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An elaborate new proof of Cayley’s formula

Esther Banaian, Anh Trong Nam Hoang, Elizabeth Kelley,
Weston Miller, Jason Stack, Carolyn Stephen

& Nathan Williams

Abstract We construct a bijection between certain Deodhar components of a braid variety
constructed from an affine Kac–Moody group of type An−1 and vertex-labeled trees on n

vertices. By an argument of Galashin, Lam, and Williams using Opdam’s trace formula in the
affine Hecke algebra and an identity due to Haglund, we obtain an elaborate new proof for the
enumeration of the number of vertex-labeled trees on n vertices.

1. Introduction
1.1. Introduction. It is well-known that the following sets have size nn−2:

• treen, the set of vertex-labeled trees with n vertices [4] (Cayley’s formula);
and

• factn, the set of factorizations of the long cycle (1, 2, . . . , n) in the symmetric
group Sn into a product of (n− 1) transpositions [7].

But finding a bijection between treen and factn is surprisingly tricky (for a
discussion, we refer the reader to the excellent paper [8]; see also [17]).

It turns out to be much easier to show that

(n− 1)!|treen| = (n− 1)!|factn|.

We quickly sketch the bijection. The factor (n − 1)! on the left-hand side comes
from labeling the n − 1 edges of a vertex-labeled tree bijectively with the numbers
[n − 1] := {1, 2, . . . , n − 1}. Recording the edges in order of increasing edge-label –
where the edge between vertex i and vertex j is recorded as the transposition (i, j)
– gives a bijection between vertex- and edge-labeled trees and factorizations of all
(n − 1)! long cycles in Sn into (n − 1) transpositions. The tricky bit is to identify
which vertex- and edge-labeled trees have image in the original set factn (the answer
relies on a certain embedding).

In this paper, we consider related problems in the affine symmetric group subn.
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1.2. The affine symmetric group. The affine symmetric group S̃n can be thought
of as the group of bijections w̃ : Z → Z such that [3, Chapter 8]

(1) w̃(i+ n) = w̃(i) + n and
n∑

i=1
w̃(i) =

(
n+ 1

2

)
.

Recall that the reflections of S̃n swap i and j for i, j ∈ Z with i ̸= j mod n, and are
written ((i, j)).

We will be interested in certain factorizations into reflections of the element λn ∈ S̃n

that acts on Rn by the translation

λn : x 7→ x+ (1, 1, . . . , 1,−n+ 1).

Then λn can be expressed as a product of 2n− 2 reflections (and not fewer). This λn

will play the role of the long cycle.

1.3. Trees. A reflection factorization for λn

r =
[
((a0, b1)), ((a1, b2)), . . . , ((a2n−3, b2n−2))

]
is called tree-like if ak−1 < bk and ak = bk mod n. We write fãctn for the set of all
tree-like factorizations of λn.

Theorem 3.10. There is a bijection between treen and fãctn, where treen is the
set of plane-embedded vertex-labeled trees on [n] with a marked edge adjacent to the
vertex n (up to orientation preserving homeomorphism of the plane).

Corollary 3.12. For all n ⩾ 2, the number of tree-like factorizations of λn is∣∣fãctn

∣∣ = (n− 1)!Cat(n− 1),

where Cat(n− 1) = 1
n

(2n−2
n−1

)
is the (n− 1)st Catalan number.

1.4. Cyclic trees. For each vertex-labeled tree, we will specify a preferred cyclic
embedding in the plane. Given a vertex-labeled tree T ∈ treen, its cyclic embedding
is given as follows: draw T so that for every vertex i ∈ [n] its neighboring vertices
increase clockwise – with the exception that for i ̸= n, i’s neighbor on the unique
path from the vertex n to i is read as the central label i. The marked edge is the edge
from n to its smallest neighbor. An example of a cyclically-embedded tree is given
in Figure 1.

The restriction of Corollary 3.12 to cyclically-embedded trees gives the notion of
cyclic factorizations fãctn.

1.5. Subwords. The factorizations in our version of the problem appear as labelings
of certain Deodhar components for a braid variety constructed from the loop group
for GLn over a finite field. Write subn for the set of maximal distinguished subwords
of the word

λn := [s0, s1, . . . , sn−1]n−1.

For simplicity in the introduction, we define subn to be the set of subwords with
2n− 2 skips whose product is the identity (the equivalence with the usual definition
is proven in Corollary 5.15). An example of an element of subn is given in Figure 1.

1.6. Subwords and cyclic trees. Our main theorem is a bijection between subn

and (cyclically-embedded) trees.

Theorem 6.1. There is a bijection between subn and treen.
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1.7. Enumeration. In previous work, subn was counted by Galashin, Lam, and
Williams using braid varieties, a trace formula in the affine Hecke algebra due to
Opdam, and an identity due to Haglund [18].

Theorem 7.5 (P. Galashin, T. Lam, N. Williams).
|Rλn

(Fq)| = (q − 1)2n−2[n]n−2
q and |subn| = nn−2.

Theorems 6.1 and 7.5 together give an elaborate new proof for the enumeration of
treen.

Corollary 7.6 (Cayley’s formula). |treen| = nn−2.

Remark 1.1. Since the maximal distinguished subwords subn are naturally in bijec-
tion with trees, it makes sense to consider the braid variety Rλn(Fq) to be a q-analogue
of vertex-labeled trees. Compare with [11], which gives a very different q-analogue as
the number of nilpotent linear operators on Fn

q .

The remainder of this paper has the same structure as the introduction, with a
final section on future work.
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s0 ((102)) s2 s3 s4 s5 s6 s7 s8
s9 ((210)) s1 s2 ((105)) s4 ((57)) s6 s7
s8 s9 s0 s1 s2 s3 ((75)) s5 s6

((51)) s8 ((13)) s0 s1 s2 s3 s4 s5
s6 s7 ((31)) ((14)) s0 s1 s2 s3 s4
s5 s6 s7 ((41)) s9 s0 s1 ((18)) s3
s4 s5 s6 s7 s8 ((86)) s0 s1 s2
s3 s4 s5 s6 s7 ((68)) s9 ((81)) s1

((15)) s3 s4 s5 ((510)) s7 s8 s9 ((109))
s1 s2 s3 s4 s5 s6 s7 s8 ((910))

Figure 1. Our running example. Left: a cyclically-embedded
vertex-labeled tree in tree10 (for now, ignore the arrows, green edges,
and green labels).
Right: the corresponding maximal distinguished subword u ∈ sub10,
with takes in green, and skips in white and purple (decorated by the
corresponding skip reflection, with the convention that i := i− n).

2. The affine symmetric group
The affine symmetric group S̃n can be thought of as the group of bijections w̃ : Z → Z
such that [3, Chapter 8]

(2) w̃(i+ n) = w̃(i) + n and
n∑

i=1
w̃(i) =

(
n+ 1

2

)
.

We write ((i, j)) for the affine reflection that interchanges i and j (simultaneously
interchanging i+ kn and j + kn for every k ∈ Z); thus, ((i, j)) = ((i+ kn, j + kn)). We
denote by sj := ((j, j+ 1)) the simple reflections. For clarity of typesetting, we use the
notation i := i − n. We write i mod n for the representative between 1 and n equal
to i modulo n.

The reflection length of w ∈ S̃n is the minimal number of reflections required to
express w as a product of reflections.
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Proposition 2.1. For 0 ⩽ i < n, si = ((i, i + 1)) is a right descent of w ∈ S̃n if and
only if w(i) > w(i+ 1).
Proposition 2.2. Let λn be the translation that acts on Rn by

λn : x 7→ x+ (1, 1, . . . , 1,−n+ 1).

Then λn is an element of S̃n with:
• reduced word in simple reflections (s0s1 · · · sn−1)n−1;
• one-line notation[

n+ 1, n+ 2, . . . , 2n− 1,−n(n− 2)
]
; and

• cycle notation(
n−1∏
i=1

(. . . , i− n, i, i+ n, . . .)
)(

n−1∏
m=0

(. . . , nm+ n(n− 1), nm, nm− n(n− 1), . . .)
)
.

Furthermore, λn has reflection length 2n− 2.
Proof. The three descriptions are simple computations. The reflection length is easily
deduced from [13, Proposition 4.3] (see also [12, Theorem 4.25]). □

From its cycle decomposition, we see that λn acts on the integers as follows: it
sends k = 0 mod n to k − n(n− 1), and it sends k ̸= 0 mod n to k + n.

