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Hook formulae from
Segre–MacPherson classes

Leonardo C. Mihalcea, Hiroshi Naruse & Changjian Su

Abstract Nakada’s colored hook formula is a vast generalization of many important formulae
in combinatorics, such as the classical hook length formula and the Peterson’s formula for
the number of reduced expressions of minuscule Weyl group elements. In this paper, we use
cohomological properties of Segre–MacPherson classes of Schubert cells and varieties to prove a
generalization of a cohomological version of Nakada’s formula, in terms of smoothness properties
of Schubert varieties. A key ingredient in the proof is the study of a decorated version of the
Bruhat graph. Weights of the paths in this graph give the terms in the generalized Nakada’s
formula, and the summation over all paths is equal to the equivariant multiplicity of the Chern–
Schwartz–MacPherson class of a Richardson variety. Among the applications we mention an
algorithm to calculate structure constants of multiplications of Segre–MacPherson classes of
Schubert cells, and a skew version of Nakada–Peterson’s formula.

1. Introduction
The goal of this paper is to reprove and generalize a version of Nakada’s colored hook
formula, using localization properties of the Segre–MacPherson classes of Schubert
varieties. We recall first the version of Nakada’s formula we generalize in this paper.

Let G be a complex semisimple Lie group and fix opposite Borel groups B, B−,
giving B ∩ B− = T , a maximal torus in G. Let R+ be the set of positive roots
in B, and let W := NG(T )/T be the Weyl group, endowed with the Bruhat order <,
and its length function ℓ : W → N. For a Weyl group element w ∈ W , define the
set S(w) = {β ∈ R+ : sβw < w}.

Let w ∈W be a π-minuscule Weyl group element for an integral dominant weight π,
in the sense of Peterson; see [40, 10, 42, 48, 49, 19] and §3.2 below. Nakada’s colored
hook formula [34] is the identity:

(1)
∑ 1

β1
· 1

β1 + β2
· . . . · 1

β1 + β2 + · · ·+ βr
=

∏
β∈S(w)

(
1 + 1

β

)
.

Here the sum is over r ⩾ 0 and oriented paths xr
βr→ xr−1 → . . . → x1

β1→ x0 = w
in the Bruhat graph of the flag manifold G/P , where P is the parabolic group with
Weyl group WP = StabW (π), and the notation x

β→ y means that x, y are minimal
length representatives such that yWP = sβxWP > xWP . See §3 below for details.
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Nakada’s formula is a vast generalization of several remarkable combinatorial for-
mulae. One is the classical Frame–Robinson–Thrall hook formula calculating the di-
mension of the irreducible representation of the symmetric group Sn indexed by the
partition λ, or, equivalently, the number of standard tableaux of shape λ:

χλ(1) = # STab(λ) = n!∏
□∈λ h□

.

Here h□ is the hook length of a cell □ in the Young diagram of λ. Another special case
is the Peterson formula counting the number # Red(w) of reduced decompositions of
a π-minuscule Weyl group element w:

(2) # Red(w) = ℓ(w)!∏
β∈S(w) ht(β) .

Here ht(α) denotes the height of the (positive) root α, i.e., the sum of the coefficients
of α when expanded in simple roots; see §2. We refer to [34] or to §9.1 below for more
details about how to obtain these specializations from Nakada’s formula.

Let W P be the set of minimal representatives for the quotient W/WP . For each
w ∈ W P , denote by Y (w) := B−wP/P ⊂ G/P the corresponding Schubert variety.
Our main goal is to prove an identity generalizing Equation (1) in three directions:

(1) We remove the hypothesis that w ∈W is (Peterson) π-minuscule.
(2) We consider a ‘skew-version’, for paths v ⩽ xr → . . . → x0 = w where v

and w are fixed, and such that the Schubert variety Y (v) is smooth at w.
Nakada’s formula is obtained from specializing v = id, since Y (id) = G/P is
smooth at each w.

(3) Instead of fixing a single integral weight π, we consider an admissible weight
function Λ : [v, w]P → X∗(T )P from the Bruhat interval [v, w]P to the set
of integral weights which stabilize P .

The admissible functions are required to satisfy certain hypotheses spelled out in §8.
An admissible function Λ leads to a decorated version of the usual Bruhat graph which
we call the Λ-Bruhat graph of G/P . This graph was used in [28, 31] as part of an
algorithm calculating the Schubert structure constants of the equivariant quantum
cohomology ring of G/P .

A key observation going back to [31, 36, 37] is that the terms in special cases
of Nakada’s formula have geometric meaning, via localization properties of Schubert
classes in equivariant cohomology and equivariant K-theory rings of flag manifolds.
However, in order to obtain Nakada’s formula (1), a deformation of Schubert classes
is needed.

Let cSM(Y (v)) ∈ H∗
T (G/P ) be the equivariant Chern–Schwartz–MacPherson

(CSM) class of the Schubert variety Y (v). This class is defined using MacPherson’s
construction of characteristic classes of singular varieties [27], generalized to the
equivariant case by Ohmoto [38]; see §4. Denote by

sM(Y (v)) = cSM(Y (v))
cT (T (G/P )) ∈ Ĥ∗

T (G/P )

the (equivariant) Segre–MacPherson (SM) class, which is an element in an appropriate
completion of the equivariant cohomology ring. Let also sM(Y (v))|w ∈ H∗

T (pt)loc de-
note the localization of the SM class at the torus fixed point w ∈ G/P . (Here H∗

T (pt)loc
is the fraction field of H∗

T (pt).) Our most general result is the following; see Theo-
rem 7.5 and Corollary 8.13:
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Theorem 1.1. Let v ⩽ w ∈W P , and fix an admissible function Λ : [v, w]P → X∗(T )P

with the associated Λ-Bruhat graph Γ. Then:

(3)
∑ mΛ(xr, xr−1)

WΛ(xr) · mΛ(xr−1, xr−2)
WΛ(xr−1) · . . . · mΛ(x1, x0)

WΛ(x1) = sM(Y (v))|w
sM(Y (w))|w

.

The sum is over integers r ⩾ 0, and over all directed paths v ⩽ xr → xr−1 →
. . . → x0 = w in Γ; mΛ(x, y) ∈ Z denotes the multiplicity of the edge x → y; and
WΛ(x) ∈ X∗(T )P denotes the Λ-weight of x; see Definition 8.6 below.

Furthermore, set S(w/v) := {β ∈ R+ | v ⩽ sβw < w}. Then:

Y (v) ⊂ G/P is smooth at w ∈ G/P ⇐⇒ sM(Y (v))|w
sM(Y (w))|w

=
∏

β∈S(w/v)

(
1 + 1

β

)
.

As a corollary we obtain a generalized version of Nakada’s formula; cf. Theorem 9.1:

Corollary 1.2. With the notation and hypotheses from the above theorem,
Y (v) ⊂ G/P is smooth at w ∈ G/P if and only if

(4)
∑ mΛ(xr, xr−1)

WΛ(xr) · mΛ(xr−1, xr−2)
WΛ(xr−1) · . . . · mΛ(x1, x0)

WΛ(x1) =
∏

β∈S(w/v)

(
1 + 1

β

)
.

If w is π-minuscule for a dominant integral weight π, and if the admissible function
is constant Λ ≡ π on the interval [v, w]P , then each multiplicity mΛ(xi, xi−1) = 1,
and one obtains a skew generalization of Nakada’s identity (1); see Corollary 9.3
below. The proof of this ultimately requires a good understanding of the (paths in
the) interval [v, w]P for π-minuscule elements v, w, in analogy to the intervals in the
Young lattice; for instance, the intervals in the weak and strong Bruhat order coincide.
We refer to §3.3 and §9 for more details. We encourage the reader to jump to §10,
where we give some examples illustrating this theorem.

Equation (3) is proved by utilizing a Molev–Sagan type recursion [32], based on
a Chevalley formula to multiply SM classes; cf. Proposition 5.3 and see also [50, 1].
Variants of this recursion have been successfully used in [23, 28, 31, 36, 8, 37] to study
properties of the equivariant (quantum) cohomology or K-theory of flag manifolds.
As a by-product of this study, and in the same spirit as the references above, we
obtain an algorithm for the structure constants of the multiplication of SM classes;
see Corollary 5.4 below. Different algorithms were also obtained in [51].

Once equation (3) is proved, the second part of Theorem 1.1 follows from a smooth-
ness criterion of Schubert varieties in terms of localization of SM classes. More pre-
cisely, if Rv

w denotes the Richardson variety, the fraction
sM(Y (v))|w
sM(Y (w))|w

= ew,G/P (cSM(Rv
w))

is equal to Brion’s equivariant multiplicity [7] of the CSM class of Rv
w; cf. Propo-

sition 7.4. From this perspective, the (generalized) Nakada’s formula calculates the
equivariant multiplicity of a Richardson variety. The smoothness of Y (v) at w ensures
that the equivariant multiplicity is a product of factors corresponding to weights of the
normal space of Y (v) at w, and it leads to the right hand side of (4). Our smoothness
criterion for Y (v) at w in Theorem 7.5 generalizes similar results about smoothness
of Schubert varieties by Kumar [24] and Brion [7], the latter in terms of equivariant
multiplicities. Our criterion is also related to the one from [2] for motivic Chern classes
of Schubert varieties, which has consequences in p-adic representation theory.

Among the consequences of Corollary 1.2 proved in section §9.1 we mention a skew
version of the Peterson formula (2); cf. Corollary 9.4.
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Corollary 1.3. Take v < w ∈W be π-minuscule elements such that Y (v) is smooth
at w. Recall that S(w/v) := {β ∈ R+ | v ⩽ sβw < w}. Then:

(5) # Red(wv−1) = (ℓ(w)− ℓ(v))!∏
β∈S(w/v) ht(β) .

When considered in this generality, this corollary seems to be new. In type A,
this formula has an interpretation as counting standard Young tableaux on the skew
shape w/v, see [36, 33, 39]. We will prove in a continuation of this work that this
interpretation holds in other Lie types, and, furthermore, if W is simply laced, the
‘skew’ formula for v < w is equal to the ‘straight’ formula from (2), applied to id <
wv−1. We also note that our general formula from Theorem 1.1 implies a variant of
the Corollary above which does not require smoothness; see Remark 9.6 below.

Theorem 1.1 is the prototype of more general results. For instance, a similar theo-
rem - with essentially the same proof - may be obtained if one replaces the (cohomolog-
ical) SM classes with their K-theoretic versions, the motivic Segre classes of Schubert
varieties [2, 29]. Because of the technical challenges (in geometry and combinatorics)
when working in K-theory, this will be studied in separate work. Furthermore, there
are versions of Nakada’s colored hook formula [34] which hold in the Kac–Moody
setting, suggesting that analogues of Theorem 1.1 might exist in that generality as
well.(1)

2. Preliminaries
We start by fixing the notation used throughout the paper. Let G be a simply con-
nected complex Lie group with Borel subgroup B and maximal torus T ⊂ B. Denote
by Lie(G) and by Lie(T ) be corresponding Lie algebras. Let R+ ⊂ Lie(T )∗ := Lie(T )∗

Q
denote the positive roots, i.e those roots in B, and by Σ = {αi : i ∈ I} the set of sim-
ple roots. Let ht : R+ → Z denote the height function, defined by ht(

∑
aiαi) =

∑
ai.

