutions
to Tα “ λ with αiαic “ 1 and λjλjc “ 4 are obtained via computing the Gröbner
basis as described in Section 2.4. All solutions are of the form α “ p1, z,´z,´1q, or
a cyclic permutation of the last three coordinates, where z is of norm 1.

Example 5.3. Let p ” 1 mod 4 be a prime and denote by Fp the field with p elements.
Let AGL1ppq be the permutation group consisting of affine transformations of Fp of
the form x ÞÑ ax` b, where a P Fˆ

p and b P Fp; this group is 2-transitive of degree p.
The index-2 subgroup G of AGL1ppq consisting of transformations x ÞÑ a2x ` b has
rank 3. The stabiliser of a point is cyclic of order pp ´ 1q{2, and we consider the
permutation representation of degree p induced from the trivial character of the point
stabiliser. The centraliser algebra C of this representation has dimension 3, and it
is well known that one of the basis elements (constructed as in Theorem 3.4) is an
adjacency matrix, A, for the so-called Paley graph, which has vertices labelled by the
elements of Fp, and vertices x and y are connected by an edge if and only if x ´ y is
a quadratic residue in Fp, see [7, Section 7.4.4].

The Paley graph is regular of degree k “ pp´1q{2, so k occurs as an eigenvalue of A
with multiplicity 1. By standard results in algebraic graph theory, the other eigenval-
ues are µ “ p´1`

?
pq{2 and ν “ p´1´

?
pq{2, each with multiplicity k. It follows that

a basis for the centraliser algebra of G can be constructed as tM1,M2,M3u, where
M1 “ Ip, M2 “ A, and M3 “ Jp ´ Ip ´ A. The all-1s matrix Jp has a 1-dimensional
p-eigenspace and a pp ´ 1q-dimensional 0-eigenspace. The matrices Jp, Ip, A are si-
multaneously diagonalisable, so they share common eigenspaces. This means that the
nullspace of Jp is the direct sum of the µ- and ν-eigenspaces of A. Since M3 is a linear
combination, its value on the p-eigenspace of Jp is p´ k´ 1 “ k, on the µ-eigenspace
it is ´1 ´ µ “ ν, and on the ν-eigenspace it is ´1 ´ ν “ µ. Thus, the eigenvalues
λ1, λ2, λ3 of the matrix M “ α1M1 ` α2M2 ` α3M3 are computed as follows:

¨

˝

1 k k
1 µ ν
1 ν µ

˛

‚

¨

˝

α1
α2
α3

˛

‚“

¨

˝

λ1
λ2
λ3

˛

‚ .

Lemma 2.2 shows that M is Hadamard if and only if αiα˚
i “ 1 and λiλ

˚
i “ p for

i “ 1, 2, 3. For this consider the rational polynomial ring R “ Qrp, µ, α2, α2c, α3, α3cs.
We construct the polynomials P2, P3, Q1, Q2, Q3 to encode the norm conditions on αi
and λj as in Section 2.4. In addition, we introduce a polynomial R “ p2µ` 1q2 ´ p to
encode the relation between µ and p. In this case, the computation yields a number
of isolated points, all of which require p ď 4, and one nontrivial component. This
component may be parametrised in terms of µ “ p´1 `

?
pq{2 as

α1 “ 1, α2 “
´1`

?
1´4µ2

2µ , and α3 “ α2c “ α˚
2 ;
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recall that p ” 1 mod 4 is a prime. This solution is unique up to permuting α2 and α3,
and replacing both by complex conjugates. For example, if p “ 5, then α1 “ 1,
α2 “ ´1 ` ı

b

p5 ´
?

5q{8, and α3 “ α˚
2 .