3. Trees
In Section 3.1, we describe sets of certain tree-like factorizations of λn in the affine
symmetric group, which we will show in Section 3.2 are encoded by clockwise walks
around embedded vertex-labeled trees.

Given a finite sequence of reflections r = [((a0, b1)), ((a1, b2)), . . .] and k ∈ [n], write
rℓ = ((aℓ−1, bℓ)) for the ℓth reflection in the sequence. We say that r is a factorization
of w ∈ S̃n if w =

∏
i((ai, bi+1)); it is of minimal length if the number of reflections

is equal to the reflection length of w. For w ∈ S̃n, write fact(w) for the set of its
minimal length reflection factorizations.

3.1. Tree-like factorizations.
Definition 3.1. A minimal length reflection factorization

r =
[
((a0, b1)), ((a1, b2)), . . . , ((a2n−3, b2n−2))

]
∈ fact(λn)

is tree-like if ak−1 < bk and ak = bk mod n. We write fãctn for the set of all
tree-like factorizations of λn.
Example 3.2. For n = 10, the following factorization (see Figure 1) is tree-like:

r =
[
((102)), ((210)), ((105)), ((57)), ((75)), ((51)), ((13)), ((31)), ((14)),

((41)), ((18)), ((86)), ((68)), ((81)), ((15)), ((510)), ((109)), ((910))
]
.

We say that a reflection rℓ increases an integer k if
rℓrℓ+1 · · · r2n−2(k) > rℓ+1 · · · r2n−2(k),

and we say rℓ decreases k if
rℓrℓ+1 · · · r2n−2(k) < rℓ+1 · · · r2n−2(k).

Since each rℓ is a reflection, there exist unique distinct integers a, b ∈ [n] such that rℓ

increases a and decreases b. For
r =

[
((a0, b1)), ((a1, b2)), . . . , ((a2n−3, b2n−2))

]
∈ fãctn,
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write
(3) nb(r, k) = [bi1 mod n, . . . , biℓ

mod n]
for the sequence of bij

(modulo n) for which aij−1 = k mod n (the abbreviation is
for neighbors).

Example 3.3. If we track the progression of the integer 0 in Example 3.2 as the list
of products rℓrℓ+1 · · · r2n−2(0) for ℓ = 1, . . . , 2n− 2, we obtain the sequence[

− 90,−88,−80,−75,−73,−65,−59,−57,−49,
− 46,−39,−32,−24,−22,−19,−15,−10,−1

]
.

Note that every reflection decreases 0. On the other hand, 1 is unchanged until the
15th reflection ((15)), which increases 1 to 5, and is next modified by the 6th reflection
((51)), which increases 5 to 11. Observe that exactly two reflections increase 1.

We make the observations of Example 3.3 precise in the following proposition,
which gives a condition on factorizations equivalent to being tree-like. This equiva-
lent condition will be easier to check on the factorizations arising from distinguished
subwords in Section 5.

Proposition 3.4. A factorization r = [r1, r2, . . . , r2n−2] ∈ fact(λn) is tree-like if and
only if there exist a0, . . . , a2n−2 ∈ Z such that
(4) rℓ = ((aℓ−1, aℓ)) and |aℓ − aℓ−1| < n for ℓ = 1, . . . , 2n− 2.

Proof. First suppose that r ∈ fact(λn) is tree-like. Then we can choose
a0 < · · · < a2n−2

such that rℓ = ((aℓ−1, aℓ)). Since for any 1 ⩽ ℓ < 2n− 2
rℓ · · · r2n−2(a2n−2) = aℓ−1 < a2n−2,

it follows that every rℓ decreases a2n−2. So we must have a0 = a2n−2 = 0 mod n
because the only integers that λn decreases are the multiples of n.

Now since λn maps each k ∈ [n−1] to k+n, there must exist at least two rℓ which
either increase or decrease k. But each rℓ decreases n and increases some k ̸= n, so by
a pigeonhole argument, there are in fact exactly two unique factors rℓ for each k ̸= n
which increase k. If ri and rj are the two factors which increase k, then

k + n = r1 · · · r2n−2(k) = k + (ai − ai−1) + (aj − aj−1).
So we must have aℓ − aℓ−1 < n for all ℓ.

For the other direction, fix r ∈ fact(λn) satisfying Equation (4). Note that the
second condition |aℓ − aℓ−1| < n implies that for a given k ̸= n there must exist
1 ⩽ i < j ⩽ 2n−2 such that ri and rj increase k. Since we only have 2n−2 factors, it
follows again from a pigeonhole argument that each factor must increase some k ̸= n,
and for each k ̸= n, there are exactly two rℓ which increase k.

Now, since 0 is sent to −n(n− 1) and each rℓ can only decrease 0 by at most n− 1,
we have that 0 needs to be decreased by at least n of the rℓ. Note that a2n−2 is either
increased or decreased by every rℓ. If a2n−2 ̸= 0 mod n, then a2n−2 is increased by
exactly two of the rℓ and decreased by all the others. Since each rℓ decreases only
one integer mod n, it follows that the two factors which increase a2n−2 are the only
factors that can decrease n. So we must have n = 2. But in that case, there is only
one minimal length reflection factorization of λ2 satisfying Equation (4):

((0, 1))((1, 2)) = ((3, 2))((2, 1)).
This factorization is tree-like, so the equivalence also holds for n = 2.
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For n > 2, it follows that a2n−2 = 0 mod n. Since none of the rℓ increase 0 (since
every rℓ increases a k ∈ [n − 1]), it follows that all rℓ must decrease 0. This implies
that

a0 < a1 < · · · < a2n−2,

so that r is tree-like. □

Since every reflection rℓ must decrease 0, we immediately obtain the following
corollaries.

Corollary 3.5. Let r ∈ fãctn with rℓ = ((aℓ−1, aℓ)). Then a0 = a2n−2 = 0 mod n.

Corollary 3.6. For k ∈ [n − 1], there are exactly two reflections that increase k
– the first and last reflections to use a number equal to k mod n. We denote these
reflections

rk
1 = ((bk, k)) and rk

2 = ((k, bk)) if bk > k and
rk
1 = ((bk, k)) and rk

2 = ((k, bk)) if bk < k.

We call rk
1 the left end of its pair and rk

2 the right end of its pair.

Proof. In the proof of Proposition 3.4, we observed that for each k ̸= n, there are
unique factors ri and rj , where i < j, which increase k, and every rℓ is in one of these
pairs. Assume bk > k. Then rℓ · · · r2n−2(k) = k for ℓ > j, so rj = ((k, bk)) for some
bk > k. Moreover,

rℓ · · · r2n−2(k) =
{
bk if i < ℓ ⩽ j,

k + n if ℓ ⩽ i,

so ri = ((bk, k + n)) = ((bk, k)). The case for bk < k is similar. □

3.2. Tree embeddings.

Definition 3.7. We write treen for the set of plane-embedded vertex-labeled trees
on [n] with a marked edge adjacent to the vertex n (up to orientation preserving
homeomorphism of the plane).

Example 3.8. The 30 = 3! · Cat(3) trees in tree4 are illustrated in Figure 2.

4 4 4

4 4

Figure 2. The 30 = 3! · Cat(3) trees in tree4. Each tree has only
the vertex 4 labeled, and so corresponds to 3! vertex-labeled trees in
tree4 by choosing a labeling of the unlabeled vertices by 1, 2, 3.

Given an embedded vertex-labeled tree T ∈ treen, we produce a sequence rT

of 2n− 2 affine reflections (this sequence will turn out to be a tree-like factorization
of λn). Starting at the vertex labeled n, walk around the embedded tree T clockwise
(so that every edge is traversed exactly twice) – initially walking along the marked
edge adjacent to n. Record the edges visited as

(5)
[
(v0, v1), (v1, v2), . . . , (v2n−3, v2n−2)

]
Algebraic Combinatorics, Vol. 8 #4 (2025) 976
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with the convention that v0 = n and v2n−2 = n. Then rT is defined to be the following
sequence of 2n− 2 affine reflections:

rT :=
[
((i1, j1)), ((i2, j2)), . . . , ((i2(n−1), j2(n−1)))

]
, where

((ik, jk)) :=
{

((vk−1, vk)) if vk−1 < vk

((vk−1, vk)) if vk−1 > vk

and i = i− n.