Let R := R+ ⊔ −R+. We use α > 0 (resp. α < 0) to denote α ∈ R+ (resp.
α ∈ −R+). For any root α ∈ R, let α∨ ⊂ Lie(T ) denote the corresponding coroot.
Let ⟨·, ·⟩ : Lie(T )∗×Lie(T )→ Q denote the usual pairing, and let X∗(T ) ⊂ Lie(T )∗ be
the (integral) weight lattice. Let {ϖi | i ∈ I} ⊂ X∗(T ) be the fundamental weights;
they satisfy ⟨ϖi, α∨

j ⟩ = δi,j . The Weyl group W = NG(T )/T is generated by simple
reflections si = sαi

(i ∈ I), and it is equipped with the Bruhat order ⩽; we denote
by w0 the longest element. For any w ∈ W , let Red(w) denote the set of all the
reduced expressions for w. For v < w ∈W , define
(6) S(w/v) := {β ∈ R+ | v ⩽ sβw < w}.
If v = id, we denote S(w/id) by S(w).

Let P (⊇ B) be a parabolic subgroup with simple roots ΣP ⊂ Σ in P . This de-
termines the set R+

P ⊂ R+ of those positive roots spanned by ΣP , and the subgroup
WP ⊂ W generated by the simple reflections si where αi ∈ ΣP . Denote by W P the
set of minimal length representatives in W/WP . The elements w ∈ W P are char-
acterized by the property that w(R+

P ) ⊂ R+. The torus fixed points (G/P )T are
{wP | w ∈W P }. For any w ∈W P , let Tw(G/P ) denote the tangent space at wP . For
any w ∈W , let X(w)◦ := BwP/P ⊂ G/P (resp. Y (w)◦ := B−wP/P ⊂ G/P ) denote
the Schubert cell with closure X(w) (resp. Y (w)), where B− is the opposite Borel
subgroup. In particular, X(w)◦ = X(u)◦ when the two cosets wWP and uWP are
equal to each other. The Bruhat order restricts to the (Bruhat) order on the cosets
{wWP | w ∈ W P }, and it characterized by uWP ⩽ wWP if and only if uP ∈ X(w).

(1)After this paper was written, a generalization to arbitrary Coxeter groups Nakada’s formula
from Theorem 3.11 was proved in [30].
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Let X∗(T )P := {λ ∈ X∗(T ) | ⟨λ, γ∨⟩ = 0 for all γ ∈ R+
P } be the set of integral

weights which vanish on (R+
P )∨. For any λ ∈ X∗(T )P , let Lλ denote the line bundle

G×P Cλ ∈ Pic(G/P ), which has fibre over 1.P the T -module of weight λ.
Let H∗

T (G/P ) denote the equivariant cohomology of the partial flag variety G/P .
It has a basis of the Schubert classes:

H∗
T (G/P ) =

⊕
w∈W P

H∗
T (pt)[X(w)] =

⊕
w∈W P

H∗
T (pt)[Y (w)],

where [X(w)] and [Y (w)] denote the Poincaré dual of the fundamental classes of the
Schubert varieties. For any κ ∈ H∗

T (G/P ) and w ∈W P , let κ|w ∈ H∗
T (pt) denote the

restriction of κ to the fixed point wP ∈ G/P . Let H∗
T (G/P )loc := H∗

T (G/P )⊗H∗
T

(pt)
Frac H∗

T (pt) be the localized equivariant cohomology of G/P , where Frac H∗
T (pt) de-

notes the fraction field of H∗
T (pt). By the localization theorem, H∗

T (G/P )loc has a
basis formed by the classes of fixed points {[wP ] | w ∈ W P }; this is called the fixed
point basis.

The Weyl group W acts on G/P by left multiplication. It induces an action of W
on H∗

T (G/P ), which acts on the base ring H∗
T (pt) = SymZ(X∗(T )) by the usual Weyl

group action. Let φw0 denote the action induced by the longest Weyl group element.
Then φw0([X(w)]) = [Y (w0w)].

This paper will focus on Peterson, or π-minuscule, elements, for some dominant
integral weight π. Before giving the formal definition in Section 3.2, we note that
the Schubert varieties indexed by π-minuscule elements share most geometric and
combinatorial properties of the Schubert varieties in Grassmannians, or, more gener-
ally, in (co)minuscule Grassmannians.(2) In fact, any Schubert variety in a cominus-
cule Grassmannian G/P is indexed by a π-minuscule element, for π the fundamental
weight associated to the parabolic subgroup P . As a first approximation, the reader
may consider π-minuscule elements as generalizing the usual Young diagrams for
Grassmannians, or the more general Young diagrams defined by Proctor [40, 42], and
Stembridge [48, 49] (see also [19]) in other Lie types.

3. Nakada’s colored hook formula
In this section, we review Nakada’s colored hook formula from [34, 35]. This formula
generalizes results of Proctor [42, 41] and D. Peterson (see e.g. [10]) about the combi-
natorics of complete d-posets, and the number of reduced decompositions of certain
minuscule Weyl group elements; see also [47]. In order to be able to use geometric ar-
guments, in this paper we require that the Lie algebra of G is of finite type, although
Nakada’s formula may be formulated for any Kac–Moody Lie algebra.

3.1. Nakada’s formula and pre-dominant weights. Recall that the integral
weights λ ∈ Lie(T )∗ satisfy ⟨λ, α∨

i ⟩ ∈ Z, for each αi ∈ Σ; a weight λ is dominant if in
addition ⟨λ, α∨

i ⟩ ⩾ 0. Following [34], we say that an integral weight λ is pre-dominant
if ⟨λ, β∨⟩ ⩾ −1 for all positive roots β ∈ R+. For a pre-dominant integral weight λ,
the diagram D(λ) of λ is defined by
(7) D(λ) := {β ∈ R+ | ⟨λ, β∨⟩ = −1}.
If λ is a dominant integral weight, it is pre-dominant, but D(λ) = ∅.

We recall some elementary facts about pre-dominant integral weights from [34].

(2)Aside from the ordinary Grassmannians, the list of minuscule Grassmannians includes the
maximal orthogonal Grassmannians in Lie type D, even quadrics, the Cayley plane in type E6,
and the Freudenthal variety in type E7. If, as in this paper, one distinguishes the data of torus
actions, then the projective spaces P2n−1 ≃ IG(1, 2n) in types A and C, and the maximal orthogonal
Grassmannians OG(n, 2n + 1) ≃ OG(n + 1, 2n + 2) in types B and D are listed as separate varieties.
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Lemma 3.1 ([34, Lemma 4.1]). Let λ be a pre-dominant integral weight.
(1) If D(λ) ̸= ∅, then D(λ) ∩ Σ ̸= ∅.
(2) For β ∈ D(λ), sβ(λ) is a pre-dominant integral weight.
(3) In case (2), D(sβ(λ)) = sβ(D(λ) ∖ S(sβ)).

For integral weights µ, ν ∈ h∗ and β ∈ R+, define

µ
β→ ν ⇐⇒ ⟨µ, β∨⟩ = −1 and ν = sβ(µ).

In particular, if µ
β→ ν then ν = µ + β.

A λ-path of length r is a sequence (β1, β2, . . . , βr) where

λ = λ0
β1→ λ1

β2→ · · · βr→ λr.

We denote by Path(λ) the set of all λ-paths. By Lemma 3.1(2), if λ is pre-dominant, all
the weights λi in a λ-path are pre-dominant. At each step in a λ-path, |D(λi)| strictly
decreases, therefore the length of a λ-path for a pre-dominant weight must be at most
the size of D(λ). Parts (1) and (3) of Lemma 3.1 imply that a λ-path (β1, . . . , βd)
of maximal length can only contain simple roots βi ∈ ∆, and that d = |D(λ)|. For
a pre-dominant integral weight λ, we denote by MPath(λ) ⊂ Path(λ) the subset of
longest λ-paths.

Now we can state Nakada’s colored hook formula.

Theorem 3.2 (Nakada’s colored hook formula [34, Theorem 7.1]). Let λ be a pre-
dominant integral weight. Then∑ 1

β1
· 1

β1 + β2
· . . . · 1

β1 + β2 + · · ·+ βr
=

∏
β∈D(λ)

(
1 + 1

β

)
,

where the sum is over all r ⩾ 0 and λ-paths (β1, β2, . . . , βr).

Taking the lowest degree terms of the formula in theorem 3.2, we get the following
corollary.

Corollary 3.3 ([34, Corollary 7.2]). Let λ be a pre-dominant integral weight and
d = |D(λ)|. Then∑

(β1,β2,...,βd)∈MPath(λ)

1
β1
· 1

β1 + β2
· . . . · 1

β1 + β2 + · · ·+ βd
=

∏
β∈D(λ)

1
β

.

This formula generalizes the classical hook formula (1) and the Peterson–Proctor
formula (5); see also §9 below. It is also related to an equality of rational functions
involving root partitions for cluster variables cf. [12, 13].

3.2. Peterson minuscule elements. For any integral weight π, D. Peterson de-
fined the notion of a π-minuscule Weyl group element, see below and [40, 10, 42,
48, 49, 19]. Examples of π-minuscule elements are the minimal length representatives
in W P , where P is the maximal parabolic associated to a minuscule fundamental
weight. Minuscule elements are fully commutative [48]; in particular, in type A they
are 321-avoiding. We will use this notion to rewrite Nakada’s formula and its gener-
alizations considered in this paper in terms of Weyl group elements.

Definition 3.4 (π-minuscule elements). Let π be an integral weight. An element
w ∈W is called π-minuscule if there is a reduced expression w = si1si2 · · · siℓ

such
that

(8) ⟨sik+1sik+2 · · · siℓ
(π), α∨

ik
⟩ = 1 (1 ⩽ k ⩽ ℓ)

Algebraic Combinatorics, Vol. 8 #3 (2025) 660
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Equivalently,
(9) sik

sik+1sik+2 · · · siℓ
(π) = π − αiℓ

− . . .− αik
.

From the definition it follows that if w is π-minuscule, then its length is ℓ(w) =
ht(π − w(π)). The next result follows immediately from analyzing the inversion set
of w.

Lemma 3.5 ([49, Proposition 5.1]). If w ∈W then
w is π-minuscule ⇐⇒ ⟨π, γ∨⟩ = 1 for all γ ∈ R+ such that wsγ < w.

From now on we restrict to the case when π is a a dominant integral weight.
Let Wπ = StabW (π) denote the stabilizer subgroup of π inside W . This deter-
mines the parabolic subgroup P such that WP = Wπ, containing simple roots
ΣP := {αi ∈ Σ | ⟨π, α∨

i ⟩ = 0}. Let W π denote the set of minimal length representa-
tives for the cosets W/Wπ.

Remark 3.6. It follows from Lemma 3.5 that if w is π-minuscule, then w ∈W π, and
the property (8) holds for any reduced expression of w = si1si2 · · · siℓ

.

We also need the following definition.

Definition 3.7. For u, w ∈W π and β ∈ R+, define

u
β→ w if sβwWπ = uWπ, and u < w.

Lemma 3.8. Let π be dominant integral and u, w ∈ W π such that u
β→ w. Then the

following hold:
(a) The root β is unique.
(b) There exists a unique positive root γ such that sβwWP = wsγWP . Furthermore,

γ = −w−1(β) and wsγ < w.

(c) If in addition w is π-minuscule then ⟨w(π), β∨⟩ = −1.

Proof. The uniqueness of β follows from [16, Lemma 4.1]. Since sβw < w it follows
that w−1(β) < 0, thus γ := −w−1(β) is a positive root, and sγWP = w−1sβwWP =
w−1uWP . Since w−1u /∈ WP by hypothesis, the uniqueness of γ follows from [9,
Lemma 2.2]. Finally, since wsγWP = uWP and u < w, then necessarily wsγ < w.
This finishes the proof of (b). Part (c) follows from (b) and Lemma 3.5. □

The relation between pre-dominant integral weights and π-minuscule elements is
given by the following proposition.