6. Constructing complex Hadamard matrices: Schur multipliers
Let M be an nˆn complex Hadamard matrix and recall that SAutpMq is the subgroup
of AutpMq consisting of pairs pP, P q with PMP˚ “ M . Denote by π1 and π2 the
projections of AutpMq onto the first and second components, respectively, and set
Γ “ π1pSAutpMqq. Let π : Γ Ñ Symn be the homomorphism that maps a monomial
matrix to the induced permutation matrix (identified with a permutation in Symn).
For the rest of this section, we assume that G “ πpΓq is transitive. We describe
relations between the groups G, Γ, and SAutpMq, and the matrix M . This is required
for Section 7 where we start with a permutation group G and construct complex
Hadamard matrices such that π ˝ π1pSAutpMqq ď G.

The next proposition shows that SAutpMq contains a finite subgroup, specified
entirely by G, which determines the centraliser algebra CpΓq completely. Here we use
the convention that for a matrix group K we denote by CpKq the centraliser algebra
of the identity representation K Ñ K. For an integer m we denote by ζm a primitive
complex root of unity; if K is a group, then K 1 “ rK,Ks is the commutator subgroup.

Proposition 6.1. Let M be an n ˆ n complex Hadamard matrix, and let Γ “

π1pSAutpMqq and G “ πpΓq as defined above. Let Γf “ tL P Γ | detpLq “ 1u. The
projection Γf Ñ G induced by π is surjective with cyclic and central kernel xζnIny, so
|Γf | “ n|G| is finite. Moreover, M P CpΓq and CpΓq “ CpΓfq.

Proof. By definition, M P CpΓq. The kernel of π consists of diagonal matrices
D “ diagpa1, . . . , anq with DMD˚ “ M . Since the entries of M are all nonzero,
this forces aia˚

j “ 1 for all i, j, which shows that kerπ consists exactly of all scalar
matrices whose entries are complex units.

Now consider L P Γ. Let d be the (finite) exponent of G{G1. Since π maps Γ1 to G1,
the dth power of L satisfies πpLdq P G1. In particular, Ld “ SA for some scalar matrix
S “ ζIn P kerπ and a matrix A P Γ1. Note that detpAq “ 1, so detpLdq “ ζn. Set
σ “ pdetpLq1{nq˚. Then σIn P kerπ and hence σL P Γ. By construction, detpσLq “ 1
and πpσLq “ πpLq. Since π : Γ Ñ G is surjective, this implies that also the projection
Γf Ñ G is surjective. The elements in the kernel of that projection are scalar matrices
of determinant 1, that is, xζnIny.

Since Γf ď Γ, we clearly have CpΓq ď CpΓfq. For the converse, consider B P CpΓfq.
If L P Γ, then the previous paragraph shows that L “ σ´1L1 where σ´1In P kerπ and
L1 P Γf . Since B P CpΓfq, we have BL “ Bσ´1L1 “ σ´1BL1 “ σ´1L1B “ LB, that
is, B P CpΓq. Thus, CpΓq “ CpΓfq, as claimed. □

In early work on group representations, Schur studied the following cover-
ing problem: given a projective representation ρ : G Ñ PGLnpCq, construct a
group Ĝ with representation ρ̂ : Ĝ Ñ GLnpCq such that the natural projection of
GLnpCq Ñ PGLnpCq induces a surjective homomorphism π : Ĝ Ñ G. Recall that
a stem extension of a finite group G is a group S containing a central subgroup
L ď ZpSq X S1 such that S{L – G. To solve this problem, Schur introduced what is
now known as the Schur multiplier of G, which is a group isomorphic to H2pG,C˚q.
A Schur cover of G is a stem extension of G by its Schur multiplier. A Schur cover is
not generally unique up to isomorphism, but this is so if G is perfect (i.e. if G “ G1),
see Aschbacher [2, Section 33]. The next result shows that, under suitable hypotheses,
Γ is determined by a representation of a Schur cover of G.
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Proposition 6.2. With the notation of Proposition 6.1, suppose that G and Γf are
perfect. Let Ĝ be a Schur cover of G, let H ď G be a point stabiliser, and let Ĥ ď Ĝ
be the full preimage of H under the projection Ĝ Ñ G. Then Γf “ ρpĜq for some
representation ρ induced from a linear character of Ĥ.