Conversely, given r ∈ fãctn, we define a corresponding plane embedded tree T r.
T r has vertex set [n]; for each reflection ri that can be written as ((a, b)) with
1 ⩽ a < b ⩽ n, there is an edge connecting a and b (exactly half the reflections have
this property by Corollary 3.6). It follows from Definition 3.1 that T r is connected,
and so it must be a tree since it has only n − 1 edges. The embedding of T r is
determined by placing the neighbors of vertex k clockwise around k in the order in
which they appear in nb(r, k).

Example 3.9. The factorization r in Example 3.2 corresponds to the embedded tree T
in Figure 1, where the marked edge adjacent to 10 is (10, 2).

Theorem 3.10. For any embedded vertex-labeled tree T ∈ treen, rT is a tree-like
factorization. For any tree-like factorization r ∈ fãctn, T r is an embedded vertex-
labeled tree. The maps T 7→ rT and r 7→ T r are mutually inverse bijections between
treen and fãctn.

Proof. We first show that rT is a factorization in fact(λn). For 1 ⩽ i ⩽ n − 1 and
m ∈ Z, we wish to show that i+mn is sent to i+(m+1)n to conclude that the compo-
sition of reflections produced by rT gives the first product of cycles in Proposition 2.2.
By periodicity, it is enough to show this for m = 0.

We will compute the composition of the reflections from right to left and show that
we obtain λn. We record the list of reflections by starting at the vertex labeled n and
walking around the tree T counterclockwise, initially walking along the marked edge
incident with n. This allows us to read the list of vertices in Equation (5) from right
to left. Suppose the first edge using the vertex i encountered on this counterclockwise
walk is the edge (j, i) traversed from the vertex j to i.

• If i < j, then we record the reflection ((i, j)), which sends i to j – and all edges
encountered until we revisit the edge (i, j) (now traversed from the vertex i
to j) do not involve j. The second time the edge is revisited, we record the
reflection ((j − n, i)) = ((j, i+ n)), and thus sends j to i+ n.

• If i > j, then we record the reflection ((i−n, j)), which sends i to j+n. Until
we walk on this edge again, all other edges will not affect j. The second time
the edge is revisited, we record the reflection ((j, i)) = ((j + n, i + n)), which
sends j + n to i+ n.

In each case, we conclude that i is sent to i+ n.
It remains to show that rT also gives the second product of cycles in Proposition 2.2

– again by periodicity, it is enough to show n is sent to n− n(n− 1). Since for every
1 ⩽ i < j ⩽ n every edge (i, j) is traversed twice, once as just (i, j) and once as
(j − n, i), and since every pair of adjacent reflections share a letter, n is subtracted
from the quantity exactly (n − 1) times – once for each pair of edges on the walk.
Thus, n is sent to n− n(n− 1), as desired.

By construction, the factorization rT of λn satisfies Definition 3.1, and so is tree-
like. It is clear that the inverse is given by the map r 7→ T r. □

Corollary 3.11. Let r = [r1, r2, . . . , r2n−2] ∈ fãctn, and write rℓ = ((aℓ−1, aℓ)) with
a0 < · · · < a2n−2. Then

Algebraic Combinatorics, Vol. 8 #4 (2025) 977
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(i) If ((aℓ−1, aℓ)) is to the left of rk
1 or to the right of rk

2 , then aℓ−1, aℓ ̸= k mod n.
(ii) If ((aℓ−1, aℓ)) is between rk

1 and rk
2 , then aℓ−1, aℓ ̸= bk mod n.

(iii) ((aℓ−1, aℓ)) is between rk
1 and rk

2 if and only if ((aℓ, aℓ−1)) is also between rk
1

and rk
2 .

3.3. Enumeration. The bijection of Theorem 3.10 gives the following interesting
enumeration for the tree-like factorizations of λn.

Corollary 3.12. For all n ⩾ 2, the number of tree-like factorizations of λn is∣∣fãctn

∣∣ = (n− 1)!Cat(n− 1),

where Cat(n− 1) = 1
n

(2n−2
n−1

)
is the (n− 1)st Catalan number.

Proof. The number of rooted plane trees with n vertices is Cat(n−1). By marking an
edge, we remove any symmetries. Since the number of plane-embedded vertex-labeled
trees with n vertices is (n − 1)!Cat(n − 1), we conclude the same enumeration for
fãctn by Theorem 3.10. □

Remark 3.13. Corollary 3.12 is not our titular “elaborate proof” – we are relying
on previous combinatorial enumerations of rooted plane trees. The issue is that we
do not know what braid varieties over the loop group for SLn correspond to tree-
like factorizations; Minh-Tâm Trinh has constructed certain “generalized Steinberg
varieties” using unipotent elements that give this enumeration – but using the simple
Lie group and not its loop group.

4. Cyclic trees
In Section 4.1, we describe sets of certain cyclic factorizations of λn in the affine
symmetric group, which we will show in Section 4.2 are encoded by clockwise walks
around cyclically-embedded vertex-labeled trees.

4.1. Cyclic factorizations.

Definition 4.1. A tree-like factorization

r =
[
((a0, b1)), ((a1, b2)), . . . , ((a2n−3, b2n−2))

]
∈ fãctn

is cyclic if
(i) if nb(r, n) = [bi1 , . . . , biℓ

] then

bi1 < · · · < biℓ
; and

(ii) for any 1 ⩽ k < n, if nb(r, k) = [bi1 , . . . , biℓ
], then there exists some 1 ⩽ j ⩽ ℓ

for which

bij
< bij+1 < · · · < biℓ−1 < k < bi1 < · · · < bij−1 .

We write fãctn for the set of all cyclic factorizations of λn.

Note that biℓ
is replaced by k in Definition 4.1 (ii) .

Example 4.2. The tree-like factorization in Example 3.2 is also cyclic. Defini-
tion 4.1 (i) is satisfied because nb(r, 10) = [2, 5, 9] and 2 < 5 < 9. As an example of
Definition 4.1 (ii) , nb(r, 1) = [3, 4, 8, 5] satisfies 1 < 3 < 4 < 8.

Our goal now is to give an equivalent characterization of cyclic factorizations, again
to more easily connect with the factorizations arising from trees in Section 4.2. We
will require the following easy lemma concerning cyclic orderings.
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Lemma 4.3. Suppose that a, v, b ∈ Z such that v − n < a < v < b < v + n.
Let 1 ⩽ ã, ṽ, b̃ ⩽ n be the corresponding values modulo n. Then a + n < b if and
only if ã < b̃ < ṽ, ṽ < ã < b̃, or b̃ < ṽ < ã.

Proof. Both statements are obviously equivalent to

v − n < a < b− n < v < a+ n < b < v + n. □

The following proposition will be used to connect cyclic factorizations with distin-
guished subwords in Section 6.

Proposition 4.4. Suppose that r ∈ fãctn. By Corollary 3.5, we can write

(r1 · · · rj−1)rj(rj−1 · · · r1) = ((0,mj)),

for each j = 1, . . . , 2n− 2. Then r is cyclic if and only if

m1 < · · · < m2n−2.

Proof. Suppose that r is a cyclic factorization, and fix 1 ⩽ j < 2n − 2. Write
rj = ((a, v)) and rj+1 = ((v, b)) with a < v < b. By adding a multiple of n if nec-
essary, we can assume that r1 · · · rj−1(a) = 0. There are four cases to consider(1), all
of which will be handled using Corollary 3.11:

(a) Suppose rj and rj+1 are both the left ends of their pairs. Then mj = v < b =
mj+1.

(b) Suppose rj is the right end of its pair and rj+1 is the left end of its pair.
Then mj = a + n and mℓ+1 = b. By Proposition 3.4 we also know that
v − n < a < v < b < v + n. It then follows from Definition 4.1 (ii) and
Lemma 4.3 that mj < mj+1.

(c) Suppose rj and rj+1 are both the right ends of their pairs. Then mj = a+n <
v + n = mj+1.

(d) Suppose rj is the left end of its pair and rj+1 is the right end of its pair. Then
these must be the same pair, so a = b− n, and mj = v < v + n = mj+1.