Proposition 3.9 ([34, Propositions 10.1 and 10.3]). There is a bijection between the
following two sets
{pre-dominant integral weights λ}

←→ {(π, w) |π is dominant integral, and w is π-minuscule}.
Here, λ is determined by (π, w) by the formula λ = w(π). Conversely, for any pre-
dominant integral weight λ, take a maximal λ-path (αi1 , αi2 , . . . , αid

) ∈ MPath(λ) and
set w = si1si2 · · · sid

, π = w−1(λ). Then π is a dominant integral weight and w is
π-minuscule. Moreover D(λ) = S(w) = {β ∈ R+ | sβw < w}, and the correspondence
(αi1 , αi2 , . . . , αid

) 7→ si1si2 · · · sid
from MPath(λ) to Red(w) is bijective.

Corollary 3.10. Let π be a dominant integral weight, w be π-minuscule and
λ = w(π). For β ∈ R+, let u ∈ W π denote the minimal length representative in
sβwWπ. Then:

(a) λ
β→ sβ(λ) is equivalent to u

β→ w.
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(b) If u
β→ w, then u is also π-minuscule.

Proof. Part (a) follows from:

λ
β→ sβ(λ) ⇔ ⟨λ, β∨⟩ = −1 ⇔ ⟨π, w−1(β∨)⟩ = −1 ⇔ w−1β < 0 ⇔ sβw < w ⇔ u

β→ w.

Here in the third equivalence, the⇒ direction follows from the fact that π is dominant,
while the ⇐ direction follows from Lemma 3.8.

To prove (b), observe that if u
β→ w, then sβλ is also a pre-dominant integral

weight by Lemma 3.1(2). Because of Proposition 3.9,
sβλ = w′(π′)

for some dominant integral weight π′, w′ ∈W such that w′ is π′-minuscule. Therefore,
sβw(π) = w′(π′),

and because the dominant weights π, π′ are in the fundamental domain for the W -
action, it follows that π = π′, and that sβwWπ = w′Wπ. By Remark 3.6, w′ ∈ W π.
Thus, w′ = u, and u is π-minuscule. □

With Corollary 3.10, Nakada’s formula (Theorem 3.2) can be reformulated as fol-
lows.

Theorem 3.11 (Nakada). Let π be a dominant integral weight, and w ∈ W be a
π-minuscule element. Then:∑ 1

β1
· 1

β1 + β2
· . . . · 1

β1 + β2 + · · ·+ βr
=

∏
β∈S(w)

(
1 + 1

β

)
,

where the summation is over r ⩾ 0 and paths xr
βr→ xr−1 → . . . → x1

β1→ x0 = w. In
particular, ∑

xd

βd→xd−1→...→x1
β1→x0=w

1
β1
· 1

β1 + β2
· . . . · 1

β1 + β2 + · · ·+ βd
=

∏
β∈S(w)

1
β

,

where d = |S(w)|= ℓ(w).

This statement will generalized in Corollary 9.3 below.

3.3. Bruhat intervals of π-minuscule elements. The main goal of this section
is to prove Proposition 3.13, stating that the intervals in the weak and ordinary (or
strong) Bruhat order determined by two π-minuscule elements coincide. Special cases
appeared in the works by Stembridge [48, Thm. 7.1] (for π a minuscule weight) and
Proctor [42, §10] (for G simply laced), but we have not seen Proposition 3.13 in the
generality we need.

For u, w ∈ W the (left) weak Bruhat order is defined by u <L w iff ℓ(wu−1) =
ℓ(w) − ℓ(u). Equivalently, w = vu and ℓ(vu) = ℓ(v) + ℓ(u). Observe that if u <L w
then u < w in the strong Bruhat order, but in general the two orders are different.

Example 3.12. Consider the example of type A2. The Weyl group has two generators
s1, s2. Let w = s1s2 and u = s1. Then u < w, but u ≮L w as ℓ(wu−1) ̸= ℓ(w)− ℓ(u).

For v < w ∈W P , set [v, w]P := {x ∈W P | v ⩽ x ⩽ w}.

Proposition 3.13. Let π is a dominant integral weight with StabW (π) = WP and let
u < w be π-minuscule elements in W P . Then the interval [u, w]P ⊂W P is the same
in the weak and strong Bruhat orders, i.e.,

{v ∈W P : u ⩽ v ⩽ w} = {v′ ∈W P : u ⩽L v′ ⩽L w}.
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Proof. Let v ∈ W P such that v < w. Then it suffices to show that v ⩽L w when
w covers v in the strong Bruhat order in W P , i.e., ℓ(w) − ℓ(v) = 1. Write vWP =
sβwWP = wsγWP for positive roots β, γ as in Lemma 3.8. Since w is π-minuscule, v
is also π-minuscule by Corollary 3.10 (b). Using that ℓ(w) = ht(π − w(π)) we obtain

1 = ℓ(w)− ℓ(v) = ht(sβw(π)− w(π)) = ht(w(π)− ⟨w(π), β∨⟩β − w(π)) = ht(β).
The last equality follows because the multiplicity ⟨w(π), β∨⟩ = −1 by Lemma 3.8(c).
Therefore β must be a simple root, and, furthermore, w = sβv, thus v ⩽L w. □

The special case u = id of the following corollary has been proved by Nakada [34,
Proposition 10.3].

Corollary 3.14. Assume the hypotheses from Proposition 3.13. Let d := ℓ(w)− ℓ(u).
There is a bijection between the set of reduced words of wu−1 and the set of maximal
length paths from u to w, sending a reduced word wu−1 = sβ1 · . . . · sβd

to the path

u = xd
βd→ xd−1 → . . .→ x1

β1→ x0 = w.

Proof. Consider any path u = xd
βd→ xd−1 → . . . → x1

β1→ x0 = w in the (strong)
Bruhat interval [u, w]P . Then ℓ(xi−1)− ℓ(xi) = 1 for all i, and since w is π-minuscule
all xi’s must be also. Because weak and strong Bruhat orders coincide in [u, w]P
by Proposition 3.13, xi = sβixi−1 and each of the roots βi must be simple. Then
sβd

sβd−1 ·. . .·sβ1 = uw−1 and this decomposition is reduced. This associates a reduced
word of wu−1 to the given path (by reading in reverse), and it easily follows that this
correspondence is a bijection. □

4. Chern–Schwartz–MacPherson classes of Schubert cells
In this section, we recall the definition of the equivariant Chern–Schwartz–
MacPherson (CSM) and Segre–MacPherson (SM) classes, then we recall the Chevalley
formula for the CSM and SM classes of Schubert cells in partial flag manifolds [1, 50].

4.1. Definition. Let X be a complex algebraic variety. The group of constructible
functions F(X) consists of functions φ =

∑
W cW 11W , where the sum is over a finite

set of constructible subsets W ⊂ X, cW ∈ Z are integers, and 11W is the char-
acteristic function of W . For a proper morphism f : Y → X, there is a linear
map f∗ : F(Y )→ F(X), such that for any constructible subset W ⊂ Y , we have
f∗(11W )(x) = χtop(f−1(x)∩W ), where x ∈ X and χtop denotes the topological Euler
characteristic. Thus F can be considered as a (covariant) functor from the category of
complex algebraic varieties and proper morphisms to the category of abelian groups.

According to a conjecture attributed to Deligne and Grothendieck, there is a unique
natural transformation c∗ : F → H∗ from the functor of constructible functions on a
complex algebraic variety X to the homology functor, where all morphisms are proper,
such that if X is smooth then c∗(11X) = c(TX)∩ [X], where c(TX) denotes the total
Chern class of the tangent bundle TX and [X] denotes the fundamental class. This
conjecture was proved by MacPherson [27]; the class c∗(11X) for possibly singular X
was shown to coincide with a class defined earlier by M.-H. Schwartz [45, 46, 5].

The theory of CSM classes was later extended to the equivariant setting by
Ohmoto [38]. If X has an action of a torus T , Ohmoto defined the group FT (X)
of equivariant constructible functions. We will need the following properties of this
group:

(1) If W ⊆ X is a constructible set which is invariant under the T -action, its
characteristic function 11W is an element of FT (X). We will denote by FT

inv(X)
the subgroup of FT (X) consisting of T -invariant constructible functions on X.
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(The group FT (X) also contains other elements, but this will be immaterial
for us.)

(2) Every proper T -equivariant morphism f : Y → X of algebraic varieties in-
duces a homomorphism fT

∗ : FT (X) → FT (Y ). The restriction of fT
∗ to

FT
inv(X) coincides with the ordinary push-forward f∗ of constructible func-

tions. See [38, §2.6].
Ohmoto proves [38, Theorem 1.1] that there is an equivariant version of MacPher-

son transformation cT
∗ : FT (X) → HT

∗ (X) that satisfies cT
∗ (11X) = cT (TX) ∩ [X]T

if X is a smooth variety, and that is functorial with respect to proper push-forwards.
The last statement means that for all proper T -equivariant morphisms Y → X the
following diagram commutes:

FT (Y )
cT

∗ //

fT
∗
��

HT
∗ (Y )

fT
∗
��

FT (X)
cT

∗ // HT
∗ (X).

If X is smooth, we will identify the (equivariant) homology and cohomology groups,
by Poincaré duality: HT

∗ (X) ≃ H∗
T (X).

Definition 4.1. Let Z be a T -invariant constructible subvariety of X.
(1) We denote by cSM(Z) := cT

∗ (11Z) ∈ HT
∗ (X) the equivariant Chern–Schwartz–

MacPherson (CSM) class of Z.
(2) If X is smooth, we denote by sM(Z) := cT

∗ (11Z )
cT (T X) ∈ Ĥ∗

T (X) the equivariant
Segre–MacPherson (SM) class of Z, where Ĥ∗

T (X) is an appropriate comple-
tion of H∗

T (X).

If X is smooth, we identify H∗
T (X) with HT

∗ (X) via the Poincaré duality sending
κ 7→ κ ∩ [X]T . Thus, cSM(Z) is viewed as a cohomology class. In particular, in the
above definition, the SM classes may also be seen as cohomology classes.

4.2. Chevalley formulae for CSM and SM classes of Schubert cells. In
this section, we recall the Chevalley formula for the CSM/SM classes of the Schubert
cells in the partial flag variety G/P , proved in [1, 50].

Let H∗
T (X)loc := H∗

T (X) ⊗H∗
T

(pt) Frac H∗
T (pt) denote the localization of H∗

T (X),
where Frac H∗

T (pt) is the fraction field of H∗
T (pt). Since the transition matrix

between the CSM classes {cSM(X(w)◦) | w ∈ W P } (and also the SM classes
{sM(Y (w)◦) | w ∈W P }) and the Schubert classes is a triangular matrix with
non-zero diagonal terms in H∗

T (X)loc, the CSM classes and SM classes are bases
for H∗

T (pt)loc. Moreover, they are dual under the Poincaré pairing ⟨−,−⟩G/P

on H∗
T (G/P )loc (see [1, Theorem 7.1]):

⟨sM(Y (u)◦), cSM(X(w)◦)⟩G/P = δu,w for any w, u ∈W P .

If φw0 denotes the automorphism of H∗
T (G/P ) induced by the left multiplication by

w0 on G/P , then

(10) φw0(cSM(X(w)◦)) = cSM(Y (w0w)◦).

Theorem 4.2 ([1, 50]). For any w ∈ W P and λ ∈ X∗(T )P , the following holds in
H∗

T (G/P ):

c1(Lλ) ∪ cSM(X(w)◦) = w(λ)cSM(X(w)◦)−
∑

α>0,wsα<w

⟨λ, α∨⟩cSM(X(wsα)◦),
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and

c1(Lλ) ∪ sM(Y (w)◦) = w(λ)sM(Y (w)◦)−
∑

α>0,wsα>w

⟨λ, α∨⟩sM(Y (wsα)◦).