Proof. Since G is perfect, the Schur cover Ĝ is finite, perfect, unique up to isomor-
phism, and universal, in the sense that the natural projection Ĝ Ñ G factors through
any other central extension of G, [2, (33.1)–(33.4),(33.10)]. We saw in Proposition 6.1
that Γf is a central extension of G by a cyclic scalar subgroup xζnIny. By assump-
tion, Γf is perfect, which implies that Γf is an epimorphic image of Ĝ, see [2, (33.8)],
say with epimorphism ψ : Ĝ Ñ Γf . Since G is by hypothesis a transitive permutation
group, its permutation representation is induced from the trivial character of a point
stabiliser H. Let L ď Ĝ be the central subgroup such that Ĝ{L – G. By construction,
L ď Ĥ and Ĥ{L – H. Since L is central, it follows that the permutation action of G
on left costs of H coincides with the permutation action of Ĝ on left cosets of Ĥ. To-
gether with [15, Section 43, Exercise 1], this implies that an n-dimensional monomial
representation ρ of Ĝ satisfies π ˝ ρpĜq “ πpΓfq if and only if ρ is induced from Ĥ.
This holds in particular for the epimorphism ψ : Ĝ Ñ Γf , as claimed. □

The conditions of Proposition 6.2 can be relaxed somewhat. If G is not perfect,
a universal central extension does not exist, and a Schur cover is no longer unique
up to isomorphism. Without assuming a perfect extension, the possibilities for Γf
are classified by the group of 2-cocycles Z2pG, xζnInyq. Computational techniques are
known for working with matrices developed from cocycles [16], but in the remainder of
this paper we introduce a technique using Gröbner bases to build complex Hadamard
matrices.

We now provide an example that illustrates how the Schur multiplier arises natu-
rally in the construction of the Paley Hadamard matrices. Recall that the centraliser
algebra of any 2-transitive permutation matrix group of degree n is 2-dimensional, so
it is spanned by In and Jn ´ In, where Jn is the all-1s matrix. If M “ αIn ` βJn
is a Hadamard matrix for complex α, β of norm 1, then αα˚ ` pn ´ 1qββ˚ “ n and
αβ˚ ` βα˚ ` pn ´ 2qββ˚ “ 0, which implies n “ αα˚ ´ αβ˚ ´ βα˚ ` ββ˚, and
therefore n ď 4. The action of PSL2pqq on q ` 1 points is 2-transitive, which implies
that for q ą 3 there is no complex Hadamard matrix in the centraliser algebra of the
pq ` 1q ˆ pq ` 1q permutation matrix group PSL2pqq. In contrast to this, the next ex-
ample shows that SL2pqq, considered as a suitable monomial cover of PSL2pqq, admits
a Hadamard matrix in its centraliser algebra when q ” 3 mod 4.

Example 6.3 (Paley I Hadamard matrices). Let q ” 3 mod 4 be a prime power and
consider G “ PSL2pqq as a 2-transitive permutation matrix group of degree q ` 1.
The Schur cover of G is isomorphic to SL2pqq for all q ą 3, see [40, Theorem 7.1.1].
Write Fq for the finite field with q elements, and let

H “

"ˆ

a b
0 a´1

˙

| a, b P Fq, a ‰ 0
*

be the stabiliser in SL2pqq of a 1-dimensional subspace. Let χ be the quadratic char-
acter of Fq, that is, χpaq “ 1 if a P Fq is a nonzero quadratic residue, χpaq “ ´1 if
a P Fq is a nonzero quadratic non-residue, and χp0q “ 0. By abuse of notation define

χ

ˆ

a b
0 a´1

˙

“ χpaq;

this is easily seen to be a character of H. The induced representation ρ of SL2pqq has
a centraliser algebra of rank 2. We now show that this centraliser algebra contains
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the pq ` 1q ˆ pq ` 1q Paley I Hadamard matrix which is defined as

P “

ˆ

1 1
´1 Q` I

˙

where Q “
`

χpi´ jq
˘

i,jPFq
.