Suppose now that we have a tree-like factorization with m1 < · · · < m2n−2. We
begin by considering Definition 4.1 (i) . It follows from Corollary 3.11 that we can
write r1, . . . , r2n−2 as

((n̄, v1)), . . . , ((v1, n)), ((n̄, v2)), . . . , ((v2, n)), . . . , ((n̄, vℓ)), . . . , ((vℓ, n)).

Consider the adjacent factors rj = ((vi, n)) and rj+1 = ((n̄, vi+1)). We have vi+1 −vi =
mj+1 −mj > 0, so vi < vi+1.

Now consider Definition 4.1 (ii) . It follows from Corollary 3.11 that we can write
r1, . . . , r2n−2 as

. . . , ((āℓ, k)), ((k, a1)), . . . , ((ā1, k)), . . . , ((k, aℓ−1)), . . . , ((āℓ−1, k)), ((k, aℓ)), . . . ,

where each ai = vi mod n. Consider the adjacent factors rj = ((āi, k)) and
rj+1 = ((k, ai+1)) for 1 ⩽ i ⩽ ℓ− 2. We have ai+1 −ai = mj+1 −mj > 0, so ai < ai+1.
We also have k−n < ai−n < k < ai+1 < k+n, so by Lemma 4.3 either vi < vi+1 < k,
k < vi < vi+1, or vi+1 < k < vi. Definition 4.1 (ii) follows, so that r is cyclic. □

(1)These four cases correspond to the four cases in Figure 6 and in Section 6.2.
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4.2. Cyclic embeddings.

Definition 4.5. We write treen for the set of vertex-labeled trees (as abstract
graphs).

For each vertex-labeled tree, we will now specify a preferred cyclic embedding in
the plane. (We note that there is some similarity with [8, Section 3].)

Definition 4.6. Given a vertex-labeled tree T ∈ treen, its cyclic embedding is given
as follows: draw T so that for every vertex i ∈ [n] its neighboring vertices increase
clockwise – with the exception that for i ̸= n, i’s neighbor on the unique path from the
vertex n to i is read as the central label i. The marked edge is the edge from n to its
smallest neighbor.

To make the clockwise increasing condition easy to see in examples, we direct each
edge in T towards the vertex n.

Example 4.7. All 16 trees in tree4 are drawn in Figure 3 in their cyclic embedding;
a larger example is given in Figure 1.

By construction, Theorem 3.10 restricts from all tree-like factorizations and all
embeddings to cyclic factorizations and embeddings.

Theorem 4.8. For any cyclically-embedded vertex-labeled tree T ∈ treen, rT is
a cyclic factorization. For any cyclic factorization r ∈ fãctn, T r is a cyclically-
embedded vertex-labeled tree. The maps T 7→ rT and r 7→ T r are mutually inverse
bijections between treen and fãctn.

Remark 4.9. At this point we could use the known enumeration of treen to conclude
that |fãctn| = nn−2. We will instead connect fãctn to certain maximal distinguished
subwords in Section 5, connect these subwords to certain braid varieties in Section 7.1,
use representation-theoretic methods to compute the point count of the braid varieties
over a finite field with q elements, and then recover the cardinality of fãctn by
sending q → 1.

Remark 4.10. In analogy with the usual problem of minimal reflection factorizations
of the long cycle in Sn and the noncrossing partition lattice, it seems natural to define
a partial order on the prefixes of cyclic factorizations in S̃n. Unfortunately, for n ⩾ 4
there are maximal chains in this partial order that no longer correspond to cyclic
factorizations.

5. Subwords
A subword u of a sequence [si1 , si2 , . . . , sim

] of simple generators of the affine symmetric
group S̃n (see Section 2 for more details) is a sequence

u = [u1, u2, . . . , um], where uj ∈ {sij
, e} for all j.

We call the letters j for which uj = e, skips, and the letters j for which uj = sij
takes.

For any such sequence, we set

u(j) := u1u2 · · ·uj ∈ S̃n, and(6)

u(j) := uj · · ·um ∈ S̃n.

We say u is a w-subword if u(m) = w.
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Figure 3. The set tree4, the 16 vertex-labeled trees on 4 vertices,
cyclically embedded in the plane according to Section 4.2. Below each
tree is the corresponding cyclic factorization of λ4

.

5.1. Maximal distinguished subwords.

Definition 5.1. Write subn for the set of maximal distinguished subwords of the
word

λn := [s0, s1, . . . , sn−1]n−1.

That is, subn is the set of subwords with 2n− 2 skips whose product is the identity.

The n consecutive factors of length n−1 of the word λn – from the i(n−1)st letter
to the ((i+ 1)(n− 1) − 1)st letter – will be called rows. Drawing λn with subsequence
rows vertically aligned gives the notion of columns. We will typically depict λn or a
subword u ∈ subn using an n× (n− 1) array.

We will show in Corollary 5.15 that for this special case of λn, Definition 5.1
recovers the usual notion of distinguished [5].
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Example 5.2. The 16 maximal distinguished subwords in sub4 are given in Figure 5.
A larger example is given in Figure 1. See also Figure 4.

In preparation to connect subwords to trees, we associate a reflection to each skip
in a subword in subn.

Definition 5.3. For u ∈ subn, define
(7) inv(u) :=

[
r1, r2, . . . , rn(n−1)

]
where rk = u(ik−1)sik

u−1
(ik−1) (the notation u(i) is defined in Equation (6)). We write ru

for the subsequence of inv(u) obtained by restricting to the skips of u – that is, re-
stricted to the indices j for which uj = e – and call the subsequence skip reflections.

Remark 5.4. We will show in Section 6 that subn is in bijection with treen – the
skip reflections will determine the edges of the corresponding tree.

Example 5.5. Figure 4 illustrates inv(u) for the maximal distinguished subword
from Figure 1.

((101)) ((102)) ((23)) ((24)) ((25)) ((26)) ((27)) ((28)) ((29))
((21)) ((210)) ((103)) ((104)) ((105)) ((56)) ((57)) ((78)) ((79))
((71)) ((27)) ((73)) ((74)) ((710)) ((76)) ((75)) ((58)) ((59))
((51)) ((21)) ((13)) ((34)) ((103)) ((36)) ((73)) ((38)) ((39))
((35)) ((23)) ((31)) ((14)) ((104)) ((46)) ((74)) ((48)) ((49))
((45)) ((24)) ((34)) ((41)) ((101)) ((16)) ((71)) ((18)) ((89))
((58)) ((28)) ((38)) ((48)) ((810)) ((86)) ((76)) ((16)) ((69))
((56)) ((26)) ((36)) ((46)) ((610)) ((68)) ((78)) ((81)) ((19))
((15)) ((25)) ((35)) ((45)) ((510)) ((610)) ((710)) ((810)) ((109))
((19)) ((29)) ((39)) ((49)) ((59)) ((69)) ((79)) ((89)) ((910))

Figure 4. inv(u) for the maximal distinguished subword from Fig-
ure 1. Skips are colored purple.

For a subword u = [u1, . . . , un(n−1)] of λn, we encode the pattern of skips in an
indicator word ψ(u) = [ψ1, . . . , ψn(n−1)], where

ψi =
{

0 if ui = e,

1 otherwise.

We define the rotation of a subword, denoted rot(u) as the subword with indicator
word [

ψ(u)n(n−1), ψ(u)1, . . . , ψ(u)n(n−1)−1
]
.

Explicitly, we can write rot(u)i in terms of how it acts on the integers via
rot(u)i = α+ui−1α−,

where α+(m) = m+ 1 and α−(m) = m− 1.

Lemma 5.6. The rotation of an e-subword u of λn is an e-subword.