Proof. The first equality follows from [50, Theorem 3.7] and [1]. We prove the second
one. Applying φw0 to the first equation, we get

c1(Lλ) ∪ cSM(X(w0w)◦) = w0w(λ)cSM(X(w0w)◦)−
∑
α>0,

wsα<w

⟨λ, α∨⟩cSM(X(w0wsα)◦).

Here we have used Equation (10) and the fact that c1(Lλ) is W -invariant. Assume
w0w = zu for some z ∈ W P and u ∈ WP . Then w0wsαWP = zusαWP = zsuαWP ,
and we have the following equivalences

α > 0, wsα < w

⇔α > 0, wα < 0
⇔α ∈ R+ ∖ R+

P , wα < 0
⇔β := uα ∈ R+ ∖ R+

P , zβ > 0
⇔β ∈ R+ ∖ R+

P , zsβ > z.

Moreover, ⟨λ, α∨⟩ = ⟨λ, β∨⟩ since λ ∈ X∗(T )P . Finally, the second equation holds by
the above equivalences and the fact that ⟨λ, γ∨⟩ = 0 for any γ ∈ R+

P . □

5. Segre–MacPherson Littlewood–Richardson (SMLR)
coefficients

For any u, v, w ∈W P , define the Segre–MacPherson Littlewood–Richardson (SMLR)
coefficients dv

u,w∈ H∗
T (pt)loc for the SM classes of Schubert cells by

(11) sM(Y (u)◦) ∪ sM(Y (v)◦) =
∑

w∈W P

dw
u,vsM(Y (w)◦) ∈ H∗

T (G/P )loc.

A formula for the structure constants dw
u,v, in terms of multiplications in the coho-

mology of Bott-Samelson varieties, was recently obtained by the third-named author
in [51, Theorem 5.2]. Furthermore, in the non-equivariant case, it was proved in [44]
that (−1)ℓ(u)+ℓ(v)−ℓ(w)dw

u,v ⩾ 0. In what follows we will obtain a recursive procedure
to calculate the coefficients, based on the equivariant Chevalley formula for the SM
classes. Instances of this recursion in various equivariant (quantum) cohomology and
K theory rings, appeared in [32, 23, 28, 31, 36, 8, 37].

We start with the following simple lemma.

Lemma 5.1. The following properties hold for the SMLR coefficients dw
u,v:

(a) If dw
u,v ̸= 0, then u ⩽ w and v ⩽ w.

(b) dv
u,v = sM(Y (u)◦)|v.

Proof. To prove (a), localize both sides at the fixed point wP , and observe that

sM(Y (u)◦)|w = 0

unless u ⩽ w. Part (b) follows again by localization, after restricting both sides of
Equation (11) to the fixed point vP . □

We record the following explicit localization formula for sM(Y (u)◦)|v, generalizing
the one in the complete flag variety case [1, Corollary 9.8].
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Proposition 5.2. Let u ⩽ v ∈ W P . Fix a reduced expression v = si1si2 · · · siℓ
and

set βj = si1si2 · · · sij−1(αij
) (j = 1, 2, . . . , ℓ). Then

sM(Y (u)◦)|v = 1∏
1⩽j⩽ℓ(1 + βj)

∑
βj1βj2 · · ·βjk

,

where the summation is over 1 ⩽ j1 < j2 < · · · jk ⩽ ℓ with sij1
sij2
· · · sijk

WP = uWP .

Proof. Let p : G/B → G/P be the natural projection. In this proof, we use Y (w)◦
B :=

B−wB/B ⊂ G/B to denote the Schubert cells in G/B. Since p is a smooth morphism,
we may apply the (equivariant) Verdier-Riemann-Roch formula [38, Theorem 4.1] to
obtain

p∗(sM(Y (u)◦)) =
∑

z∈WP

sM(Y (uz)◦
B).

Restricting both sides to the fixed point vB ∈ G/B, we get

sM(Y (u)◦)|v = p∗(sM(Y (u)◦))|vB

=
∑

z∈WP

sM(Y (uz)◦
B)|vB

=
∏

α>0,vα>0(1− vα)∏
α>0(1− vα)

∑
βj1βj2 · · ·βjk

= 1∏
1⩽j⩽ℓ(1 + βj)

∑
βj1βj2 · · ·βjk

.

Here the third equality follows from [1, Corollary 6.7], and the summations in the last
two lines are over 1 ⩽ j1 < j2 < · · · jk ⩽ ℓ such that sij1

sij2
· · · sijk

WP = uWP . □

For any λ ∈ X∗(T )P and u, w ∈W P , define the Chevalley coefficients cu
λ,w by the

equation

(12) c1(Lλ) ∪ sM(Y (w)◦) =
∑

u∈W P

cu
λ,wsM(Y (u)◦).

These coefficients are calculated in Theorem 4.2. The following is our main recursion
formula for dw

u,v.

Proposition 5.3. For any u, v, w ∈ W P and any weight λ ∈ X∗(T )P , the following
holds:

(cw
λ,w − cu

λ,u)dw
u,v =

∑
u<x

cx
λ,udw

x,v −
∑
y<w

cw
λ,ydy

u,v.

Proof. By the associativity of the cup product, we have(
c1(Lλ) ∪ sM(Y (u)◦)

)
∪ sM(Y (v)◦) = c1(Lλ) ∪

(
sM(Y (u)◦) ∪ sM(Y (v)◦)

)
.

By Equation (11), Equation (12) and Lemma 5.1, taking the coefficients of sM(Y (w)◦)
in both sides of the above equation gives

cu
λ,udw

u,v +
∑
x>u

cx
λ,udw

x,v = cw
λ,wdw

u,v +
∑
y<w

cw
λ,ydy

u,v.

This proves the desired equality. □

Note that by Theorem 4.2, the Chevalley coefficient cy
λ,x is not equal to 0 only

if x ⩽ y. Furthermore, if u ̸= w, it was proved in [31, Proposition A.3] that one can
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find λ such that cw
λ,w ̸= cu

λ,u. Thus, the identity in Proposition 5.3 may be rewritten
as:

(13) dw
u,v = 1

cw
λ,w − cu

λ,u

(∑
u<x

cx
λ,udw

x,v −
∑
y<w

cw
λ,ydy

u,v

)
.

Then the same argument as the one from [31] shows that Equation (13) gives a
recursive relation for the coefficients dw

u,v. We briefly recall the salient points. If u = w,
then the coefficient du

u,v is known from Lemma 5.1 and Proposition 5.2. If u ̸= w, we
may choose λ (depending on u, w) such that cw

λ,w− cu
λ,u ̸= 0. The coefficients dw

x,v and
dy

u,v on the right hand side of Equation (13) satisfy ℓ(w)−ℓ(x), ℓ(y)−ℓ(u) < ℓ(w)−ℓ(u).
To conclude, an inductive argument on u ⩽ w and ℓ(w)− ℓ(u) shows that:

Corollary 5.4. The coefficients dw
u,v are algorithmically determined by the following:

• dw
u,v = 0 for u ≰ w;

• du
u,v (known from Lemma 5.1 and Proposition 5.2);

• For u < w, the coefficients dw
u,v are determined recursively from Equa-

tion (13), in terms of coefficients dw′

u′,v where u ⩽ u′, v′ ⩽ w and
ℓ(v′)− ℓ(u′) < ℓ(w)− ℓ(u).

An algorithm to calculate du
u,v, in terms of paths on a decorated version of the

Bruhat graph of G/P , will be discussed in §8 below.

6. Equivariant multiplicities
6.1. Definition and a smoothness criterion. Let X be a (finite-type) pure-
dimensional scheme with a torus action T , and p ∈ X a torus fixed point. In this
section we recall Brion’s definition of the equivariant multiplicity of X at p. The main
goal is to prove Theorem 6.7 which provides a smoothness criterion using equivariant
multiplicities and CSM classes; it generalizes a similar criterion by Brion, in terms
of fundamental classes. This will be needed to identify the right hand side of the
Equation (3) with an equivariant multiplicity.

To be consistent with Brion’s hypotheses, in this section we consider classes in the
equivariant Chow group AT

∗ (X) of X defined by Edidin and Graham [14]. There is
a degree doubling cycle map clX : AT

k (X) → HT
2k(X) (k ⩾ 0) from the equivariant

Chow group to the equivariant Borel–Moore group. We will abuse notation and we will
identify classes in the Chow group with their images in the Borel–Moore group under
this map. In our main application later in this paper, X = G/P is a flag manifold. In
this case the cycle map is an isomorphism; see, e.g., [7, §3.2, Cor. 2].

Let us fix notation. For a T -module V =
⊕n

i=1 Cχi
we let Φ(V ) := {χi : 1 ⩽ i ⩽ n}

denote the set of its weights. The Chern class of V is defined by cT (V ) :=
∏n

i=1(1+χi).
The Euler class of V is defined by eT (V ) :=

∏n
i=1 χi; these are elements in H∗

T (pt).
Recall that H∗

T (pt)loc denotes the fraction field of H∗
T (pt); it is equal to the fraction

field of the polynomial ring Z[λ1, . . . , λr] in a basis of the characters of T , written
additively. We set deg λi = 1.

Following [7, §4], we say that the fixed point p ∈ X is non-degenerate if 0 is not a
weight of the (Zariski) tangent space TpX. The set of weights of TpX will be called
the weights of p. For p ∈ X a non-degenerate point, Brion defined the equivariant
multiplicity ep(κ), an element in the fraction field of H∗

T (pt) associated to a class
κ ∈ AT

∗ (X) in the equivariant Chow group of X. The definition of the equivariant
multiplicity is given in [7, §4.2]:

Theorem 6.1 (Brion). Let p ∈ X be a non-degenerate fixed point and let χ1, . . . , χn

be its weights.
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(a) There exists a unique H∗
T (pt)-linear map ep,X : HT

∗ (X)→ H∗
T (pt)loc such that

ep,X [p]T = 1 and that ep,X [Y ]T = 0 for any T -invariant subvariety Y ⊂ X with
p /∈ Y . Furthermore, the image Im(ep,X) is contained in 1

χ1·...·χn
H∗

T (pt).
(b) For any T -invariant subvariety Y ⊂ X, the rational function ep,X [Y ]T is ho-

mogeneous of degree −dim Y and it coincides with ep,Y [Y ]T .
(c) The point p is smooth in X if and only if

ep,X [X]T = 1
χ1 · . . . · χn

.

For p ∈ X we denote by ιp : {p} → X denote the embedding. If p is smooth,
then, using the terminology from [17, §B.7], the morphism ιp is a regular embedding.
Therefore it admits a pullback ι∗

p : HT
2(dim X−k)(X) → HT

−2k(pt) ≃ H2k
T (pt). For

κ ∈ HT
∗ (X), we denote by κ|p the pull back ι∗

p(κ). The following corollary is included
in Brion’s proof of the theorem above, but for convenience we recall briefly the salient
points.

Corollary 6.2. Let X be a scheme with a torus action T , and let p ∈ X be a smooth
non-degenerate, torus fixed point. Then the equivariant multiplicity is equal to

ep,X(κ) = κ|p
eT (TpX) ∀κ ∈ HT

∗ (X).

Proof. We may may find a T -invariant neighborhood V of p such that V is smooth.
(For instance, V = X ∖ Xsing, the complement of the singular locus of X.) By the
self intersection formula ([p]T )|p = ι∗

p(ιp)∗[p]T = eT (TpX)[p]T in HT
∗ (pt). After the

identification HT
∗ (pt) ≃ H∗

T (pt) which sends [p]T 7→ 1, the assignment κ 7→ κ|p

eT (TpX)
satisfies the conditions in part (a) of Theorem 6.1. □

Example 6.3. Let X be a smooth projective algebraic variety with a torus T action
and finitely many T -fixed points, which we assume to be non-degenerate. Let Y ⊂ X
be closed and T -stable. By the localization theorem [15, Thm. 2], the fundamental
class [Y ]T expands as a sum of classes of fixed points, and by Corollary 6.2 the
coefficients are the equivariant multiplicities:

[Y ]T =
∑

p∈XT

ep,X([Y ]T )[p]T .