We start by showing that

T “

"ˆ

1 0
0 1

˙*

Y

"

tx “

ˆ

0 ´1
1 x

˙

| x P Fq
*

,

is a transversal to H in SL2pqq; this follows because every m “

ˆ

a b
c d

˙

with c ‰ 0 can

be written uniquely as m “ ht where

h “

ˆ

ac´1d´ b a
0 c

˙

P H and t “ tc´1d P T.

We now want to construct a matrix M with entries mps, tq, s, t P T , that lies
in the centraliser algebra of ρ and equals P . Proposition 3.2 shows that we require
mpTpgq,Tptgqq “ mp1, tqχHpgq´1χHptgq for every g P G and t P T ; here we write
1 P T for the identity matrix. First we consider g “ h P H. If t P T , then

mp1,Tpthqq “ mpTphq,Tpthqq “ mp1, tqχHphq´1χHpthq .

If x P Fq and h “

ˆ

a b
0 a´1

˙

P H, then

txh “

ˆ

a´1 0
0 a

˙ ˆ

0 ´1
1 a´1pb` xa´1q

˙

,

which implies that χHptxhq “ χpa´1q; therefore χHphq´1χHptxhq “ χpa´1q2 “ 1. If
we define mp1, txq “ 1 for all x P Fq, then it follows that the first row of M only has
entries 1. To see that mpti, 1q “ ´1 for i P Fq, choose g “ ti and t “ t0; then tg P H,
and since p ” 3 mod 4, we obtain

mpti, 1q “ mpTpgq,Tptgqq “ mp1, t0qχHptiq
´1χHptgq “ χptgq “ χp´1q “ ´1.

Next, we show the bottom right q ˆ q block of P is Q “ pχpi ´ jqqi,jPFq . For this
let i, j P Fq be distinct and consider

g “

ˆ

pi´ jq´1 jpi´ jq´1q

1 i

˙

P G.

The factorisations

g “

ˆ

1 pi´ jq´1

0 1

˙ ˆ

0 ´1
1 i

˙

and t0g “

ˆ

i´ j ´1
0 pi´ jq´1

˙ ˆ

0 ´1
1 j

˙

show mpti, tjq “ mpTpgq,Tpt0gqq “ mp1, t0qχHpgq´1χHpt0gq “ χpi´ jq, as claimed.

In the previous example, we explicitly computed a basis tIq`1,Mu for the cen-
traliser algebra of SL2pqq acting as a monomial group on q ` 1 points. It is also
possible to apply the method of Section 5. One finds that the character table is equal
to

T “

ˆ

1 g
1 ´g

˙

where g “
ÿ

jPF˚
q

χpjqe2πıTrpjq{p.

is a Gauss sum (see [37, Section 6.3]), where χ is the quadratic character on F˚
q and

Tr is the field trace to the prime field. When q ” 3 mod 4 the sum is evaluated as
g “ ı

?
q, see [37, Proposition 6.3.2]. Hence, pg` 1qpg˚ ` 1q “ q` 1, and the existence
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of the Paley I matrices is immediate from Lemma 2.2. When q ” 1 mod 4, the Gauss
sum g “

?
q is real and occus as an eigenvalue of the symmetric matrix

M “

ˆ

0 1
1 M2 ´M3

˙

where M2 and M3 are as in Example 5.3. A similar computation shows that Mq “

Iq`1 ` ıM is complex Hadamard. These matrices are closely related to the Paley II
(real) Hadamard matrices of order 2q ` 2; for a fuller discussion see [20].