Proof. Write u′
i := rot(u)i. Then
u′

1 · · ·u′
n(n−1) = α+un(n−1)u1 · · ·un(n−1)−1α−

= α+un(n−1)(u1 · · ·un(n−1))un(n−1)α− = e. □
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((41)) s1 ((13))
s3 ((32)) s1
s2 ((23)) ((31))

((14)) s2 s3

s0 s1 ((43))
s3 ((32)) s1

((21)) s3 s0
((12)) ((23)) ((34))

s0 ((42)) ((23))
((31)) s0 s1
((13)) s3 ((32))
s1 ((24)) s3

s0 s1 ((43))
((31)) ((12)) s1
s2 ((21)) s0

((13)) s2 ((34))

s0 ((42)) s2
((21)) s0 ((13))
s2 s3 ((31))

((12)) ((24)) s3

((41)) ((12)) ((23))
s3 s0 ((32))
s2 ((21)) s0

((14)) s2 s3

((41)) s1 s2
((14)) ((42)) ((23))
s2 s3 ((32))
s1 ((24)) s3

s0 ((42)) s2
s3 ((24)) ((43))

((31)) s3 s0
((13)) s2 ((34))

((41)) s1 s2
((14)) s0 ((43))
s2 ((32)) s0
s1 ((23)) ((34))

((41)) ((12)) s2
s3 ((21)) s1

((14)) s3 ((43))
s1 s2 ((34))

((41)) s1 ((13))
s3 s0 ((31))

((14)) ((42)) s0
s1 ((24)) s3

s0 ((42)) s2
((21)) s0 s1
((12)) ((24)) ((43))
s1 s2 ((34))

((41)) ((12)) s2
s3 ((21)) ((13))
s2 s3 ((31))

((14)) s2 s3

s0 ((42)) ((23))
s3 s0 ((32))

((21)) s3 s0
((12)) ((24)) s3

s0 s1 ((43))
((31)) s0 s1
((13)) ((32)) s0
s1 ((23)) ((34))

((41)) s1 s2
((14)) ((42)) s1
s2 ((24)) ((43))
s1 s2 ((34))

Figure 5. The 16 distinguished subwords in S4, with letters chosen
in the subword indicated in green, positive skips in white, and nega-
tive skips in purple (and replaced by the corresponding inversions).
Compare with Figure 3.

Corollary 5.7. The rotation of a maximal distinguished subword of λn is again a
maximal distinguished subword.

Remark 5.8. It might be interesting to determine the orbit structure of subn under
cyclic rotation.

5.2. Skip reflections are tree-like. Our eventual goal is to show that if
u ∈ subn, then ru gives a cyclic factorization of λn. We begin by showing that ru is
tree-like (Definition 3.1).

Proposition 5.9. For u a subword of λn, write ru = [r1, . . . , rk]. Let ij denote the
index of the skip corresponding to rj. Then for any ij ⩽ ℓ < ij+1,

r1 · · · rj = (λn)(ℓ)u
−1
(ℓ) .
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Proof. This is [6, Proposition 4.7]. The idea is to notice that

(λn)−1
(ℓ)r1 · · · rj = u−1

(ℓ)

because the ri cancel the corresponding skips from (λn)−1
(ℓ) . □

Corollary 5.10. If u ∈ subn, then ru ∈ fact(λn).

We can understand how a subword u acts on k by looking at inv(u). The jth
reflection ((a, b)) in inv(u) with a or b equal to k modulo n will be either:

• increases (u(j)(k) > u(j+1)(k)), which occur along columns
• decreases (u(j)(k) < u(j+1)(k)), which occur along rows
• skips (u(j)(k) = u(j+1)(k)), which appear as corners.

Example 5.11. It is helpful for understanding the subsequent proofs to interpret the
various data on subwords in terms of cyclic trees (although the bijection will not be
formally proven until Section 6).

Consider the set of reflections ((a, b)) in inv(u) with a or b equal to k modulo n.
This set, when highlighted on λn drawn using n rows and n−1 columns, records what
is seen as one goes clockwise around the vertex k in the tree corresponding to ru. The
set forms a connected path heading down and right on a torus (if the path goes below
the nth row, the path continues in the same column in the first row; if the path goes
to the right of the (n − 1)st column, the path continues one row below in the first
column):

• for k ̸= 0 mod n, the path starts down from the topmost box in column k; if
k = 0 mod n, then then path starts right from the top left box;

• skips of u correspond to neighbors of k; at skips, the path switches between
going down and going right;

• neighbors a < k (resp. a > k) are recorded as corners ((a, k)) and ((k, a)) (resp.
corners ((a, k)) and ((k, a))) in the same column of the strip;

• the vertical distance between the corners ((a, k)) and ((k, a)) (or ((a, k)) and
((k, a))) is given by the number of vertices on the connected component con-
taining a of the tree without vertex k (and the reflections that appear use
those vertices and k itself); and

• the horizontal distance between clockwise adjacent neighbors of k is given by
the length of the run-leaf between those neighbors (defined in Section 6.2).

2
9

9
9

10
3

4

2

0
5
4

32

7
9

1
1

4

2

2

3
9

8 72

6
9

4 9

((101))
((21))
((71))
((51)) ((21)) ((13))

((31)) ((14))
((41)) ((101)) ((16)) ((71)) ((18))

((16))
((81)) ((19))

((15))
((19))

The path above describes a clockwise turn around the vertex 1 of the tree above (re-
produced from Figure 1: starting at the corner ((51)) corresponding to the neighbor 5,
there is a run-leaf with label 2 corresponding to a horizontal step of length 2, then
the neighbor 3 is visited as the corners ((13)) and ((31)) (there is a single vertical step
since 3 only has 1 as a neighbor), there is a run-leaf with label 1 corresponding to one
horizontal step, the neighbor 4 is visited as the corners ((14)) and ((41)) (again, there
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is a single vertical step since 4 only has 1 as a neighbor), then the run-leaf with label 4
gives four horizontal steps, we visit the neighbor 8 as the corners ((18)) and ((81)) with
two vertical steps between them because 8 is connected to 6, then a run-leaf with
label 2, and then we revisit the neighbor 5 as the corner ((15)) and we must make five
vertical steps to return to the corner ((51)) because of the vertices 5, 7, 10, 2, 9.

Lemma 5.12. If u is an e-subword of λn, then for all integers k and all a, b with
0 ⩽ b− a < n(n− 1), ∣∣ (ua · · ·ub) (k) − k

∣∣ ⩽ n− 2,
where the indices are taken modulo n(n− 1).

Proof. Any segment (ua · · ·ub) and any k such that

(ua · · ·ub) (k) − k ⩾ n− 1

can be converted to the segment (ub+1 · · ·ua−1) and k′ = (ua · · ·ub) (k) with

(ub+1 · · ·ua−1) (k′) − k′ ⩽ 1 − n,

since

(ub+1 · · ·ua−1)
(

(ua · · ·ub) (k)
)

− (ua · · ·ub) (k) = k − (ua · · ·ub) (k) ⩽ 1 − n.

So it suffices to consider the case (ua · · ·ub) (k) − k ⩽ 1 − n, so that the number of
terms in ua · · ·ub that decrease k (by one, since each ui is a simple reflection) is at
least n−1. Moreover, we can take the index b to be n(n−1) by rotating the subword.
The terms that decrease k correspond to indices a ⩽ in−1 < · · · < i1 ⩽ n(n− 1) such
that uiℓ

= sk−ℓ. Notice that in−1 ⩽ (n− 1)2 + 1.
Since (u1 · · ·ua−1ua · · ·ub) (k) = k, there must exist at least n − 1 terms

in (u1 · · ·ua−1) that increase (ua · · ·ub)(k), so we can find indices 1 ⩽ j1 ⩽
· · · ⩽ jn−1 ⩽ a − 1 such that ujℓ

= sk−ℓ. Each of these indices must be on its own
row and not on the last two rows (because jn−1 ⩽ in−1 − n ⩽ (n− 2)(n− 1). So we
reach a contradiction because λn only has n rows. □

Lemma 5.13. If u is an e-subword of λn and ((a, b)) ∈ inv(u), then |b− a| ⩽ n− 1.

Proof. We need to show that

|(u1 · · ·uj) (j + 1) − (u1 · · ·uj) (j)| ⩽ n− 1

for all j = 0, . . . , n(n−1)−1. Suppose not. Since each inversion is an affine reflection,
it is not possible to have

| (u1 · · ·uj) (j + 1) − (u1 · · ·uj) (j)| = n,

so suppose that
|(u1 · · ·uj) (j + 1) − (u1 · · ·uj) (j)| ⩾ n+ 1.

By Lemma 5.12 there are two cases to consider:
(1) (u1 · · ·uj) (j + 1) ⩽ j < j + 1 ⩽ (u1 · · ·uj) (j)
(2) (u1 · · ·uj) (j) ⩽ j < j + 1 ⩽ (u1 · · ·uj) (j + 1)

In the first case, there must exist an index 1 < ℓ < j such that uℓ = sℓ−1 and

(uℓ+1 · · ·uj) (j) = ℓ− 1 and (uℓ+1 · · ·uj) (j + 1) = ℓ.