We will need the following homological analogue of [2, Lemma 9.3].

Lemma 6.4. Let X ⊂ M be a T -equivariant closed embedding of irreducible T -
varieties. Let p ∈ X be a T -fixed point, non-degenerate and smooth in X and M .
Denote by Np,XM the normal space of X in M at p. Then:

ι∗
pcSM(X) = cT (TpX) · eT (Np,XM) .

Proof. Since the arguments essentially mimic those from [2], we will be brief. Again
we may find a T -invariant neighborhood p ∈ V ⊂M such that V ∩X is smooth. Let
j : V → M be the inclusion. This is an open embedding, thus smooth, with trivial

relative tangent bundle. Factor the inclusion ιp as {p}
ι′

p // V
j // M . Note that

the restriction i : X ∩ V ⊂ V is proper, by base-change. We apply the Verdier–
Riemann–Roch [38, Theorem 4.1] to the open embedding (hence smooth morphism) j,
to obtain

ι∗
pcSM(X) = (ι′

p)∗j∗cSM(X) = (ι′
p)∗i∗cSM(X ∩ V ).
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Since X∩V is smooth, it follows that i∗cSM(X∩V ) = i∗(cT (T (X ∩ V ))∩ [X∩V ]T ) ∈
HT

∗ (V ). By the self-intersection formula,
(ι′

p)∗i∗cSM(X ∩ V ) = cT (TpX) · eT (Np,X∩V V ) = cT (TpX) · eT (Np,XM),
as claimed. □

Example 6.5. Consider C3 with standard basis f1, f2, f3 and the torus action given
by diag(t1, t2, t3).fi = tifi. Let M = P(C3) be the projective plane, and denote
by pi = P(⟨fi⟩) the T -fixed points. Consider two invariant lines L1 = P(⟨f1, f2⟩),
L2 = P(⟨f2, f3⟩), and their union X = L1 ∪ L2, which is singular at p2. Using that
11L1∪L2 = 11L1 + 11L2 − 11L1∩L2 , one calculates that:
cSM(X) = cSM(L1) + cSM(L2)− cSM(L1 ∩L2) = [L1]T + [L2]T + [p1]T + [p2]T + [p3]T .

Then
ι∗
p1

cSM(X) = ι∗
p1

([L1]T ) + ι∗
p1

([p1]T )
= t3 − t1 + (t3 − t1)(t2 − t1)
= (1 + t2 − t1)(t3 − t1)
= cT (Tp1X)eT (Np1,XM).

The following is immediate from the previous Lemma.

Corollary 6.6. Let M be a smooth T -variety, and assume all the other hypotheses
from Lemma 6.4. Then:

ι∗
p(sM(X)) = eT (Np,XM)

cT (Np,XM) .

Theorem 6.7. Let X be an irreducible variety with a T -action. Let p ∈ X be a non-
degenerate T -fixed point with weights χ1, . . . , χn. Then X is smooth at p if and only
if

ep,X(cSM(X)) =
n∏

i=1

(
1 + 1

χi

)
.

Proof. If X is smooth at p, the claim follows from Corollary 6.2 and Lemma 6.4 (for
X = M). We now prove the converse. From the definition of the CSM classes it follows
that in HT

∗ (X),

(14) cSM(X) = [X]T +
∑

ai[Vi]T ,

where ai ∈ H∗
T (pt) and Vi ⊂ X are closed irreducible subvarieties such that the terms

ai[Vi]T ∈ HT
2j(X) for j < dim X. Indeed, take a Whitney stratification X =

⋃
Xi. We

may find equivariant desingularizations πi : X̃i → Xi of the closures of Xi such that
πi is an isomorphism over Xi and X̃i ∖ π−1

i (Xi) is a simple normal crossing divisor.
Then by additivity and functoriality,

cSM(X) =
∑

(πi)∗(cT (TX̃i))− (πi)∗(cSM(X̃i ∖ π−1
i (Xi))).

It is not difficult to check that in this expression, the only term in HT
2 dim X(X) is [X]T .

From Equation (14) it follows that the leading term (i.e. the term of lowest degree)
in the localization ι∗

p(cSM(X)) is equal to ι∗
p[X]T . Since the equivariant multiplicity is

H∗
T (pt)-linear, we deduce that

ep,X(cSM(X)) = ep,X([X]T ) +
∑

aiep,X([Vi]T ).

By part (b) of Theorem 6.1, deg ep,X([X]T ) = −dim X and deg ep,Vi
([Vi]T ) =

−dim Vi. Then the leading term of ep,X(cSM(X)) has degree −dim X, and it must
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be equal to ep,X([X]T ). The hypothesis implies that ep,X([X]T ) = 1
χ1·...·χn

, and by
Brion’s criterion from Theorem 6.1(c), X is smooth at p. □

7. Equivariant multiplicities of CSM classes and smoothness of
Richardson varieties

Next we apply the results in §6 to prove a smoothness criterion for Richardson varieties
in terms of the equivariant multiplicities of their CSM class; cf. Theorem 7.5. This
will be used to interpret certain terms in the hook formula from §3.

7.1. Weights of tangent and normal spaces of Schubert varieties. We
recall, and also define, various tangent and normal spaces of Schubert varieties which
we use below.

Fix P a parabolic subgroup and w ∈ W P . The fixed point wP is isolated and
the tangent space TwG/P has weights Φ(TwG/P ) := {−w(α) : α ∈ R+ ∖ R+

P }. We
consider the following T -submodules of TwG/P .

• The tangent spaces Tw(X(w)), respectively Tw(Y (w)), of X(w) and Y (w), at
the smooth point wP . They satisfy TwX(w) ⊕ TwY (w) = TwG/P and have
weights

Φ(TwY (w)) = {−w(α) ∈ Φ(TwG/P ) : w(α) > 0};

Φ(TwX(w)) = Φ(TwG/P ) ∖ Φ(TwY (w)) = {−w(α) ∈ Φ(TwG/P ) : w(α) < 0}.
Note that the condition w(α) > 0 (respectively w(α) < 0) is equivalent to
wsα > w (respectively wsα < w). Equivalently, Φ(TwX(w)) = S(w) from
Equation (6).

• The normal spaces Nw,X(w)G/P , respectively Nw,Y (w)G/P , of X(w) and
Y (w), at the smooth point wP . Note that:

Φ(Nw,X(w)G/P ) = Φ(TwY (w)); Φ(Nw,Y (w)G/P ) = Φ(TwX(w)).

• More generally, let v ⩽ w be two elements in W P . Define the T -submodule
T̃wY (v) ⊂ TwG/P by the requirement that its weights are:

Φ(T̃wY (v)) = {−w(α) ∈ Φ(TwG/P ) : v ⩽ wsα}.

The space T̃wY (v) is in general not equal to the Zariski tangent space TwY (v)
of Y (v) at wP ; see Example 7.1 below. However, if wP is smooth in Y (v) then
T̃wY (v) is the actual tangent space. The latter will be the case for most of
our applications. We will not need it, but observe that in general T̃wY (v) is
always included in TwY (v), see e.g. [11] or [25, Prop. 12.1.7].

• As before, let v ⩽ w be two elements in W P . Define the T -submodule
Ñw,Y (v)G/P ⊂ TwG/P by the requirement that its weights are:

Φ(Ñw,Y (v)G/P ) = {−w(α) ∈ Φ(TwG/P ) : v ≰ wsα} = {β ∈ Φ(TwG/P ) : v ≰ sβw},
where the second equality follows from the change of variable β = −w(α).
Again we observe that if wP is smooth in Y (v) then this is the genuine
normal space Nw,Y (v)G/P of Y (v) at wP . Also observe that by definition,

T̃wY (v)⊕ Ñw,Y (v)G/P = TwG/P .

Using again (6), it follows that for any v, w ∈W P such that v ⩽ w,

Φ(Ñw,Y (v)G/P ) ={−wα | α ∈ R+ ∖ R+
P , v ≰ wsα < w}

={−wα | α ∈ R+, v ≰ wsα < w}
={β > 0 | v ≰ sβw < w}
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=S(w) ∖ S(w/v).
Here the third equality follows from the fact

{−wα | α ∈ R+, wsα < w} = {β > 0 | sβw < w}.

Example 7.1. Consider the 3-dimensonal quadric OG(1, 5) = SO(5)/P , where P is
the maximal parabolic subgroup such that WP = ⟨sα2⟩ with α2 the short root. The
divisor Y (s1) is singular at w = s1s2s1 (e.g., by using Theorem 7.2 below), therefore
the Zariski tangent space at w has dimension 3. However, dim T̃wY (v) = 2.

We also recall a smoothness criterion for Schubert varieties due to S. Kumar, see
also [7, page 255 (K)] for another proof using equivariant multiplicities.

Theorem 7.2 ([24]). Let v, w ∈ W P be two Weyl group elements such that v ⩽ w.
Then the Schubert variety Y (v) ⊂ G/P is smooth at wP if and only if the localization
of the equivariant fundamental class [Y (v)] ∈ H∗

T (G/P ) is given by:

[Y (v)]|w =
∏

β∈Φ(Ñw,Y (v)G/P )

β.

Proof. In [24], the criterion is stated for G/B, but it immediately implies the result
in G/P . For completeness, we indicate the main points. We use the same convention
as in the proof of Proposition 5.2. Let p : G/B → G/P be the natural projection,
and let Y (v)B := B−vB/B ⊂ G/B be the Schubert variety in G/B. Since p is a
smooth morphism, and if v ∈ W P then p−1(Y (v)) = Y (v)B . In particular, if v ⩽ w
are elements in W P , then Y (v) is smooth at wP if and only if Y (v)B is smooth at wB.
Furthermore, the localization [Y (vWP )]|w = [Y (v)B ]|wB . This finishes the proof. □

7.2. Equivariant multiplicities of CSM classes of Richardson varieties.
In this section we calculate equivariant multiplicities of Richarsdon varieties and their
CSM classes. These will show again as factors in the generalized hook formula.

Let v ⩽ w in W P and consider the Richardson variety Rv
w := X(w)∩Y (v) ⊂ G/P .

The T -fixed point wP is an isolated T -fixed point in Rv
w,and the torus weights of the

tangent space of Rv
w at wP are non-zero and distinct, therefore wP is non-degenerate

in Rv
w. We need the following Lemma.

Lemma 7.3. Let w be an element in W P . Then
cSM(X(w))|w · sM(Y (w))|w = eT (TwG/P ).

Proof. From Lemma 6.4 we obtain that
cSM(X(w))|w · sM(Y (w))|w

=
cT (TwX(w))eT (Nw,X(w)G/P )cT (TwY (w))eT (Nw,Y (w)G/P )

cT (TwG/P )
=eT (TwG/P ).

Here we used that TwX(w)⊕ TwY (w) = TwG/P since the intersection X(w) ∩ Y (w)
is proper and transversal and it consists of the single point wP . □

Proposition 7.4. Let v ⩽ w in W P . Then the following equality holds:

ew,G/P (cSM(Rv
w)) = sM(Y (v))|w

sM(Y (w))|w
.

Proof. From Corollary 6.2 we deduce that

ew,G/P (cSM(Rv
w)) = cSM(Rv

w)|w
eT (TwG/P ) .
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By Schürmann’s transversality formula [43, 1] it follows that
cSM(Rv

w)|w = (cSM(X(w))sM(Y (v)))|w = cSM(X(w))|w · sM(Y (v))|w.