When q ” 1 mod 4, the group SAutpMqq contains both a monomial cover of SL2pqq

and the scalar subgroup xpıIq`1, ıIq`1qy, see [16, Section 17.2]. Since q` 1 ” 2 mod 4,
the determinant of ıIq`1 is ´1. Since SL2pqq is perfect, it follows from the definition
of the Schur multiplier that the monomial preimage of SL2pqq in Γ is contained in
the commutator subgroup Γ1, and hence cannot contain ˘ıIq`1. Thus the automor-
phism group contains a subgroup isomorphic to a central product of C4 and SL2pqq,
intersecting in a cyclic subgroup of order 2. In fact, the full automorphism group is
obtained by allowing field automorphisms to act entrywise, see [16, Section 17.2].

We have shown that if M is a complex Hadamard matrix with π1pSAutpMqq “ Γ,
then M P CpΓq. The next example shows that this conclusion no longer holds when
the strong automorphism group is replaced with the (ordinary) automorphism group.
It may happen that Γ1 “ π1pAutpMqq and Γ2 “ π2pAutpMqq are induced from
non-conjugate subgroups, in which case M belongs to the intertwiner of distinct rep-
resentations rather than a centraliser algebra. This is illustrated in the next example.

Example 6.4. The Sylvester Hadamard matrix of order 2n can be defined as
Sn “ rp´1qx

⊺ysx,yPFn
2

where Fn2 denotes the space of n-dimensional column vectors
over t0, 1u. Moreover, for n ě 2 it is known that
(10) AutpSnq – ZpAutpSnqq ˆ pCn2 ¸ AGLnp2qq,

where Cn2 is the n-fold direct product of the cyclic group of size 2 and ZpAutpSnqq “

xp´I2n ,´I2n qy, see [16, Theorem 9.2.4]. For x, y P Fn2 denote by rx and cy the row
and column of Sn labelled by x and y, respectively. The action of AGLnp2q on rows
and columns is described in detail in [21]: if pv,Aq P AGLnp2q is the transformation
x ÞÑ Ax` v, then

rx ¨ pv,Aq “ rAx`v and cy ¨ pv,Aq “ p´1qv
⊺

pA´1
q
⊺ycpA´1q⊺y.

Observe that the action on rows is a 2-transitive permutation action, whereas the
column c0 is stabilised. Let V ď AGLnp2q be the subgroup of translations, and ob-
serve that π1pV q is a regular permutation group while π2pV q is trivial. Hence, Sn
does not belong to the centraliser of AGLnp2q, although it does admit an action of
a 2-transitive permutation group. In fact, the stabiliser of a row in AutpSnq is not
conjugate to the stabiliser of a column (the projections onto GLnp2q are the sta-
biliser of a point and of a hyperplane, respectively). Hence the actions on rows and
columns are linearly equivalent, but not monomially equivalent, and Sn belongs to
the intertwiner of these representations, but not to the centraliser algebra of either
of these representations. Specifically, π1pAutpSnqq and π2pAutpSnqq are equivalent as
monomial representations, but the permutation representations πpπ1pAutpSnqqq and
πpπ2pAutpSnqqq are inequivalent as the former is the the regular representation of V
while the latter is trivial.

A similar phenomenon where inequivalent permutation representations lift to
equivalent monomial representations can be used to construct complex Hadamard
matrices of orders 6 and 12 related to the outer automorphisms of Sym6 and the
Mathieu group M12 respectively, [22, 27].
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7. Complex Hadamard matrices admitting a low rank
automorphism group

In Example 6.3, we saw that for q ” 3 mod 4 the group SL2pqq is isomorphic to a
subgroup of the strong automorphism group of the pq ` 1q ˆ pq ` 1q Paley type I
matrix. It is natural to ask which other low-rank permutation groups act as the
group of strong automorphisms of a complex Hadamard matrix: we recall results in
this direction by Moorhouse and Chan, and then describe the results of a computer
classification. Detailed information about the 2-transitive permutation groups suffices
to carry out this programme.

Theorem 7.1 (Moorhouse [42]). Suppose that M is a complex Hadamard matrix, and
that G is a 2-transitive permutation group contained in π ˝ π1pAutpMqq. Then one of
the following occurs.