Choose the smallest such ℓ. Then

|(u1 · · ·uℓ−1) (ℓ− 1) − (u1 · · ·uℓ−1(ℓ))| = |(u1 · · ·uj(j + 1)) − (u1 · · ·uj) (j)| ⩾ n+ 1,

and
(u1 · · ·uℓ−1) (ℓ− 1) ⩽ ℓ− 1 < ℓ ⩽ (u1 · · ·uj) (ℓ).
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So the first case reduces to the second. Let
c = j − (u1 · · ·uj) (j) and d = (u1 · · ·uj) (j + 1) − (j + 1),

so c + d ⩾ n. Now there must be indices 1 ⩽ id < id−1 · · · < i1 ⩽ j such that
uiℓ

= sj+ℓ. Each of these indices must be on its own row. Moreover, i1 cannot be on
the same row as j.

Now there must also be indices j + 1 ⩽ k1 < · · · < kc ⩽ n(n − 1) such that
ukℓ

= sj−ℓ. Again, each of these indices must be its own row. Moreover, k1 cannot be
on the same row as j. It follows that we need to use at least c+ d+ 1 ⩾ n+ 1 rows,
which is a contradiction. □

Lemma 5.14. For u ∈ subn, ru is a tree-like factorization in fãctn.

Proof. Write ru = [r1, . . . , r2n−2]. If the skips corresponding to rℓ and rℓ+1 are at
indices i and j, respectively, then

u(j−1)(j − 1) = u(i−1)esi · · · sj−2(j − 1) = u(i−1)(i).
Since rℓ = ((u(i−1)(i − 1), u(i−1)(i))) and rℓ+1 = ((u(j−1)(j − 1), u(j−1)(j))), it follows
that there exist a0, . . . a2n−2 ∈ Z such that rℓ = ((aℓ−1, aℓ)). The result then follows
from Lemma 5.13 and Proposition 3.4. □

We now show that Definition 5.1 captures the usual definition of distinguished
subword, that a simple reflection must be used if it causes the current product to
decrease in weak order.

Corollary 5.15. For u ∈ subn, if u(j)sj < u(j) then uj+1 = sj.

Proof. It is clear that u(j)sj < u(j) if and only if u(j)(j) > u(j)(j + 1). Suppose that
uj+1 = e, so the inversion corresponding to this skip is ((u(j)(j), u(j)(j + 1))). By the
proofs of Lemma 5.14 and Proposition 3.4, it follows that u(j)(j) < u(j)(j + 1). The
result follows by contraposition. □

5.3. Skip reflections are cyclic. We continue to work towards the bijection
between subn and treen by now showing that ru is actually a cyclic factorization in
fãctn. The following lemma shows that the indices of the skips (and hence the skip
reflections) completely determine the subword.

Lemma 5.16. For u a subword of λn, write ru = [r1, . . . , rℓ], and let ij denote the
index of the skip corresponding to rj. Then

(r1 · · · rj−1)rj(rj−1 · · · r1) =
((

0, ij +
⌊
ij − 1
n− 1

⌋))
.

Proof. From Lemma 5.9, we have
(r1 · · · rj−1)rj(rj−1 · · · r1) = (λn)(ij−1)u

−1
(ij−1)(u(ij−1)sij−1u

−1
(ij−1))u(ij−1)(λn)−1

(ij−1)

= (s0 · · · sij−2)sij−1(sij−2 · · · s0)
= ((s0 · · · sij−2(ij − 1), s0 · · · sij−2(ij)))
= ((0, s0 · · · sij−2(ij))).

Write ak := s0 · · · sk−2(k). If k < n, then ak = k. Otherwise,
ak = s0 · · · sk−n(k) = s0 · · · sk−n−1(k + 1)

= s0 · · · sk−n−1(k − n+ 1) + n = ak−(n−1) + n.

This shows that ak = k + ⌊(k − 1)/(n− 1)⌋, so the result follows. □

Corollary 5.17. For u ∈ subn, ru is a cyclic factorization in fãctn.
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Proof. Write ru = [r1, . . . , r2n−2]. From Lemma 5.14, we know [r1, . . . , r2n−2] satisfies
Definition 3.1, so it remains to show Definition 4.1 (i) and Definition 4.1 (ii) . These
follow from Lemma 5.16 and Proposition 4.4. □

Proposition 5.18. Let r ∈ fãctn. Then there exists a subword u ∈ subn such
that r = ru.

Proof. Suppose that [r1, . . . , r2n−2] is a cyclic factorization of λn. By Corollary 3.11,
we can write rℓ = ((aℓ−1, aℓ)) with aℓ−1 < aℓ, a0 = 0, and a2n−2 = n(n− 1).

As in Proposition 4.4, for 1 ⩽ j ⩽ 2n− 2, define integers mj by

(r1 · · · rj−1)rj(rj−1 · · · r1) = ((0,mj)).

Then
m2n−2 = a2n−1 + n < a2n−2 + n = n(n− 1) + n = n2.

By Proposition 4.4, we have

0 = a0 < a1 = m1 < m2 < · · · < m2n−2 < n2.

For j = 1, . . . , 2n− 2, define

ij := mj −
⌊
mj − 1
n

⌋
so that mj = ij −

⌊
ij − 1
n− 1

⌋
.

Notice that

1 ⩽ ij ⩽ n2 − 1 −
⌊
n2 − 2
n

⌋
= n(n− 1),

so we can take u to be the subword of λn with skips at indices ij . By Lemma 5.16, we
have ru = [r1, . . . , r2n−2]. Then, since r1 · · · r2n−2 = λn, it follows from Proposition 5.9
that u is a distinguished subword. □

Corollary 5.19. The map u 7→ ru is a bijection between subn and fãctn.

Proof. Proposition 5.18 shows that the map u 7→ ru is surjective, while Lemma 5.16
shows it is one-to-one. □

6. Subwords and cyclic trees
The composition of Theorem 4.8 and Corollary 5.19 gives a bijection between treen

and subn. In this section we interpret this composition directly to give an explicit
bijection between maximal distinguished subwords of λn and (cyclically-embedded)
vertex-labeled trees with n vertices.

Theorem 6.1. There is a bijection between subn and treen.

The proof of Theorem 6.1 will occupy the next two subsections.

6.1. From subwords to cyclic trees. The forward direction of the bijection is
easy: given u ∈ subn, compute the inversions of the skips ru, then create a tree
T ∈ treen with edges (a, b) between a < b when ((a, b)) and ((b, a)) appear as reflec-
tions in ru. This tree can then be cyclically embedded using Section 4.2.
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6.2. From cyclic trees to subwords. The other direction of the bijection is a
little more difficult. To more easily describe it, we decorate the trees with run-leaves.

Fix a cyclic tree T ∈ treen. To each vertex v ̸= n we will attach deg(v) many run-
leaves, so that in a clockwise walk around T , edges and run-leaves alternate. At the
vertex n, we instead add deg(n)+1 many leaves: two between the smallest and largest
neighbors of n (because T is cyclically embedded, these vertices will be adjacent).
We index the run-leaves based on when we see them in the clockwise walk starting
from n towards its smallest neighbor, so that our walk visits run-leaves l0, . . . , l2n−2
and edges e0, . . . , e2n−1 in the order

(8) [l0, e0, l1, e1, l2, . . . , e2n−1, l2n−2] .

We now label each run-leaf lk with an integer ℓ(lk) := ℓk with 1 ⩽ ℓk ⩽ n − 1
as follows (for now, ignore the first and last run-leaves, l0 and l2n−2, attached to
vertex n). The run-leaf lk is situated between the two edges ek−1 = (vk−1, vk) and
ek = (vk, vk+1), incident to the vertex vk to which lk has been attached. The label ℓk

is assigned according to the following four cases, illustrated in Figure 6:

(a)
vk−1 vk vk+1

ℓk

vk−1

vk ℓk

vk+1

(b)

vk+1 = vk + ℓk (mod n− 1) vk+1 = vk−1 + ℓk (mod n− 1)

(c) vk+1 vk

ℓk

vk−1
vk−1 vk ℓk

(d)

vk = vk−1 + ℓk (mod n− 1) ℓk = n− 1

Figure 6. Run-leaf rules, where the dashed line denotes our walk
around a cyclic tree T . The walk begins at vertex n and steps first
towards the smallest neighbor of n walking clockwise.