Then the claim follows from Lemma 7.3 after combining the two equations. □

Next we use Kumar’s smoothness criterion to relate smoothness of Schubert and
Richardson varieties in terms of localizations of CSM and SM classes.

Theorem 7.5. Let v, w ∈ W P be two elements such that v ⩽ w. Then the following
are equivalent:

(a) The Schubert variety Y (v) is smooth at wP ;
(b) The Richardson variety Rv

w is smooth at wP ;
(c) The localization of cSM(Y (v)) at wP satisfies:

cSM(Y (v))|w = eT (Ñw,Y (v)G/P ) · cT (T̃wY (v));
(d) The localization of sM(Y (v)) at wP satisfies:

sM(Y (v))|w =
eT (Ñw,Y (v)G/P )
cT (Ñw,Y (v)G/P )

=
∏

β>0,v≰sβw

β

1 + β
;

(e) The equivariant multiplicity of cSM(Rv
w) at wP satisfies:

ew,G/P (cSM(Rv
w)) =

∏
β∈S(w/v)

(1 + 1
β

),

where S(w/v) is defined in Equation (6).

Proof. The equivalence (a) ⇔ (b) follows from Kleiman transversality theorem; see
e.g. [3, Cor. 2.10] for a proof. The second equality in (d), and the equivalence (c)⇔ (d),
follow from the definition of the spaces involved (cf. §7.1) and the definition of CSM
and SM classes. The equivalence (d) ⇔ (e) follows from Proposition 7.4, taking into
account that Y (w) is smooth at wP , and using the formula for sM(Y (w))|w from
Corollary 6.6.

To finish the proof it suffices to show the equivalence (a) ⇔ (c). The direction
(a)⇒ (c) follows from Lemma 6.4. For the reverse direction, observe that Equa-
tion (14) implies that the term of lowest degree of cSM(Y (v))|w is the localization
[Y (v)]|w. Therefore, the hypothesis implies that

[Y (v)]|w = eT (Ñw,Y (v)G/P ).
Then the claim follows from Kumar’s smoothness criterion [24]; see Theorem 7.2. □

8. The Λ-Bruhat graph
In this section we introduce the main combinatorial object in this paper: a directed
graph depending on an ‘admissible function’ Λ assigning weights to vertices, and whose
sums over weighted paths give algorithms to calculate localization of SM classes of
Schubert cells and varieties; cf. Proposition 8.12 and Corollary 8.13. Similar graphs
based on Chevalley-type recursions have been used in [28, 31, 36, 37] to provide
algorithms for Schubert multiplication in the equivariant quantum cohomology of
flag manifolds. In the next section we will use this graph to formulate and prove a
generalization of the Nakada’s colored formula.

For a parabolic subgroup P recall that X∗(T )P denotes the set of integral weights
orthogonal to roots in R+

P . We recall the following characterization of the covering
relations in the Bruhat order in G/P ; see e.g. [16, Lemma 4.1].

Lemma 8.1. Let x ̸= y be two elements in W P . Then the following are equivalent:
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(a) There exists γ ∈ R+ ∖ R+
P such that xsγWP = yWP .

(b) There exists β ∈ R+ such that sβxWP = yWP .
Furthermore, β and γ are unique with these properties.

Proof. The equivalence of (a) and (b), and the uniqueness of β are proved in [16,
Lemma 4.1]. This lemma also shows that sγ is unique up to a conjugation by an
element in WP . If sγWP = sγ′WP then γ = γ′ by [9, Lemma 2.2]. □

Remark 8.2. When we analyze edges of the Bruhat graph below, we need to consider
situations where xWP = ysγ′WP < yWP = xsγWP for x, y ∈W P . As observed in the
proof above sγ′ is a WP conjugate of sγ . Furthermore, if xWP < sβxWP = xsγWP

then sβx > x, γ = x−1(β), and for any weight λ such that StabW (λ) = WP ,

⟨λ, γ∨⟩ = ⟨λ, (γ′)∨⟩ = ⟨x(λ), β∨⟩ .

For v < w ∈ W P , recall that [v, w]P := {x ∈ W P | v ⩽ x ⩽ w} and set [v, w)P :=
[v, w]P ∖ {w}.

Definition 8.3 (Admissible function). Let v < w ∈ W P . An admissible function,
Λ = Λv,w : [v, w]P → X∗(T )P is any assignment x 7→ λx such that x(λx) ̸= w(λx)
for all x ∈ [v, w)P .

Admissible functions always exist, and below are two examples. In both cases the
functions are constant; these are the only situations needed in this paper, but see
Example 8.8 for a non-constant admissible function.

Example 8.4. (Standard admissible function.) Fix v < w in W P . For any x ∈ [v, w]P
define

Λ(x) = ϖP :=
∑

αi∈Σ∖ΣP

ϖi

(the sum of the fundamental weights not in P ; see §2). Then Λ is admissible because
w(ϖP ) = ϖP if and only if w ∈ WP ; cf. [4, Ch.5, §4.6]. We call this the standard
admissible function.

To illustrate, consider the case of G = SL(3,C). The set of simple roots is Σ =
{α1, α2}. If we take ΣP = {α2}, then W P = {id, s1, s2s1} and ϖP = ϖ1. The values
of the function Λ are:

id(ϖP ) = ϖ1, s1(ϖP ) = ϖ1 − α1, s2s1(ϖP ) = ϖ1 − α1 − α2.

Example 8.5. (Dominant weights.) A more general example is when one considers an
integral dominant weight π, and the parabolic subgroup determined by the condition
WP = Wπ. Let v < w in W P . If x ∈ [v, w]P is an element such that x(π) = w(π), it
follows that x = w in W P . This implies that the constant function Λ ≡ π is admissible.

If π = ϖi is a fundamental weight, one recovers the standard admissible function
for the maximal parabolic P given by the node i.

Admissible functions appeared in [31, §7] in the study of the equivariant quantum
cohomology ring of flag manifolds.

Definition 8.6 (Λ-Bruhat graph). Let v, w ∈ W P such that v < w, and let
Λ : [v, w]P → X∗(T )P be an admissible function. To this data we associate a dec-
orated directed graph Γ = (V, E) and two functions, WΛ : V → X∗(T ) and
mΛ : E → Z+, as follows:

(1) The set of vertices is defined by V = [v, w]P .
(2) There is an oriented edge x→y whenever xWP < yWP and yWP = xsγWP .
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(3) Each vertex x ∈ V is decorated by a weight

WΛ(x) := x(λx)− w(λx).

By the definition of Λ, if x ̸= w, then the weight WΛ(x) is not equal to 0. We
will call WΛ : V → X∗(T ) the Λ-weight function of the graph.

(4) Each edge xWP→yWP = xsγWP is decorated by the Chevalley multiplic-
ity:

mΛ(x, y) := ⟨λx, γ∨⟩.

We will refer to this graph as the Λ-Bruhat graph determined by the triple (v, w, Λ).
If Λ ≡ π is a constant admissible function, then we set Wπ =WΛ, mπ = mΛ.

If one ignores the orientation and the admissible function Λ, then the Λ-Bruhat
graph is the 1-skeleton of the T -action on G/P . This is the graph used in the GKM the-
ory, and to calculate curve neighborhoods of Schubert varieties [9]; it is also called the
Bruhat graph. It contains the (unoriented) quantum Bruhat graph from [6] and [26],
and it is related to “Games with hook structure” defined by Kawanaka [21].

We provide examples of Λ-Bruhat graphs below. In these examples we decorate
the edges with their Chevalley multiplicities, and we remove those edges of Chevalley
multiplicity 0, as they will not contribute to our algorithm for the SM structure
constants. We will encode the function WΛ by representing a vertex x as x

WΛ(x) .

Example 8.7. We continue the Example 8.4 (1), i.e., G = SL(3,C), ΣP = {α2},
v = id, w = s2s1 and Λ : [id, w]P → X∗(T )P is the standard admissible function

Λ ≡ ϖP = ϖ1.

The set of vertices of the Bruhat graph is V = [id, w]P = {id, s1, s2s1}. The weight
function is

WΛ(id) = α1 + α2, WΛ(s1) = α2, WΛ(s2s1) = 0.

The resulting Λ-Bruhat graph is depicted below.
s2s1

0

s1
α2

id
α1+α2

1

1

1

Example 8.8. Consider G = SL3(C) and P = B. In this case G/B = Fl(3), the flag
variety parametrizing complete flags (F1 ⊂ F2 ⊂ C3). Set v := id and w := w0 =
s1s2s1 and consider two functions Λi : W → X∗(T )+ defined by:

Λ1(x) =
{

ϖ1 if x ̸= s2s1;
ϖ2 if x = s2s1.

Λ2(x) ≡ n1ϖ1 + n2ϖ2, (n1, n2 > 0).

One may easily check that both are admissible functions. The corresponding Λi-
Bruhat graphs for the triple (id, w0, Λi) are below, from left to right.
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s1s2s1
0

s1s2
α2

s2s1
α1

s1
α2

s2
α1+α2

id
α1+α2

1 1

1

1 1

1

1

s1s2s1
0

s1s2
n1α2

s2s1
n2α1

s1
n2α1+(n1+n2)α2

s2
(n1+n2)α1+n1α2

id
(n1+n2)(α1+α2)

n1+
n2n

1 +
n

2
n

1 +
n

2

n1 n
2

n
1 n2

n
2

n
1

Example 8.9. Consider the Lie type B3, i.e. G = SO(7,C). The simple roots are
∆ = {α1, α2, α3} with α3 short. We choose P to be the maximal parabolic deter-
mined by the set ∆P = {α1, α3}. Geometrically, G/P is the submaximal isotropic
Grassmannian IG(2, 7) parametrizing subspaces of dimension 2 which are isotropic
with respect to the non-degenerate symmetric form in C7. We pick the standard
admissible function Λ(x) ≡ ϖ2 and v = id, w = s2s1s3s2. All simple edges have
Chevalley multiplicity 1, and the double edges have multiplicity 2.

Let us explain in more detail the calculations. Each u ∈ [id, w]P has ℓ(u) arrows
directed to u. For example w = s2s1s3s2 has four arrows directed to w.

s2s1s3s2
0

s1s3s2
2α2

s2s3s2
α1+α2

s1s2
2α2+2α3

s3s2
α1+2α2

s2
α1+2α2+2α3

id
α1+3α2+2α3

(7) (2)

(6
)

(4)

(2
)

(3)

(3)

(4
)(2) (4
)

(1)

(2)

(3)

(5
)

(5)

We list below the reflections sγ

s.t. ⟨ϖ2, γ∨⟩ ≠ 0.
no. sγ γ γ∨

(1) s2 α2 α∨
2

(2) s1s2s1 α1 + α2 a∨
1 + a∨

2
(3) s3s2s3 α2 + 2α3 α∨

2 + a∨
3

(4) s2s3s2 α2 + α3 2α∨
2 + a∨

3
(5) s3s2s1s2s3 α1 + α2 + 2α3 α∨

1 + α∨
2 + α∨

3
(6) s1s2s3s2s1 α1 + α2 + α3 2α1 + 2α∨

2 + α∨
3

(7) s2s3s2s1s2s3s2 α1 + 2α2 + 2α3 α∨
1 + 2α∨

2 + α∨
3

⟨ϖ2, γ∨⟩ =
{

1 for (1), (2), (3), (5)
2 for (4), (6), (7)

y x(i) indicates xsγWP = yWP , for (i)-th
sγ in the above list.

Next we record the following lemma.

Lemma 8.10. (a) Let (v, w, Λ) be a Λ-Bruhat graph and let (x, y) be an edge such that
yWP = sβxWP = xsγWP . If Λ(x) = Λ(y) = λ then x(λ)− y(λ) = mΛ(x, y)β.