(1) G – AGLnppq in its natural action on pn points, and M is a generalised
Sylvester matrix (the character table of an elementary abelian p-group),

(2) G – PSL2pqq acting on q ` 1 points, and M is a Paley matrix of order q ` 1
that is real for q ” 3 mod 4 and over 4th roots of unity for q ” 1 mod 4,

(3) G – Sp2dpqq where q is a power of 2 and q2d ě 16, and M is of order q2d,
(4) G is isomorphic to one of Alt6,M12,PΣL2p8q or Sp6p2q; and M is of order

6, 12, 28 or 36 respectively.

We emphasise that Moorhouse studies the full automorphism group rather than
the group of strong automorphisms. Throughout our classification, we require that
π1pAutpMqq and π2pAutpMqq are conjugate not only as linear representations, but
as monomial representations: that is, the representations are induced from the same
subgroup, or equivalently, M belongs to the centraliser algebra of π1pAutpMqq. Moor-
house does not make this assumption: he allows representations induced from non-
conjugate subgroups, equivalently M may belong to the intertwiner of representations
which are not monomially equivalent. The Sylvester matrices are an example of this
phenomenon, see Example 6.4.

Complex Hadamard matrices in the centraliser algebra of a strongly regular graph
have been considered by Chan and Godsil [10, 11]. Recall that a pv, k, λ, µq-strongly
regular graph is a k-regular graphs on v vertices in which any two adjacent vertices
share λ common neighbours, while any pair of non-adjacent vertices share µ neigh-
bours. The centraliser algebra of a rank 3 permutation group of even order is spanned
by the adjacency matrix of a strongly regular graph, see [7, Section 1.1]. Not every
strongly regular graph admits a rank 3 group action, thus we only state the following
special case of relevance to our purposes.

Theorem 7.2 (Chan, Godsil [10, 11]). Suppose that M is a complex Hadamard matrix,
and that G is a rank 3 permutation group contained in π ˝ π1pSAutpMqq. Then one
of the following holds:

(1) n “ 4t2 for an integer t, and G is a group of automorphisms of a p4t2, 2t2 ´

t, t2´t, t2´tq-strongly regular graph (equivalently a Menon Hadamard design).
(2) n “ 4t2 ´ 1 for an integer t, and G is a group of automorphisms of a p4t2 ´

1, 2t2, t2, t2q-strongly regular graph.
(3) n “ 4t2 ` 4t` 1 and G is a group of automorphisms of a p4t2 ` 4t` 1, 2t2 `

2t, t2 ` t´ 1, t2 ` tq-strongly regular graph; here either t or t2 ` t is an integer.
(4) n “ 4t2 ` 4t ` 2 for an integer t, and G is a group of automorphisms of a

p4t2 ` 4t` 2, 2t2 ` t, t2 ´ 1, t2q-strongly regular graph.
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Recall that the subdegrees of a transitive permutation group are the lengths of the
orbits of a point stabiliser. These subdegrees are given in the row of the character ta-
ble of the centraliser algebra corresponding to the trivial irreducible character. In fact,
for the groups related to strongly regular graphs considered above, it follows from [7,
Section 1.1.4] that the subdegrees determine all remaining entries of the character
table. Thus, Theorem 7.2 gives a condition on the subdegrees of a rank 3 permuta-
tion matrix group G which is necessary and sufficient for CpGq to contain a complex
Hadamard matrix. A classification of rank 3 permutation groups, including their sub-
degrees is available in the literature, see for example [41]. Thus, while we do not
give the classification explicitly here, the classification is in principle known. Chan’s
classification applies only to rank 3 permutation matrix groups in which all orbitals
are self-paired (that is, the centraliser algebra has a basis of symmetric matrices).
This omits, for example, the Frobenius groups of order

`

p
2
˘

where p ” 3 mod 4; such
groups have been considered previously Munemasa and Watatani, and independently
by Nuñez Ponasso, [45, 47].