(a) if vk+1 ̸= vk−1 and the path from vk+1 to n goes through vk and vk−1, then
ℓk = vk+1 − vk mod n− 1.

(b) if the paths from vk−1 to n and from vk+1 go through vk, then ℓk = vk+1−vk−1
mod n− 1.

(c) if vk+1 ̸= vk−1 and the path from vk−1 to n goes through vk and vk+1, then
ℓk = vk − vk−1 mod n− 1.

(d) if vk+1 = vk−1, then ℓk = n− 1.
We can view these four cases as specializations of the general rule for 1 ⩽ ℓk ⩽ n−1:

ℓk = v′
k+1 − v′

k−1 mod (n− 1), where

v′
k±1 =

{
vk if vk±1 is on the path from vk to n,
vk±1 otherwise.

Finally, we define ℓ0 to be v1, the smallest neighbor of n, and ℓ2n−2 to be
(n− 1) − v2n−3; note that v2n−3 is necessarily the largest neighbor of n and ℓ2n−2
is possibly zero. By construction, the sum of the labels of the run-leaves adjacent to
any vertex k ∈ [n] is n− 1.
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Remark 6.2. Because there is a unique path from vk to n, we never have the case
vk−1

vk ℓk

vk+1

.

The subword uT ∈ subn is now described using the sequence of run-leaves and edges
in Equation (8) to describe its takes and skips (see Section 5 for these definitions):
each run-leaf lk corresponds to a series of ℓk − 1 successive takes, while each edge ek

corresponds to a single skip. Lemma 5.13, Corollary 3.11, and Lemma 5.16 justify this
procedure. Write

ru = [r1, . . . , r2n−2] ,

and let ij be the index of the skip corresponding to rj . Consider rℓ = ((a, b)) and
rℓ+1 = ((b, c)) with a < b < c. Then we have the following cases (each one corresponds
to a case in Figure 6):

(a) If rℓ and rℓ+1 are both the left ends of their pairs, then
• iℓ+1 − iℓ = c− b if (c mod n) > (b mod n)
• iℓ+1 − iℓ = c− b− 1 if (c mod n) < (b mod n)

(b) If rℓ is the right end of its pair and rℓ+1 is the left end of its pair, then
• iℓ+1 − iℓ = c− a if (c mod n) > (a mod n)
• iℓ+1 − iℓ = c− a− 1 if (c mod n) < (a mod n)

(c) If rℓ and rℓ+1 are both the right ends of their pairs, then
• iℓ+1 − iℓ = b− a if (b mod n) > (a mod n)
• iℓ+1 − iℓ = b− a− 1 if (b mod n) < (a mod n)

(d) If rℓ is the left end of its pair and rℓ+1 is the right end of its pair, then c = a+n
and iℓ+1 − iℓ = n− 1.

Example 6.3. Let T be the cyclic tree from Figure 1 (reproduced below):

2
9

9
9

10
3

4

2

0
5
4

32

7
9

1
1

4

2

2

3
9

8 72

6
9

4 9

.

The sequence of run-leaf labels and edges visited during the clockwise walk around T
is:

[
2, (102), 9, (210), 3, (105), 2, (57), 9, (75), 3, (51), 2, (13), 9, (31), 1, (14), 9,
(41), 4, (18), 7, (86), 9, (68), 2, (81), 2, (15), 4, (510), 4, (109), 9, (910), 0

]
.
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Replacing run-leaves by runs (green) and edges by skips (white), we obtain the sub-
word from Figure 1 (reproduced below):

.

7. Enumeration
In this section we prove Cayley’s formula for the number of vertex-labeled trees:

|treen| = nn−2.

Our proof uses the bijection between treen and subn from Theorem 6.1, along with
representation-theoretic techniques (previously obtained in a collaboration between
the last author with P. Galashin and T. Lam) to compute the number of points in
a particular braid variety Rλn

(Fq) over the finite field Fq with q elements. Using a
trace formula due to Opdam and an identity due to Haglund, we obtain that

|Rλn
(Fq)| = (q − 1)2n−2[n]n−2

q ,

where [n]q := qn−1
q−1 is the usual q-analogue. Certain distinguished subwords Dλn

index
the Deodhar components of this braid variety Du(Fq):

Rλn
(Fq) =

⊔
u∈Dλn

Du(Fq),

but the maximal distinguished subwords in subn are the only components that con-
tribute to the sum when q is sent to 1:

|subn| =
(
(q − 1)−2n+2 |Rλn

(Fq)|
) ∣∣∣∣∣

q→1

= nn−2.

7.1. Braid varieties. The usual definition of braid varieties extends to the context
of Kac–Moody groups (for simplicity, we give a specialization of the more general
definition). For w = [s1, s2, . . . , sm] a word in the simple reflections S of the Weyl
group W , we denote this braid variety (over a finite field) by Rw(Fq). In slightly
more detail, a split minimal Kac–Moody group G is associated to a symmetrizable
generalized Cartan matrix; it is generated by a split torus T and root subgroups U± =
{U±αi

}. We have opposite Borel subgroups B± generated by T and U±, we have the
flag variety B = G/B+ with its decomposition into Schubert cells Bw = B+ ·wB+/B+

and opposite Schubert cells Bw = B− · wB+/B+, and we can speak of the relative
position of two flags B1, B2 ∈ G/B+ (written B1

w−→ B2 for w ∈ W ). Then for
w = [s1, s2, . . . , sm] with w = s1s2 · · · sm ∈ W , we have

Rw(Fq) =
{
B+ = B0

s1−→ B1
s2−→ B2 · · · sm−−→ Bm : Bm ∈ Be

}
.

A distinguished subword u of w is a subword for which a simple reflection must be
used if it causes the current product to decrease in weak order – that is, if u(j)sj < u(j)
then uj+1 = sj (see also Corollary 5.15). Write Dw for all distinguished subwords. By
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a natural extension of [5] (see also [2]), the braid variety Rw(Fq) has a Deodhar
decomposition into

Rw(Fq) =
⊔

u∈Dw

Du(Fq),

where each Du(Fq) is isomorphic to (F×
q )s(u) ×Ft(u)

q , where s(u) is the number of skips
of u and t(u) is half the number of takes.

Let BW be the braid group for W with generators Ti for each si ∈ S, and let
HW = BW /(T 2

i = (q − 1)Ti + q) be the Hecke algebra, with usual basis {Tw}w∈W .
Write w = s1 · · · sm ∈ W . By the same arguments as [10, Lemmas A3 and A4] and [6,
Corollary 5.3] the number of Fq-points in the braid variety Rw(Fq) is given by the
trace

|Rw(Fq)| = qℓ(w)tr(T−1
w ),

where for X ∈ HW , tr(X) returns the coefficient of the basis element Te indexed by
the identity.

7.2. Opdam’s trace formula. We now specialize toG the affine Kac–Moody group
of type An−1. Write Φ+ for the positive roots of GLn, Q =

⊕r
i=1 Zαi for its root

lattice, Q+ ⊂ Q for the positive span of the simple roots, and Λ for the weight lattice.
Write Ŝn for the extended affine symmetric group, whose elements can be thought of
as bijections ŵ : Z → Z such that ŵ(i+n) = ŵ(i)+n and

∑n
i=1 ŵ(i) =

(
n+1

2
)

mod n;
it contains the elements of Λ as translations.

Given λ ∈ Q+, we express λ in the basis of fundamental weights as λ =
∑n−1

i=1 aiλi

and define λ+ =
∑

i:ai>0 aiλi and λ− = −
∑

i:ai<0 aiλi.

Definition 7.1. A Kostant partition (aα)α∈Φ+ for λ ∈ Q+ is a sequence of nonneg-
ative integers indexed by positive roots such that λ =

∑
α∈Φ+ aαα. We denote the set

of all Kostant partitions for λ by K(λ).

Opdam proved the following formula for the trace in the Hecke algebra Ĥn for the
extended affine symmetric group.