(b) Let π ∈ X(T )P be a dominant integral weight and assume we are given a
constant admissible function Wπ ≡ π. Then for any edge x

β→ y as in (a) (with the
notation from Definition 3.7):
(15) Wπ(x) =Wπ(y) + mπ(x, y)β.

Proof. By definition,
x(λ)− y(λ) =x(λ)− xsγ(λ) = ⟨λ, γ∨⟩x(γ) = mΛ(x, y)β,

where the last equality follows from Remark 8.2. This proves part (a). Part (b) follows
form (a) and the definition of Wπ. □
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In the next section we will analyze Λ-Bruhat graphs for minuscule elements, and
we will need the following result.

Proposition 8.11. Let v < w be π-minuscule elements, and let P be the parabolic
subgroup defined by WP = StabW (π). Consider the Λ-Bruhat graph (v, w, Λ) with the
constant admissible function Λ ≡ π. Then the following hold:

(1) Let x, y ∈ [v, w]P be two elements and let x → y be an edge such that xWP <
yWP = xsγWP . Then the Chevalley multiplicity satisfies:

mπ(x, y) = ⟨π, γ∨⟩ = 1.

(2) The Λ ≡ π-weight of the vertex x (cf. Definition 8.6, parts (3) and (4)) is equal
to:

Wπ(x) = x(π)− w(π) =
s∑

i=0
βi ,

where x = x0
β1→ x1 → . . .→ xs−1

βs→ xs = w is any chain in the Λ-Bruhat graph.
(3) The admissible function Wπ is injective.

Proof. By Corollary 3.10(2), since w is π-minuscule, each element in [v, w]P is again π-
minuscule. Let γ′ be the positive root such that xWP = ysγ′WP (cf. Lemma 3.8). From
Remark 8.2, the multiplicity mπ(x, y) is equal to ⟨π, (γ′)∨⟩. Since ysγ′WP < yWP

implies that ysγ′ < y, and since y is π-minuscule, ⟨π, (γ′)∨⟩ = 1 from Lemma 3.5.
This proves part (1).

From Lemma 8.10(b) it follows that for any chain as in the hypothesis,

Wπ(x) = x(π)− w(π) =
∑

mπ(xi−1, xi)βi.

Since by part (1) all multiplicities mπ(xi−1, xi) = 1, part (2) follows. Finally, if
Wπ(x) =Wπ(y) then x(π) = y(π), thus x = y in W P , proving part (3). □

We now give a formula for the coefficients dw
u,w from Equation (11) in terms of

summation over weighted paths in the Λ-Bruhat graph.

Proposition 8.12. For any v ⩽ w ∈ W P , fix an admissible function Λ : [v, w]P →
X∗(T )P , and let Γ = (v, w, Λ) be the associated Λ-Bruhat graph. Then for u ∈ [v, w]P ,

(16) dw
u,w =

(∑ mΛ(xr, xr−1)
WΛ(xr) · mΛ(xr−1, xr−2)

WΛ(xr−1) · . . . · mΛ(x1, x0)
WΛ(x1)

)
dw

w,w.

where the sum is over integers r ⩾ 0, and over all directed paths u = xr → xr−1 →
. . .→ x0 = w in Γ.

Proof. There is nothing to do when u = w. If u < w, set λu := Λ(u). Then from
Equation (13),

dw
u,w = 1

w(λu)− u(λu)
∑
u<x

cx
λu,udw

x,w = 1
w(λu)− u(λu)

∑
x=usα>u;α>0

cx
λu,udw

x,w

= 1
w(λu)− u(λu)

∑
x=usα>u;α>0

⟨−λu, α∨⟩dw
x,w = 1

WΛ(u)
∑
u→x

mΛ(u, x)dw
x,w

=
∑
u→x

mΛ(u, x)
WΛ(u) dw

x,w.

Here the second equality follows from Theorem 4.2 and the definition of cx
λ,u in Equa-

tion (12), and the rest are from the definitions. Then the statement follows by induc-
tion descending from w, on those elements x such that u < x ⩽ w. □
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From Lemma 5.1 we deduce another interpretation of the sum in the previous
proposition:

Corollary 8.13. Let v ⩽ w be two elements in W P . With the hypotheses from
Proposition 8.12, the following hold:

(17) sM(Y (v))|w
sM(Y (w))|w

=
∑ mΛ(xr, xr−1)

WΛ(xr) · mΛ(xr−1, xr−2)
WΛ(xr−1) · . . . · mΛ(x1, x0)

WΛ(x1) ,

where the sum is over integers r ⩾ 0, and over all directed paths v ⩽ xr → xr−1 →
. . .→ x0 = w in Γ.

Proof. By Lemma 5.1 and the additivity of CSM classes, the left hand side of (17) is
equal to

sM(Y (v))|w
sM(Y (w))|w

=
∑

v⩽u sM(Y (u)◦)|w
sM(Y (w)◦)|w

=
∑

v⩽u⩽w

dw
u,w

dw
w,w

.

Here we also used that sM(Y (u)◦)|w = 0 if w ≱ u. Then the claim follows from
Proposition 8.12. □

Remark 8.14. By Proposition 5.2 and Proposition 7.4, the left hand side of Equa-
tion (17) is an equivariant multiplicity, which may be calculated explicitly. Fix a
reduced expression w = si1si2 · · · siℓ

and set βj = si1si2 · · · sij−1(αij
) (j = 1, 2, . . . , ℓ).

Then:

(18) sM(Y (v))|w
sM(Y (w))|w

= ew,G/P (cSM(Rv
w)) =

∑
βj1βj2 · . . . · βjk

β1 · . . . · βℓ
;

here the summation is over 1 ⩽ j1 < j2 < · · · < jk ⩽ ℓ such that vWP ⩽
sij1

sij2
· · · sijk

WP .
As we observed in Theorem 7.5, if Y (v) is smooth at wP , then both the numerator

and the denominator of this expression may be written as products. This is the key
observation which leads to a generalization of Nakada’s hook formula in the next
section.

9. A generalized colored hook formula
In this section we prove the main result of this paper - the generalization of Nakada’s
colored hook formula, together with several corollaries of it.

9.1. The colored hook formula and consequences. Recall that for v < w ∈
W , S(w/v) := {β ∈ R+ | v ⩽ sβw < w}.

Theorem 9.1. Let v ⩽ w ∈W P , and fix an admissible function Λ : [v, w]P → X∗(T )P

with the associated Λ-Bruhat graph Γ = (v, w, Λ). Then:
Y (v) ⊂ G/P is smooth at wP ∈ G/P if and only if∑ mΛ(xr, xr−1)

WΛ(xr) · mΛ(xr−1, xr−2)
WΛ(xr−1) · . . . · mΛ(x1, x0)

WΛ(x1) =
∏

β∈S(w/v)

(
1 + 1

β

)
,

where the sum is over integers r ⩾ 0, and over all directed paths v ⩽ xr → xr−1 →
. . .→ x0 = w in Γ.

Proof. We proved in Proposition 7.4 that
sM(Y (v))|w
sM(Y (w))|w

= ew,G/P (cSM(Rv
w)).
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Then by Theorem 7.5, Y (v) ⊂ G/P is smooth at wP ∈ G/P if and only if

sM(Y (v))|w
sM(Y (w))|w

=
∏

β∈S(w/v)

(1 + 1
β

).

Now observe that by Corollary 8.13 the left hand side of this expression is the sum in
the statement. □

An important particular case of Theorem 9.1 is to consider a constant admissible
function. For example, let π ∈ X∗(T ) be any dominant integral weight, and as usual
define P by StabW (π) = WP . Set Λ(x) ≡ π for x ∈ [v, w]P , and recall that Wπ

denotes the associated weight function. Let mi = ⟨π, γ∨
i ⟩ be the multiplicity of the

edge xi → xi−1 and let βi be the positive root βi such that xi−1WP = sβixiWP . With
this notation, and by Theorem 9.1, we deduce the following.

Corollary 9.2. Under the above assumptions, we have the following equivalence:
Y (v) ⊂ G/P is smooth at wP ∈ G/P if and only if∑ mr

m1β1 + m2β2 + · · ·+ mrβr
· . . . · m1

m1β1
=

∏
β∈S(w/v)

(
1 + 1

β

)
,

where the sum is over all integers r ⩾ 0, and over all directed paths v ⩽ xr
βr→

xr−1
βr−1→ . . .

β1→ x0 = w in Γ = (v, w, π).

Proof. Immediate from Theorem 9.1, since Wπ(xk) =
∑k

i=1 miβi, by Equation (15).
□

Corollary 9.3. Let v ⩽ w ∈W be two π-minuscule elements for a dominant integral
weight π, and P ⊂ G be the parabolic subgroup satisfying StabW (π) = WP . Then:

Y (v) ⊂ G/P is smooth at wP ∈ G/P if and only if

(19)
∑ 1

β1 + β2 + · · ·+ βr
· . . . · 1

β1
=

∏
β∈S(w/v)

(
1 + 1

β

)
,

where the sum is as in Corollary 9.2.

Proof. First observe that by Corollary 3.10(2), since w is π-minuscule, each represen-
tative x ∈W P in a chain to w is also π-minuscule. Then from Corollary 9.2, we only
need to show that any edge x → y has multiplicity mπ(x, y) = 1. This follows from
Proposition 8.11. □

If v = id, Corollary 9.3 recovers Nakada’s colored hook formula stated in Theo-
rem 3.11.

Corollary 9.3 implies a skew version of the classical Peterson formula [10, 42]; see
also [22] for related recent work in this direction.

Recall that Red(w) denotes the set of all reduced expressions of w and ht(β) is the
height of the positive root β (see §2).

Corollary 9.4 (A skew Peterson formula). Let π be a dominant integral weight,
and let P be the parabolic subgroup defined by StabW (π) = WP . Let v ⩽ w ∈ W be
π-minuscule elements such that Y (vWP ) is smooth at wP . Then

(20) # Red(wv−1) = (ℓ(w)− ℓ(v))!∏
β∈S(w/v) ht(β) .
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Proof. Consider the term of lowest degree −#S(w/v) in the expression in Corol-
lary 9.3. This corresponds to taking the summation over maximal paths in Corol-
lary 9.3, and yields

(21)
∑ 1

β1 + β2 + · · ·+ βr
· . . . · 1

β1
=

∏
β∈S(w/v)

1
β

.

The paths considered are the same as the paths from Corollary 3.14, in particular
each βi is a simple root. Now specialize each simple root αi 7→ 1. The right hand side
gives 1∏

β∈S(w/v)
ht(β)

. On the left hand side, each summand specializes to 1
(ℓ(w)−ℓ(v))! ,

and the number of summands is equal to the number of reduced expressions of wv−1,
again by Corollary 3.14. □

Remark 9.5. One can show that in the hypotheses from Corollary 9.3, and if W is
a simply laced Weyl group, then then Y (v) is smooth at w if and only if wv−1 is π′-
minuscule, where π′ is dominant integral. Furthermore, in this case the identities (19)
and (20) for [v, w]π coincide with those corresponding to the interval [id, wv−1]π′ . The
proof requires developing techniques different from those employed in this paper and
will appear in a separate note.

If W is not simply laced then it is possible that Y (v) is smooth at w, but wv−1 is
not dominant minuscule. An example is in type F4 for v = s1, w = s1s3s2s4s3s2s1,
with α1, α2 short roots. However, in this case one can show that if Y (v) is smooth
at w, the ‘skew’ Nakada’s identity is obtained from the ‘straight’ formula applied to
suitable elements in type E6. The transformation between the two cases is given by
the folding of the root system E6 into F4. This suggests that folding may lead to a
more general statement relating skew and straight Nakada formulae.