Apart from these results, the literature on classifying complex Hadamard matrices
by their automorphism groups is rather sparse. We note substantial work on the closely
related problem of classifying complex Hadamard matrices in association schemes by
Ikuta and Munemasa, see e.g. [36, 35] and references therein. It appears that there is
only a single real Hadamard matrix in the literature which admits a primitive-but-
not-2-transitive automorphism group. This matrix has order 144 and was described
by Marshall Hall in [28]. To our knowledge, monomial covers of rank 3 permutation
groups have not been investigated, nor have groups of higher rank.

7.1. Computational classification results. We conclude this paper with some
computational results, building on the theory developed thus far. Given a transitive
permutation group G ď SympΩq and point stabiliser H “ Gω (with ω P Ω), our
algorithm proceeds as follows.

(1) Construct a Schur cover Ĝ for G, and compute the full preimage Ĥ ď Ĝ of
H ď G.

(2) For each linear character χ of Ĥ, compute the character of the induced rep-
resentation ρ “ χ ÒĜ

Ĥ
, and compute the character table T “ CTpρq of its

centraliser algebra via Proposition 5.1. Denote by K the field of definition of
T , and by r the number of rows in T .

(3) Proceed as in Example 2.1: Define K “ Krα1, α1c, α2, α2c, . . . , αr, αrcs and
construct a Gröbner basis of the ideal I generated by the polynomials that
encode the norm conditions for α1, . . . , αr to define a complex Hadamard ma-
trix. The result is an ideal (defined over K) in which variables are eliminated
according to a monomial ordering; due to the structure of our original polyno-
mial equations, there exists a polynomial in the Gröbner basis that expresses
one of the variables in terms of a univariate polynomial.

(4) Solve for the roots of a univariate polynomial in the Gröbner basis; for each
solution, substitute the values in the remaining polynomials and then iterate
this process. This way it is possible to find all points in the variety.

(5) If pα1, α1c, . . . , αr, αrcq is one of the points in the variety, then this defines
a complex Hadamard matrix provided that αic is the complex conjugate of
αi for all i; the latter test is still necessary because it does not follow from
the imposed condition αiαci “ 1. Once this is verified, the resulting complex
Hadamard matrix may be constructed explicitly via Proposition 3.2.

If G and Γf are perfect, then, by Proposition 6.2, the above algorithm produces all
complex Hadamard matrices such that π˝π1pSAutpMqq – G. When these hypotheses
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do not hold, the algorithm produces matrices, but without a guarantee of complete-
ness. This procedure requires some heavy machinery: computation of Schur multipliers
is a notorious problem in group theory, naive implementations of Proposition 5.1 re-
quire an iteration over all elements of G, and the complexity of computing a Gröbner
basis is well-known to be doubly exponential in the number of variables. Nevertheless,
the algorithm seems practical for permutation groups of order ď 108 and of rank ď 5.
For the convenience of the reader we illustrate this approach with an explicit example;
this matrix has been described by Nuñez Ponasso and by Munemasa-Watani, [45, 47].

Example 7.3. There is, up to conjugacy, a unique group G “ C7 ¸ C3 that acts
transitively on 7 points, with point stabiliser H – C3. Let χ be a non-trivial character
of H, with induced monomial representation ρ. Let ω “ ζ3 be a primitive 3rd root of
unity. The centraliser Cpρq is spanned by tI7,M1,M2u where

M1 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 1 ω2 ω 0 0 0
0 0 ω2 0 0 ω ω2

0 0 0 ω2 ω ω2 0
0 ω2 0 0 ω2 0 ω
1 1 0 0 0 ω 0
ω2 0 0 1 0 0 ω
ω 0 1 0 ω 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

and M2 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 1 ω ω2

1 0 0 ω 1 0 0
ω ω 0 0 0 0 1
ω2 0 ω 0 0 1 0
0 0 ω2 ω 0 0 ω2

0 ω2 ω 0 ω2 0 0
0 ω 0 ω2 0 ω2 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

These matrices are unique up to conjugation by permutation matrices and multi-
plication by scalars. It is not immediately obvious whether G acts on a complex
Hadamard matrix M , that is, whether Cpρq contains a complex Hadamard matrix.
The latter holds if and only if there exist complex numbers α1, α2 of norm 1 such
that M “ I7 `α1M1 `α2M2 with MM˚ “ 7I7. The character table for Cpρq is given
below, along with the linear equation corresponding to a complex Hadamard matrix.