Theorem 7.2 ([14, Cor. 1.18]). Let [k]q = (q−1)2

q
qk−q−k

q−q−1 . For λ = λ+ − λ− ∈ Q+,

tr(Tλ−
T−1

λ+
) = q(ℓ(λ−)−ℓ(λ+))/2

∑
(aα)∈K(λ)

∏
α∈Φ+

aα>0

[aα]q.

Remark 7.3. Although Opadam works with the extended affine symmetric group Ŝn,
the affine symmetric group S̃n is a subgroup of Ŝn (and, similarly, the affine Hecke
algebras is a subalgebra of the extended affine Hecke algebra). When we apply The-
orem 7.2 below, we will be in the very special situation where λ− = 0 and where
λ+ ∈ Q+ lies already in the positive root lattice. Thus, λ+ will already be an element
of the affine symmetric group, and so the trace is the same when taken using either
the affine or extended affine Hecke algebras. See also [18, Theorem 5.6] for a more
general situation where this technique applies.

7.3. Haglund’s identity. In [9], Haglund proved a remarkable formula for the bi-
graded (in x- and y-degree) Hilbert series of the quotient ring of diagonal coinvariants.
Haglund stated the formula in terms of Tesler matrices, which are a simple combina-
torial rephrasing of Kostant partitions.
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Theorem 7.4 ([9, Corollary 1]). Write [k]q,t = (q − 1)(1 − t) qk−tk

q−t and let
λn := nλn−1 ∈ Q+

n . Then

Hilb(DHn−1; q, t) =
(

1
(q − 1)(t− 1)

)n−1 ∑
(aα)∈K(λ)

∏
α∈Φ+

n
aα>0

[aα]q,t.

7.4. Cyclic enumeration.

Theorem 7.5 (P. Galashin, T. Lam, N. Williams).

|Rλn
(Fq)| = (q − 1)2n−2[n]n−2

q and |subn| = nn−2.

Proof. Since [k]q = [k]q,q−1 , we can use Opdam’s Theorem 7.2 and specialize
Haglund’s Theorem 7.4 to conclude that

|Rλn(Fq)| = qℓ(λn)tr(Tλ−1
n

) = (q − 1)2n−2[n]n−2
q .

Since all maximal distinguished subwords have exactly 2n − 2 skips and all other
distinguished subwords have more than 2n− 2 skips, we have

(q − 1)2n−2[n]n−2
q = |Rλn

(Fq)| =
∑

u∈Dλn

|Du(Fq)| =
∑

u∈subn

|Du(Fq)| +
∑

u ̸∈subn

|Du(Fq)|

=
∑

u∈subn

(q − 1)2n−2q(n−1)(n−2)/2 +
∑

u ̸∈subn

(q − 1)s(u)qt(u),

where s(u) > 2n− 2 for all u ̸∈ subn. Dividing by (q− 1)2n−2 and letting q → 1 gives
|subn| = nn−2. □

Corollary 7.6 (Cayley’s formula). |treen| = nn−2.

Proof. This follows immediately from Theorems 6.1 and 7.5. □

8. Future Work
8.1. Distinguished subwords. It would be interesting to give a combinatorial in-
terpretation for all distinguished subwords of λn. For n = 2, 3, 4, 5, the number of such
subwords is 1, 4, 45, 1331; this sequence does not appear in the Online Encyclopedia
of Integer Sequences.

8.2. Other weights. There should be a Fuss–Catalan extension [18], using the
translation

λm,n = (m(n− 1) + 1)λn−1 − (m− 1)λ1.

Maximal distinguished subwords will still be parameterized by trees, but the combina-
torics of the run-leaves will be more complicated – the number of maximal subwords
will be (m(n− 1) + 1)n−2.

Much more generally [1, Conjecture 7.1], there should be interesting combinatorics
coming from the weight

λ =
n−1∑
i=1

aiαi with a1 > a2 > · · · > an−1 ⩾ an = 0.

In this case, the number of maximal distinguished subwords is [1]
n−1∏
i=1

(
(i+ 1)ai − iai+1

)
.
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8.3. Relation to Galashin–Lam–Trinh–Williams. In this section we explore
the possibility of a relationship between Rλn

(Fq) and the rational noncrossing parking
functions (and their braid varieties) of [6, Section 8.5].

Definition 8.1. Let u ∈ subn. We say that a skip in u is a negative if the corre-
sponding inversion ((a, b)) in ru satisfies a < b and 1 ⩽ (b mod n) < (a mod n) ⩽ n.
A skip is positive if it is not negative.

Example 8.2. The negative skips are colored purple in Figures 1 and 5, while the
positive skips are left in white. Observe that there is exactly one negative skip in each
column and each row except the last.

Proposition 8.3. Each u ∈ subn has exactly one negative skip in each column and
each row except the last.

Proof. It follows from Corollary 3.11 and Lemma 5.16 that the pair of negative and
positive skips rk

1 , rk
2 appear in column k. Suppose that t1 = ((ā0, a1)), where 1 ⩽ a1 <

a0 ⩽ n, is the inversion of the first negative skip in some row of our grid. The next
skip has inversion t2 = ((a1, a2)) or ((ā1, a2)), where 1 ⩽ a2 ⩽ n. If t2 is in the same
row as t1, then its column number must be greater than a1. It follows that a2 > a1, so
t2 = ((a1, a2)). If the next skip is again in the same row, then its column number must
be greater than a2, so its inversion is t3 = ((a2, a3)), where a2 < a3 ⩽ n. Continuing
in this way, we see that there cannot be another negative skip in this row.

It remains to show that the last row of the grid cannot contain a negative skip.
The last skip cannot be negative because its inversion is ((a, n)) by Corollary 3.11.
Moreover, every skip in the last row of the grid must be the second in its pair since the
pairs occur in the same column. So if there is a negative skip with inversion ((ā0, a1))
in the last row, it must be in column a0 and the next skip must be in column a1,
which contradicts a1 < a0. So there cannot be a negative skip in the last row. □

We will not recall the definitions of the rational noncrossing parking braid varieties
R

(w)
cn+1(Fq) here, instead referring the interested reader to [6]. We will simply describe

how to use Proposition 8.3 to conjecturally break our braid variety Rλn
(Fq) into

pieces that should match the individual components of the noncrossing parking braid
varieties (indexed by w ∈ Sn).

Remark 8.4. Minh-Tâm Trinh has constructed certain braid variety variants that
bundle together the individual parking braid variety components by enriching the
usual definition of braid variety by elements of the unipotent subgroup of B+. There
should be an isomorphism between Rλn(Fq) and this variant for the symmetric group
Sn−1 and the braid cn, where c is the lift of any standard Coxeter element in Sn−1
to its braid group.

For w ∈ Sn−1, write subn(w) for the set of all subwords u ∈ Dλn
with negative

skips in the positions of the ones in the (n − 1) × (n − 1) permutation matrix of w,
and takes in the positions corresponding to the inversions of w (indices to the left of
and above the ones). Write

R
(w)
λn

(Fq) =
⊔

u∈subn(w)

Du(Fq).

Example 8.5. If we fix w = [1, 3, 2] ∈ S3, sub4(w) consists of all distinguished sub-

words that must use skips in the purple boxes and takes in the green boxes of .

Then sub4(w) contains three maximal distinguished subwords, and eight distinguished
words in total:
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.

Conjecture 8.6. We have a disjoint decomposition

Rλn(Fq) =
⊔

w∈Sn−1

R
(w)
λn

(Fq).

Moreover, for w ∈ Sn−1 and cn−1 = [s1, . . . , sn−2], we have an isomorphism

R
(w)
λn

(Fq) ≃ (F×
q )n−1 × Fℓ(w)

q ×R
(w)
cn

n−1
(Fq),

where R(w)
cn

n−1
(Fq) are the noncrossing parking braid varieties of [6].

Remark 8.7. When w is the identity of Sn−1, the subwords in subn(e) skip all in-
stances of the affine reflection s0 in λn and there are no required takes (since the
identity has no inversions). Writing cn = [s1, . . . , sn−1], we immediately have

R
(e)
λn

(Fq) ≃ (F×
q )n−1 ×Rcn−1

n
(Fq),

where Rcn−1
n

(Fq) is the Fuss-Dogolon braid variety for Sn, which can easily be shown
to be isomorphic to the usual Catalan braid variety Rcn

n−1
(Fq) in Sn−1.
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