Remark 9.6. Let w be dominant minuscule and v ∈ [id, w]P . If we remove the con-
dition that Y (vWP ) is smooth at wP , by equations (17), (18), and the proof of
Corollary 9.4, we obtain

(22) # Red(wv−1) = (ℓ(w)− ℓ(v))!
∑

ht(βj1)ht(βj2) · · · ht(βjℓ(v))
ht(β1) · · · ht(βℓ)

where the summation is over 1 ⩽ j1 < j2 < · · · < ℓ(v) ⩽ ℓ such that v =
sij1

sij2
· · · sijℓ(v)

is a reduced decomposition.
Observe also that the right hand side is the specialization of (ℓ(w)− ℓ(v))! [Y (v)]|w

[Y (w)]|w

by taking a root to its height. To relate to the right hand side in Theorem 9.1, observe
that the fraction [Y (v)]|w

[Y (w)]|w
may also be obtained by taking the lowest degree terms in

the numerator and denominator of the fraction sM(Y (v))|w

sM(Y (w))|w
. This fact follows from

Proposition 5.2 above, or, more directly, because the Segre class satisfies:
sM(Y (v)) = [Y (v)] + higher order terms in H∗

T (G/P ).

10. Examples
In this section we give some examples illustrating Theorem 9.1 and its corollaries.

10.1. Grassmannians. Let X = G/P = Gr(k, n) be a Grassmann manifold,
where P is the maximal parabolic subgroup with ∆P = ∆∖ {αk}. The permutations
in W P are in bijection to the set of partitions µ = (µ1, . . . , µk) in the k × (n − k)
rectangle. We denote by wµ the element in W P corresponding to µ. This bijection
has the property that ℓ(wµ) = |µ| = µ1 + . . . + µk (the number of boxes of µ) and
wµ < wν if and only if µ ⊂ ν. Furthermore, there exists an edge wµ → wν in the
Bruhat graph if and only if the skew shape ν/µ is a rim hook in ν. (Recall that the
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skew shape ν/µ consists of the boxes in the Young diagram of ν which are not in µ.
A rim hook in ν is a non-empty connected collection B of boxes which intersect the
boundary of ν in at least one point, ν/B remains a partition, and B does not contain
2 × 2 square.) One may read the reduced decompositions of wµ, wν , and also the
root β such that wνWP = sβwµWP directly from the diagrams involved; cf. [20, 8],
the latter, for more general cominuscule Grassmannians. We illustrate this in the
example below.

Example 10.1. Take G/P = Gr(5, 12); then ∆P = {αi : 1 ⩽ i ⩽ 11}∖{α5}. Consider
ν = (7, 7, 7, 5, 5) included in the 5 × 7 rectangle. The partition ν corresponds to the
green portion in the left diagram below.

α5 α6 α7 α8 α9 α10α11

α4 α5 α6 α7 α8 α9 α10

α3 α4 α5 α6 α7 α8 α9

α2 α3 α4 α5 α6 α7 α8

α1 α2 α3 α4 α5 α6 α7

α5 α6 α7 α8 α9 α10α11

α4 α5 α6 α7 α8 α9 α10

α3 α4 α5 α6 α7 α8 α9

α2 α3 α4 α5 α6 α7 α8

α1 α2 α3 α4 α5 α6 α7

One may read a reduced decomposition for wν by reading the labels of ν bottom to
top, right to left:

wν = s5s4s3s2s1s6s5s4s3s2s9s8s7s6s5s4s3s10s9s8s7s6s5s4s11s10s9s8s7s6s5.

Consider µ = (5, 4, 1). A path in the Bruhat graph from µ to ν is given by removing
rim hooks starting from ν. One example is the path below, where the rim hooks
removed are, in order, starting from ν: green, cyan, orange, yellow.

µ = −→ µ2 = −→ µ3 = −→ µ4 = −→ ν =

The root β associated to an edge µi → µi+1 is the sum of the simple roots in the boxes
of the skew shape µi+1/µi. In our case, if wνWP = sβwµ4WP then β =

∑11
i=1 αi (the

sum of the labels of the green rim hook). Different ways to remove rim hooks, including
removing hooks in different order, will result in different paths in Equation (19), and
all such paths are considered. Each maximal path has length |ν/µ| = |ν| − |µ|.

In order to illustrate Corollary 9.3 we consider the standard admissible function
Λ ≡ ωP = ωk. Then each element w ∈W P is ωk-minuscule, and all edge multiplicities
are equal to 1. Further, Y (wµWP ) is smooth at wνWP if and only if the skew partition
ν/µ is a union of straight shapes. (This may be deduced e.g. from [20, Corollary 9.2,
9.3] or from [18].) In the example above, Y (wµ) is singular at wν .

Example 10.2. We now consider G/P = Gr(2, 5) and the standard admissible func-
tion Λ ≡ ω2. Take v := w∅ < w := w(3,3). Then Y (v) = G/P is smooth, and the set
S(w/v) is equal to S(w), and it corresponds to the roots of all possible rim hooks
which may be removed from w. Then:

S(w/v) = S(w) = {α3, α2 +α3, α3 +α4, α2 +α3 +α4, α1 +α2 +α3, α1 +α2 +α3 +α4}

Consider the path

∅ −→ α2 α3 −→
α2 α3

α1
−→

α2 α3 α4

α1 α2 α3

As before, we indicated the removed hooks with colors, and also their box labels.
In the left hand side of the summation from Corollary 9.3 this corresponds to the
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product
1

β1 + β2 + β3
× 1

β1 + β2
× 1

β1

= 1
α1 + 2α2 + 2α3 + α4

× 1
α1 + α2 + α3 + α4

× 1
α2 + α3 + α4

.

Another path is given by

∅ −→ α2 α3 −→
α2 α3 α4

α1 α2 α3

giving the product
1

β1 + β2
× 1

β1
= 1

α1 + 2α2 + 2α3 + α4
× 1

α1 + α2 + α3 + α4
.

Nakada’s formula from Corollary 9.3 states that if one sums over all possible paths,
one obtains:

∏
β∈S(w/v)

(
1 + 1

β

)
=
(

1 + 1
α3

)
×
(

1 + 1
α2 + α3

)
×
(

1 + 1
α3 + α4

)
×
(

1 + 1
α1 + α2 + α3

)
×
(

1 + 1
α2 + α3 + α4

)
×
(

1 + 1
α1 + α2 + α3 + α4

)
.

(23)

Example 10.3. We illustrate Peterson’s formula from Corollary 9.4. We continue
with u, w defined in the previous example. If one takes the leading term of (23) and
specializes each simple root to 1, then one obtains

1× 1
2 ×

1
2 ×

1
3 ×

1
3 ×

1
4 = 1

4!× 6
Each maximal path has length ℓ(w)− ℓ(v) = 6 and it contributes with 1/6! to the left
hand side of (19). The number of maximal paths is equal to the number Red(w) of
reduced decompositions of w, and this number must satisfy:

Red(w)
6! = 1

4!× 6
therefore Red(w) = 6!

4!×6 = 5. One may check directly that the 5 reduced decomposi-
tions of w are:

s3s2s1s4s3s2, s3s2s4s1s3s2, s3s2s4s3s1s2, s3s4s2s1s3s2, s3s4s2s3s1s2.

They correspond respectively to 5 maximal paths from v to w, given by removing
boxes from 1 to 6 (in order) in the diagrams below:

6 5 4
3 2 1

6 5 3
4 2 1

6 4 3
5 2 1

6 5 2
4 3 1

6 4 2
5 3 1

(Of course, these also correspond to the 5 standard Young tableaux on the diagram
of w.)

10.2. Submaximal isotropic Grassmannians. In this section we consider G/P
to be IG(k, 2n + 1), the isotropic Grassmannian parametrizing k-dimensional sub-
spaces of C2n+1 isotropic with respect to a symmetric non-degenerate bilinear form
on C2n+1. Then ∆ = {αi : 1 ⩽ i ⩽ n} and by convention αn is short. In this case,
∆P = ∆ ∖ {αk} and the multiplicities may be 2. This is an example of a ‘non-
minuscule’ flag manifold, and the equality from Corollary 9.2 is in general stronger
than the Nakada’s colored hook formula.
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We consider the standard admissible function Λ ≡ ωk. The root β for an edge
u→ u′ such that u′WP = sβuWP may be found from Equation (15):

β = WΛ(u)−WΛ(u′)
m(u, u′) = u(ωk)− u′(ωk)

m(u, u′) .

To illustrate, consider IG(2, 7) and the standard admissible function Λ ≡ ω2. Recall
the Λ-Bruhat graph from Example 8.9 above, where the simple edges have multiplicity
1 and the double edges have multiplicity 2. The denominator at u is equal toWΛ(u) =
u(ω2)− wP

0 (ω2).
s2s1s3s2

0

s1s3s2
2α2

s2s3s2
α1+α2

s1s2
2α2+2α3

s3s2
α1+2α2

s2
α1+2α2+2α3

id
α1+3α2+2α3

Every Schubert variety is smooth at s2s1s3s2 (the Schubert point), except for Y (s2)
(the Schubert divisor). This may be checked directly e.g. by the smoothness criterion
from Theorem 7.2; we will also recover it from Theorem 9.1 in an example below.

Example 10.4. Let us consider the case v = s3s2, w = s2s1s3s2 in the above situation.
In this case S(w) = {α2, α1 + α2, α2 + α3, α2 + α3, α1 + 2α2 + 2α3} and S(w/v) =
{α2, α1 + α2}. The localization is Y (v)|w is equal to (α2 + α3)(α1 + 2α2 + 2α3). By
Theorem 7.2, we see Y (v) that is smooth at w. To check Equation (19), we calculate
the left hand side. Depending on u ∈ [v, w], we divide into the following four cases.

(1) u = v There are two paths
The path v → s1s3s2 → w contributes with 1

α1+2α2
× 2

2α2
;

The path v → s2s3s2 → w contributes with 1
α1+2α2

× 1
α1+α2

;
(2) u = s1s3s2

The path s1s3s2 → w contributes with 2
2α2

;
(3) u = s2s3s2

The path s2s3s2 → w contributes with 1
α1+α2

;
(4) u = w

The trivial path w = w contributes with 1.
In this case Theorem 9.1 (or Corollary 9.2) gives the equality:

1 + 1
α1 + α2

+ 2
2α2

+ 1
α1 + 2α2

× 1
α1 + α2

+ 1
α1 + 2α2

× 2
2α2

=
(

1 + 1
α2

)(
1 + 1

α1 + α2

)
(This equality is equivalent to the fact that Y (v) is smooth at wP .)
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Example 10.5. Let us consider another case v = s2, w = s2s3s2 in the above situation.
In this case

S(w) = {α2, α2 + α3, α2 + 2α3}, S(w/v) = {α2, α2 + 2α3}, [Y (v)]|w = 2(α2 + α3),

and by Theorem 7.2 Y (s2) is singular at w, therefore we do not expect the identity
from Theorem 9.1 to hold. Then:

(1) The path v → s3s2 → w contributes with 2
α2+2α3

× 1
α2

;
(2) The path s2 → w contributes with 1

α2+2α3
;

(3) The path s3s2 → w contributes with 1
α2

;
(4) The trivial path contributes with 1.

Observe that

1 + 1
α2

+ 1
α2 + 2α3

+ 1
α2
× 2

α2 + 2α3
̸=
(

1 + 1
α2

)(
1 + 1

α2 + 2α3

)
.

By Theorem 9.1, this confirms that Y (s2) is singular at s1s3s2. (In fact, one may
check using [24] that the multiplicity at this singular point is equal to 2. Interestingly,
Y (s2) is rationally smooth at w, since ℓ(w)− ℓ(v) < 3.)
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