¨

˚

˝

1 1 1
3 ´1´ı

?
7

2
´1`ı

?
7

2
3 ´1`ı

?
7

2
´1´ı

?
7

2

˛

‹

‚

¨

˝

1
α1
α2

˛

‚“

¨

˝

λ1
λ2
λ3

˛

‚

One solution is given by α1 “ p´3`ı
?

7q{4 and α2 “ 1; there are three more solutions,
obtained by swapping α1 with α2 and taking complex conjugates. It follows that G
does act on complex Hadamard matrices defined over the field Qpζ21q; the latter is
the smallest cyclotomic field containing ı

?
7 and ω.

In Table 1 we report on our findings for primitive permutation groups of degree
n ď 15 and of rank 3; a database of such groups is available in MAGMA [6]. The
notation used in the table is as follows. We denote by Ĝ a Schur cover of G, and Ĥ
is the preimage in Ĝ of a point stabiliser in G. We denote by d the largest value for
which a primitive dth root of unity appears in the character (thus, a “1” indicates
a permutation representation). The next column gives a minimal polynomial for the
smallest field extension containing the entries of the complex Hadamard matrix. As
before, Cn denotes a cylic group of order n, and ζn is a primitive nth root of unity.

The matrices in the centraliser algebra of a permutation group of rank 3 have been
previously described by Godsil, Chan and Nuñez Ponasso. In addition the matrix of
order 11 and two solutions at order 13 have been described by Haagerup [26]; all are
described in the database of complex Hadamard matrices [9, 51]. We believe that
the remaining matrices are new. In future work, detailed classifications and proofs
of inequivalence will be presented. An online database will be maintained at https:
//github.com/pocathain/CHM.
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n G |Ĝ|{|G| Ĥ{Ĥ 1 d Minimal polynomial over Qpζdq subdegrees
7 C7 ¸ C3 1 C3 d | 3 x2

` 3
2 x ` 1 r1, 3, 3s

9 C2
3 ¸ C4 3 C12 d | 12 x2

´ 1
2 x ` 1 r1, 4, 4s

10 Alt5 2 C4 1 x2
` 1

2 x ` 1; x2
` 1 r1, 3, 6s

10 Alt5 2 C4 2 x4
´ 8x2

` 36 r1, 3, 6s

11 C11 ¸ C5 1 C5 d | 5 x2
` 5

3 x ` 1 r1, 5, 5s

13 C13 ¸ C6 1 C6 1 x4
` 1

3 x3
` 5

3 x2
` 1

3 x ` 1 r1, 6, 6s

13 C13 ¸ C6 1 C6 2 x4
´ 1

3 x3
` 5

3 x2
´ 1

3 x ` 1 r1, 6, 6s

13 C13 ¸ C6 1 C6 3 x8
´ 1

3 x7
´ 14

9 x6
´ 1

9 x5
` 5

3 x4
´ 1

9 x3
´ 14

9 x2
´ 1

3 x`1 r1, 6, 6s

13 C13 ¸ C6 1 C6 6 x8
` 1

3 x7
´ 14

9 x6
´ 1

9 x5
` 5

3 x4
´ 1

9 x3
´ 14

9 x2
` 1

3 x`1 r1, 6, 6s

15 Alt6 6 C6 1 x2
` 5

3 x ` 1; x2
´ 7

4 x ` 1 r1, 6, 8s

Table 1. Primitive groups degree n ď 15, rank 3 acting on complex
Hadamard matrices.
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